blob: 3353f55479f0ac90fce4f9b5dfeda355e15d0036 [file] [log] [blame]
/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
/** @file brw_fs_visitor.cpp
*
* This file supports generating the FS LIR from the GLSL IR. The LIR
* makes it easier to do backend-specific optimizations than doing so
* in the GLSL IR or in the native code.
*/
extern "C" {
#include <sys/types.h>
#include "main/macros.h"
#include "main/shaderobj.h"
#include "main/uniforms.h"
#include "program/prog_parameter.h"
#include "program/prog_print.h"
#include "program/prog_optimize.h"
#include "program/register_allocate.h"
#include "program/sampler.h"
#include "program/hash_table.h"
#include "brw_context.h"
#include "brw_eu.h"
#include "brw_wm.h"
}
#include "brw_fs.h"
#include "glsl/glsl_types.h"
#include "glsl/ir_optimization.h"
void
fs_visitor::visit(ir_variable *ir)
{
fs_reg *reg = NULL;
if (variable_storage(ir))
return;
if (ir->mode == ir_var_shader_in) {
if (!strcmp(ir->name, "gl_FragCoord")) {
reg = emit_fragcoord_interpolation(ir);
} else if (!strcmp(ir->name, "gl_FrontFacing")) {
reg = emit_frontfacing_interpolation(ir);
} else {
reg = emit_general_interpolation(ir);
}
assert(reg);
hash_table_insert(this->variable_ht, reg, ir);
return;
} else if (ir->mode == ir_var_shader_out) {
reg = new(this->mem_ctx) fs_reg(this, ir->type);
if (ir->index > 0) {
assert(ir->location == FRAG_RESULT_DATA0);
assert(ir->index == 1);
this->dual_src_output = *reg;
} else if (ir->location == FRAG_RESULT_COLOR) {
/* Writing gl_FragColor outputs to all color regions. */
for (unsigned int i = 0; i < MAX2(c->key.nr_color_regions, 1); i++) {
this->outputs[i] = *reg;
this->output_components[i] = 4;
}
} else if (ir->location == FRAG_RESULT_DEPTH) {
this->frag_depth = *reg;
} else {
/* gl_FragData or a user-defined FS output */
assert(ir->location >= FRAG_RESULT_DATA0 &&
ir->location < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS);
int vector_elements =
ir->type->is_array() ? ir->type->fields.array->vector_elements
: ir->type->vector_elements;
/* General color output. */
for (unsigned int i = 0; i < MAX2(1, ir->type->length); i++) {
int output = ir->location - FRAG_RESULT_DATA0 + i;
this->outputs[output] = *reg;
this->outputs[output].reg_offset += vector_elements * i;
this->output_components[output] = vector_elements;
}
}
} else if (ir->mode == ir_var_uniform) {
int param_index = c->prog_data.nr_params;
/* Thanks to the lower_ubo_reference pass, we will see only
* ir_binop_ubo_load expressions and not ir_dereference_variable for UBO
* variables, so no need for them to be in variable_ht.
*/
if (ir->is_in_uniform_block())
return;
if (dispatch_width == 16) {
if (!variable_storage(ir)) {
fail("Failed to find uniform '%s' in 16-wide\n", ir->name);
}
return;
}
param_size[param_index] = type_size(ir->type);
if (!strncmp(ir->name, "gl_", 3)) {
setup_builtin_uniform_values(ir);
} else {
setup_uniform_values(ir);
}
reg = new(this->mem_ctx) fs_reg(UNIFORM, param_index);
reg->type = brw_type_for_base_type(ir->type);
}
if (!reg)
reg = new(this->mem_ctx) fs_reg(this, ir->type);
hash_table_insert(this->variable_ht, reg, ir);
}
void
fs_visitor::visit(ir_dereference_variable *ir)
{
fs_reg *reg = variable_storage(ir->var);
this->result = *reg;
}
void
fs_visitor::visit(ir_dereference_record *ir)
{
const glsl_type *struct_type = ir->record->type;
ir->record->accept(this);
unsigned int offset = 0;
for (unsigned int i = 0; i < struct_type->length; i++) {
if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
break;
offset += type_size(struct_type->fields.structure[i].type);
}
this->result.reg_offset += offset;
this->result.type = brw_type_for_base_type(ir->type);
}
void
fs_visitor::visit(ir_dereference_array *ir)
{
ir_constant *constant_index;
fs_reg src;
int element_size = type_size(ir->type);
constant_index = ir->array_index->as_constant();
ir->array->accept(this);
src = this->result;
src.type = brw_type_for_base_type(ir->type);
if (constant_index) {
assert(src.file == UNIFORM || src.file == GRF);
src.reg_offset += constant_index->value.i[0] * element_size;
} else {
/* Variable index array dereference. We attach the variable index
* component to the reg as a pointer to a register containing the
* offset. Currently only uniform arrays are supported in this patch,
* and that reladdr pointer is resolved by
* move_uniform_array_access_to_pull_constants(). All other array types
* are lowered by lower_variable_index_to_cond_assign().
*/
ir->array_index->accept(this);
fs_reg index_reg;
index_reg = fs_reg(this, glsl_type::int_type);
emit(BRW_OPCODE_MUL, index_reg, this->result, fs_reg(element_size));
if (src.reladdr) {
emit(BRW_OPCODE_ADD, index_reg, *src.reladdr, index_reg);
}
src.reladdr = ralloc(mem_ctx, fs_reg);
memcpy(src.reladdr, &index_reg, sizeof(index_reg));
}
this->result = src;
}
void
fs_visitor::emit_lrp(fs_reg dst, fs_reg x, fs_reg y, fs_reg a)
{
if (intel->gen < 6 ||
!x.is_valid_3src() ||
!y.is_valid_3src() ||
!a.is_valid_3src()) {
/* We can't use the LRP instruction. Emit x*(1-a) + y*a. */
fs_reg y_times_a = fs_reg(this, glsl_type::float_type);
fs_reg one_minus_a = fs_reg(this, glsl_type::float_type);
fs_reg x_times_one_minus_a = fs_reg(this, glsl_type::float_type);
emit(MUL(y_times_a, y, a));
a.negate = !a.negate;
emit(ADD(one_minus_a, a, fs_reg(1.0f)));
emit(MUL(x_times_one_minus_a, x, one_minus_a));
emit(ADD(dst, x_times_one_minus_a, y_times_a));
} else {
/* The LRP instruction actually does op1 * op0 + op2 * (1 - op0), so
* we need to reorder the operands.
*/
emit(LRP(dst, a, y, x));
}
}
void
fs_visitor::emit_minmax(uint32_t conditionalmod, fs_reg dst,
fs_reg src0, fs_reg src1)
{
fs_inst *inst;
if (intel->gen >= 6) {
inst = emit(BRW_OPCODE_SEL, dst, src0, src1);
inst->conditional_mod = conditionalmod;
} else {
emit(CMP(reg_null_d, src0, src1, conditionalmod));
inst = emit(BRW_OPCODE_SEL, dst, src0, src1);
inst->predicate = BRW_PREDICATE_NORMAL;
}
}
/* Instruction selection: Produce a MOV.sat instead of
* MIN(MAX(val, 0), 1) when possible.
*/
bool
fs_visitor::try_emit_saturate(ir_expression *ir)
{
ir_rvalue *sat_val = ir->as_rvalue_to_saturate();
if (!sat_val)
return false;
fs_inst *pre_inst = (fs_inst *) this->instructions.get_tail();
sat_val->accept(this);
fs_reg src = this->result;
fs_inst *last_inst = (fs_inst *) this->instructions.get_tail();
/* If the last instruction from our accept() didn't generate our
* src, generate a saturated MOV
*/
fs_inst *modify = get_instruction_generating_reg(pre_inst, last_inst, src);
if (!modify || modify->regs_written != 1) {
this->result = fs_reg(this, ir->type);
fs_inst *inst = emit(MOV(this->result, src));
inst->saturate = true;
} else {
modify->saturate = true;
this->result = src;
}
return true;
}
bool
fs_visitor::try_emit_mad(ir_expression *ir, int mul_arg)
{
/* 3-src instructions were introduced in gen6. */
if (intel->gen < 6)
return false;
/* MAD can only handle floating-point data. */
if (ir->type != glsl_type::float_type)
return false;
ir_rvalue *nonmul = ir->operands[1 - mul_arg];
ir_expression *mul = ir->operands[mul_arg]->as_expression();
if (!mul || mul->operation != ir_binop_mul)
return false;
if (nonmul->as_constant() ||
mul->operands[0]->as_constant() ||
mul->operands[1]->as_constant())
return false;
nonmul->accept(this);
fs_reg src0 = this->result;
mul->operands[0]->accept(this);
fs_reg src1 = this->result;
mul->operands[1]->accept(this);
fs_reg src2 = this->result;
this->result = fs_reg(this, ir->type);
emit(BRW_OPCODE_MAD, this->result, src0, src1, src2);
return true;
}
void
fs_visitor::visit(ir_expression *ir)
{
unsigned int operand;
fs_reg op[3], temp;
fs_inst *inst;
assert(ir->get_num_operands() <= 3);
if (try_emit_saturate(ir))
return;
if (ir->operation == ir_binop_add) {
if (try_emit_mad(ir, 0) || try_emit_mad(ir, 1))
return;
}
for (operand = 0; operand < ir->get_num_operands(); operand++) {
ir->operands[operand]->accept(this);
if (this->result.file == BAD_FILE) {
fail("Failed to get tree for expression operand:\n");
ir->operands[operand]->print();
printf("\n");
}
op[operand] = this->result;
/* Matrix expression operands should have been broken down to vector
* operations already.
*/
assert(!ir->operands[operand]->type->is_matrix());
/* And then those vector operands should have been broken down to scalar.
*/
assert(!ir->operands[operand]->type->is_vector());
}
/* Storage for our result. If our result goes into an assignment, it will
* just get copy-propagated out, so no worries.
*/
this->result = fs_reg(this, ir->type);
switch (ir->operation) {
case ir_unop_logic_not:
/* Note that BRW_OPCODE_NOT is not appropriate here, since it is
* ones complement of the whole register, not just bit 0.
*/
emit(XOR(this->result, op[0], fs_reg(1)));
break;
case ir_unop_neg:
op[0].negate = !op[0].negate;
this->result = op[0];
break;
case ir_unop_abs:
op[0].abs = true;
op[0].negate = false;
this->result = op[0];
break;
case ir_unop_sign:
temp = fs_reg(this, ir->type);
emit(MOV(this->result, fs_reg(0.0f)));
emit(CMP(reg_null_f, op[0], fs_reg(0.0f), BRW_CONDITIONAL_G));
inst = emit(MOV(this->result, fs_reg(1.0f)));
inst->predicate = BRW_PREDICATE_NORMAL;
emit(CMP(reg_null_f, op[0], fs_reg(0.0f), BRW_CONDITIONAL_L));
inst = emit(MOV(this->result, fs_reg(-1.0f)));
inst->predicate = BRW_PREDICATE_NORMAL;
break;
case ir_unop_rcp:
emit_math(SHADER_OPCODE_RCP, this->result, op[0]);
break;
case ir_unop_exp2:
emit_math(SHADER_OPCODE_EXP2, this->result, op[0]);
break;
case ir_unop_log2:
emit_math(SHADER_OPCODE_LOG2, this->result, op[0]);
break;
case ir_unop_exp:
case ir_unop_log:
assert(!"not reached: should be handled by ir_explog_to_explog2");
break;
case ir_unop_sin:
case ir_unop_sin_reduced:
emit_math(SHADER_OPCODE_SIN, this->result, op[0]);
break;
case ir_unop_cos:
case ir_unop_cos_reduced:
emit_math(SHADER_OPCODE_COS, this->result, op[0]);
break;
case ir_unop_dFdx:
emit(FS_OPCODE_DDX, this->result, op[0]);
break;
case ir_unop_dFdy:
emit(FS_OPCODE_DDY, this->result, op[0]);
break;
case ir_binop_add:
emit(ADD(this->result, op[0], op[1]));
break;
case ir_binop_sub:
assert(!"not reached: should be handled by ir_sub_to_add_neg");
break;
case ir_binop_mul:
if (ir->type->is_integer()) {
/* For integer multiplication, the MUL uses the low 16 bits
* of one of the operands (src0 on gen6, src1 on gen7). The
* MACH accumulates in the contribution of the upper 16 bits
* of that operand.
*
* FINISHME: Emit just the MUL if we know an operand is small
* enough.
*/
if (intel->gen >= 7 && dispatch_width == 16)
fail("16-wide explicit accumulator operands unsupported\n");
struct brw_reg acc = retype(brw_acc_reg(), BRW_REGISTER_TYPE_D);
emit(MUL(acc, op[0], op[1]));
emit(MACH(reg_null_d, op[0], op[1]));
emit(MOV(this->result, fs_reg(acc)));
} else {
emit(MUL(this->result, op[0], op[1]));
}
break;
case ir_binop_div:
/* Floating point should be lowered by DIV_TO_MUL_RCP in the compiler. */
assert(ir->type->is_integer());
emit_math(SHADER_OPCODE_INT_QUOTIENT, this->result, op[0], op[1]);
break;
case ir_binop_mod:
/* Floating point should be lowered by MOD_TO_FRACT in the compiler. */
assert(ir->type->is_integer());
emit_math(SHADER_OPCODE_INT_REMAINDER, this->result, op[0], op[1]);
break;
case ir_binop_less:
case ir_binop_greater:
case ir_binop_lequal:
case ir_binop_gequal:
case ir_binop_equal:
case ir_binop_all_equal:
case ir_binop_nequal:
case ir_binop_any_nequal:
resolve_bool_comparison(ir->operands[0], &op[0]);
resolve_bool_comparison(ir->operands[1], &op[1]);
emit(CMP(this->result, op[0], op[1],
brw_conditional_for_comparison(ir->operation)));
break;
case ir_binop_logic_xor:
emit(XOR(this->result, op[0], op[1]));
break;
case ir_binop_logic_or:
emit(OR(this->result, op[0], op[1]));
break;
case ir_binop_logic_and:
emit(AND(this->result, op[0], op[1]));
break;
case ir_binop_dot:
case ir_unop_any:
assert(!"not reached: should be handled by brw_fs_channel_expressions");
break;
case ir_unop_noise:
assert(!"not reached: should be handled by lower_noise");
break;
case ir_quadop_vector:
assert(!"not reached: should be handled by lower_quadop_vector");
break;
case ir_binop_vector_extract:
assert(!"not reached: should be handled by lower_vec_index_to_cond_assign()");
break;
case ir_triop_vector_insert:
assert(!"not reached: should be handled by lower_vector_insert()");
break;
case ir_unop_sqrt:
emit_math(SHADER_OPCODE_SQRT, this->result, op[0]);
break;
case ir_unop_rsq:
emit_math(SHADER_OPCODE_RSQ, this->result, op[0]);
break;
case ir_unop_bitcast_i2f:
case ir_unop_bitcast_u2f:
op[0].type = BRW_REGISTER_TYPE_F;
this->result = op[0];
break;
case ir_unop_i2u:
case ir_unop_bitcast_f2u:
op[0].type = BRW_REGISTER_TYPE_UD;
this->result = op[0];
break;
case ir_unop_u2i:
case ir_unop_bitcast_f2i:
op[0].type = BRW_REGISTER_TYPE_D;
this->result = op[0];
break;
case ir_unop_i2f:
case ir_unop_u2f:
case ir_unop_f2i:
case ir_unop_f2u:
emit(MOV(this->result, op[0]));
break;
case ir_unop_b2i:
emit(AND(this->result, op[0], fs_reg(1)));
break;
case ir_unop_b2f:
temp = fs_reg(this, glsl_type::int_type);
emit(AND(temp, op[0], fs_reg(1)));
emit(MOV(this->result, temp));
break;
case ir_unop_f2b:
emit(CMP(this->result, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ));
break;
case ir_unop_i2b:
emit(CMP(this->result, op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
break;
case ir_unop_trunc:
emit(RNDZ(this->result, op[0]));
break;
case ir_unop_ceil:
op[0].negate = !op[0].negate;
emit(RNDD(this->result, op[0]));
this->result.negate = true;
break;
case ir_unop_floor:
emit(RNDD(this->result, op[0]));
break;
case ir_unop_fract:
emit(FRC(this->result, op[0]));
break;
case ir_unop_round_even:
emit(RNDE(this->result, op[0]));
break;
case ir_binop_min:
case ir_binop_max:
resolve_ud_negate(&op[0]);
resolve_ud_negate(&op[1]);
emit_minmax(ir->operation == ir_binop_min ?
BRW_CONDITIONAL_L : BRW_CONDITIONAL_GE,
this->result, op[0], op[1]);
break;
case ir_unop_pack_snorm_2x16:
case ir_unop_pack_snorm_4x8:
case ir_unop_pack_unorm_2x16:
case ir_unop_pack_unorm_4x8:
case ir_unop_unpack_snorm_2x16:
case ir_unop_unpack_snorm_4x8:
case ir_unop_unpack_unorm_2x16:
case ir_unop_unpack_unorm_4x8:
case ir_unop_unpack_half_2x16:
case ir_unop_pack_half_2x16:
assert(!"not reached: should be handled by lower_packing_builtins");
break;
case ir_unop_unpack_half_2x16_split_x:
emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, this->result, op[0]);
break;
case ir_unop_unpack_half_2x16_split_y:
emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, this->result, op[0]);
break;
case ir_binop_pow:
emit_math(SHADER_OPCODE_POW, this->result, op[0], op[1]);
break;
case ir_unop_bitfield_reverse:
emit(BFREV(this->result, op[0]));
break;
case ir_unop_bit_count:
emit(CBIT(this->result, op[0]));
break;
case ir_unop_find_msb:
temp = fs_reg(this, glsl_type::uint_type);
emit(FBH(temp, op[0]));
/* FBH counts from the MSB side, while GLSL's findMSB() wants the count
* from the LSB side. If FBH didn't return an error (0xFFFFFFFF), then
* subtract the result from 31 to convert the MSB count into an LSB count.
*/
/* FBH only supports UD type for dst, so use a MOV to convert UD to D. */
emit(MOV(this->result, temp));
emit(CMP(reg_null_d, this->result, fs_reg(-1), BRW_CONDITIONAL_NZ));
temp.negate = true;
inst = emit(ADD(this->result, temp, fs_reg(31)));
inst->predicate = BRW_PREDICATE_NORMAL;
break;
case ir_unop_find_lsb:
emit(FBL(this->result, op[0]));
break;
case ir_triop_bitfield_extract:
/* Note that the instruction's argument order is reversed from GLSL
* and the IR.
*/
emit(BFE(this->result, op[2], op[1], op[0]));
break;
case ir_binop_bfm:
emit(BFI1(this->result, op[0], op[1]));
break;
case ir_triop_bfi:
emit(BFI2(this->result, op[0], op[1], op[2]));
break;
case ir_quadop_bitfield_insert:
assert(!"not reached: should be handled by "
"lower_instructions::bitfield_insert_to_bfm_bfi");
break;
case ir_unop_bit_not:
emit(NOT(this->result, op[0]));
break;
case ir_binop_bit_and:
emit(AND(this->result, op[0], op[1]));
break;
case ir_binop_bit_xor:
emit(XOR(this->result, op[0], op[1]));
break;
case ir_binop_bit_or:
emit(OR(this->result, op[0], op[1]));
break;
case ir_binop_lshift:
emit(SHL(this->result, op[0], op[1]));
break;
case ir_binop_rshift:
if (ir->type->base_type == GLSL_TYPE_INT)
emit(ASR(this->result, op[0], op[1]));
else
emit(SHR(this->result, op[0], op[1]));
break;
case ir_binop_pack_half_2x16_split:
emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, this->result, op[0], op[1]);
break;
case ir_binop_ubo_load: {
/* This IR node takes a constant uniform block and a constant or
* variable byte offset within the block and loads a vector from that.
*/
ir_constant *uniform_block = ir->operands[0]->as_constant();
ir_constant *const_offset = ir->operands[1]->as_constant();
fs_reg surf_index = fs_reg((unsigned)SURF_INDEX_WM_UBO(uniform_block->value.u[0]));
if (const_offset) {
fs_reg packed_consts = fs_reg(this, glsl_type::float_type);
packed_consts.type = result.type;
fs_reg const_offset_reg = fs_reg(const_offset->value.u[0] & ~15);
emit(fs_inst(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
packed_consts, surf_index, const_offset_reg));
packed_consts.smear = const_offset->value.u[0] % 16 / 4;
for (int i = 0; i < ir->type->vector_elements; i++) {
/* UBO bools are any nonzero value. We consider bools to be
* values with the low bit set to 1. Convert them using CMP.
*/
if (ir->type->base_type == GLSL_TYPE_BOOL) {
emit(CMP(result, packed_consts, fs_reg(0u), BRW_CONDITIONAL_NZ));
} else {
emit(MOV(result, packed_consts));
}
packed_consts.smear++;
result.reg_offset++;
/* The std140 packing rules don't allow vectors to cross 16-byte
* boundaries, and a reg is 32 bytes.
*/
assert(packed_consts.smear < 8);
}
} else {
/* Turn the byte offset into a dword offset. */
fs_reg base_offset = fs_reg(this, glsl_type::int_type);
emit(SHR(base_offset, op[1], fs_reg(2)));
for (int i = 0; i < ir->type->vector_elements; i++) {
emit(VARYING_PULL_CONSTANT_LOAD(result, surf_index,
base_offset, i));
if (ir->type->base_type == GLSL_TYPE_BOOL)
emit(CMP(result, result, fs_reg(0), BRW_CONDITIONAL_NZ));
result.reg_offset++;
}
}
result.reg_offset = 0;
break;
}
case ir_triop_lrp:
emit_lrp(this->result, op[0], op[1], op[2]);
break;
}
}
void
fs_visitor::emit_assignment_writes(fs_reg &l, fs_reg &r,
const glsl_type *type, bool predicated)
{
switch (type->base_type) {
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
case GLSL_TYPE_BOOL:
for (unsigned int i = 0; i < type->components(); i++) {
l.type = brw_type_for_base_type(type);
r.type = brw_type_for_base_type(type);
if (predicated || !l.equals(r)) {
fs_inst *inst = emit(MOV(l, r));
inst->predicate = predicated ? BRW_PREDICATE_NORMAL : BRW_PREDICATE_NONE;
}
l.reg_offset++;
r.reg_offset++;
}
break;
case GLSL_TYPE_ARRAY:
for (unsigned int i = 0; i < type->length; i++) {
emit_assignment_writes(l, r, type->fields.array, predicated);
}
break;
case GLSL_TYPE_STRUCT:
for (unsigned int i = 0; i < type->length; i++) {
emit_assignment_writes(l, r, type->fields.structure[i].type,
predicated);
}
break;
case GLSL_TYPE_SAMPLER:
break;
case GLSL_TYPE_VOID:
case GLSL_TYPE_ERROR:
case GLSL_TYPE_INTERFACE:
assert(!"not reached");
break;
}
}
/* If the RHS processing resulted in an instruction generating a
* temporary value, and it would be easy to rewrite the instruction to
* generate its result right into the LHS instead, do so. This ends
* up reliably removing instructions where it can be tricky to do so
* later without real UD chain information.
*/
bool
fs_visitor::try_rewrite_rhs_to_dst(ir_assignment *ir,
fs_reg dst,
fs_reg src,
fs_inst *pre_rhs_inst,
fs_inst *last_rhs_inst)
{
/* Only attempt if we're doing a direct assignment. */
if (ir->condition ||
!(ir->lhs->type->is_scalar() ||
(ir->lhs->type->is_vector() &&
ir->write_mask == (1 << ir->lhs->type->vector_elements) - 1)))
return false;
/* Make sure the last instruction generated our source reg. */
fs_inst *modify = get_instruction_generating_reg(pre_rhs_inst,
last_rhs_inst,
src);
if (!modify)
return false;
/* If last_rhs_inst wrote a different number of components than our LHS,
* we can't safely rewrite it.
*/
if (virtual_grf_sizes[dst.reg] != modify->regs_written)
return false;
/* Success! Rewrite the instruction. */
modify->dst = dst;
return true;
}
void
fs_visitor::visit(ir_assignment *ir)
{
fs_reg l, r;
fs_inst *inst;
/* FINISHME: arrays on the lhs */
ir->lhs->accept(this);
l = this->result;
fs_inst *pre_rhs_inst = (fs_inst *) this->instructions.get_tail();
ir->rhs->accept(this);
r = this->result;
fs_inst *last_rhs_inst = (fs_inst *) this->instructions.get_tail();
assert(l.file != BAD_FILE);
assert(r.file != BAD_FILE);
if (try_rewrite_rhs_to_dst(ir, l, r, pre_rhs_inst, last_rhs_inst))
return;
if (ir->condition) {
emit_bool_to_cond_code(ir->condition);
}
if (ir->lhs->type->is_scalar() ||
ir->lhs->type->is_vector()) {
for (int i = 0; i < ir->lhs->type->vector_elements; i++) {
if (ir->write_mask & (1 << i)) {
inst = emit(MOV(l, r));
if (ir->condition)
inst->predicate = BRW_PREDICATE_NORMAL;
r.reg_offset++;
}
l.reg_offset++;
}
} else {
emit_assignment_writes(l, r, ir->lhs->type, ir->condition != NULL);
}
}
fs_inst *
fs_visitor::emit_texture_gen4(ir_texture *ir, fs_reg dst, fs_reg coordinate,
fs_reg shadow_c, fs_reg lod, fs_reg dPdy)
{
int mlen;
int base_mrf = 1;
bool simd16 = false;
fs_reg orig_dst;
/* g0 header. */
mlen = 1;
if (ir->shadow_comparitor) {
for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
emit(MOV(fs_reg(MRF, base_mrf + mlen + i), coordinate));
coordinate.reg_offset++;
}
/* gen4's SIMD8 sampler always has the slots for u,v,r present. */
mlen += 3;
if (ir->op == ir_tex) {
/* There's no plain shadow compare message, so we use shadow
* compare with a bias of 0.0.
*/
emit(MOV(fs_reg(MRF, base_mrf + mlen), fs_reg(0.0f)));
mlen++;
} else if (ir->op == ir_txb || ir->op == ir_txl) {
emit(MOV(fs_reg(MRF, base_mrf + mlen), lod));
mlen++;
} else {
assert(!"Should not get here.");
}
emit(MOV(fs_reg(MRF, base_mrf + mlen), shadow_c));
mlen++;
} else if (ir->op == ir_tex) {
for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
emit(MOV(fs_reg(MRF, base_mrf + mlen + i), coordinate));
coordinate.reg_offset++;
}
/* gen4's SIMD8 sampler always has the slots for u,v,r present. */
mlen += 3;
} else if (ir->op == ir_txd) {
fs_reg &dPdx = lod;
for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
emit(MOV(fs_reg(MRF, base_mrf + mlen + i), coordinate));
coordinate.reg_offset++;
}
/* the slots for u and v are always present, but r is optional */
mlen += MAX2(ir->coordinate->type->vector_elements, 2);
/* P = u, v, r
* dPdx = dudx, dvdx, drdx
* dPdy = dudy, dvdy, drdy
*
* 1-arg: Does not exist.
*
* 2-arg: dudx dvdx dudy dvdy
* dPdx.x dPdx.y dPdy.x dPdy.y
* m4 m5 m6 m7
*
* 3-arg: dudx dvdx drdx dudy dvdy drdy
* dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
* m5 m6 m7 m8 m9 m10
*/
for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
emit(MOV(fs_reg(MRF, base_mrf + mlen), dPdx));
dPdx.reg_offset++;
}
mlen += MAX2(ir->lod_info.grad.dPdx->type->vector_elements, 2);
for (int i = 0; i < ir->lod_info.grad.dPdy->type->vector_elements; i++) {
emit(MOV(fs_reg(MRF, base_mrf + mlen), dPdy));
dPdy.reg_offset++;
}
mlen += MAX2(ir->lod_info.grad.dPdy->type->vector_elements, 2);
} else if (ir->op == ir_txs) {
/* There's no SIMD8 resinfo message on Gen4. Use SIMD16 instead. */
simd16 = true;
emit(MOV(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), lod));
mlen += 2;
} else {
/* Oh joy. gen4 doesn't have SIMD8 non-shadow-compare bias/lod
* instructions. We'll need to do SIMD16 here.
*/
simd16 = true;
assert(ir->op == ir_txb || ir->op == ir_txl || ir->op == ir_txf);
for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
emit(MOV(fs_reg(MRF, base_mrf + mlen + i * 2, coordinate.type),
coordinate));
coordinate.reg_offset++;
}
/* Initialize the rest of u/v/r with 0.0. Empirically, this seems to
* be necessary for TXF (ld), but seems wise to do for all messages.
*/
for (int i = ir->coordinate->type->vector_elements; i < 3; i++) {
emit(MOV(fs_reg(MRF, base_mrf + mlen + i * 2), fs_reg(0.0f)));
}
/* lod/bias appears after u/v/r. */
mlen += 6;
emit(MOV(fs_reg(MRF, base_mrf + mlen, lod.type), lod));
mlen++;
/* The unused upper half. */
mlen++;
}
if (simd16) {
/* Now, since we're doing simd16, the return is 2 interleaved
* vec4s where the odd-indexed ones are junk. We'll need to move
* this weirdness around to the expected layout.
*/
orig_dst = dst;
dst = fs_reg(GRF, virtual_grf_alloc(8),
(intel->is_g4x ?
brw_type_for_base_type(ir->type) :
BRW_REGISTER_TYPE_F));
}
fs_inst *inst = NULL;
switch (ir->op) {
case ir_tex:
inst = emit(SHADER_OPCODE_TEX, dst);
break;
case ir_txb:
inst = emit(FS_OPCODE_TXB, dst);
break;
case ir_txl:
inst = emit(SHADER_OPCODE_TXL, dst);
break;
case ir_txd:
inst = emit(SHADER_OPCODE_TXD, dst);
break;
case ir_txs:
inst = emit(SHADER_OPCODE_TXS, dst);
break;
case ir_txf:
inst = emit(SHADER_OPCODE_TXF, dst);
break;
default:
fail("unrecognized texture opcode");
}
inst->base_mrf = base_mrf;
inst->mlen = mlen;
inst->header_present = true;
inst->regs_written = simd16 ? 8 : 4;
if (simd16) {
for (int i = 0; i < 4; i++) {
emit(MOV(orig_dst, dst));
orig_dst.reg_offset++;
dst.reg_offset += 2;
}
}
return inst;
}
/* gen5's sampler has slots for u, v, r, array index, then optional
* parameters like shadow comparitor or LOD bias. If optional
* parameters aren't present, those base slots are optional and don't
* need to be included in the message.
*
* We don't fill in the unnecessary slots regardless, which may look
* surprising in the disassembly.
*/
fs_inst *
fs_visitor::emit_texture_gen5(ir_texture *ir, fs_reg dst, fs_reg coordinate,
fs_reg shadow_c, fs_reg lod, fs_reg lod2,
fs_reg sample_index)
{
int mlen = 0;
int base_mrf = 2;
int reg_width = dispatch_width / 8;
bool header_present = false;
const int vector_elements =
ir->coordinate ? ir->coordinate->type->vector_elements : 0;
if (ir->offset != NULL && ir->op == ir_txf) {
/* It appears that the ld instruction used for txf does its
* address bounds check before adding in the offset. To work
* around this, just add the integer offset to the integer texel
* coordinate, and don't put the offset in the header.
*/
ir_constant *offset = ir->offset->as_constant();
for (int i = 0; i < vector_elements; i++) {
emit(ADD(fs_reg(MRF, base_mrf + mlen + i * reg_width, coordinate.type),
coordinate,
offset->value.i[i]));
coordinate.reg_offset++;
}
} else {
if (ir->offset) {
/* The offsets set up by the ir_texture visitor are in the
* m1 header, so we can't go headerless.
*/
header_present = true;
mlen++;
base_mrf--;
}
for (int i = 0; i < vector_elements; i++) {
emit(MOV(fs_reg(MRF, base_mrf + mlen + i * reg_width, coordinate.type),
coordinate));
coordinate.reg_offset++;
}
}
mlen += vector_elements * reg_width;
if (ir->shadow_comparitor) {
mlen = MAX2(mlen, header_present + 4 * reg_width);
emit(MOV(fs_reg(MRF, base_mrf + mlen), shadow_c));
mlen += reg_width;
}
fs_inst *inst = NULL;
switch (ir->op) {
case ir_tex:
inst = emit(SHADER_OPCODE_TEX, dst);
break;
case ir_txb:
mlen = MAX2(mlen, header_present + 4 * reg_width);
emit(MOV(fs_reg(MRF, base_mrf + mlen), lod));
mlen += reg_width;
inst = emit(FS_OPCODE_TXB, dst);
break;
case ir_txl:
mlen = MAX2(mlen, header_present + 4 * reg_width);
emit(MOV(fs_reg(MRF, base_mrf + mlen), lod));
mlen += reg_width;
inst = emit(SHADER_OPCODE_TXL, dst);
break;
case ir_txd: {
mlen = MAX2(mlen, header_present + 4 * reg_width); /* skip over 'ai' */
/**
* P = u, v, r
* dPdx = dudx, dvdx, drdx
* dPdy = dudy, dvdy, drdy
*
* Load up these values:
* - dudx dudy dvdx dvdy drdx drdy
* - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
*/
for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
emit(MOV(fs_reg(MRF, base_mrf + mlen), lod));
lod.reg_offset++;
mlen += reg_width;
emit(MOV(fs_reg(MRF, base_mrf + mlen), lod2));
lod2.reg_offset++;
mlen += reg_width;
}
inst = emit(SHADER_OPCODE_TXD, dst);
break;
}
case ir_txs:
emit(MOV(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), lod));
mlen += reg_width;
inst = emit(SHADER_OPCODE_TXS, dst);
break;
case ir_txf:
mlen = header_present + 4 * reg_width;
emit(MOV(fs_reg(MRF, base_mrf + mlen - reg_width, BRW_REGISTER_TYPE_UD), lod));
inst = emit(SHADER_OPCODE_TXF, dst);
break;
case ir_txf_ms:
mlen = header_present + 4 * reg_width;
/* lod */
emit(MOV(fs_reg(MRF, base_mrf + mlen - reg_width, BRW_REGISTER_TYPE_UD), fs_reg(0)));
/* sample index */
emit(MOV(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), sample_index));
mlen += reg_width;
inst = emit(SHADER_OPCODE_TXF_MS, dst);
break;
case ir_lod:
inst = emit(SHADER_OPCODE_LOD, dst);
break;
}
inst->base_mrf = base_mrf;
inst->mlen = mlen;
inst->header_present = header_present;
inst->regs_written = 4;
if (mlen > 11) {
fail("Message length >11 disallowed by hardware\n");
}
return inst;
}
fs_inst *
fs_visitor::emit_texture_gen7(ir_texture *ir, fs_reg dst, fs_reg coordinate,
fs_reg shadow_c, fs_reg lod, fs_reg lod2,
fs_reg sample_index)
{
int mlen = 0;
int base_mrf = 2;
int reg_width = dispatch_width / 8;
bool header_present = false;
int offsets[3];
if (ir->offset && ir->op != ir_txf) {
/* The offsets set up by the ir_texture visitor are in the
* m1 header, so we can't go headerless.
*/
header_present = true;
mlen++;
base_mrf--;
}
if (ir->shadow_comparitor) {
emit(MOV(fs_reg(MRF, base_mrf + mlen), shadow_c));
mlen += reg_width;
}
/* Set up the LOD info */
switch (ir->op) {
case ir_tex:
case ir_lod:
break;
case ir_txb:
emit(MOV(fs_reg(MRF, base_mrf + mlen), lod));
mlen += reg_width;
break;
case ir_txl:
emit(MOV(fs_reg(MRF, base_mrf + mlen), lod));
mlen += reg_width;
break;
case ir_txd: {
if (dispatch_width == 16)
fail("Gen7 does not support sample_d/sample_d_c in SIMD16 mode.");
/* Load dPdx and the coordinate together:
* [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
*/
for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
emit(MOV(fs_reg(MRF, base_mrf + mlen), coordinate));
coordinate.reg_offset++;
mlen += reg_width;
/* For cube map array, the coordinate is (u,v,r,ai) but there are
* only derivatives for (u, v, r).
*/
if (i < ir->lod_info.grad.dPdx->type->vector_elements) {
emit(MOV(fs_reg(MRF, base_mrf + mlen), lod));
lod.reg_offset++;
mlen += reg_width;
emit(MOV(fs_reg(MRF, base_mrf + mlen), lod2));
lod2.reg_offset++;
mlen += reg_width;
}
}
break;
}
case ir_txs:
emit(MOV(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), lod));
mlen += reg_width;
break;
case ir_txf:
/* It appears that the ld instruction used for txf does its
* address bounds check before adding in the offset. To work
* around this, just add the integer offset to the integer texel
* coordinate, and don't put the offset in the header.
*/
if (ir->offset) {
ir_constant *offset = ir->offset->as_constant();
offsets[0] = offset->value.i[0];
offsets[1] = offset->value.i[1];
offsets[2] = offset->value.i[2];
} else {
memset(offsets, 0, sizeof(offsets));
}
/* Unfortunately, the parameters for LD are intermixed: u, lod, v, r. */
emit(ADD(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D),
coordinate, offsets[0]));
coordinate.reg_offset++;
mlen += reg_width;
emit(MOV(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D), lod));
mlen += reg_width;
for (int i = 1; i < ir->coordinate->type->vector_elements; i++) {
emit(ADD(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D),
coordinate, offsets[i]));
coordinate.reg_offset++;
mlen += reg_width;
}
break;
case ir_txf_ms:
emit(MOV(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), sample_index));
mlen += reg_width;
/* constant zero MCS; we arrange to never actually have a compressed
* multisample surface here for now. TODO: issue ld_mcs to get this first,
* if we ever support texturing from compressed multisample surfaces
*/
emit(MOV(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), fs_reg(0u)));
mlen += reg_width;
/* there is no offsetting for this message; just copy in the integer
* texture coordinates
*/
for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
emit(MOV(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D),
coordinate));
coordinate.reg_offset++;
mlen += reg_width;
}
break;
}
/* Set up the coordinate (except for cases where it was done above) */
if (ir->op != ir_txd && ir->op != ir_txs && ir->op != ir_txf && ir->op != ir_txf_ms) {
for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
emit(MOV(fs_reg(MRF, base_mrf + mlen), coordinate));
coordinate.reg_offset++;
mlen += reg_width;
}
}
/* Generate the SEND */
fs_inst *inst = NULL;
switch (ir->op) {
case ir_tex: inst = emit(SHADER_OPCODE_TEX, dst); break;
case ir_txb: inst = emit(FS_OPCODE_TXB, dst); break;
case ir_txl: inst = emit(SHADER_OPCODE_TXL, dst); break;
case ir_txd: inst = emit(SHADER_OPCODE_TXD, dst); break;
case ir_txf: inst = emit(SHADER_OPCODE_TXF, dst); break;
case ir_txf_ms: inst = emit(SHADER_OPCODE_TXF_MS, dst); break;
case ir_txs: inst = emit(SHADER_OPCODE_TXS, dst); break;
case ir_lod: inst = emit(SHADER_OPCODE_LOD, dst); break;
}
inst->base_mrf = base_mrf;
inst->mlen = mlen;
inst->header_present = header_present;
inst->regs_written = 4;
if (mlen > 11) {
fail("Message length >11 disallowed by hardware\n");
}
return inst;
}
fs_reg
fs_visitor::rescale_texcoord(ir_texture *ir, fs_reg coordinate,
bool is_rect, int sampler, int texunit)
{
fs_inst *inst = NULL;
bool needs_gl_clamp = true;
fs_reg scale_x, scale_y;
/* The 965 requires the EU to do the normalization of GL rectangle
* texture coordinates. We use the program parameter state
* tracking to get the scaling factor.
*/
if (is_rect &&
(intel->gen < 6 ||
(intel->gen >= 6 && (c->key.tex.gl_clamp_mask[0] & (1 << sampler) ||
c->key.tex.gl_clamp_mask[1] & (1 << sampler))))) {
struct gl_program_parameter_list *params = fp->Base.Parameters;
int tokens[STATE_LENGTH] = {
STATE_INTERNAL,
STATE_TEXRECT_SCALE,
texunit,
0,
0
};
if (dispatch_width == 16) {
fail("rectangle scale uniform setup not supported on 16-wide\n");
return coordinate;
}
scale_x = fs_reg(UNIFORM, c->prog_data.nr_params);
scale_y = fs_reg(UNIFORM, c->prog_data.nr_params + 1);
GLuint index = _mesa_add_state_reference(params,
(gl_state_index *)tokens);
c->prog_data.param[c->prog_data.nr_params++] =
&fp->Base.Parameters->ParameterValues[index][0].f;
c->prog_data.param[c->prog_data.nr_params++] =
&fp->Base.Parameters->ParameterValues[index][1].f;
}
/* The 965 requires the EU to do the normalization of GL rectangle
* texture coordinates. We use the program parameter state
* tracking to get the scaling factor.
*/
if (intel->gen < 6 && is_rect) {
fs_reg dst = fs_reg(this, ir->coordinate->type);
fs_reg src = coordinate;
coordinate = dst;
emit(MUL(dst, src, scale_x));
dst.reg_offset++;
src.reg_offset++;
emit(MUL(dst, src, scale_y));
} else if (is_rect) {
/* On gen6+, the sampler handles the rectangle coordinates
* natively, without needing rescaling. But that means we have
* to do GL_CLAMP clamping at the [0, width], [0, height] scale,
* not [0, 1] like the default case below.
*/
needs_gl_clamp = false;
for (int i = 0; i < 2; i++) {
if (c->key.tex.gl_clamp_mask[i] & (1 << sampler)) {
fs_reg chan = coordinate;
chan.reg_offset += i;
inst = emit(BRW_OPCODE_SEL, chan, chan, brw_imm_f(0.0));
inst->conditional_mod = BRW_CONDITIONAL_G;
/* Our parameter comes in as 1.0/width or 1.0/height,
* because that's what people normally want for doing
* texture rectangle handling. We need width or height
* for clamping, but we don't care enough to make a new
* parameter type, so just invert back.
*/
fs_reg limit = fs_reg(this, glsl_type::float_type);
emit(MOV(limit, i == 0 ? scale_x : scale_y));
emit(SHADER_OPCODE_RCP, limit, limit);
inst = emit(BRW_OPCODE_SEL, chan, chan, limit);
inst->conditional_mod = BRW_CONDITIONAL_L;
}
}
}
if (ir->coordinate && needs_gl_clamp) {
for (unsigned int i = 0;
i < MIN2(ir->coordinate->type->vector_elements, 3); i++) {
if (c->key.tex.gl_clamp_mask[i] & (1 << sampler)) {
fs_reg chan = coordinate;
chan.reg_offset += i;
fs_inst *inst = emit(MOV(chan, chan));
inst->saturate = true;
}
}
}
return coordinate;
}
void
fs_visitor::visit(ir_texture *ir)
{
fs_inst *inst = NULL;
int sampler =
_mesa_get_sampler_uniform_value(ir->sampler, shader_prog, &fp->Base);
/* FINISHME: We're failing to recompile our programs when the sampler is
* updated. This only matters for the texture rectangle scale parameters
* (pre-gen6, or gen6+ with GL_CLAMP).
*/
int texunit = fp->Base.SamplerUnits[sampler];
/* Should be lowered by do_lower_texture_projection */
assert(!ir->projector);
/* Generate code to compute all the subexpression trees. This has to be
* done before loading any values into MRFs for the sampler message since
* generating these values may involve SEND messages that need the MRFs.
*/
fs_reg coordinate;
if (ir->coordinate) {
ir->coordinate->accept(this);
coordinate = rescale_texcoord(ir, this->result,
ir->sampler->type->sampler_dimensionality ==
GLSL_SAMPLER_DIM_RECT,
sampler, texunit);
}
fs_reg shadow_comparitor;
if (ir->shadow_comparitor) {
ir->shadow_comparitor->accept(this);
shadow_comparitor = this->result;
}
fs_reg lod, lod2, sample_index;
switch (ir->op) {
case ir_tex:
case ir_lod:
break;
case ir_txb:
ir->lod_info.bias->accept(this);
lod = this->result;
break;
case ir_txd:
ir->lod_info.grad.dPdx->accept(this);
lod = this->result;
ir->lod_info.grad.dPdy->accept(this);
lod2 = this->result;
break;
case ir_txf:
case ir_txl:
case ir_txs:
ir->lod_info.lod->accept(this);
lod = this->result;
break;
case ir_txf_ms:
ir->lod_info.sample_index->accept(this);
sample_index = this->result;
break;
};
/* Writemasking doesn't eliminate channels on SIMD8 texture
* samples, so don't worry about them.
*/
fs_reg dst = fs_reg(this, glsl_type::get_instance(ir->type->base_type, 4, 1));
if (intel->gen >= 7) {
inst = emit_texture_gen7(ir, dst, coordinate, shadow_comparitor,
lod, lod2, sample_index);
} else if (intel->gen >= 5) {
inst = emit_texture_gen5(ir, dst, coordinate, shadow_comparitor,
lod, lod2, sample_index);
} else {
inst = emit_texture_gen4(ir, dst, coordinate, shadow_comparitor,
lod, lod2);
}
/* The header is set up by generate_tex() when necessary. */
inst->src[0] = reg_undef;
if (ir->offset != NULL && ir->op != ir_txf)
inst->texture_offset = brw_texture_offset(ir->offset->as_constant());
inst->sampler = sampler;
if (ir->shadow_comparitor)
inst->shadow_compare = true;
/* fixup #layers for cube map arrays */
if (ir->op == ir_txs) {
glsl_type const *type = ir->sampler->type;
if (type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
type->sampler_array) {
fs_reg depth = dst;
depth.reg_offset = 2;
emit_math(SHADER_OPCODE_INT_QUOTIENT, depth, depth, fs_reg(6));
}
}
swizzle_result(ir, dst, sampler);
}
/**
* Swizzle the result of a texture result. This is necessary for
* EXT_texture_swizzle as well as DEPTH_TEXTURE_MODE for shadow comparisons.
*/
void
fs_visitor::swizzle_result(ir_texture *ir, fs_reg orig_val, int sampler)
{
this->result = orig_val;
if (ir->op == ir_txs || ir->op == ir_lod)
return;
if (ir->type == glsl_type::float_type) {
/* Ignore DEPTH_TEXTURE_MODE swizzling. */
assert(ir->sampler->type->sampler_shadow);
} else if (c->key.tex.swizzles[sampler] != SWIZZLE_NOOP) {
fs_reg swizzled_result = fs_reg(this, glsl_type::vec4_type);
for (int i = 0; i < 4; i++) {
int swiz = GET_SWZ(c->key.tex.swizzles[sampler], i);
fs_reg l = swizzled_result;
l.reg_offset += i;
if (swiz == SWIZZLE_ZERO) {
emit(MOV(l, fs_reg(0.0f)));
} else if (swiz == SWIZZLE_ONE) {
emit(MOV(l, fs_reg(1.0f)));
} else {
fs_reg r = orig_val;
r.reg_offset += GET_SWZ(c->key.tex.swizzles[sampler], i);
emit(MOV(l, r));
}
}
this->result = swizzled_result;
}
}
void
fs_visitor::visit(ir_swizzle *ir)
{
ir->val->accept(this);
fs_reg val = this->result;
if (ir->type->vector_elements == 1) {
this->result.reg_offset += ir->mask.x;
return;
}
fs_reg result = fs_reg(this, ir->type);
this->result = result;
for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
fs_reg channel = val;
int swiz = 0;
switch (i) {
case 0:
swiz = ir->mask.x;
break;
case 1:
swiz = ir->mask.y;
break;
case 2:
swiz = ir->mask.z;
break;
case 3:
swiz = ir->mask.w;
break;
}
channel.reg_offset += swiz;
emit(MOV(result, channel));
result.reg_offset++;
}
}
void
fs_visitor::visit(ir_discard *ir)
{
assert(ir->condition == NULL); /* FINISHME */
/* We track our discarded pixels in f0.1. By predicating on it, we can
* update just the flag bits that aren't yet discarded. By emitting a
* CMP of g0 != g0, all our currently executing channels will get turned
* off.
*/
fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
BRW_REGISTER_TYPE_UW));
fs_inst *cmp = emit(CMP(reg_null_f, some_reg, some_reg,
BRW_CONDITIONAL_NZ));
cmp->predicate = BRW_PREDICATE_NORMAL;
cmp->flag_subreg = 1;
if (intel->gen >= 6) {
/* For performance, after a discard, jump to the end of the shader.
* However, many people will do foliage by discarding based on a
* texture's alpha mask, and then continue on to texture with the
* remaining pixels. To avoid trashing the derivatives for those
* texture samples, we'll only jump if all of the pixels in the subspan
* have been discarded.
*/
fs_inst *discard_jump = emit(FS_OPCODE_DISCARD_JUMP);
discard_jump->flag_subreg = 1;
discard_jump->predicate = BRW_PREDICATE_ALIGN1_ANY4H;
discard_jump->predicate_inverse = true;
}
}
void
fs_visitor::visit(ir_constant *ir)
{
/* Set this->result to reg at the bottom of the function because some code
* paths will cause this visitor to be applied to other fields. This will
* cause the value stored in this->result to be modified.
*
* Make reg constant so that it doesn't get accidentally modified along the
* way. Yes, I actually had this problem. :(
*/
const fs_reg reg(this, ir->type);
fs_reg dst_reg = reg;
if (ir->type->is_array()) {
const unsigned size = type_size(ir->type->fields.array);
for (unsigned i = 0; i < ir->type->length; i++) {
ir->array_elements[i]->accept(this);
fs_reg src_reg = this->result;
dst_reg.type = src_reg.type;
for (unsigned j = 0; j < size; j++) {
emit(MOV(dst_reg, src_reg));
src_reg.reg_offset++;
dst_reg.reg_offset++;
}
}
} else if (ir->type->is_record()) {
foreach_list(node, &ir->components) {
ir_constant *const field = (ir_constant *) node;
const unsigned size = type_size(field->type);
field->accept(this);
fs_reg src_reg = this->result;
dst_reg.type = src_reg.type;
for (unsigned j = 0; j < size; j++) {
emit(MOV(dst_reg, src_reg));
src_reg.reg_offset++;
dst_reg.reg_offset++;
}
}
} else {
const unsigned size = type_size(ir->type);
for (unsigned i = 0; i < size; i++) {
switch (ir->type->base_type) {
case GLSL_TYPE_FLOAT:
emit(MOV(dst_reg, fs_reg(ir->value.f[i])));
break;
case GLSL_TYPE_UINT:
emit(MOV(dst_reg, fs_reg(ir->value.u[i])));
break;
case GLSL_TYPE_INT:
emit(MOV(dst_reg, fs_reg(ir->value.i[i])));
break;
case GLSL_TYPE_BOOL:
emit(MOV(dst_reg, fs_reg((int)ir->value.b[i])));
break;
default:
assert(!"Non-float/uint/int/bool constant");
}
dst_reg.reg_offset++;
}
}
this->result = reg;
}
void
fs_visitor::emit_bool_to_cond_code(ir_rvalue *ir)
{
ir_expression *expr = ir->as_expression();
if (expr) {
fs_reg op[2];
fs_inst *inst;
assert(expr->get_num_operands() <= 2);
for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
assert(expr->operands[i]->type->is_scalar());
expr->operands[i]->accept(this);
op[i] = this->result;
resolve_ud_negate(&op[i]);
}
switch (expr->operation) {
case ir_unop_logic_not:
inst = emit(AND(reg_null_d, op[0], fs_reg(1)));
inst->conditional_mod = BRW_CONDITIONAL_Z;
break;
case ir_binop_logic_xor:
case ir_binop_logic_or:
case ir_binop_logic_and:
goto out;
case ir_unop_f2b:
if (intel->gen >= 6) {
emit(CMP(reg_null_d, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ));
} else {
inst = emit(MOV(reg_null_f, op[0]));
inst->conditional_mod = BRW_CONDITIONAL_NZ;
}
break;
case ir_unop_i2b:
if (intel->gen >= 6) {
emit(CMP(reg_null_d, op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
} else {
inst = emit(MOV(reg_null_d, op[0]));
inst->conditional_mod = BRW_CONDITIONAL_NZ;
}
break;
case ir_binop_greater:
case ir_binop_gequal:
case ir_binop_less:
case ir_binop_lequal:
case ir_binop_equal:
case ir_binop_all_equal:
case ir_binop_nequal:
case ir_binop_any_nequal:
resolve_bool_comparison(expr->operands[0], &op[0]);
resolve_bool_comparison(expr->operands[1], &op[1]);
emit(CMP(reg_null_d, op[0], op[1],
brw_conditional_for_comparison(expr->operation)));
break;
default:
assert(!"not reached");
fail("bad cond code\n");
break;
}
return;
}
out:
ir->accept(this);
fs_inst *inst = emit(AND(reg_null_d, this->result, fs_reg(1)));
inst->conditional_mod = BRW_CONDITIONAL_NZ;
}
/**
* Emit a gen6 IF statement with the comparison folded into the IF
* instruction.
*/
void
fs_visitor::emit_if_gen6(ir_if *ir)
{
ir_expression *expr = ir->condition->as_expression();
if (expr) {
fs_reg op[2];
fs_inst *inst;
fs_reg temp;
assert(expr->get_num_operands() <= 2);
for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
assert(expr->operands[i]->type->is_scalar());
expr->operands[i]->accept(this);
op[i] = this->result;
}
switch (expr->operation) {
case ir_unop_logic_not:
case ir_binop_logic_xor:
case ir_binop_logic_or:
case ir_binop_logic_and:
/* For operations on bool arguments, only the low bit of the bool is
* valid, and the others are undefined. Fall back to the condition
* code path.
*/
break;
case ir_unop_f2b:
inst = emit(BRW_OPCODE_IF, reg_null_f, op[0], fs_reg(0));
inst->conditional_mod = BRW_CONDITIONAL_NZ;
return;
case ir_unop_i2b:
emit(IF(op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
return;
case ir_binop_greater:
case ir_binop_gequal:
case ir_binop_less:
case ir_binop_lequal:
case ir_binop_equal:
case ir_binop_all_equal:
case ir_binop_nequal:
case ir_binop_any_nequal:
resolve_bool_comparison(expr->operands[0], &op[0]);
resolve_bool_comparison(expr->operands[1], &op[1]);
emit(IF(op[0], op[1],
brw_conditional_for_comparison(expr->operation)));
return;
default:
assert(!"not reached");
emit(IF(op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
fail("bad condition\n");
return;
}
}
emit_bool_to_cond_code(ir->condition);
fs_inst *inst = emit(BRW_OPCODE_IF);
inst->predicate = BRW_PREDICATE_NORMAL;
}
void
fs_visitor::visit(ir_if *ir)
{
if (intel->gen < 6 && dispatch_width == 16) {
fail("Can't support (non-uniform) control flow on 16-wide\n");
}
/* Don't point the annotation at the if statement, because then it plus
* the then and else blocks get printed.
*/
this->base_ir = ir->condition;
if (intel->gen == 6) {
emit_if_gen6(ir);
} else {
emit_bool_to_cond_code(ir->condition);
emit(IF(BRW_PREDICATE_NORMAL));
}
foreach_list(node, &ir->then_instructions) {
ir_instruction *ir = (ir_instruction *)node;
this->base_ir = ir;
ir->accept(this);
}
if (!ir->else_instructions.is_empty()) {
emit(BRW_OPCODE_ELSE);
foreach_list(node, &ir->else_instructions) {
ir_instruction *ir = (ir_instruction *)node;
this->base_ir = ir;
ir->accept(this);
}
}
emit(BRW_OPCODE_ENDIF);
}
void
fs_visitor::visit(ir_loop *ir)
{
fs_reg counter = reg_undef;
if (intel->gen < 6 && dispatch_width == 16) {
fail("Can't support (non-uniform) control flow on 16-wide\n");
}
if (ir->counter) {
this->base_ir = ir->counter;
ir->counter->accept(this);
counter = *(variable_storage(ir->counter));
if (ir->from) {
this->base_ir = ir->from;
ir->from->accept(this);
emit(MOV(counter, this->result));
}
}
this->base_ir = NULL;
emit(BRW_OPCODE_DO);
if (ir->to) {
this->base_ir = ir->to;
ir->to->accept(this);
emit(CMP(reg_null_d, counter, this->result,
brw_conditional_for_comparison(ir->cmp)));
fs_inst *inst = emit(BRW_OPCODE_BREAK);
inst->predicate = BRW_PREDICATE_NORMAL;
}
foreach_list(node, &ir->body_instructions) {
ir_instruction *ir = (ir_instruction *)node;
this->base_ir = ir;
ir->accept(this);
}
if (ir->increment) {
this->base_ir = ir->increment;
ir->increment->accept(this);
emit(ADD(counter, counter, this->result));
}
this->base_ir = NULL;
emit(BRW_OPCODE_WHILE);
}
void
fs_visitor::visit(ir_loop_jump *ir)
{
switch (ir->mode) {
case ir_loop_jump::jump_break:
emit(BRW_OPCODE_BREAK);
break;
case ir_loop_jump::jump_continue:
emit(BRW_OPCODE_CONTINUE);
break;
}
}
void
fs_visitor::visit(ir_call *ir)
{
assert(!"FINISHME");
}
void
fs_visitor::visit(ir_return *ir)
{
assert(!"FINISHME");
}
void
fs_visitor::visit(ir_function *ir)
{
/* Ignore function bodies other than main() -- we shouldn't see calls to
* them since they should all be inlined before we get to ir_to_mesa.
*/
if (strcmp(ir->name, "main") == 0) {
const ir_function_signature *sig;
exec_list empty;
sig = ir->matching_signature(&empty);
assert(sig);
foreach_list(node, &sig->body) {
ir_instruction *ir = (ir_instruction *)node;
this->base_ir = ir;
ir->accept(this);
}
}
}
void
fs_visitor::visit(ir_function_signature *ir)
{
assert(!"not reached");
(void)ir;
}
fs_inst *
fs_visitor::emit(fs_inst inst)
{
fs_inst *list_inst = new(mem_ctx) fs_inst;
*list_inst = inst;
emit(list_inst);
return list_inst;
}
fs_inst *
fs_visitor::emit(fs_inst *inst)
{
if (force_uncompressed_stack > 0)
inst->force_uncompressed = true;
else if (force_sechalf_stack > 0)
inst->force_sechalf = true;
inst->annotation = this->current_annotation;
inst->ir = this->base_ir;
this->instructions.push_tail(inst);
return inst;
}
void
fs_visitor::emit(exec_list list)
{
foreach_list_safe(node, &list) {
fs_inst *inst = (fs_inst *)node;
inst->remove();
emit(inst);
}
}
/** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
void
fs_visitor::emit_dummy_fs()
{
int reg_width = dispatch_width / 8;
/* Everyone's favorite color. */
emit(MOV(fs_reg(MRF, 2 + 0 * reg_width), fs_reg(1.0f)));
emit(MOV(fs_reg(MRF, 2 + 1 * reg_width), fs_reg(0.0f)));
emit(MOV(fs_reg(MRF, 2 + 2 * reg_width), fs_reg(1.0f)));
emit(MOV(fs_reg(MRF, 2 + 3 * reg_width), fs_reg(0.0f)));
fs_inst *write;
write = emit(FS_OPCODE_FB_WRITE, fs_reg(0), fs_reg(0));
write->base_mrf = 2;
write->mlen = 4 * reg_width;
write->eot = true;
}
/* The register location here is relative to the start of the URB
* data. It will get adjusted to be a real location before
* generate_code() time.
*/
struct brw_reg
fs_visitor::interp_reg(int location, int channel)
{
int regnr = urb_setup[location] * 2 + channel / 2;
int stride = (channel & 1) * 4;
assert(urb_setup[location] != -1);
return brw_vec1_grf(regnr, stride);
}
/** Emits the interpolation for the varying inputs. */
void
fs_visitor::emit_interpolation_setup_gen4()
{
this->current_annotation = "compute pixel centers";
this->pixel_x = fs_reg(this, glsl_type::uint_type);
this->pixel_y = fs_reg(this, glsl_type::uint_type);
this->pixel_x.type = BRW_REGISTER_TYPE_UW;
this->pixel_y.type = BRW_REGISTER_TYPE_UW;
emit(FS_OPCODE_PIXEL_X, this->pixel_x);
emit(FS_OPCODE_PIXEL_Y, this->pixel_y);
this->current_annotation = "compute pixel deltas from v0";
if (brw->has_pln) {
this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
fs_reg(this, glsl_type::vec2_type);
this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC];
this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].reg_offset++;
} else {
this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
fs_reg(this, glsl_type::float_type);
this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
fs_reg(this, glsl_type::float_type);
}
emit(ADD(this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
this->pixel_x, fs_reg(negate(brw_vec1_grf(1, 0)))));
emit(ADD(this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
this->pixel_y, fs_reg(negate(brw_vec1_grf(1, 1)))));
this->current_annotation = "compute pos.w and 1/pos.w";
/* Compute wpos.w. It's always in our setup, since it's needed to
* interpolate the other attributes.
*/
this->wpos_w = fs_reg(this, glsl_type::float_type);
emit(FS_OPCODE_LINTERP, wpos_w,
this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
interp_reg(VARYING_SLOT_POS, 3));
/* Compute the pixel 1/W value from wpos.w. */
this->pixel_w = fs_reg(this, glsl_type::float_type);
emit_math(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
this->current_annotation = NULL;
}
/** Emits the interpolation for the varying inputs. */
void
fs_visitor::emit_interpolation_setup_gen6()
{
struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
/* If the pixel centers end up used, the setup is the same as for gen4. */
this->current_annotation = "compute pixel centers";
fs_reg int_pixel_x = fs_reg(this, glsl_type::uint_type);
fs_reg int_pixel_y = fs_reg(this, glsl_type::uint_type);
int_pixel_x.type = BRW_REGISTER_TYPE_UW;
int_pixel_y.type = BRW_REGISTER_TYPE_UW;
emit(ADD(int_pixel_x,
fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
fs_reg(brw_imm_v(0x10101010))));
emit(ADD(int_pixel_y,
fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
fs_reg(brw_imm_v(0x11001100))));
/* As of gen6, we can no longer mix float and int sources. We have
* to turn the integer pixel centers into floats for their actual
* use.
*/
this->pixel_x = fs_reg(this, glsl_type::float_type);
this->pixel_y = fs_reg(this, glsl_type::float_type);
emit(MOV(this->pixel_x, int_pixel_x));
emit(MOV(this->pixel_y, int_pixel_y));
this->current_annotation = "compute pos.w";
this->pixel_w = fs_reg(brw_vec8_grf(c->source_w_reg, 0));
this->wpos_w = fs_reg(this, glsl_type::float_type);
emit_math(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
uint8_t reg = c->barycentric_coord_reg[i];
this->delta_x[i] = fs_reg(brw_vec8_grf(reg, 0));
this->delta_y[i] = fs_reg(brw_vec8_grf(reg + 1, 0));
}
this->current_annotation = NULL;
}
void
fs_visitor::emit_color_write(int target, int index, int first_color_mrf)
{
int reg_width = dispatch_width / 8;
fs_inst *inst;
fs_reg color = outputs[target];
fs_reg mrf;
/* If there's no color data to be written, skip it. */
if (color.file == BAD_FILE)
return;
color.reg_offset += index;
if (dispatch_width == 8 || intel->gen >= 6) {
/* SIMD8 write looks like:
* m + 0: r0
* m + 1: r1
* m + 2: g0
* m + 3: g1
*
* gen6 SIMD16 DP write looks like:
* m + 0: r0
* m + 1: r1
* m + 2: g0
* m + 3: g1
* m + 4: b0
* m + 5: b1
* m + 6: a0
* m + 7: a1
*/
inst = emit(MOV(fs_reg(MRF, first_color_mrf + index * reg_width,
color.type),
color));
inst->saturate = c->key.clamp_fragment_color;
} else {
/* pre-gen6 SIMD16 single source DP write looks like:
* m + 0: r0
* m + 1: g0
* m + 2: b0
* m + 3: a0
* m + 4: r1
* m + 5: g1
* m + 6: b1
* m + 7: a1
*/
if (brw->has_compr4) {
/* By setting the high bit of the MRF register number, we
* indicate that we want COMPR4 mode - instead of doing the
* usual destination + 1 for the second half we get
* destination + 4.
*/
inst = emit(MOV(fs_reg(MRF, BRW_MRF_COMPR4 + first_color_mrf + index,
color.type),
color));
inst->saturate = c->key.clamp_fragment_color;
} else {
push_force_uncompressed();
inst = emit(MOV(fs_reg(MRF, first_color_mrf + index, color.type),
color));
inst->saturate = c->key.clamp_fragment_color;
pop_force_uncompressed();
push_force_sechalf();
color.sechalf = true;
inst = emit(MOV(fs_reg(MRF, first_color_mrf + index + 4, color.type),
color));
inst->saturate = c->key.clamp_fragment_color;
pop_force_sechalf();
color.sechalf = false;
}
}
}
void
fs_visitor::emit_fb_writes()
{
this->current_annotation = "FB write header";
bool header_present = true;
/* We can potentially have a message length of up to 15, so we have to set
* base_mrf to either 0 or 1 in order to fit in m0..m15.
*/
int base_mrf = 1;
int nr = base_mrf;
int reg_width = dispatch_width / 8;
bool do_dual_src = this->dual_src_output.file != BAD_FILE;
bool src0_alpha_to_render_target = false;
if (dispatch_width == 16 && do_dual_src) {
fail("GL_ARB_blend_func_extended not yet supported in 16-wide.");
do_dual_src = false;
}
/* From the Sandy Bridge PRM, volume 4, page 198:
*
* "Dispatched Pixel Enables. One bit per pixel indicating
* which pixels were originally enabled when the thread was
* dispatched. This field is only required for the end-of-
* thread message and on all dual-source messages."
*/
if (intel->gen >= 6 &&
!this->fp->UsesKill &&
!do_dual_src &&
c->key.nr_color_regions == 1) {
header_present = false;
}
if (header_present) {
src0_alpha_to_render_target = intel->gen >= 6 &&
!do_dual_src &&
c->key.replicate_alpha;
/* m2, m3 header */
nr += 2;
}
if (c->aa_dest_stencil_reg) {
push_force_uncompressed();
emit(MOV(fs_reg(MRF, nr++),
fs_reg(brw_vec8_grf(c->aa_dest_stencil_reg, 0))));
pop_force_uncompressed();
}
/* Reserve space for color. It'll be filled in per MRT below. */
int color_mrf = nr;
nr += 4 * reg_width;
if (do_dual_src)
nr += 4;
if (src0_alpha_to_render_target)
nr += reg_width;
if (c->source_depth_to_render_target) {
if (intel->gen == 6 && dispatch_width == 16) {
/* For outputting oDepth on gen6, SIMD8 writes have to be
* used. This would require 8-wide moves of each half to
* message regs, kind of like pre-gen5 SIMD16 FB writes.
* Just bail on doing so for now.
*/
fail("Missing support for simd16 depth writes on gen6\n");
}
if (fp->Base.OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
/* Hand over gl_FragDepth. */
assert(this->frag_depth.file != BAD_FILE);
emit(MOV(fs_reg(MRF, nr), this->frag_depth));
} else {
/* Pass through the payload depth. */
emit(MOV(fs_reg(MRF, nr),
fs_reg(brw_vec8_grf(c->source_depth_reg, 0))));
}
nr += reg_width;
}
if (c->dest_depth_reg) {
emit(MOV(fs_reg(MRF, nr),
fs_reg(brw_vec8_grf(c->dest_depth_reg, 0))));
nr += reg_width;
}
if (do_dual_src) {
fs_reg src0 = this->outputs[0];
fs_reg src1 = this->dual_src_output;
this->current_annotation = ralloc_asprintf(this->mem_ctx,
"FB write src0");
for (int i = 0; i < 4; i++) {
fs_inst *inst = emit(MOV(fs_reg(MRF, color_mrf + i, src0.type), src0));
src0.reg_offset++;
inst->saturate = c->key.clamp_fragment_color;
}
this->current_annotation = ralloc_asprintf(this->mem_ctx,
"FB write src1");
for (int i = 0; i < 4; i++) {
fs_inst *inst = emit(MOV(fs_reg(MRF, color_mrf + 4 + i, src1.type),
src1));
src1.reg_offset++;
inst->saturate = c->key.clamp_fragment_color;
}
if (INTEL_DEBUG & DEBUG_SHADER_TIME)
emit_shader_time_end();
fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
inst->target = 0;
inst->base_mrf = base_mrf;
inst->mlen = nr - base_mrf;
inst->eot = true;
inst->header_present = header_present;
c->prog_data.dual_src_blend = true;
this->current_annotation = NULL;
return;
}
for (int target = 0; target < c->key.nr_color_regions; target++) {
this->current_annotation = ralloc_asprintf(this->mem_ctx,
"FB write target %d",
target);
/* If src0_alpha_to_render_target is true, include source zero alpha
* data in RenderTargetWrite message for targets > 0.
*/
int write_color_mrf = color_mrf;
if (src0_alpha_to_render_target && target != 0) {
fs_inst *inst;
fs_reg color = outputs[0];
color.reg_offset += 3;
inst = emit(MOV(fs_reg(MRF, write_color_mrf, color.type),
color));
inst->saturate = c->key.clamp_fragment_color;
write_color_mrf = color_mrf + reg_width;
}
for (unsigned i = 0; i < this->output_components[target]; i++)
emit_color_write(target, i, write_color_mrf);
bool eot = false;
if (target == c->key.nr_color_regions - 1) {
eot = true;
if (INTEL_DEBUG & DEBUG_SHADER_TIME)
emit_shader_time_end();
}
fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
inst->target = target;
inst->base_mrf = base_mrf;
if (src0_alpha_to_render_target && target == 0)
inst->mlen = nr - base_mrf - reg_width;
else
inst->mlen = nr - base_mrf;
inst->eot = eot;
inst->header_present = header_present;
}
if (c->key.nr_color_regions == 0) {
/* Even if there's no color buffers enabled, we still need to send
* alpha out the pipeline to our null renderbuffer to support
* alpha-testing, alpha-to-coverage, and so on.
*/
emit_color_write(0, 3, color_mrf);
if (INTEL_DEBUG & DEBUG_SHADER_TIME)
emit_shader_time_end();
fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
inst->base_mrf = base_mrf;
inst->mlen = nr - base_mrf;
inst->eot = true;
inst->header_present = header_present;
}
this->current_annotation = NULL;
}
void
fs_visitor::resolve_ud_negate(fs_reg *reg)
{
if (reg->type != BRW_REGISTER_TYPE_UD ||
!reg->negate)
return;
fs_reg temp = fs_reg(this, glsl_type::uint_type);
emit(MOV(temp, *reg));
*reg = temp;
}
void
fs_visitor::resolve_bool_comparison(ir_rvalue *rvalue, fs_reg *reg)
{
if (rvalue->type != glsl_type::bool_type)
return;
fs_reg temp = fs_reg(this, glsl_type::bool_type);
emit(AND(temp, *reg, fs_reg(1)));
*reg = temp;
}
fs_visitor::fs_visitor(struct brw_context *brw,
struct brw_wm_compile *c,
struct gl_shader_program *shader_prog,
struct gl_fragment_program *fp,
unsigned dispatch_width)
: dispatch_width(dispatch_width)
{
this->c = c;
this->brw = brw;
this->fp = fp;
this->shader_prog = shader_prog;
this->intel = &brw->intel;
this->ctx = &intel->ctx;
this->mem_ctx = ralloc_context(NULL);
if (shader_prog)
shader = (struct brw_shader *)
shader_prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
else
shader = NULL;
this->failed = false;
this->variable_ht = hash_table_ctor(0,
hash_table_pointer_hash,
hash_table_pointer_compare);
memset(this->outputs, 0, sizeof(this->outputs));
memset(this->output_components, 0, sizeof(this->output_components));
this->first_non_payload_grf = 0;
this->max_grf = intel->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
this->current_annotation = NULL;
this->base_ir = NULL;
this->virtual_grf_sizes = NULL;
this->virtual_grf_count = 0;
this->virtual_grf_array_size = 0;
this->virtual_grf_start = NULL;
this->virtual_grf_end = NULL;
this->live_intervals_valid = false;
this->params_remap = NULL;
this->nr_params_remap = 0;
this->force_uncompressed_stack = 0;
this->force_sechalf_stack = 0;
memset(&this->param_size, 0, sizeof(this->param_size));
}
fs_visitor::~fs_visitor()
{
ralloc_free(this->mem_ctx);
hash_table_dtor(this->variable_ht);
}