blob: 2a249905d2c2dcac821a17d81cd405df14084414 [file] [log] [blame]
//
// Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// Context.cpp: Implements the gl::Context class, managing all GL state and performing
// rendering operations. It is the GLES2 specific implementation of EGLContext.
#include "libANGLE/Context.h"
#include <iterator>
#include <sstream>
#include "common/platform.h"
#include "common/utilities.h"
#include "libANGLE/Buffer.h"
#include "libANGLE/Compiler.h"
#include "libANGLE/Display.h"
#include "libANGLE/Fence.h"
#include "libANGLE/Framebuffer.h"
#include "libANGLE/FramebufferAttachment.h"
#include "libANGLE/Program.h"
#include "libANGLE/Query.h"
#include "libANGLE/Renderbuffer.h"
#include "libANGLE/ResourceManager.h"
#include "libANGLE/Sampler.h"
#include "libANGLE/Surface.h"
#include "libANGLE/Texture.h"
#include "libANGLE/TransformFeedback.h"
#include "libANGLE/VertexArray.h"
#include "libANGLE/formatutils.h"
#include "libANGLE/validationES.h"
#include "libANGLE/renderer/Renderer.h"
namespace gl
{
Context::Context(const egl::Config *config, int clientVersion, const Context *shareContext, rx::Renderer *renderer, bool notifyResets, bool robustAccess)
: mRenderer(renderer),
mConfig(config),
mData(clientVersion, mState, mCaps, mTextureCaps, mExtensions, nullptr)
{
ASSERT(robustAccess == false); // Unimplemented
initCaps(clientVersion);
mState.initialize(mCaps, clientVersion);
mClientVersion = clientVersion;
mClientType = EGL_OPENGL_ES_API;
mFenceNVHandleAllocator.setBaseHandle(0);
if (shareContext != NULL)
{
mResourceManager = shareContext->mResourceManager;
mResourceManager->addRef();
}
else
{
mResourceManager = new ResourceManager(mRenderer);
}
mData.resourceManager = mResourceManager;
// [OpenGL ES 2.0.24] section 3.7 page 83:
// In the initial state, TEXTURE_2D and TEXTURE_CUBE_MAP have twodimensional
// and cube map texture state vectors respectively associated with them.
// In order that access to these initial textures not be lost, they are treated as texture
// objects all of whose names are 0.
Texture *zeroTexture2D = new Texture(mRenderer->createTexture(GL_TEXTURE_2D), 0, GL_TEXTURE_2D);
mZeroTextures[GL_TEXTURE_2D].set(zeroTexture2D);
Texture *zeroTextureCube = new Texture(mRenderer->createTexture(GL_TEXTURE_CUBE_MAP), 0, GL_TEXTURE_CUBE_MAP);
mZeroTextures[GL_TEXTURE_CUBE_MAP].set(zeroTextureCube);
if (mClientVersion >= 3)
{
// TODO: These could also be enabled via extension
Texture *zeroTexture3D = new Texture(mRenderer->createTexture(GL_TEXTURE_3D), 0, GL_TEXTURE_3D);
mZeroTextures[GL_TEXTURE_3D].set(zeroTexture3D);
Texture *zeroTexture2DArray = new Texture(mRenderer->createTexture(GL_TEXTURE_2D_ARRAY), 0, GL_TEXTURE_2D_ARRAY);
mZeroTextures[GL_TEXTURE_2D_ARRAY].set(zeroTexture2DArray);
}
mState.initializeZeroTextures(mZeroTextures);
// Allocate default FBO
mFramebufferMap[0] = new Framebuffer(mCaps, mRenderer, 0);
bindVertexArray(0);
bindArrayBuffer(0);
bindElementArrayBuffer(0);
bindReadFramebuffer(0);
bindDrawFramebuffer(0);
bindRenderbuffer(0);
bindGenericUniformBuffer(0);
for (unsigned int i = 0; i < mCaps.maxCombinedUniformBlocks; i++)
{
bindIndexedUniformBuffer(0, i, 0, -1);
}
bindCopyReadBuffer(0);
bindCopyWriteBuffer(0);
bindPixelPackBuffer(0);
bindPixelUnpackBuffer(0);
// [OpenGL ES 3.0.2] section 2.14.1 pg 85:
// In the initial state, a default transform feedback object is bound and treated as
// a transform feedback object with a name of zero. That object is bound any time
// BindTransformFeedback is called with id of zero
mTransformFeedbackZero.set(new TransformFeedback(mRenderer->createTransformFeedback(), 0, mCaps));
bindTransformFeedback(0);
mHasBeenCurrent = false;
mContextLost = false;
mResetStatus = GL_NO_ERROR;
mResetStrategy = (notifyResets ? GL_LOSE_CONTEXT_ON_RESET_EXT : GL_NO_RESET_NOTIFICATION_EXT);
mRobustAccess = robustAccess;
mCompiler = new Compiler(mRenderer->createCompiler(getData()));
}
Context::~Context()
{
mState.reset();
while (!mFramebufferMap.empty())
{
// Delete the framebuffer in reverse order to destroy the framebuffer zero last.
deleteFramebuffer(mFramebufferMap.rbegin()->first);
}
while (!mFenceNVMap.empty())
{
deleteFenceNV(mFenceNVMap.begin()->first);
}
while (!mQueryMap.empty())
{
deleteQuery(mQueryMap.begin()->first);
}
while (!mVertexArrayMap.empty())
{
deleteVertexArray(mVertexArrayMap.begin()->first);
}
mTransformFeedbackZero.set(NULL);
while (!mTransformFeedbackMap.empty())
{
deleteTransformFeedback(mTransformFeedbackMap.begin()->first);
}
for (auto &zeroTexture : mZeroTextures)
{
zeroTexture.second.set(NULL);
}
mZeroTextures.clear();
if (mResourceManager)
{
mResourceManager->release();
}
SafeDelete(mCompiler);
}
void Context::makeCurrent(egl::Surface *surface)
{
ASSERT(surface != nullptr);
if (!mHasBeenCurrent)
{
initRendererString();
initExtensionStrings();
mState.setViewportParams(0, 0, surface->getWidth(), surface->getHeight());
mState.setScissorParams(0, 0, surface->getWidth(), surface->getHeight());
mHasBeenCurrent = true;
}
// Update default framebuffer
Framebuffer *defaultFBO = mFramebufferMap[0];
GLenum drawBufferState = GL_BACK;
defaultFBO->setDrawBuffers(1, &drawBufferState);
defaultFBO->setReadBuffer(GL_BACK);
const FramebufferAttachment *backAttachment = defaultFBO->getAttachment(GL_BACK);
if (backAttachment && backAttachment->getSurface() == surface)
{
// FBO already initialized to the surface.
return;
}
const egl::Config *config = surface->getConfig();
defaultFBO->setAttachment(GL_FRAMEBUFFER_DEFAULT, GL_BACK, ImageIndex::MakeInvalid(), surface);
if (config->depthSize > 0)
{
defaultFBO->setAttachment(GL_FRAMEBUFFER_DEFAULT, GL_DEPTH, ImageIndex::MakeInvalid(), surface);
}
else
{
defaultFBO->resetAttachment(GL_DEPTH);
}
if (config->stencilSize > 0)
{
defaultFBO->setAttachment(GL_FRAMEBUFFER_DEFAULT, GL_STENCIL, ImageIndex::MakeInvalid(), surface);
}
else
{
defaultFBO->resetAttachment(GL_STENCIL);
}
}
void Context::releaseSurface()
{
Framebuffer *defaultFBO = mFramebufferMap[0];
defaultFBO->resetAttachment(GL_BACK);
defaultFBO->resetAttachment(GL_DEPTH);
defaultFBO->resetAttachment(GL_STENCIL);
}
// NOTE: this function should not assume that this context is current!
void Context::markContextLost()
{
if (mResetStrategy == GL_LOSE_CONTEXT_ON_RESET_EXT)
mResetStatus = GL_UNKNOWN_CONTEXT_RESET_EXT;
mContextLost = true;
}
bool Context::isContextLost()
{
return mContextLost;
}
GLuint Context::createBuffer()
{
return mResourceManager->createBuffer();
}
GLuint Context::createProgram()
{
return mResourceManager->createProgram();
}
GLuint Context::createShader(GLenum type)
{
return mResourceManager->createShader(getData(), type);
}
GLuint Context::createTexture()
{
return mResourceManager->createTexture();
}
GLuint Context::createRenderbuffer()
{
return mResourceManager->createRenderbuffer();
}
GLsync Context::createFenceSync()
{
GLuint handle = mResourceManager->createFenceSync();
return reinterpret_cast<GLsync>(static_cast<uintptr_t>(handle));
}
GLuint Context::createVertexArray()
{
GLuint handle = mVertexArrayHandleAllocator.allocate();
// Although the spec states VAO state is not initialized until the object is bound,
// we create it immediately. The resulting behaviour is transparent to the application,
// since it's not currently possible to access the state until the object is bound.
VertexArray *vertexArray = new VertexArray(mRenderer, handle, MAX_VERTEX_ATTRIBS);
mVertexArrayMap[handle] = vertexArray;
return handle;
}
GLuint Context::createSampler()
{
return mResourceManager->createSampler();
}
GLuint Context::createTransformFeedback()
{
GLuint handle = mTransformFeedbackAllocator.allocate();
TransformFeedback *transformFeedback = new TransformFeedback(mRenderer->createTransformFeedback(), handle, mCaps);
transformFeedback->addRef();
mTransformFeedbackMap[handle] = transformFeedback;
return handle;
}
// Returns an unused framebuffer name
GLuint Context::createFramebuffer()
{
GLuint handle = mFramebufferHandleAllocator.allocate();
mFramebufferMap[handle] = NULL;
return handle;
}
GLuint Context::createFenceNV()
{
GLuint handle = mFenceNVHandleAllocator.allocate();
mFenceNVMap[handle] = new FenceNV(mRenderer->createFenceNV());
return handle;
}
// Returns an unused query name
GLuint Context::createQuery()
{
GLuint handle = mQueryHandleAllocator.allocate();
mQueryMap[handle] = NULL;
return handle;
}
void Context::deleteBuffer(GLuint buffer)
{
if (mResourceManager->getBuffer(buffer))
{
detachBuffer(buffer);
}
mResourceManager->deleteBuffer(buffer);
}
void Context::deleteShader(GLuint shader)
{
mResourceManager->deleteShader(shader);
}
void Context::deleteProgram(GLuint program)
{
mResourceManager->deleteProgram(program);
}
void Context::deleteTexture(GLuint texture)
{
if (mResourceManager->getTexture(texture))
{
detachTexture(texture);
}
mResourceManager->deleteTexture(texture);
}
void Context::deleteRenderbuffer(GLuint renderbuffer)
{
if (mResourceManager->getRenderbuffer(renderbuffer))
{
detachRenderbuffer(renderbuffer);
}
mResourceManager->deleteRenderbuffer(renderbuffer);
}
void Context::deleteFenceSync(GLsync fenceSync)
{
// The spec specifies the underlying Fence object is not deleted until all current
// wait commands finish. However, since the name becomes invalid, we cannot query the fence,
// and since our API is currently designed for being called from a single thread, we can delete
// the fence immediately.
mResourceManager->deleteFenceSync(static_cast<GLuint>(reinterpret_cast<uintptr_t>(fenceSync)));
}
void Context::deleteVertexArray(GLuint vertexArray)
{
auto vertexArrayObject = mVertexArrayMap.find(vertexArray);
if (vertexArrayObject != mVertexArrayMap.end())
{
detachVertexArray(vertexArray);
mVertexArrayHandleAllocator.release(vertexArrayObject->first);
delete vertexArrayObject->second;
mVertexArrayMap.erase(vertexArrayObject);
}
}
void Context::deleteSampler(GLuint sampler)
{
if (mResourceManager->getSampler(sampler))
{
detachSampler(sampler);
}
mResourceManager->deleteSampler(sampler);
}
void Context::deleteTransformFeedback(GLuint transformFeedback)
{
auto iter = mTransformFeedbackMap.find(transformFeedback);
if (iter != mTransformFeedbackMap.end())
{
detachTransformFeedback(transformFeedback);
mTransformFeedbackAllocator.release(transformFeedback);
iter->second->release();
mTransformFeedbackMap.erase(iter);
}
}
void Context::deleteFramebuffer(GLuint framebuffer)
{
FramebufferMap::iterator framebufferObject = mFramebufferMap.find(framebuffer);
if (framebufferObject != mFramebufferMap.end())
{
detachFramebuffer(framebuffer);
mFramebufferHandleAllocator.release(framebufferObject->first);
delete framebufferObject->second;
mFramebufferMap.erase(framebufferObject);
}
}
void Context::deleteFenceNV(GLuint fence)
{
FenceNVMap::iterator fenceObject = mFenceNVMap.find(fence);
if (fenceObject != mFenceNVMap.end())
{
mFenceNVHandleAllocator.release(fenceObject->first);
delete fenceObject->second;
mFenceNVMap.erase(fenceObject);
}
}
void Context::deleteQuery(GLuint query)
{
QueryMap::iterator queryObject = mQueryMap.find(query);
if (queryObject != mQueryMap.end())
{
mQueryHandleAllocator.release(queryObject->first);
if (queryObject->second)
{
queryObject->second->release();
}
mQueryMap.erase(queryObject);
}
}
Buffer *Context::getBuffer(GLuint handle)
{
return mResourceManager->getBuffer(handle);
}
Shader *Context::getShader(GLuint handle) const
{
return mResourceManager->getShader(handle);
}
Program *Context::getProgram(GLuint handle) const
{
return mResourceManager->getProgram(handle);
}
Texture *Context::getTexture(GLuint handle) const
{
return mResourceManager->getTexture(handle);
}
Renderbuffer *Context::getRenderbuffer(GLuint handle)
{
return mResourceManager->getRenderbuffer(handle);
}
FenceSync *Context::getFenceSync(GLsync handle) const
{
return mResourceManager->getFenceSync(static_cast<GLuint>(reinterpret_cast<uintptr_t>(handle)));
}
VertexArray *Context::getVertexArray(GLuint handle) const
{
auto vertexArray = mVertexArrayMap.find(handle);
if (vertexArray == mVertexArrayMap.end())
{
return NULL;
}
else
{
return vertexArray->second;
}
}
Sampler *Context::getSampler(GLuint handle) const
{
return mResourceManager->getSampler(handle);
}
TransformFeedback *Context::getTransformFeedback(GLuint handle) const
{
if (handle == 0)
{
return mTransformFeedbackZero.get();
}
else
{
TransformFeedbackMap::const_iterator iter = mTransformFeedbackMap.find(handle);
return (iter != mTransformFeedbackMap.end()) ? iter->second : NULL;
}
}
bool Context::isSampler(GLuint samplerName) const
{
return mResourceManager->isSampler(samplerName);
}
void Context::bindArrayBuffer(unsigned int buffer)
{
mResourceManager->checkBufferAllocation(buffer);
mState.setArrayBufferBinding(getBuffer(buffer));
}
void Context::bindElementArrayBuffer(unsigned int buffer)
{
mResourceManager->checkBufferAllocation(buffer);
mState.getVertexArray()->setElementArrayBuffer(getBuffer(buffer));
}
void Context::bindTexture(GLenum target, GLuint handle)
{
Texture *texture = NULL;
if (handle == 0)
{
texture = mZeroTextures[target].get();
}
else
{
mResourceManager->checkTextureAllocation(handle, target);
texture = getTexture(handle);
}
ASSERT(texture);
mState.setSamplerTexture(target, texture);
}
void Context::bindReadFramebuffer(GLuint framebuffer)
{
if (!getFramebuffer(framebuffer))
{
mFramebufferMap[framebuffer] = new Framebuffer(mCaps, mRenderer, framebuffer);
}
mState.setReadFramebufferBinding(getFramebuffer(framebuffer));
}
void Context::bindDrawFramebuffer(GLuint framebuffer)
{
if (!getFramebuffer(framebuffer))
{
mFramebufferMap[framebuffer] = new Framebuffer(mCaps, mRenderer, framebuffer);
}
mState.setDrawFramebufferBinding(getFramebuffer(framebuffer));
}
void Context::bindRenderbuffer(GLuint renderbuffer)
{
mResourceManager->checkRenderbufferAllocation(renderbuffer);
mState.setRenderbufferBinding(getRenderbuffer(renderbuffer));
}
void Context::bindVertexArray(GLuint vertexArray)
{
if (!getVertexArray(vertexArray))
{
VertexArray *vertexArrayObject = new VertexArray(mRenderer, vertexArray, MAX_VERTEX_ATTRIBS);
mVertexArrayMap[vertexArray] = vertexArrayObject;
}
mState.setVertexArrayBinding(getVertexArray(vertexArray));
}
void Context::bindSampler(GLuint textureUnit, GLuint sampler)
{
ASSERT(textureUnit < mCaps.maxCombinedTextureImageUnits);
mResourceManager->checkSamplerAllocation(sampler);
mState.setSamplerBinding(textureUnit, getSampler(sampler));
}
void Context::bindGenericUniformBuffer(GLuint buffer)
{
mResourceManager->checkBufferAllocation(buffer);
mState.setGenericUniformBufferBinding(getBuffer(buffer));
}
void Context::bindIndexedUniformBuffer(GLuint buffer, GLuint index, GLintptr offset, GLsizeiptr size)
{
mResourceManager->checkBufferAllocation(buffer);
mState.setIndexedUniformBufferBinding(index, getBuffer(buffer), offset, size);
}
void Context::bindGenericTransformFeedbackBuffer(GLuint buffer)
{
mResourceManager->checkBufferAllocation(buffer);
mState.getCurrentTransformFeedback()->bindGenericBuffer(getBuffer(buffer));
}
void Context::bindIndexedTransformFeedbackBuffer(GLuint buffer, GLuint index, GLintptr offset, GLsizeiptr size)
{
mResourceManager->checkBufferAllocation(buffer);
mState.getCurrentTransformFeedback()->bindIndexedBuffer(index, getBuffer(buffer), offset, size);
}
void Context::bindCopyReadBuffer(GLuint buffer)
{
mResourceManager->checkBufferAllocation(buffer);
mState.setCopyReadBufferBinding(getBuffer(buffer));
}
void Context::bindCopyWriteBuffer(GLuint buffer)
{
mResourceManager->checkBufferAllocation(buffer);
mState.setCopyWriteBufferBinding(getBuffer(buffer));
}
void Context::bindPixelPackBuffer(GLuint buffer)
{
mResourceManager->checkBufferAllocation(buffer);
mState.setPixelPackBufferBinding(getBuffer(buffer));
}
void Context::bindPixelUnpackBuffer(GLuint buffer)
{
mResourceManager->checkBufferAllocation(buffer);
mState.setPixelUnpackBufferBinding(getBuffer(buffer));
}
void Context::useProgram(GLuint program)
{
mState.setProgram(getProgram(program));
}
void Context::bindTransformFeedback(GLuint transformFeedback)
{
mState.setTransformFeedbackBinding(getTransformFeedback(transformFeedback));
}
Error Context::beginQuery(GLenum target, GLuint query)
{
Query *queryObject = getQuery(query, true, target);
ASSERT(queryObject);
// begin query
Error error = queryObject->begin();
if (error.isError())
{
return error;
}
// set query as active for specified target only if begin succeeded
mState.setActiveQuery(target, queryObject);
return Error(GL_NO_ERROR);
}
Error Context::endQuery(GLenum target)
{
Query *queryObject = mState.getActiveQuery(target);
ASSERT(queryObject);
gl::Error error = queryObject->end();
// Always unbind the query, even if there was an error. This may delete the query object.
mState.setActiveQuery(target, NULL);
return error;
}
Framebuffer *Context::getFramebuffer(unsigned int handle) const
{
FramebufferMap::const_iterator framebuffer = mFramebufferMap.find(handle);
if (framebuffer == mFramebufferMap.end())
{
return NULL;
}
else
{
return framebuffer->second;
}
}
FenceNV *Context::getFenceNV(unsigned int handle)
{
FenceNVMap::iterator fence = mFenceNVMap.find(handle);
if (fence == mFenceNVMap.end())
{
return NULL;
}
else
{
return fence->second;
}
}
Query *Context::getQuery(unsigned int handle, bool create, GLenum type)
{
QueryMap::iterator query = mQueryMap.find(handle);
if (query == mQueryMap.end())
{
return NULL;
}
else
{
if (!query->second && create)
{
query->second = new Query(mRenderer->createQuery(type), handle);
query->second->addRef();
}
return query->second;
}
}
Texture *Context::getTargetTexture(GLenum target) const
{
ASSERT(ValidTextureTarget(this, target));
return getSamplerTexture(mState.getActiveSampler(), target);
}
Texture *Context::getSamplerTexture(unsigned int sampler, GLenum type) const
{
return mState.getSamplerTexture(sampler, type);
}
Compiler *Context::getCompiler() const
{
return mCompiler;
}
void Context::getBooleanv(GLenum pname, GLboolean *params)
{
switch (pname)
{
case GL_SHADER_COMPILER: *params = GL_TRUE; break;
case GL_CONTEXT_ROBUST_ACCESS_EXT: *params = mRobustAccess ? GL_TRUE : GL_FALSE; break;
default:
mState.getBooleanv(pname, params);
break;
}
}
void Context::getFloatv(GLenum pname, GLfloat *params)
{
// Queries about context capabilities and maximums are answered by Context.
// Queries about current GL state values are answered by State.
switch (pname)
{
case GL_ALIASED_LINE_WIDTH_RANGE:
params[0] = mCaps.minAliasedLineWidth;
params[1] = mCaps.maxAliasedLineWidth;
break;
case GL_ALIASED_POINT_SIZE_RANGE:
params[0] = mCaps.minAliasedPointSize;
params[1] = mCaps.maxAliasedPointSize;
break;
case GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT:
ASSERT(mExtensions.textureFilterAnisotropic);
*params = mExtensions.maxTextureAnisotropy;
break;
case GL_MAX_TEXTURE_LOD_BIAS:
*params = mCaps.maxLODBias;
break;
default:
mState.getFloatv(pname, params);
break;
}
}
void Context::getIntegerv(GLenum pname, GLint *params)
{
// Queries about context capabilities and maximums are answered by Context.
// Queries about current GL state values are answered by State.
switch (pname)
{
case GL_MAX_VERTEX_ATTRIBS: *params = mCaps.maxVertexAttributes; break;
case GL_MAX_VERTEX_UNIFORM_VECTORS: *params = mCaps.maxVertexUniformVectors; break;
case GL_MAX_VERTEX_UNIFORM_COMPONENTS: *params = mCaps.maxVertexUniformComponents; break;
case GL_MAX_VARYING_VECTORS: *params = mCaps.maxVaryingVectors; break;
case GL_MAX_VARYING_COMPONENTS: *params = mCaps.maxVertexOutputComponents; break;
case GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS: *params = mCaps.maxCombinedTextureImageUnits; break;
case GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS: *params = mCaps.maxVertexTextureImageUnits; break;
case GL_MAX_TEXTURE_IMAGE_UNITS: *params = mCaps.maxTextureImageUnits; break;
case GL_MAX_FRAGMENT_UNIFORM_VECTORS: *params = mCaps.maxFragmentUniformVectors; break;
case GL_MAX_FRAGMENT_UNIFORM_COMPONENTS: *params = mCaps.maxFragmentInputComponents; break;
case GL_MAX_RENDERBUFFER_SIZE: *params = mCaps.maxRenderbufferSize; break;
case GL_MAX_COLOR_ATTACHMENTS_EXT: *params = mCaps.maxColorAttachments; break;
case GL_MAX_DRAW_BUFFERS_EXT: *params = mCaps.maxDrawBuffers; break;
//case GL_FRAMEBUFFER_BINDING: // now equivalent to GL_DRAW_FRAMEBUFFER_BINDING_ANGLE
case GL_SUBPIXEL_BITS: *params = 4; break;
case GL_MAX_TEXTURE_SIZE: *params = mCaps.max2DTextureSize; break;
case GL_MAX_CUBE_MAP_TEXTURE_SIZE: *params = mCaps.maxCubeMapTextureSize; break;
case GL_MAX_3D_TEXTURE_SIZE: *params = mCaps.max3DTextureSize; break;
case GL_MAX_ARRAY_TEXTURE_LAYERS: *params = mCaps.maxArrayTextureLayers; break;
case GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT: *params = mCaps.uniformBufferOffsetAlignment; break;
case GL_MAX_UNIFORM_BUFFER_BINDINGS: *params = mCaps.maxUniformBufferBindings; break;
case GL_MAX_VERTEX_UNIFORM_BLOCKS: *params = mCaps.maxVertexUniformBlocks; break;
case GL_MAX_FRAGMENT_UNIFORM_BLOCKS: *params = mCaps.maxFragmentUniformBlocks; break;
case GL_MAX_COMBINED_UNIFORM_BLOCKS: *params = mCaps.maxCombinedTextureImageUnits; break;
case GL_MAX_VERTEX_OUTPUT_COMPONENTS: *params = mCaps.maxVertexOutputComponents; break;
case GL_MAX_FRAGMENT_INPUT_COMPONENTS: *params = mCaps.maxFragmentInputComponents; break;
case GL_MIN_PROGRAM_TEXEL_OFFSET: *params = mCaps.minProgramTexelOffset; break;
case GL_MAX_PROGRAM_TEXEL_OFFSET: *params = mCaps.maxProgramTexelOffset; break;
case GL_MAJOR_VERSION: *params = mClientVersion; break;
case GL_MINOR_VERSION: *params = 0; break;
case GL_MAX_ELEMENTS_INDICES: *params = mCaps.maxElementsIndices; break;
case GL_MAX_ELEMENTS_VERTICES: *params = mCaps.maxElementsVertices; break;
case GL_MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS: *params = mCaps.maxTransformFeedbackInterleavedComponents; break;
case GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS: *params = mCaps.maxTransformFeedbackSeparateAttributes; break;
case GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS: *params = mCaps.maxTransformFeedbackSeparateComponents; break;
case GL_NUM_COMPRESSED_TEXTURE_FORMATS: *params = mCaps.compressedTextureFormats.size(); break;
case GL_MAX_SAMPLES_ANGLE: *params = mCaps.maxSamples; break;
case GL_MAX_VIEWPORT_DIMS:
{
params[0] = mCaps.maxViewportWidth;
params[1] = mCaps.maxViewportHeight;
}
break;
case GL_COMPRESSED_TEXTURE_FORMATS:
std::copy(mCaps.compressedTextureFormats.begin(), mCaps.compressedTextureFormats.end(), params);
break;
case GL_RESET_NOTIFICATION_STRATEGY_EXT:
*params = mResetStrategy;
break;
case GL_NUM_SHADER_BINARY_FORMATS:
*params = mCaps.shaderBinaryFormats.size();
break;
case GL_SHADER_BINARY_FORMATS:
std::copy(mCaps.shaderBinaryFormats.begin(), mCaps.shaderBinaryFormats.end(), params);
break;
case GL_NUM_PROGRAM_BINARY_FORMATS:
*params = mCaps.programBinaryFormats.size();
break;
case GL_PROGRAM_BINARY_FORMATS:
std::copy(mCaps.programBinaryFormats.begin(), mCaps.programBinaryFormats.end(), params);
break;
case GL_NUM_EXTENSIONS:
*params = static_cast<GLint>(mExtensionStrings.size());
break;
default:
mState.getIntegerv(getData(), pname, params);
break;
}
}
void Context::getInteger64v(GLenum pname, GLint64 *params)
{
// Queries about context capabilities and maximums are answered by Context.
// Queries about current GL state values are answered by State.
switch (pname)
{
case GL_MAX_ELEMENT_INDEX:
*params = mCaps.maxElementIndex;
break;
case GL_MAX_UNIFORM_BLOCK_SIZE:
*params = mCaps.maxUniformBlockSize;
break;
case GL_MAX_COMBINED_VERTEX_UNIFORM_COMPONENTS:
*params = mCaps.maxCombinedVertexUniformComponents;
break;
case GL_MAX_COMBINED_FRAGMENT_UNIFORM_COMPONENTS:
*params = mCaps.maxCombinedFragmentUniformComponents;
break;
case GL_MAX_SERVER_WAIT_TIMEOUT:
*params = mCaps.maxServerWaitTimeout;
break;
default:
UNREACHABLE();
break;
}
}
bool Context::getIndexedIntegerv(GLenum target, GLuint index, GLint *data)
{
// Queries about context capabilities and maximums are answered by Context.
// Queries about current GL state values are answered by State.
// Indexed integer queries all refer to current state, so this function is a
// mere passthrough.
return mState.getIndexedIntegerv(target, index, data);
}
bool Context::getIndexedInteger64v(GLenum target, GLuint index, GLint64 *data)
{
// Queries about context capabilities and maximums are answered by Context.
// Queries about current GL state values are answered by State.
// Indexed integer queries all refer to current state, so this function is a
// mere passthrough.
return mState.getIndexedInteger64v(target, index, data);
}
bool Context::getQueryParameterInfo(GLenum pname, GLenum *type, unsigned int *numParams)
{
if (pname >= GL_DRAW_BUFFER0_EXT && pname <= GL_DRAW_BUFFER15_EXT)
{
*type = GL_INT;
*numParams = 1;
return true;
}
// Please note: the query type returned for DEPTH_CLEAR_VALUE in this implementation
// is FLOAT rather than INT, as would be suggested by the GL ES 2.0 spec. This is due
// to the fact that it is stored internally as a float, and so would require conversion
// if returned from Context::getIntegerv. Since this conversion is already implemented
// in the case that one calls glGetIntegerv to retrieve a float-typed state variable, we
// place DEPTH_CLEAR_VALUE with the floats. This should make no difference to the calling
// application.
switch (pname)
{
case GL_COMPRESSED_TEXTURE_FORMATS:
{
*type = GL_INT;
*numParams = mCaps.compressedTextureFormats.size();
}
return true;
case GL_PROGRAM_BINARY_FORMATS_OES:
{
*type = GL_INT;
*numParams = mCaps.programBinaryFormats.size();
}
return true;
case GL_SHADER_BINARY_FORMATS:
{
*type = GL_INT;
*numParams = mCaps.shaderBinaryFormats.size();
}
return true;
case GL_MAX_VERTEX_ATTRIBS:
case GL_MAX_VERTEX_UNIFORM_VECTORS:
case GL_MAX_VARYING_VECTORS:
case GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS:
case GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS:
case GL_MAX_TEXTURE_IMAGE_UNITS:
case GL_MAX_FRAGMENT_UNIFORM_VECTORS:
case GL_MAX_RENDERBUFFER_SIZE:
case GL_MAX_COLOR_ATTACHMENTS_EXT:
case GL_MAX_DRAW_BUFFERS_EXT:
case GL_NUM_SHADER_BINARY_FORMATS:
case GL_NUM_COMPRESSED_TEXTURE_FORMATS:
case GL_ARRAY_BUFFER_BINDING:
//case GL_FRAMEBUFFER_BINDING: // equivalent to DRAW_FRAMEBUFFER_BINDING_ANGLE
case GL_DRAW_FRAMEBUFFER_BINDING_ANGLE:
case GL_READ_FRAMEBUFFER_BINDING_ANGLE:
case GL_RENDERBUFFER_BINDING:
case GL_CURRENT_PROGRAM:
case GL_PACK_ALIGNMENT:
case GL_PACK_REVERSE_ROW_ORDER_ANGLE:
case GL_UNPACK_ALIGNMENT:
case GL_GENERATE_MIPMAP_HINT:
case GL_FRAGMENT_SHADER_DERIVATIVE_HINT_OES:
case GL_RED_BITS:
case GL_GREEN_BITS:
case GL_BLUE_BITS:
case GL_ALPHA_BITS:
case GL_DEPTH_BITS:
case GL_STENCIL_BITS:
case GL_ELEMENT_ARRAY_BUFFER_BINDING:
case GL_CULL_FACE_MODE:
case GL_FRONT_FACE:
case GL_ACTIVE_TEXTURE:
case GL_STENCIL_FUNC:
case GL_STENCIL_VALUE_MASK:
case GL_STENCIL_REF:
case GL_STENCIL_FAIL:
case GL_STENCIL_PASS_DEPTH_FAIL:
case GL_STENCIL_PASS_DEPTH_PASS:
case GL_STENCIL_BACK_FUNC:
case GL_STENCIL_BACK_VALUE_MASK:
case GL_STENCIL_BACK_REF:
case GL_STENCIL_BACK_FAIL:
case GL_STENCIL_BACK_PASS_DEPTH_FAIL:
case GL_STENCIL_BACK_PASS_DEPTH_PASS:
case GL_DEPTH_FUNC:
case GL_BLEND_SRC_RGB:
case GL_BLEND_SRC_ALPHA:
case GL_BLEND_DST_RGB:
case GL_BLEND_DST_ALPHA:
case GL_BLEND_EQUATION_RGB:
case GL_BLEND_EQUATION_ALPHA:
case GL_STENCIL_WRITEMASK:
case GL_STENCIL_BACK_WRITEMASK:
case GL_STENCIL_CLEAR_VALUE:
case GL_SUBPIXEL_BITS:
case GL_MAX_TEXTURE_SIZE:
case GL_MAX_CUBE_MAP_TEXTURE_SIZE:
case GL_SAMPLE_BUFFERS:
case GL_SAMPLES:
case GL_IMPLEMENTATION_COLOR_READ_TYPE:
case GL_IMPLEMENTATION_COLOR_READ_FORMAT:
case GL_TEXTURE_BINDING_2D:
case GL_TEXTURE_BINDING_CUBE_MAP:
case GL_RESET_NOTIFICATION_STRATEGY_EXT:
case GL_NUM_PROGRAM_BINARY_FORMATS_OES:
{
*type = GL_INT;
*numParams = 1;
}
return true;
case GL_MAX_SAMPLES_ANGLE:
{
if (mExtensions.framebufferMultisample)
{
*type = GL_INT;
*numParams = 1;
}
else
{
return false;
}
}
return true;
case GL_PIXEL_PACK_BUFFER_BINDING:
case GL_PIXEL_UNPACK_BUFFER_BINDING:
{
if (mExtensions.pixelBufferObject)
{
*type = GL_INT;
*numParams = 1;
}
else
{
return false;
}
}
return true;
case GL_MAX_VIEWPORT_DIMS:
{
*type = GL_INT;
*numParams = 2;
}
return true;
case GL_VIEWPORT:
case GL_SCISSOR_BOX:
{
*type = GL_INT;
*numParams = 4;
}
return true;
case GL_SHADER_COMPILER:
case GL_SAMPLE_COVERAGE_INVERT:
case GL_DEPTH_WRITEMASK:
case GL_CULL_FACE: // CULL_FACE through DITHER are natural to IsEnabled,
case GL_POLYGON_OFFSET_FILL: // but can be retrieved through the Get{Type}v queries.
case GL_SAMPLE_ALPHA_TO_COVERAGE: // For this purpose, they are treated here as bool-natural
case GL_SAMPLE_COVERAGE:
case GL_SCISSOR_TEST:
case GL_STENCIL_TEST:
case GL_DEPTH_TEST:
case GL_BLEND:
case GL_DITHER:
case GL_CONTEXT_ROBUST_ACCESS_EXT:
{
*type = GL_BOOL;
*numParams = 1;
}
return true;
case GL_COLOR_WRITEMASK:
{
*type = GL_BOOL;
*numParams = 4;
}
return true;
case GL_POLYGON_OFFSET_FACTOR:
case GL_POLYGON_OFFSET_UNITS:
case GL_SAMPLE_COVERAGE_VALUE:
case GL_DEPTH_CLEAR_VALUE:
case GL_LINE_WIDTH:
{
*type = GL_FLOAT;
*numParams = 1;
}
return true;
case GL_ALIASED_LINE_WIDTH_RANGE:
case GL_ALIASED_POINT_SIZE_RANGE:
case GL_DEPTH_RANGE:
{
*type = GL_FLOAT;
*numParams = 2;
}
return true;
case GL_COLOR_CLEAR_VALUE:
case GL_BLEND_COLOR:
{
*type = GL_FLOAT;
*numParams = 4;
}
return true;
case GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT:
if (!mExtensions.maxTextureAnisotropy)
{
return false;
}
*type = GL_FLOAT;
*numParams = 1;
return true;
}
if (mClientVersion < 3)
{
return false;
}
// Check for ES3.0+ parameter names
switch (pname)
{
case GL_MAX_UNIFORM_BUFFER_BINDINGS:
case GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT:
case GL_UNIFORM_BUFFER_BINDING:
case GL_TRANSFORM_FEEDBACK_BINDING:
case GL_TRANSFORM_FEEDBACK_BUFFER_BINDING:
case GL_COPY_READ_BUFFER_BINDING:
case GL_COPY_WRITE_BUFFER_BINDING:
case GL_TEXTURE_BINDING_3D:
case GL_TEXTURE_BINDING_2D_ARRAY:
case GL_MAX_3D_TEXTURE_SIZE:
case GL_MAX_ARRAY_TEXTURE_LAYERS:
case GL_MAX_VERTEX_UNIFORM_BLOCKS:
case GL_MAX_FRAGMENT_UNIFORM_BLOCKS:
case GL_MAX_COMBINED_UNIFORM_BLOCKS:
case GL_MAX_VERTEX_OUTPUT_COMPONENTS:
case GL_MAX_FRAGMENT_INPUT_COMPONENTS:
case GL_MAX_VARYING_COMPONENTS:
case GL_VERTEX_ARRAY_BINDING:
case GL_MAX_VERTEX_UNIFORM_COMPONENTS:
case GL_MAX_FRAGMENT_UNIFORM_COMPONENTS:
case GL_MIN_PROGRAM_TEXEL_OFFSET:
case GL_MAX_PROGRAM_TEXEL_OFFSET:
case GL_NUM_EXTENSIONS:
case GL_MAJOR_VERSION:
case GL_MINOR_VERSION:
case GL_MAX_ELEMENTS_INDICES:
case GL_MAX_ELEMENTS_VERTICES:
case GL_MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS:
case GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS:
case GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS:
{
*type = GL_INT;
*numParams = 1;
}
return true;
case GL_MAX_ELEMENT_INDEX:
case GL_MAX_UNIFORM_BLOCK_SIZE:
case GL_MAX_COMBINED_VERTEX_UNIFORM_COMPONENTS:
case GL_MAX_COMBINED_FRAGMENT_UNIFORM_COMPONENTS:
case GL_MAX_SERVER_WAIT_TIMEOUT:
{
*type = GL_INT_64_ANGLEX;
*numParams = 1;
}
return true;
case GL_TRANSFORM_FEEDBACK_ACTIVE:
case GL_TRANSFORM_FEEDBACK_PAUSED:
{
*type = GL_BOOL;
*numParams = 1;
}
return true;
case GL_MAX_TEXTURE_LOD_BIAS:
{
*type = GL_FLOAT;
*numParams = 1;
}
return true;
}
return false;
}
bool Context::getIndexedQueryParameterInfo(GLenum target, GLenum *type, unsigned int *numParams)
{
if (mClientVersion < 3)
{
return false;
}
switch (target)
{
case GL_TRANSFORM_FEEDBACK_BUFFER_BINDING:
case GL_UNIFORM_BUFFER_BINDING:
{
*type = GL_INT;
*numParams = 1;
}
return true;
case GL_TRANSFORM_FEEDBACK_BUFFER_START:
case GL_TRANSFORM_FEEDBACK_BUFFER_SIZE:
case GL_UNIFORM_BUFFER_START:
case GL_UNIFORM_BUFFER_SIZE:
{
*type = GL_INT_64_ANGLEX;
*numParams = 1;
}
}
return false;
}
Error Context::drawArrays(GLenum mode, GLint first, GLsizei count, GLsizei instances)
{
Error error = mRenderer->drawArrays(getData(), mode, first, count, instances);
if (error.isError())
{
return error;
}
TransformFeedback *transformFeedback = mState.getCurrentTransformFeedback();
if (transformFeedback->isActive() && !transformFeedback->isPaused())
{
for (size_t tfBufferIndex = 0; tfBufferIndex < transformFeedback->getIndexedBufferCount(); tfBufferIndex++)
{
const OffsetBindingPointer<Buffer> &buffer = transformFeedback->getIndexedBuffer(tfBufferIndex);
if (buffer.get() != nullptr)
{
buffer->onTransformFeedback();
}
}
}
return Error(GL_NO_ERROR);
}
Error Context::drawElements(GLenum mode, GLsizei count, GLenum type,
const GLvoid *indices, GLsizei instances,
const RangeUI &indexRange)
{
return mRenderer->drawElements(getData(), mode, count, type, indices, instances, indexRange);
}
Error Context::flush()
{
return mRenderer->flush();
}
Error Context::finish()
{
return mRenderer->finish();
}
void Context::insertEventMarker(GLsizei length, const char *marker)
{
ASSERT(mRenderer);
mRenderer->insertEventMarker(length, marker);
}
void Context::pushGroupMarker(GLsizei length, const char *marker)
{
ASSERT(mRenderer);
mRenderer->pushGroupMarker(length, marker);
}
void Context::popGroupMarker()
{
ASSERT(mRenderer);
mRenderer->popGroupMarker();
}
void Context::recordError(const Error &error)
{
if (error.isError())
{
mErrors.insert(error.getCode());
}
}
// Get one of the recorded errors and clear its flag, if any.
// [OpenGL ES 2.0.24] section 2.5 page 13.
GLenum Context::getError()
{
if (mErrors.empty())
{
return GL_NO_ERROR;
}
else
{
GLenum error = *mErrors.begin();
mErrors.erase(mErrors.begin());
return error;
}
}
GLenum Context::getResetStatus()
{
//TODO(jmadill): needs MANGLE reworking
if (mResetStatus == GL_NO_ERROR && !mContextLost)
{
// mResetStatus will be set by the markContextLost callback
// in the case a notification is sent
if (mRenderer->testDeviceLost())
{
mRenderer->notifyDeviceLost();
}
}
GLenum status = mResetStatus;
if (mResetStatus != GL_NO_ERROR)
{
ASSERT(mContextLost);
if (mRenderer->testDeviceResettable())
{
mResetStatus = GL_NO_ERROR;
}
}
return status;
}
bool Context::isResetNotificationEnabled()
{
return (mResetStrategy == GL_LOSE_CONTEXT_ON_RESET_EXT);
}
int Context::getClientVersion() const
{
return mClientVersion;
}
const egl::Config *Context::getConfig() const
{
return mConfig;
}
EGLenum Context::getClientType() const
{
return mClientType;
}
EGLenum Context::getRenderBuffer() const
{
ASSERT(mFramebufferMap.count(0) > 0);
const Framebuffer *framebuffer = mFramebufferMap.find(0)->second;
const FramebufferAttachment *backAttachment = framebuffer->getAttachment(GL_BACK);
return backAttachment ? backAttachment->getSurface()->getRenderBuffer() : EGL_NONE;
}
const Caps &Context::getCaps() const
{
return mCaps;
}
const TextureCapsMap &Context::getTextureCaps() const
{
return mTextureCaps;
}
const Extensions &Context::getExtensions() const
{
return mExtensions;
}
const Limitations &Context::getLimitations() const
{
return mLimitations;
}
void Context::detachTexture(GLuint texture)
{
// Simple pass-through to State's detachTexture method, as textures do not require
// allocation map management either here or in the resource manager at detach time.
// Zero textures are held by the Context, and we don't attempt to request them from
// the State.
mState.detachTexture(mZeroTextures, texture);
}
void Context::detachBuffer(GLuint buffer)
{
// Buffer detachment is handled by Context, because the buffer must also be
// attached from any VAOs in existence, and Context holds the VAO map.
// [OpenGL ES 2.0.24] section 2.9 page 22:
// If a buffer object is deleted while it is bound, all bindings to that object in the current context
// (i.e. in the thread that called Delete-Buffers) are reset to zero.
mState.removeArrayBufferBinding(buffer);
// mark as freed among the vertex array objects
for (auto vaoIt = mVertexArrayMap.begin(); vaoIt != mVertexArrayMap.end(); vaoIt++)
{
vaoIt->second->detachBuffer(buffer);
}
}
void Context::detachFramebuffer(GLuint framebuffer)
{
// Framebuffer detachment is handled by Context, because 0 is a valid
// Framebuffer object, and a pointer to it must be passed from Context
// to State at binding time.
// [OpenGL ES 2.0.24] section 4.4 page 107:
// If a framebuffer that is currently bound to the target FRAMEBUFFER is deleted, it is as though
// BindFramebuffer had been executed with the target of FRAMEBUFFER and framebuffer of zero.
if (mState.removeReadFramebufferBinding(framebuffer) && framebuffer != 0)
{
bindReadFramebuffer(0);
}
if (mState.removeDrawFramebufferBinding(framebuffer) && framebuffer != 0)
{
bindDrawFramebuffer(0);
}
}
void Context::detachRenderbuffer(GLuint renderbuffer)
{
mState.detachRenderbuffer(renderbuffer);
}
void Context::detachVertexArray(GLuint vertexArray)
{
// Vertex array detachment is handled by Context, because 0 is a valid
// VAO, and a pointer to it must be passed from Context to State at
// binding time.
// [OpenGL ES 3.0.2] section 2.10 page 43:
// If a vertex array object that is currently bound is deleted, the binding
// for that object reverts to zero and the default vertex array becomes current.
if (mState.removeVertexArrayBinding(vertexArray))
{
bindVertexArray(0);
}
}
void Context::detachTransformFeedback(GLuint transformFeedback)
{
mState.detachTransformFeedback(transformFeedback);
}
void Context::detachSampler(GLuint sampler)
{
mState.detachSampler(sampler);
}
void Context::setVertexAttribDivisor(GLuint index, GLuint divisor)
{
mState.getVertexArray()->setVertexAttribDivisor(index, divisor);
}
void Context::samplerParameteri(GLuint sampler, GLenum pname, GLint param)
{
mResourceManager->checkSamplerAllocation(sampler);
Sampler *samplerObject = getSampler(sampler);
ASSERT(samplerObject);
switch (pname)
{
case GL_TEXTURE_MIN_FILTER: samplerObject->setMinFilter(static_cast<GLenum>(param)); break;
case GL_TEXTURE_MAG_FILTER: samplerObject->setMagFilter(static_cast<GLenum>(param)); break;
case GL_TEXTURE_WRAP_S: samplerObject->setWrapS(static_cast<GLenum>(param)); break;
case GL_TEXTURE_WRAP_T: samplerObject->setWrapT(static_cast<GLenum>(param)); break;
case GL_TEXTURE_WRAP_R: samplerObject->setWrapR(static_cast<GLenum>(param)); break;
case GL_TEXTURE_MIN_LOD: samplerObject->setMinLod(static_cast<GLfloat>(param)); break;
case GL_TEXTURE_MAX_LOD: samplerObject->setMaxLod(static_cast<GLfloat>(param)); break;
case GL_TEXTURE_COMPARE_MODE: samplerObject->setComparisonMode(static_cast<GLenum>(param)); break;
case GL_TEXTURE_COMPARE_FUNC: samplerObject->setComparisonFunc(static_cast<GLenum>(param)); break;
default: UNREACHABLE(); break;
}
}
void Context::samplerParameterf(GLuint sampler, GLenum pname, GLfloat param)
{
mResourceManager->checkSamplerAllocation(sampler);
Sampler *samplerObject = getSampler(sampler);
ASSERT(samplerObject);
switch (pname)
{
case GL_TEXTURE_MIN_FILTER: samplerObject->setMinFilter(uiround<GLenum>(param)); break;
case GL_TEXTURE_MAG_FILTER: samplerObject->setMagFilter(uiround<GLenum>(param)); break;
case GL_TEXTURE_WRAP_S: samplerObject->setWrapS(uiround<GLenum>(param)); break;
case GL_TEXTURE_WRAP_T: samplerObject->setWrapT(uiround<GLenum>(param)); break;
case GL_TEXTURE_WRAP_R: samplerObject->setWrapR(uiround<GLenum>(param)); break;
case GL_TEXTURE_MIN_LOD: samplerObject->setMinLod(param); break;
case GL_TEXTURE_MAX_LOD: samplerObject->setMaxLod(param); break;
case GL_TEXTURE_COMPARE_MODE: samplerObject->setComparisonMode(uiround<GLenum>(param)); break;
case GL_TEXTURE_COMPARE_FUNC: samplerObject->setComparisonFunc(uiround<GLenum>(param)); break;
default: UNREACHABLE(); break;
}
}
GLint Context::getSamplerParameteri(GLuint sampler, GLenum pname)
{
mResourceManager->checkSamplerAllocation(sampler);
Sampler *samplerObject = getSampler(sampler);
ASSERT(samplerObject);
switch (pname)
{
case GL_TEXTURE_MIN_FILTER: return static_cast<GLint>(samplerObject->getMinFilter());
case GL_TEXTURE_MAG_FILTER: return static_cast<GLint>(samplerObject->getMagFilter());
case GL_TEXTURE_WRAP_S: return static_cast<GLint>(samplerObject->getWrapS());
case GL_TEXTURE_WRAP_T: return static_cast<GLint>(samplerObject->getWrapT());
case GL_TEXTURE_WRAP_R: return static_cast<GLint>(samplerObject->getWrapR());
case GL_TEXTURE_MIN_LOD: return uiround<GLint>(samplerObject->getMinLod());
case GL_TEXTURE_MAX_LOD: return uiround<GLint>(samplerObject->getMaxLod());
case GL_TEXTURE_COMPARE_MODE: return static_cast<GLint>(samplerObject->getComparisonMode());
case GL_TEXTURE_COMPARE_FUNC: return static_cast<GLint>(samplerObject->getComparisonFunc());
default: UNREACHABLE(); return 0;
}
}
GLfloat Context::getSamplerParameterf(GLuint sampler, GLenum pname)
{
mResourceManager->checkSamplerAllocation(sampler);
Sampler *samplerObject = getSampler(sampler);
ASSERT(samplerObject);
switch (pname)
{
case GL_TEXTURE_MIN_FILTER: return static_cast<GLfloat>(samplerObject->getMinFilter());
case GL_TEXTURE_MAG_FILTER: return static_cast<GLfloat>(samplerObject->getMagFilter());
case GL_TEXTURE_WRAP_S: return static_cast<GLfloat>(samplerObject->getWrapS());
case GL_TEXTURE_WRAP_T: return static_cast<GLfloat>(samplerObject->getWrapT());
case GL_TEXTURE_WRAP_R: return static_cast<GLfloat>(samplerObject->getWrapR());
case GL_TEXTURE_MIN_LOD: return samplerObject->getMinLod();
case GL_TEXTURE_MAX_LOD: return samplerObject->getMaxLod();
case GL_TEXTURE_COMPARE_MODE: return static_cast<GLfloat>(samplerObject->getComparisonMode());
case GL_TEXTURE_COMPARE_FUNC: return static_cast<GLfloat>(samplerObject->getComparisonFunc());
default: UNREACHABLE(); return 0;
}
}
void Context::initRendererString()
{
std::ostringstream rendererString;
rendererString << "ANGLE (";
rendererString << mRenderer->getRendererDescription();
rendererString << ")";
mRendererString = MakeStaticString(rendererString.str());
}
const std::string &Context::getRendererString() const
{
return mRendererString;
}
void Context::initExtensionStrings()
{
mExtensionStrings = mExtensions.getStrings();
std::ostringstream combinedStringStream;
std::copy(mExtensionStrings.begin(), mExtensionStrings.end(), std::ostream_iterator<std::string>(combinedStringStream, " "));
mExtensionString = combinedStringStream.str();
}
const std::string &Context::getExtensionString() const
{
return mExtensionString;
}
const std::string &Context::getExtensionString(size_t idx) const
{
return mExtensionStrings[idx];
}
size_t Context::getExtensionStringCount() const
{
return mExtensionStrings.size();
}
void Context::initCaps(GLuint clientVersion)
{
mCaps = mRenderer->getRendererCaps();
mExtensions = mRenderer->getRendererExtensions();
mLimitations = mRenderer->getRendererLimitations();
if (clientVersion < 3)
{
// Disable ES3+ extensions
mExtensions.colorBufferFloat = false;
}
if (clientVersion > 2)
{
// FIXME(geofflang): Don't support EXT_sRGB in non-ES2 contexts
//mExtensions.sRGB = false;
}
// Apply implementation limits
mCaps.maxVertexAttributes = std::min<GLuint>(mCaps.maxVertexAttributes, MAX_VERTEX_ATTRIBS);
mCaps.maxVertexUniformBlocks = std::min<GLuint>(mCaps.maxVertexUniformBlocks, IMPLEMENTATION_MAX_VERTEX_SHADER_UNIFORM_BUFFERS);
mCaps.maxVertexOutputComponents = std::min<GLuint>(mCaps.maxVertexOutputComponents, IMPLEMENTATION_MAX_VARYING_VECTORS * 4);
mCaps.maxFragmentInputComponents = std::min<GLuint>(mCaps.maxFragmentInputComponents, IMPLEMENTATION_MAX_VARYING_VECTORS * 4);
mCaps.compressedTextureFormats.clear();
const TextureCapsMap &rendererFormats = mRenderer->getRendererTextureCaps();
for (TextureCapsMap::const_iterator i = rendererFormats.begin(); i != rendererFormats.end(); i++)
{
GLenum format = i->first;
TextureCaps formatCaps = i->second;
const InternalFormat &formatInfo = GetInternalFormatInfo(format);
// Update the format caps based on the client version and extensions
formatCaps.texturable = formatInfo.textureSupport(clientVersion, mExtensions);
formatCaps.renderable = formatInfo.renderSupport(clientVersion, mExtensions);
formatCaps.filterable = formatInfo.filterSupport(clientVersion, mExtensions);
// OpenGL ES does not support multisampling with integer formats
if (!formatInfo.renderSupport || formatInfo.componentType == GL_INT || formatInfo.componentType == GL_UNSIGNED_INT)
{
formatCaps.sampleCounts.clear();
}
if (formatCaps.texturable && formatInfo.compressed)
{
mCaps.compressedTextureFormats.push_back(format);
}
mTextureCaps.insert(format, formatCaps);
}
}
}