blob: 0059516aca0e031eedc2911fdef265792af0d9d4 [file] [log] [blame]
//
// Copyright (c) 2014 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// ProgramD3D.cpp: Defines the rx::ProgramD3D class which implements rx::ProgramImpl.
#include "libANGLE/renderer/d3d/ProgramD3D.h"
#include "common/utilities.h"
#include "libANGLE/Framebuffer.h"
#include "libANGLE/FramebufferAttachment.h"
#include "libANGLE/Program.h"
#include "libANGLE/VertexArray.h"
#include "libANGLE/features.h"
#include "libANGLE/renderer/d3d/DynamicHLSL.h"
#include "libANGLE/renderer/d3d/FramebufferD3D.h"
#include "libANGLE/renderer/d3d/RendererD3D.h"
#include "libANGLE/renderer/d3d/ShaderD3D.h"
#include "libANGLE/renderer/d3d/ShaderExecutableD3D.h"
#include "libANGLE/renderer/d3d/VertexDataManager.h"
namespace rx
{
namespace
{
GLenum GetTextureType(GLenum samplerType)
{
switch (samplerType)
{
case GL_SAMPLER_2D:
case GL_INT_SAMPLER_2D:
case GL_UNSIGNED_INT_SAMPLER_2D:
case GL_SAMPLER_2D_SHADOW:
return GL_TEXTURE_2D;
case GL_SAMPLER_3D:
case GL_INT_SAMPLER_3D:
case GL_UNSIGNED_INT_SAMPLER_3D:
return GL_TEXTURE_3D;
case GL_SAMPLER_CUBE:
case GL_SAMPLER_CUBE_SHADOW:
return GL_TEXTURE_CUBE_MAP;
case GL_INT_SAMPLER_CUBE:
case GL_UNSIGNED_INT_SAMPLER_CUBE:
return GL_TEXTURE_CUBE_MAP;
case GL_SAMPLER_2D_ARRAY:
case GL_INT_SAMPLER_2D_ARRAY:
case GL_UNSIGNED_INT_SAMPLER_2D_ARRAY:
case GL_SAMPLER_2D_ARRAY_SHADOW:
return GL_TEXTURE_2D_ARRAY;
default: UNREACHABLE();
}
return GL_TEXTURE_2D;
}
void GetDefaultInputLayoutFromShader(const std::vector<sh::Attribute> &shaderAttributes,
gl::InputLayout *inputLayoutOut)
{
for (const sh::Attribute &shaderAttr : shaderAttributes)
{
if (shaderAttr.type != GL_NONE)
{
GLenum transposedType = gl::TransposeMatrixType(shaderAttr.type);
for (size_t rowIndex = 0;
static_cast<int>(rowIndex) < gl::VariableRowCount(transposedType);
++rowIndex)
{
GLenum componentType = gl::VariableComponentType(transposedType);
GLuint components = static_cast<GLuint>(gl::VariableColumnCount(transposedType));
bool pureInt = (componentType != GL_FLOAT);
gl::VertexFormatType defaultType = gl::GetVertexFormatType(
componentType, GL_FALSE, components, pureInt);
inputLayoutOut->push_back(defaultType);
}
}
}
}
std::vector<GLenum> GetDefaultOutputLayoutFromShader(const std::vector<PixelShaderOutputVariable> &shaderOutputVars)
{
std::vector<GLenum> defaultPixelOutput;
if (!shaderOutputVars.empty())
{
defaultPixelOutput.push_back(GL_COLOR_ATTACHMENT0 + shaderOutputVars[0].outputIndex);
}
return defaultPixelOutput;
}
bool IsRowMajorLayout(const sh::InterfaceBlockField &var)
{
return var.isRowMajorLayout;
}
bool IsRowMajorLayout(const sh::ShaderVariable &var)
{
return false;
}
struct AttributeSorter
{
AttributeSorter(const ProgramImpl::SemanticIndexArray &semanticIndices)
: originalIndices(&semanticIndices)
{
}
bool operator()(int a, int b)
{
int indexA = (*originalIndices)[a];
int indexB = (*originalIndices)[b];
if (indexA == -1) return false;
if (indexB == -1) return true;
return (indexA < indexB);
}
const ProgramImpl::SemanticIndexArray *originalIndices;
};
}
ProgramD3D::VertexExecutable::VertexExecutable(const gl::InputLayout &inputLayout,
const Signature &signature,
ShaderExecutableD3D *shaderExecutable)
: mInputs(inputLayout),
mSignature(signature),
mShaderExecutable(shaderExecutable)
{
}
ProgramD3D::VertexExecutable::~VertexExecutable()
{
SafeDelete(mShaderExecutable);
}
// static
void ProgramD3D::VertexExecutable::getSignature(RendererD3D *renderer,
const gl::InputLayout &inputLayout,
Signature *signatureOut)
{
signatureOut->resize(inputLayout.size(), gl::VERTEX_FORMAT_INVALID);
for (size_t index = 0; index < inputLayout.size(); ++index)
{
gl::VertexFormatType vertexFormatType = inputLayout[index];
if (vertexFormatType == gl::VERTEX_FORMAT_INVALID)
{
(*signatureOut)[index] = GL_NONE;
}
else
{
bool gpuConverted = ((renderer->getVertexConversionType(vertexFormatType) & VERTEX_CONVERT_GPU) != 0);
(*signatureOut)[index] = (gpuConverted ? GL_TRUE : GL_FALSE);
}
}
}
bool ProgramD3D::VertexExecutable::matchesSignature(const Signature &signature) const
{
return mSignature == signature;
}
ProgramD3D::PixelExecutable::PixelExecutable(const std::vector<GLenum> &outputSignature,
ShaderExecutableD3D *shaderExecutable)
: mOutputSignature(outputSignature),
mShaderExecutable(shaderExecutable)
{
}
ProgramD3D::PixelExecutable::~PixelExecutable()
{
SafeDelete(mShaderExecutable);
}
ProgramD3D::Sampler::Sampler() : active(false), logicalTextureUnit(0), textureType(GL_TEXTURE_2D)
{
}
unsigned int ProgramD3D::mCurrentSerial = 1;
ProgramD3D::ProgramD3D(RendererD3D *renderer)
: ProgramImpl(),
mRenderer(renderer),
mDynamicHLSL(NULL),
mGeometryExecutable(NULL),
mUsesPointSize(false),
mVertexUniformStorage(NULL),
mFragmentUniformStorage(NULL),
mUsedVertexSamplerRange(0),
mUsedPixelSamplerRange(0),
mDirtySamplerMapping(true),
mTextureUnitTypesCache(renderer->getRendererCaps().maxCombinedTextureImageUnits),
mShaderVersion(100),
mSerial(issueSerial())
{
mDynamicHLSL = new DynamicHLSL(renderer);
}
ProgramD3D::~ProgramD3D()
{
reset();
SafeDelete(mDynamicHLSL);
}
bool ProgramD3D::usesPointSpriteEmulation() const
{
return mUsesPointSize && mRenderer->getMajorShaderModel() >= 4;
}
bool ProgramD3D::usesGeometryShader() const
{
return usesPointSpriteEmulation() && !usesInstancedPointSpriteEmulation();
}
bool ProgramD3D::usesInstancedPointSpriteEmulation() const
{
return mRenderer->getWorkarounds().useInstancedPointSpriteEmulation;
}
GLint ProgramD3D::getSamplerMapping(gl::SamplerType type, unsigned int samplerIndex, const gl::Caps &caps) const
{
GLint logicalTextureUnit = -1;
switch (type)
{
case gl::SAMPLER_PIXEL:
ASSERT(samplerIndex < caps.maxTextureImageUnits);
if (samplerIndex < mSamplersPS.size() && mSamplersPS[samplerIndex].active)
{
logicalTextureUnit = mSamplersPS[samplerIndex].logicalTextureUnit;
}
break;
case gl::SAMPLER_VERTEX:
ASSERT(samplerIndex < caps.maxVertexTextureImageUnits);
if (samplerIndex < mSamplersVS.size() && mSamplersVS[samplerIndex].active)
{
logicalTextureUnit = mSamplersVS[samplerIndex].logicalTextureUnit;
}
break;
default: UNREACHABLE();
}
if (logicalTextureUnit >= 0 && logicalTextureUnit < static_cast<GLint>(caps.maxCombinedTextureImageUnits))
{
return logicalTextureUnit;
}
return -1;
}
// Returns the texture type for a given Direct3D 9 sampler type and
// index (0-15 for the pixel shader and 0-3 for the vertex shader).
GLenum ProgramD3D::getSamplerTextureType(gl::SamplerType type, unsigned int samplerIndex) const
{
switch (type)
{
case gl::SAMPLER_PIXEL:
ASSERT(samplerIndex < mSamplersPS.size());
ASSERT(mSamplersPS[samplerIndex].active);
return mSamplersPS[samplerIndex].textureType;
case gl::SAMPLER_VERTEX:
ASSERT(samplerIndex < mSamplersVS.size());
ASSERT(mSamplersVS[samplerIndex].active);
return mSamplersVS[samplerIndex].textureType;
default: UNREACHABLE();
}
return GL_TEXTURE_2D;
}
GLint ProgramD3D::getUsedSamplerRange(gl::SamplerType type) const
{
switch (type)
{
case gl::SAMPLER_PIXEL:
return mUsedPixelSamplerRange;
case gl::SAMPLER_VERTEX:
return mUsedVertexSamplerRange;
default:
UNREACHABLE();
return 0;
}
}
void ProgramD3D::updateSamplerMapping()
{
if (!mDirtySamplerMapping)
{
return;
}
mDirtySamplerMapping = false;
// Retrieve sampler uniform values
for (size_t uniformIndex = 0; uniformIndex < mUniforms.size(); uniformIndex++)
{
gl::LinkedUniform *targetUniform = mUniforms[uniformIndex];
if (targetUniform->dirty)
{
if (gl::IsSamplerType(targetUniform->type))
{
int count = targetUniform->elementCount();
GLint (*v)[4] = reinterpret_cast<GLint(*)[4]>(targetUniform->data);
if (targetUniform->isReferencedByFragmentShader())
{
unsigned int firstIndex = targetUniform->psRegisterIndex;
for (int i = 0; i < count; i++)
{
unsigned int samplerIndex = firstIndex + i;
if (samplerIndex < mSamplersPS.size())
{
ASSERT(mSamplersPS[samplerIndex].active);
mSamplersPS[samplerIndex].logicalTextureUnit = v[i][0];
}
}
}
if (targetUniform->isReferencedByVertexShader())
{
unsigned int firstIndex = targetUniform->vsRegisterIndex;
for (int i = 0; i < count; i++)
{
unsigned int samplerIndex = firstIndex + i;
if (samplerIndex < mSamplersVS.size())
{
ASSERT(mSamplersVS[samplerIndex].active);
mSamplersVS[samplerIndex].logicalTextureUnit = v[i][0];
}
}
}
}
}
}
}
bool ProgramD3D::validateSamplers(gl::InfoLog *infoLog, const gl::Caps &caps)
{
// Skip cache if we're using an infolog, so we get the full error.
// Also skip the cache if the sample mapping has changed, or if we haven't ever validated.
if (!mDirtySamplerMapping && infoLog == nullptr && mCachedValidateSamplersResult.valid())
{
return mCachedValidateSamplersResult.value();
}
// if any two active samplers in a program are of different types, but refer to the same
// texture image unit, and this is the current program, then ValidateProgram will fail, and
// DrawArrays and DrawElements will issue the INVALID_OPERATION error.
updateSamplerMapping();
std::fill(mTextureUnitTypesCache.begin(), mTextureUnitTypesCache.end(), GL_NONE);
for (unsigned int i = 0; i < mUsedPixelSamplerRange; ++i)
{
if (mSamplersPS[i].active)
{
unsigned int unit = mSamplersPS[i].logicalTextureUnit;
if (unit >= caps.maxCombinedTextureImageUnits)
{
if (infoLog)
{
(*infoLog) << "Sampler uniform (" << unit
<< ") exceeds GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS ("
<< caps.maxCombinedTextureImageUnits << ")";
}
mCachedValidateSamplersResult = false;
return false;
}
if (mTextureUnitTypesCache[unit] != GL_NONE)
{
if (mSamplersPS[i].textureType != mTextureUnitTypesCache[unit])
{
if (infoLog)
{
(*infoLog) << "Samplers of conflicting types refer to the same texture image unit ("
<< unit << ").";
}
mCachedValidateSamplersResult = false;
return false;
}
}
else
{
mTextureUnitTypesCache[unit] = mSamplersPS[i].textureType;
}
}
}
for (unsigned int i = 0; i < mUsedVertexSamplerRange; ++i)
{
if (mSamplersVS[i].active)
{
unsigned int unit = mSamplersVS[i].logicalTextureUnit;
if (unit >= caps.maxCombinedTextureImageUnits)
{
if (infoLog)
{
(*infoLog) << "Sampler uniform (" << unit
<< ") exceeds GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS ("
<< caps.maxCombinedTextureImageUnits << ")";
}
mCachedValidateSamplersResult = false;
return false;
}
if (mTextureUnitTypesCache[unit] != GL_NONE)
{
if (mSamplersVS[i].textureType != mTextureUnitTypesCache[unit])
{
if (infoLog)
{
(*infoLog) << "Samplers of conflicting types refer to the same texture image unit ("
<< unit << ").";
}
mCachedValidateSamplersResult = false;
return false;
}
}
else
{
mTextureUnitTypesCache[unit] = mSamplersVS[i].textureType;
}
}
}
mCachedValidateSamplersResult = true;
return true;
}
LinkResult ProgramD3D::load(gl::InfoLog &infoLog, gl::BinaryInputStream *stream)
{
DeviceIdentifier binaryDeviceIdentifier = { 0 };
stream->readBytes(reinterpret_cast<unsigned char*>(&binaryDeviceIdentifier), sizeof(DeviceIdentifier));
DeviceIdentifier identifier = mRenderer->getAdapterIdentifier();
if (memcmp(&identifier, &binaryDeviceIdentifier, sizeof(DeviceIdentifier)) != 0)
{
infoLog << "Invalid program binary, device configuration has changed.";
return LinkResult(false, gl::Error(GL_NO_ERROR));
}
int compileFlags = stream->readInt<int>();
if (compileFlags != ANGLE_COMPILE_OPTIMIZATION_LEVEL)
{
infoLog << "Mismatched compilation flags.";
return LinkResult(false, gl::Error(GL_NO_ERROR));
}
stream->readInt(&mShaderVersion);
const unsigned int psSamplerCount = stream->readInt<unsigned int>();
for (unsigned int i = 0; i < psSamplerCount; ++i)
{
Sampler sampler;
stream->readBool(&sampler.active);
stream->readInt(&sampler.logicalTextureUnit);
stream->readInt(&sampler.textureType);
mSamplersPS.push_back(sampler);
}
const unsigned int vsSamplerCount = stream->readInt<unsigned int>();
for (unsigned int i = 0; i < vsSamplerCount; ++i)
{
Sampler sampler;
stream->readBool(&sampler.active);
stream->readInt(&sampler.logicalTextureUnit);
stream->readInt(&sampler.textureType);
mSamplersVS.push_back(sampler);
}
stream->readInt(&mUsedVertexSamplerRange);
stream->readInt(&mUsedPixelSamplerRange);
const unsigned int uniformCount = stream->readInt<unsigned int>();
if (stream->error())
{
infoLog << "Invalid program binary.";
return LinkResult(false, gl::Error(GL_NO_ERROR));
}
mUniforms.resize(uniformCount);
for (unsigned int uniformIndex = 0; uniformIndex < uniformCount; uniformIndex++)
{
GLenum type = stream->readInt<GLenum>();
GLenum precision = stream->readInt<GLenum>();
std::string name = stream->readString();
unsigned int arraySize = stream->readInt<unsigned int>();
int blockIndex = stream->readInt<int>();
int offset = stream->readInt<int>();
int arrayStride = stream->readInt<int>();
int matrixStride = stream->readInt<int>();
bool isRowMajorMatrix = stream->readBool();
const sh::BlockMemberInfo blockInfo(offset, arrayStride, matrixStride, isRowMajorMatrix);
gl::LinkedUniform *uniform = new gl::LinkedUniform(type, precision, name, arraySize, blockIndex, blockInfo);
stream->readInt(&uniform->psRegisterIndex);
stream->readInt(&uniform->vsRegisterIndex);
stream->readInt(&uniform->registerCount);
stream->readInt(&uniform->registerElement);
mUniforms[uniformIndex] = uniform;
}
const unsigned int uniformIndexCount = stream->readInt<unsigned int>();
if (stream->error())
{
infoLog << "Invalid program binary.";
return LinkResult(false, gl::Error(GL_NO_ERROR));
}
mUniformIndex.resize(uniformIndexCount);
for (unsigned int uniformIndexIndex = 0; uniformIndexIndex < uniformIndexCount; uniformIndexIndex++)
{
stream->readString(&mUniformIndex[uniformIndexIndex].name);
stream->readInt(&mUniformIndex[uniformIndexIndex].element);
stream->readInt(&mUniformIndex[uniformIndexIndex].index);
}
unsigned int uniformBlockCount = stream->readInt<unsigned int>();
if (stream->error())
{
infoLog << "Invalid program binary.";
return LinkResult(false, gl::Error(GL_NO_ERROR));
}
mUniformBlocks.resize(uniformBlockCount);
for (unsigned int uniformBlockIndex = 0; uniformBlockIndex < uniformBlockCount; ++uniformBlockIndex)
{
std::string name = stream->readString();
unsigned int elementIndex = stream->readInt<unsigned int>();
unsigned int dataSize = stream->readInt<unsigned int>();
gl::UniformBlock *uniformBlock = new gl::UniformBlock(name, elementIndex, dataSize);
stream->readInt(&uniformBlock->psRegisterIndex);
stream->readInt(&uniformBlock->vsRegisterIndex);
unsigned int numMembers = stream->readInt<unsigned int>();
uniformBlock->memberUniformIndexes.resize(numMembers);
for (unsigned int blockMemberIndex = 0; blockMemberIndex < numMembers; blockMemberIndex++)
{
stream->readInt(&uniformBlock->memberUniformIndexes[blockMemberIndex]);
}
mUniformBlocks[uniformBlockIndex] = uniformBlock;
}
stream->readInt(&mTransformFeedbackBufferMode);
const unsigned int transformFeedbackVaryingCount = stream->readInt<unsigned int>();
mTransformFeedbackLinkedVaryings.resize(transformFeedbackVaryingCount);
for (unsigned int varyingIndex = 0; varyingIndex < transformFeedbackVaryingCount; varyingIndex++)
{
gl::LinkedVarying &varying = mTransformFeedbackLinkedVaryings[varyingIndex];
stream->readString(&varying.name);
stream->readInt(&varying.type);
stream->readInt(&varying.size);
stream->readString(&varying.semanticName);
stream->readInt(&varying.semanticIndex);
stream->readInt(&varying.semanticIndexCount);
}
stream->readString(&mVertexHLSL);
stream->readBytes(reinterpret_cast<unsigned char*>(&mVertexWorkarounds), sizeof(D3DCompilerWorkarounds));
stream->readString(&mPixelHLSL);
stream->readBytes(reinterpret_cast<unsigned char*>(&mPixelWorkarounds), sizeof(D3DCompilerWorkarounds));
stream->readBool(&mUsesFragDepth);
stream->readBool(&mUsesPointSize);
const size_t pixelShaderKeySize = stream->readInt<unsigned int>();
mPixelShaderKey.resize(pixelShaderKeySize);
for (size_t pixelShaderKeyIndex = 0; pixelShaderKeyIndex < pixelShaderKeySize; pixelShaderKeyIndex++)
{
stream->readInt(&mPixelShaderKey[pixelShaderKeyIndex].type);
stream->readString(&mPixelShaderKey[pixelShaderKeyIndex].name);
stream->readString(&mPixelShaderKey[pixelShaderKeyIndex].source);
stream->readInt(&mPixelShaderKey[pixelShaderKeyIndex].outputIndex);
}
const unsigned char* binary = reinterpret_cast<const unsigned char*>(stream->data());
const unsigned int vertexShaderCount = stream->readInt<unsigned int>();
for (unsigned int vertexShaderIndex = 0; vertexShaderIndex < vertexShaderCount; vertexShaderIndex++)
{
size_t inputLayoutSize = stream->readInt<size_t>();
gl::InputLayout inputLayout;
for (size_t inputIndex = 0; inputIndex < inputLayoutSize; inputIndex++)
{
inputLayout.push_back(stream->readInt<gl::VertexFormatType>());
}
unsigned int vertexShaderSize = stream->readInt<unsigned int>();
const unsigned char *vertexShaderFunction = binary + stream->offset();
ShaderExecutableD3D *shaderExecutable = NULL;
gl::Error error = mRenderer->loadExecutable(vertexShaderFunction, vertexShaderSize,
SHADER_VERTEX,
mTransformFeedbackLinkedVaryings,
(mTransformFeedbackBufferMode == GL_SEPARATE_ATTRIBS),
&shaderExecutable);
if (error.isError())
{
return LinkResult(false, error);
}
if (!shaderExecutable)
{
infoLog << "Could not create vertex shader.";
return LinkResult(false, gl::Error(GL_NO_ERROR));
}
// generated converted input layout
VertexExecutable::Signature signature;
VertexExecutable::getSignature(mRenderer, inputLayout, &signature);
// add new binary
mVertexExecutables.push_back(new VertexExecutable(inputLayout, signature, shaderExecutable));
stream->skip(vertexShaderSize);
}
const size_t pixelShaderCount = stream->readInt<unsigned int>();
for (size_t pixelShaderIndex = 0; pixelShaderIndex < pixelShaderCount; pixelShaderIndex++)
{
const size_t outputCount = stream->readInt<unsigned int>();
std::vector<GLenum> outputs(outputCount);
for (size_t outputIndex = 0; outputIndex < outputCount; outputIndex++)
{
stream->readInt(&outputs[outputIndex]);
}
const size_t pixelShaderSize = stream->readInt<unsigned int>();
const unsigned char *pixelShaderFunction = binary + stream->offset();
ShaderExecutableD3D *shaderExecutable = NULL;
gl::Error error = mRenderer->loadExecutable(pixelShaderFunction, pixelShaderSize, SHADER_PIXEL,
mTransformFeedbackLinkedVaryings,
(mTransformFeedbackBufferMode == GL_SEPARATE_ATTRIBS),
&shaderExecutable);
if (error.isError())
{
return LinkResult(false, error);
}
if (!shaderExecutable)
{
infoLog << "Could not create pixel shader.";
return LinkResult(false, gl::Error(GL_NO_ERROR));
}
// add new binary
mPixelExecutables.push_back(new PixelExecutable(outputs, shaderExecutable));
stream->skip(pixelShaderSize);
}
unsigned int geometryShaderSize = stream->readInt<unsigned int>();
if (geometryShaderSize > 0)
{
const unsigned char *geometryShaderFunction = binary + stream->offset();
gl::Error error = mRenderer->loadExecutable(geometryShaderFunction, geometryShaderSize, SHADER_GEOMETRY,
mTransformFeedbackLinkedVaryings,
(mTransformFeedbackBufferMode == GL_SEPARATE_ATTRIBS),
&mGeometryExecutable);
if (error.isError())
{
return LinkResult(false, error);
}
if (!mGeometryExecutable)
{
infoLog << "Could not create geometry shader.";
return LinkResult(false, gl::Error(GL_NO_ERROR));
}
stream->skip(geometryShaderSize);
}
initializeUniformStorage();
initAttributesByLayout();
return LinkResult(true, gl::Error(GL_NO_ERROR));
}
gl::Error ProgramD3D::save(gl::BinaryOutputStream *stream)
{
// Output the DeviceIdentifier before we output any shader code
// When we load the binary again later, we can validate the device identifier before trying to compile any HLSL
DeviceIdentifier binaryIdentifier = mRenderer->getAdapterIdentifier();
stream->writeBytes(reinterpret_cast<unsigned char*>(&binaryIdentifier), sizeof(DeviceIdentifier));
stream->writeInt(ANGLE_COMPILE_OPTIMIZATION_LEVEL);
stream->writeInt(mShaderVersion);
stream->writeInt(mSamplersPS.size());
for (unsigned int i = 0; i < mSamplersPS.size(); ++i)
{
stream->writeInt(mSamplersPS[i].active);
stream->writeInt(mSamplersPS[i].logicalTextureUnit);
stream->writeInt(mSamplersPS[i].textureType);
}
stream->writeInt(mSamplersVS.size());
for (unsigned int i = 0; i < mSamplersVS.size(); ++i)
{
stream->writeInt(mSamplersVS[i].active);
stream->writeInt(mSamplersVS[i].logicalTextureUnit);
stream->writeInt(mSamplersVS[i].textureType);
}
stream->writeInt(mUsedVertexSamplerRange);
stream->writeInt(mUsedPixelSamplerRange);
stream->writeInt(mUniforms.size());
for (size_t uniformIndex = 0; uniformIndex < mUniforms.size(); ++uniformIndex)
{
const gl::LinkedUniform &uniform = *mUniforms[uniformIndex];
stream->writeInt(uniform.type);
stream->writeInt(uniform.precision);
stream->writeString(uniform.name);
stream->writeInt(uniform.arraySize);
stream->writeInt(uniform.blockIndex);
stream->writeInt(uniform.blockInfo.offset);
stream->writeInt(uniform.blockInfo.arrayStride);
stream->writeInt(uniform.blockInfo.matrixStride);
stream->writeInt(uniform.blockInfo.isRowMajorMatrix);
stream->writeInt(uniform.psRegisterIndex);
stream->writeInt(uniform.vsRegisterIndex);
stream->writeInt(uniform.registerCount);
stream->writeInt(uniform.registerElement);
}
stream->writeInt(mUniformIndex.size());
for (size_t i = 0; i < mUniformIndex.size(); ++i)
{
stream->writeString(mUniformIndex[i].name);
stream->writeInt(mUniformIndex[i].element);
stream->writeInt(mUniformIndex[i].index);
}
stream->writeInt(mUniformBlocks.size());
for (size_t uniformBlockIndex = 0; uniformBlockIndex < mUniformBlocks.size(); ++uniformBlockIndex)
{
const gl::UniformBlock& uniformBlock = *mUniformBlocks[uniformBlockIndex];
stream->writeString(uniformBlock.name);
stream->writeInt(uniformBlock.elementIndex);
stream->writeInt(uniformBlock.dataSize);
stream->writeInt(uniformBlock.memberUniformIndexes.size());
for (unsigned int blockMemberIndex = 0; blockMemberIndex < uniformBlock.memberUniformIndexes.size(); blockMemberIndex++)
{
stream->writeInt(uniformBlock.memberUniformIndexes[blockMemberIndex]);
}
stream->writeInt(uniformBlock.psRegisterIndex);
stream->writeInt(uniformBlock.vsRegisterIndex);
}
stream->writeInt(mTransformFeedbackBufferMode);
stream->writeInt(mTransformFeedbackLinkedVaryings.size());
for (size_t i = 0; i < mTransformFeedbackLinkedVaryings.size(); i++)
{
const gl::LinkedVarying &varying = mTransformFeedbackLinkedVaryings[i];
stream->writeString(varying.name);
stream->writeInt(varying.type);
stream->writeInt(varying.size);
stream->writeString(varying.semanticName);
stream->writeInt(varying.semanticIndex);
stream->writeInt(varying.semanticIndexCount);
}
stream->writeString(mVertexHLSL);
stream->writeBytes(reinterpret_cast<unsigned char*>(&mVertexWorkarounds), sizeof(D3DCompilerWorkarounds));
stream->writeString(mPixelHLSL);
stream->writeBytes(reinterpret_cast<unsigned char*>(&mPixelWorkarounds), sizeof(D3DCompilerWorkarounds));
stream->writeInt(mUsesFragDepth);
stream->writeInt(mUsesPointSize);
const std::vector<PixelShaderOutputVariable> &pixelShaderKey = mPixelShaderKey;
stream->writeInt(pixelShaderKey.size());
for (size_t pixelShaderKeyIndex = 0; pixelShaderKeyIndex < pixelShaderKey.size(); pixelShaderKeyIndex++)
{
const PixelShaderOutputVariable &variable = pixelShaderKey[pixelShaderKeyIndex];
stream->writeInt(variable.type);
stream->writeString(variable.name);
stream->writeString(variable.source);
stream->writeInt(variable.outputIndex);
}
stream->writeInt(mVertexExecutables.size());
for (size_t vertexExecutableIndex = 0; vertexExecutableIndex < mVertexExecutables.size(); vertexExecutableIndex++)
{
VertexExecutable *vertexExecutable = mVertexExecutables[vertexExecutableIndex];
const auto &inputLayout = vertexExecutable->inputs();
stream->writeInt(inputLayout.size());
for (size_t inputIndex = 0; inputIndex < inputLayout.size(); inputIndex++)
{
stream->writeInt(inputLayout[inputIndex]);
}
size_t vertexShaderSize = vertexExecutable->shaderExecutable()->getLength();
stream->writeInt(vertexShaderSize);
const uint8_t *vertexBlob = vertexExecutable->shaderExecutable()->getFunction();
stream->writeBytes(vertexBlob, vertexShaderSize);
}
stream->writeInt(mPixelExecutables.size());
for (size_t pixelExecutableIndex = 0; pixelExecutableIndex < mPixelExecutables.size(); pixelExecutableIndex++)
{
PixelExecutable *pixelExecutable = mPixelExecutables[pixelExecutableIndex];
const std::vector<GLenum> outputs = pixelExecutable->outputSignature();
stream->writeInt(outputs.size());
for (size_t outputIndex = 0; outputIndex < outputs.size(); outputIndex++)
{
stream->writeInt(outputs[outputIndex]);
}
size_t pixelShaderSize = pixelExecutable->shaderExecutable()->getLength();
stream->writeInt(pixelShaderSize);
const uint8_t *pixelBlob = pixelExecutable->shaderExecutable()->getFunction();
stream->writeBytes(pixelBlob, pixelShaderSize);
}
size_t geometryShaderSize = (mGeometryExecutable != NULL) ? mGeometryExecutable->getLength() : 0;
stream->writeInt(geometryShaderSize);
if (mGeometryExecutable != NULL && geometryShaderSize > 0)
{
const uint8_t *geometryBlob = mGeometryExecutable->getFunction();
stream->writeBytes(geometryBlob, geometryShaderSize);
}
return gl::Error(GL_NO_ERROR);
}
gl::Error ProgramD3D::getPixelExecutableForFramebuffer(const gl::Framebuffer *fbo, ShaderExecutableD3D **outExecutable)
{
mPixelShaderOutputFormatCache.clear();
const FramebufferD3D *fboD3D = GetImplAs<FramebufferD3D>(fbo);
const gl::AttachmentList &colorbuffers = fboD3D->getColorAttachmentsForRender(mRenderer->getWorkarounds());
for (size_t colorAttachment = 0; colorAttachment < colorbuffers.size(); ++colorAttachment)
{
const gl::FramebufferAttachment *colorbuffer = colorbuffers[colorAttachment];
if (colorbuffer)
{
mPixelShaderOutputFormatCache.push_back(colorbuffer->getBinding() == GL_BACK ? GL_COLOR_ATTACHMENT0 : colorbuffer->getBinding());
}
else
{
mPixelShaderOutputFormatCache.push_back(GL_NONE);
}
}
return getPixelExecutableForOutputLayout(mPixelShaderOutputFormatCache, outExecutable, nullptr);
}
gl::Error ProgramD3D::getPixelExecutableForOutputLayout(const std::vector<GLenum> &outputSignature,
ShaderExecutableD3D **outExectuable,
gl::InfoLog *infoLog)
{
for (size_t executableIndex = 0; executableIndex < mPixelExecutables.size(); executableIndex++)
{
if (mPixelExecutables[executableIndex]->matchesSignature(outputSignature))
{
*outExectuable = mPixelExecutables[executableIndex]->shaderExecutable();
return gl::Error(GL_NO_ERROR);
}
}
std::string finalPixelHLSL = mDynamicHLSL->generatePixelShaderForOutputSignature(mPixelHLSL, mPixelShaderKey, mUsesFragDepth,
outputSignature);
// Generate new pixel executable
ShaderExecutableD3D *pixelExecutable = NULL;
gl::InfoLog tempInfoLog;
gl::InfoLog *currentInfoLog = infoLog ? infoLog : &tempInfoLog;
gl::Error error = mRenderer->compileToExecutable(*currentInfoLog, finalPixelHLSL, SHADER_PIXEL,
mTransformFeedbackLinkedVaryings,
(mTransformFeedbackBufferMode == GL_SEPARATE_ATTRIBS),
mPixelWorkarounds, &pixelExecutable);
if (error.isError())
{
return error;
}
if (pixelExecutable)
{
mPixelExecutables.push_back(new PixelExecutable(outputSignature, pixelExecutable));
}
else if (!infoLog)
{
std::vector<char> tempCharBuffer(tempInfoLog.getLength() + 3);
tempInfoLog.getLog(tempInfoLog.getLength(), NULL, &tempCharBuffer[0]);
ERR("Error compiling dynamic pixel executable:\n%s\n", &tempCharBuffer[0]);
}
*outExectuable = pixelExecutable;
return gl::Error(GL_NO_ERROR);
}
gl::Error ProgramD3D::getVertexExecutableForInputLayout(const gl::InputLayout &inputLayout,
ShaderExecutableD3D **outExectuable,
gl::InfoLog *infoLog)
{
VertexExecutable::getSignature(mRenderer, inputLayout, &mCachedVertexSignature);
for (size_t executableIndex = 0; executableIndex < mVertexExecutables.size(); executableIndex++)
{
if (mVertexExecutables[executableIndex]->matchesSignature(mCachedVertexSignature))
{
*outExectuable = mVertexExecutables[executableIndex]->shaderExecutable();
return gl::Error(GL_NO_ERROR);
}
}
// Generate new dynamic layout with attribute conversions
std::string finalVertexHLSL = mDynamicHLSL->generateVertexShaderForInputLayout(mVertexHLSL, inputLayout, getShaderAttributes());
// Generate new vertex executable
ShaderExecutableD3D *vertexExecutable = NULL;
gl::InfoLog tempInfoLog;
gl::InfoLog *currentInfoLog = infoLog ? infoLog : &tempInfoLog;
gl::Error error = mRenderer->compileToExecutable(*currentInfoLog, finalVertexHLSL, SHADER_VERTEX,
mTransformFeedbackLinkedVaryings,
(mTransformFeedbackBufferMode == GL_SEPARATE_ATTRIBS),
mVertexWorkarounds, &vertexExecutable);
if (error.isError())
{
return error;
}
if (vertexExecutable)
{
mVertexExecutables.push_back(new VertexExecutable(inputLayout, mCachedVertexSignature, vertexExecutable));
}
else if (!infoLog)
{
std::vector<char> tempCharBuffer(tempInfoLog.getLength() + 3);
tempInfoLog.getLog(tempInfoLog.getLength(), NULL, &tempCharBuffer[0]);
ERR("Error compiling dynamic vertex executable:\n%s\n", &tempCharBuffer[0]);
}
*outExectuable = vertexExecutable;
return gl::Error(GL_NO_ERROR);
}
LinkResult ProgramD3D::compileProgramExecutables(gl::InfoLog &infoLog, gl::Shader *fragmentShader, gl::Shader *vertexShader,
int registers)
{
ShaderD3D *vertexShaderD3D = GetImplAs<ShaderD3D>(vertexShader);
ShaderD3D *fragmentShaderD3D = GetImplAs<ShaderD3D>(fragmentShader);
gl::InputLayout defaultInputLayout;
GetDefaultInputLayoutFromShader(vertexShader->getActiveAttributes(), &defaultInputLayout);
ShaderExecutableD3D *defaultVertexExecutable = NULL;
gl::Error error = getVertexExecutableForInputLayout(defaultInputLayout, &defaultVertexExecutable, &infoLog);
if (error.isError())
{
return LinkResult(false, error);
}
std::vector<GLenum> defaultPixelOutput = GetDefaultOutputLayoutFromShader(getPixelShaderKey());
ShaderExecutableD3D *defaultPixelExecutable = NULL;
error = getPixelExecutableForOutputLayout(defaultPixelOutput, &defaultPixelExecutable, &infoLog);
if (error.isError())
{
return LinkResult(false, error);
}
if (usesGeometryShader())
{
std::string geometryHLSL = mDynamicHLSL->generateGeometryShaderHLSL(registers, fragmentShaderD3D, vertexShaderD3D);
error = mRenderer->compileToExecutable(infoLog, geometryHLSL, SHADER_GEOMETRY, mTransformFeedbackLinkedVaryings,
(mTransformFeedbackBufferMode == GL_SEPARATE_ATTRIBS),
D3DCompilerWorkarounds(), &mGeometryExecutable);
if (error.isError())
{
return LinkResult(false, error);
}
}
#if ANGLE_SHADER_DEBUG_INFO == ANGLE_ENABLED
if (usesGeometryShader() && mGeometryExecutable)
{
// Geometry shaders are currently only used internally, so there is no corresponding shader object at the interface level
// For now the geometry shader debug info is pre-pended to the vertex shader, this is a bit of a clutch
vertexShaderD3D->appendDebugInfo("// GEOMETRY SHADER BEGIN\n\n");
vertexShaderD3D->appendDebugInfo(mGeometryExecutable->getDebugInfo());
vertexShaderD3D->appendDebugInfo("\nGEOMETRY SHADER END\n\n\n");
}
if (defaultVertexExecutable)
{
vertexShaderD3D->appendDebugInfo(defaultVertexExecutable->getDebugInfo());
}
if (defaultPixelExecutable)
{
fragmentShaderD3D->appendDebugInfo(defaultPixelExecutable->getDebugInfo());
}
#endif
bool linkSuccess = (defaultVertexExecutable && defaultPixelExecutable && (!usesGeometryShader() || mGeometryExecutable));
return LinkResult(linkSuccess, gl::Error(GL_NO_ERROR));
}
LinkResult ProgramD3D::link(const gl::Data &data, gl::InfoLog &infoLog,
gl::Shader *fragmentShader, gl::Shader *vertexShader,
const std::vector<std::string> &transformFeedbackVaryings,
GLenum transformFeedbackBufferMode,
int *registers, std::vector<gl::LinkedVarying> *linkedVaryings,
std::map<int, gl::VariableLocation> *outputVariables)
{
ShaderD3D *vertexShaderD3D = GetImplAs<ShaderD3D>(vertexShader);
ShaderD3D *fragmentShaderD3D = GetImplAs<ShaderD3D>(fragmentShader);
mSamplersPS.resize(data.caps->maxTextureImageUnits);
mSamplersVS.resize(data.caps->maxVertexTextureImageUnits);
mTransformFeedbackBufferMode = transformFeedbackBufferMode;
mPixelHLSL = fragmentShaderD3D->getTranslatedSource();
fragmentShaderD3D->generateWorkarounds(&mPixelWorkarounds);
mVertexHLSL = vertexShaderD3D->getTranslatedSource();
vertexShaderD3D->generateWorkarounds(&mVertexWorkarounds);
mShaderVersion = vertexShaderD3D->getShaderVersion();
if (mRenderer->getRendererLimitations().noFrontFacingSupport)
{
if (fragmentShaderD3D->usesFrontFacing())
{
infoLog << "The current renderer doesn't support gl_FrontFacing";
return LinkResult(false, gl::Error(GL_NO_ERROR));
}
}
// Map the varyings to the register file
VaryingPacking packing = {};
*registers = mDynamicHLSL->packVaryings(infoLog, packing, fragmentShaderD3D, vertexShaderD3D, transformFeedbackVaryings);
if (*registers < 0)
{
return LinkResult(false, gl::Error(GL_NO_ERROR));
}
if (!gl::Program::linkVaryings(infoLog, fragmentShader, vertexShader))
{
return LinkResult(false, gl::Error(GL_NO_ERROR));
}
if (!mDynamicHLSL->generateShaderLinkHLSL(data, infoLog, *registers, packing, mPixelHLSL, mVertexHLSL,
fragmentShaderD3D, vertexShaderD3D, transformFeedbackVaryings,
linkedVaryings, outputVariables, &mPixelShaderKey, &mUsesFragDepth))
{
return LinkResult(false, gl::Error(GL_NO_ERROR));
}
mUsesPointSize = vertexShaderD3D->usesPointSize();
initAttributesByLayout();
return LinkResult(true, gl::Error(GL_NO_ERROR));
}
void ProgramD3D::bindAttributeLocation(GLuint index, const std::string &name)
{
}
void ProgramD3D::initializeUniformStorage()
{
// Compute total default block size
unsigned int vertexRegisters = 0;
unsigned int fragmentRegisters = 0;
for (size_t uniformIndex = 0; uniformIndex < mUniforms.size(); uniformIndex++)
{
const gl::LinkedUniform &uniform = *mUniforms[uniformIndex];
if (!gl::IsSamplerType(uniform.type))
{
if (uniform.isReferencedByVertexShader())
{
vertexRegisters = std::max(vertexRegisters, uniform.vsRegisterIndex + uniform.registerCount);
}
if (uniform.isReferencedByFragmentShader())
{
fragmentRegisters = std::max(fragmentRegisters, uniform.psRegisterIndex + uniform.registerCount);
}
}
}
mVertexUniformStorage = mRenderer->createUniformStorage(vertexRegisters * 16u);
mFragmentUniformStorage = mRenderer->createUniformStorage(fragmentRegisters * 16u);
}
gl::Error ProgramD3D::applyUniforms()
{
updateSamplerMapping();
gl::Error error = mRenderer->applyUniforms(*this, mUniforms);
if (error.isError())
{
return error;
}
for (size_t uniformIndex = 0; uniformIndex < mUniforms.size(); uniformIndex++)
{
mUniforms[uniformIndex]->dirty = false;
}
return gl::Error(GL_NO_ERROR);
}
gl::Error ProgramD3D::applyUniformBuffers(const gl::Data &data, GLuint uniformBlockBindings[])
{
mVertexUBOCache.clear();
mFragmentUBOCache.clear();
const unsigned int reservedBuffersInVS = mRenderer->getReservedVertexUniformBuffers();
const unsigned int reservedBuffersInFS = mRenderer->getReservedFragmentUniformBuffers();
for (unsigned int uniformBlockIndex = 0; uniformBlockIndex < mUniformBlocks.size(); uniformBlockIndex++)
{
gl::UniformBlock *uniformBlock = mUniformBlocks[uniformBlockIndex];
GLuint blockBinding = uniformBlockBindings[uniformBlockIndex];
ASSERT(uniformBlock);
// Unnecessary to apply an unreferenced standard or shared UBO
if (!uniformBlock->isReferencedByVertexShader() && !uniformBlock->isReferencedByFragmentShader())
{
continue;
}
if (uniformBlock->isReferencedByVertexShader())
{
unsigned int registerIndex = uniformBlock->vsRegisterIndex - reservedBuffersInVS;
ASSERT(registerIndex < data.caps->maxVertexUniformBlocks);
if (mFragmentUBOCache.size() <= registerIndex)
{
mVertexUBOCache.resize(registerIndex + 1, -1);
}
ASSERT(mVertexUBOCache[registerIndex] == -1);
mVertexUBOCache[registerIndex] = blockBinding;
}
if (uniformBlock->isReferencedByFragmentShader())
{
unsigned int registerIndex = uniformBlock->psRegisterIndex - reservedBuffersInFS;
ASSERT(registerIndex < data.caps->maxFragmentUniformBlocks);
if (mFragmentUBOCache.size() <= registerIndex)
{
mFragmentUBOCache.resize(registerIndex + 1, -1);
}
ASSERT(mFragmentUBOCache[registerIndex] == -1);
mFragmentUBOCache[registerIndex] = blockBinding;
}
}
return mRenderer->setUniformBuffers(data, mVertexUBOCache, mFragmentUBOCache);
}
bool ProgramD3D::assignUniformBlockRegister(gl::InfoLog &infoLog, gl::UniformBlock *uniformBlock, GLenum shader,
unsigned int registerIndex, const gl::Caps &caps)
{
if (shader == GL_VERTEX_SHADER)
{
uniformBlock->vsRegisterIndex = registerIndex;
if (registerIndex - mRenderer->getReservedVertexUniformBuffers() >= caps.maxVertexUniformBlocks)
{
infoLog << "Vertex shader uniform block count exceed GL_MAX_VERTEX_UNIFORM_BLOCKS (" << caps.maxVertexUniformBlocks << ")";
return false;
}
}
else if (shader == GL_FRAGMENT_SHADER)
{
uniformBlock->psRegisterIndex = registerIndex;
if (registerIndex - mRenderer->getReservedFragmentUniformBuffers() >= caps.maxFragmentUniformBlocks)
{
infoLog << "Fragment shader uniform block count exceed GL_MAX_FRAGMENT_UNIFORM_BLOCKS (" << caps.maxFragmentUniformBlocks << ")";
return false;
}
}
else UNREACHABLE();
return true;
}
void ProgramD3D::dirtyAllUniforms()
{
unsigned int numUniforms = mUniforms.size();
for (unsigned int index = 0; index < numUniforms; index++)
{
mUniforms[index]->dirty = true;
}
}
void ProgramD3D::setUniform1fv(GLint location, GLsizei count, const GLfloat* v)
{
setUniform(location, count, v, GL_FLOAT);
}
void ProgramD3D::setUniform2fv(GLint location, GLsizei count, const GLfloat *v)
{
setUniform(location, count, v, GL_FLOAT_VEC2);
}
void ProgramD3D::setUniform3fv(GLint location, GLsizei count, const GLfloat *v)
{
setUniform(location, count, v, GL_FLOAT_VEC3);
}
void ProgramD3D::setUniform4fv(GLint location, GLsizei count, const GLfloat *v)
{
setUniform(location, count, v, GL_FLOAT_VEC4);
}
void ProgramD3D::setUniformMatrix2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value)
{
setUniformMatrixfv<2, 2>(location, count, transpose, value, GL_FLOAT_MAT2);
}
void ProgramD3D::setUniformMatrix3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value)
{
setUniformMatrixfv<3, 3>(location, count, transpose, value, GL_FLOAT_MAT3);
}
void ProgramD3D::setUniformMatrix4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value)
{
setUniformMatrixfv<4, 4>(location, count, transpose, value, GL_FLOAT_MAT4);
}
void ProgramD3D::setUniformMatrix2x3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value)
{
setUniformMatrixfv<2, 3>(location, count, transpose, value, GL_FLOAT_MAT2x3);
}
void ProgramD3D::setUniformMatrix3x2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value)
{
setUniformMatrixfv<3, 2>(location, count, transpose, value, GL_FLOAT_MAT3x2);
}
void ProgramD3D::setUniformMatrix2x4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value)
{
setUniformMatrixfv<2, 4>(location, count, transpose, value, GL_FLOAT_MAT2x4);
}
void ProgramD3D::setUniformMatrix4x2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value)
{
setUniformMatrixfv<4, 2>(location, count, transpose, value, GL_FLOAT_MAT4x2);
}
void ProgramD3D::setUniformMatrix3x4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value)
{
setUniformMatrixfv<3, 4>(location, count, transpose, value, GL_FLOAT_MAT3x4);
}
void ProgramD3D::setUniformMatrix4x3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value)
{
setUniformMatrixfv<4, 3>(location, count, transpose, value, GL_FLOAT_MAT4x3);
}
void ProgramD3D::setUniform1iv(GLint location, GLsizei count, const GLint *v)
{
setUniform(location, count, v, GL_INT);
}
void ProgramD3D::setUniform2iv(GLint location, GLsizei count, const GLint *v)
{
setUniform(location, count, v, GL_INT_VEC2);
}
void ProgramD3D::setUniform3iv(GLint location, GLsizei count, const GLint *v)
{
setUniform(location, count, v, GL_INT_VEC3);
}
void ProgramD3D::setUniform4iv(GLint location, GLsizei count, const GLint *v)
{
setUniform(location, count, v, GL_INT_VEC4);
}
void ProgramD3D::setUniform1uiv(GLint location, GLsizei count, const GLuint *v)
{
setUniform(location, count, v, GL_UNSIGNED_INT);
}
void ProgramD3D::setUniform2uiv(GLint location, GLsizei count, const GLuint *v)
{
setUniform(location, count, v, GL_UNSIGNED_INT_VEC2);
}
void ProgramD3D::setUniform3uiv(GLint location, GLsizei count, const GLuint *v)
{
setUniform(location, count, v, GL_UNSIGNED_INT_VEC3);
}
void ProgramD3D::setUniform4uiv(GLint location, GLsizei count, const GLuint *v)
{
setUniform(location, count, v, GL_UNSIGNED_INT_VEC4);
}
void ProgramD3D::getUniformfv(GLint location, GLfloat *params)
{
getUniformv(location, params, GL_FLOAT);
}
void ProgramD3D::getUniformiv(GLint location, GLint *params)
{
getUniformv(location, params, GL_INT);
}
void ProgramD3D::getUniformuiv(GLint location, GLuint *params)
{
getUniformv(location, params, GL_UNSIGNED_INT);
}
bool ProgramD3D::linkUniforms(gl::InfoLog &infoLog, const gl::Shader &vertexShader, const gl::Shader &fragmentShader,
const gl::Caps &caps)
{
const ShaderD3D *vertexShaderD3D = GetImplAs<ShaderD3D>(&vertexShader);
const ShaderD3D *fragmentShaderD3D = GetImplAs<ShaderD3D>(&fragmentShader);
const std::vector<sh::Uniform> &vertexUniforms = vertexShader.getUniforms();
const std::vector<sh::Uniform> &fragmentUniforms = fragmentShader.getUniforms();
// Check that uniforms defined in the vertex and fragment shaders are identical
typedef std::map<std::string, const sh::Uniform*> UniformMap;
UniformMap linkedUniforms;
for (unsigned int vertexUniformIndex = 0; vertexUniformIndex < vertexUniforms.size(); vertexUniformIndex++)
{
const sh::Uniform &vertexUniform = vertexUniforms[vertexUniformIndex];
linkedUniforms[vertexUniform.name] = &vertexUniform;
}
for (unsigned int fragmentUniformIndex = 0; fragmentUniformIndex < fragmentUniforms.size(); fragmentUniformIndex++)
{
const sh::Uniform &fragmentUniform = fragmentUniforms[fragmentUniformIndex];
UniformMap::const_iterator entry = linkedUniforms.find(fragmentUniform.name);
if (entry != linkedUniforms.end())
{
const sh::Uniform &vertexUniform = *entry->second;
const std::string &uniformName = "uniform '" + vertexUniform.name + "'";
if (!gl::Program::linkValidateUniforms(infoLog, uniformName, vertexUniform, fragmentUniform))
{
return false;
}
}
}
for (unsigned int uniformIndex = 0; uniformIndex < vertexUniforms.size(); uniformIndex++)
{
const sh::Uniform &uniform = vertexUniforms[uniformIndex];
if (uniform.staticUse)
{
unsigned int registerBase = uniform.isBuiltIn() ? GL_INVALID_INDEX :
vertexShaderD3D->getUniformRegister(uniform.name);
defineUniformBase(vertexShaderD3D, uniform, registerBase);
}
}
for (unsigned int uniformIndex = 0; uniformIndex < fragmentUniforms.size(); uniformIndex++)
{
const sh::Uniform &uniform = fragmentUniforms[uniformIndex];
if (uniform.staticUse)
{
unsigned int registerBase = uniform.isBuiltIn() ? GL_INVALID_INDEX :
fragmentShaderD3D->getUniformRegister(uniform.name);
defineUniformBase(fragmentShaderD3D, uniform, registerBase);
}
}
if (!indexUniforms(infoLog, caps))
{
return false;
}
initializeUniformStorage();
return true;
}
void ProgramD3D::defineUniformBase(const ShaderD3D *shader, const sh::Uniform &uniform, unsigned int uniformRegister)
{
if (uniformRegister == GL_INVALID_INDEX)
{
defineUniform(shader, uniform, uniform.name, nullptr);
return;
}
ShShaderOutput outputType = shader->getCompilerOutputType();
sh::HLSLBlockEncoder encoder(sh::HLSLBlockEncoder::GetStrategyFor(outputType));
encoder.skipRegisters(uniformRegister);
defineUniform(shader, uniform, uniform.name, &encoder);
}
void ProgramD3D::defineUniform(const ShaderD3D *shader, const sh::ShaderVariable &uniform,
const std::string &fullName, sh::HLSLBlockEncoder *encoder)
{
if (uniform.isStruct())
{
for (unsigned int elementIndex = 0; elementIndex < uniform.elementCount(); elementIndex++)
{
const std::string &elementString = (uniform.isArray() ? ArrayString(elementIndex) : "");
if (encoder)
encoder->enterAggregateType();
for (size_t fieldIndex = 0; fieldIndex < uniform.fields.size(); fieldIndex++)
{
const sh::ShaderVariable &field = uniform.fields[fieldIndex];
const std::string &fieldFullName = (fullName + elementString + "." + field.name);
defineUniform(shader, field, fieldFullName, encoder);
}
if (encoder)
encoder->exitAggregateType();
}
}
else // Not a struct
{
// Arrays are treated as aggregate types
if (uniform.isArray() && encoder)
{
encoder->enterAggregateType();
}
gl::LinkedUniform *linkedUniform = getUniformByName(fullName);
// Advance the uniform offset, to track registers allocation for structs
sh::BlockMemberInfo blockInfo = encoder ?
encoder->encodeType(uniform.type, uniform.arraySize, false) :
sh::BlockMemberInfo::getDefaultBlockInfo();
if (!linkedUniform)
{
linkedUniform = new gl::LinkedUniform(uniform.type, uniform.precision, fullName, uniform.arraySize,
-1, sh::BlockMemberInfo::getDefaultBlockInfo());
ASSERT(linkedUniform);
if (encoder)
linkedUniform->registerElement = sh::HLSLBlockEncoder::getBlockRegisterElement(blockInfo);
mUniforms.push_back(linkedUniform);
}
if (encoder)
{
if (shader->getShaderType() == GL_FRAGMENT_SHADER)
{
linkedUniform->psRegisterIndex = sh::HLSLBlockEncoder::getBlockRegister(blockInfo);
}
else if (shader->getShaderType() == GL_VERTEX_SHADER)
{
linkedUniform->vsRegisterIndex = sh::HLSLBlockEncoder::getBlockRegister(blockInfo);
}
else UNREACHABLE();
}
// Arrays are treated as aggregate types
if (uniform.isArray() && encoder)
{
encoder->exitAggregateType();
}
}
}
template <typename T>
static inline void SetIfDirty(T *dest, const T& source, bool *dirtyFlag)
{
ASSERT(dest != NULL);
ASSERT(dirtyFlag != NULL);
*dirtyFlag = *dirtyFlag || (memcmp(dest, &source, sizeof(T)) != 0);
*dest = source;
}
template <typename T>
void ProgramD3D::setUniform(GLint location, GLsizei count, const T* v, GLenum targetUniformType)
{
const int components = gl::VariableComponentCount(targetUniformType);
const GLenum targetBoolType = gl::VariableBoolVectorType(targetUniformType);
gl::LinkedUniform *targetUniform = getUniformByLocation(location);
int elementCount = targetUniform->elementCount();
count = std::min(elementCount - (int)mUniformIndex[location].element, count);
if (targetUniform->type == targetUniformType)
{
T *target = reinterpret_cast<T*>(targetUniform->data) + mUniformIndex[location].element * 4;
for (int i = 0; i < count; i++)
{
T *dest = target + (i * 4);
const T *source = v + (i * components);
for (int c = 0; c < components; c++)
{
SetIfDirty(dest + c, source[c], &targetUniform->dirty);
}
for (int c = components; c < 4; c++)
{
SetIfDirty(dest + c, T(0), &targetUniform->dirty);
}
}
}
else if (targetUniform->type == targetBoolType)
{
GLint *boolParams = reinterpret_cast<GLint*>(targetUniform->data) + mUniformIndex[location].element * 4;
for (int i = 0; i < count; i++)
{
GLint *dest = boolParams + (i * 4);
const T *source = v + (i * components);
for (int c = 0; c < components; c++)
{
SetIfDirty(dest + c, (source[c] == static_cast<T>(0)) ? GL_FALSE : GL_TRUE, &targetUniform->dirty);
}
for (int c = components; c < 4; c++)
{
SetIfDirty(dest + c, GL_FALSE, &targetUniform->dirty);
}
}
}
else if (gl::IsSamplerType(targetUniform->type))
{
ASSERT(targetUniformType == GL_INT);
GLint *target = reinterpret_cast<GLint*>(targetUniform->data) + mUniformIndex[location].element * 4;
bool wasDirty = targetUniform->dirty;
for (int i = 0; i < count; i++)
{
GLint *dest = target + (i * 4);
const GLint *source = reinterpret_cast<const GLint*>(v) + (i * components);
SetIfDirty(dest + 0, source[0], &targetUniform->dirty);
SetIfDirty(dest + 1, 0, &targetUniform->dirty);
SetIfDirty(dest + 2, 0, &targetUniform->dirty);
SetIfDirty(dest + 3, 0, &targetUniform->dirty);
}
if (!wasDirty && targetUniform->dirty)
{
mDirtySamplerMapping = true;
}
}
else UNREACHABLE();
}
template<typename T>
bool transposeMatrix(T *target, const GLfloat *value, int targetWidth, int targetHeight, int srcWidth, int srcHeight)
{
bool dirty = false;
int copyWidth = std::min(targetHeight, srcWidth);
int copyHeight = std::min(targetWidth, srcHeight);
for (int x = 0; x < copyWidth; x++)
{
for (int y = 0; y < copyHeight; y++)
{
SetIfDirty(target + (x * targetWidth + y), static_cast<T>(value[y * srcWidth + x]), &dirty);
}
}
// clear unfilled right side
for (int y = 0; y < copyWidth; y++)
{
for (int x = copyHeight; x < targetWidth; x++)
{
SetIfDirty(target + (y * targetWidth + x), static_cast<T>(0), &dirty);
}
}
// clear unfilled bottom.
for (int y = copyWidth; y < targetHeight; y++)
{
for (int x = 0; x < targetWidth; x++)
{
SetIfDirty(target + (y * targetWidth + x), static_cast<T>(0), &dirty);
}
}
return dirty;
}
template<typename T>
bool expandMatrix(T *target, const GLfloat *value, int targetWidth, int targetHeight, int srcWidth, int srcHeight)
{
bool dirty = false;
int copyWidth = std::min(targetWidth, srcWidth);
int copyHeight = std::min(targetHeight, srcHeight);
for (int y = 0; y < copyHeight; y++)
{
for (int x = 0; x < copyWidth; x++)
{
SetIfDirty(target + (y * targetWidth + x), static_cast<T>(value[y * srcWidth + x]), &dirty);
}
}
// clear unfilled right side
for (int y = 0; y < copyHeight; y++)
{
for (int x = copyWidth; x < targetWidth; x++)
{
SetIfDirty(target + (y * targetWidth + x), static_cast<T>(0), &dirty);
}
}
// clear unfilled bottom.
for (int y = copyHeight; y < targetHeight; y++)
{
for (int x = 0; x < targetWidth; x++)
{
SetIfDirty(target + (y * targetWidth + x), static_cast<T>(0), &dirty);
}
}
return dirty;
}
template <int cols, int rows>
void ProgramD3D::setUniformMatrixfv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value, GLenum targetUniformType)
{
gl::LinkedUniform *targetUniform = getUniformByLocation(location);
int elementCount = targetUniform->elementCount();
count = std::min(elementCount - (int)mUniformIndex[location].element, count);
const unsigned int targetMatrixStride = (4 * rows);
GLfloat *target = (GLfloat*)(targetUniform->data + mUniformIndex[location].element * sizeof(GLfloat) * targetMatrixStride);
for (int i = 0; i < count; i++)
{
// Internally store matrices as transposed versions to accomodate HLSL matrix indexing
if (transpose == GL_FALSE)
{
targetUniform->dirty = transposeMatrix<GLfloat>(target, value, 4, rows, rows, cols) || targetUniform->dirty;
}
else
{
targetUniform->dirty = expandMatrix<GLfloat>(target, value, 4, rows, cols, rows) || targetUniform->dirty;
}
target += targetMatrixStride;
value += cols * rows;
}
}
template <typename T>
void ProgramD3D::getUniformv(GLint location, T *params, GLenum uniformType)
{
gl::LinkedUniform *targetUniform = mUniforms[mUniformIndex[location].index];
if (gl::IsMatrixType(targetUniform->type))
{
const int rows = gl::VariableRowCount(targetUniform->type);
const int cols = gl::VariableColumnCount(targetUniform->type);
transposeMatrix(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4 * rows, rows, cols, 4, rows);
}
else if (uniformType == gl::VariableComponentType(targetUniform->type))
{
unsigned int size = gl::VariableComponentCount(targetUniform->type);
memcpy(params, targetUniform->data + mUniformIndex[location].element * 4 * sizeof(T),
size * sizeof(T));
}
else
{
unsigned int size = gl::VariableComponentCount(targetUniform->type);
switch (gl::VariableComponentType(targetUniform->type))
{
case GL_BOOL:
{
GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4;
for (unsigned int i = 0; i < size; i++)
{
params[i] = (boolParams[i] == GL_FALSE) ? static_cast<T>(0) : static_cast<T>(1);
}
}
break;
case GL_FLOAT:
{
GLfloat *floatParams = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4;
for (unsigned int i = 0; i < size; i++)
{
params[i] = static_cast<T>(floatParams[i]);
}
}
break;
case GL_INT:
{
GLint *intParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4;
for (unsigned int i = 0; i < size; i++)
{
params[i] = static_cast<T>(intParams[i]);
}
}
break;
case GL_UNSIGNED_INT:
{
GLuint *uintParams = (GLuint*)targetUniform->data + mUniformIndex[location].element * 4;
for (unsigned int i = 0; i < size; i++)
{
params[i] = static_cast<T>(uintParams[i]);
}
}
break;
default: UNREACHABLE();
}
}
}
template <typename VarT>
void ProgramD3D::defineUniformBlockMembers(const std::vector<VarT> &fields, const std::string &prefix, int blockIndex,
sh::BlockLayoutEncoder *encoder, std::vector<unsigned int> *blockUniformIndexes,
bool inRowMajorLayout)
{
for (unsigned int uniformIndex = 0; uniformIndex < fields.size(); uniformIndex++)
{
const VarT &field = fields[uniformIndex];
const std::string &fieldName = (prefix.empty() ? field.name : prefix + "." + field.name);
if (field.isStruct())
{
bool rowMajorLayout = (inRowMajorLayout || IsRowMajorLayout(field));
for (unsigned int arrayElement = 0; arrayElement < field.elementCount(); arrayElement++)
{
encoder->enterAggregateType();
const std::string uniformElementName = fieldName + (field.isArray() ? ArrayString(arrayElement) : "");
defineUniformBlockMembers(field.fields, uniformElementName, blockIndex, encoder, blockUniformIndexes, rowMajorLayout);
encoder->exitAggregateType();
}
}
else
{
bool isRowMajorMatrix = (gl::IsMatrixType(field.type) && inRowMajorLayout);
sh::BlockMemberInfo memberInfo = encoder->encodeType(field.type, field.arraySize, isRowMajorMatrix);
gl::LinkedUniform *newUniform = new gl::LinkedUniform(field.type, field.precision, fieldName, field.arraySize,
blockIndex, memberInfo);
// add to uniform list, but not index, since uniform block uniforms have no location
blockUniformIndexes->push_back(mUniforms.size());
mUniforms.push_back(newUniform);
}
}
}
bool ProgramD3D::defineUniformBlock(gl::InfoLog &infoLog,
const gl::Shader &shader,
const sh::InterfaceBlock &interfaceBlock,
const gl::Caps &caps)
{
const ShaderD3D* shaderD3D = GetImplAs<ShaderD3D>(&shader);
// create uniform block entries if they do not exist
if (getUniformBlockIndex(interfaceBlock.name) == GL_INVALID_INDEX)
{
std::vector<unsigned int> blockUniformIndexes;
const unsigned int blockIndex = mUniformBlocks.size();
// define member uniforms
sh::BlockLayoutEncoder *encoder = NULL;
if (interfaceBlock.layout == sh::BLOCKLAYOUT_STANDARD)
{
encoder = new sh::Std140BlockEncoder;
}
else
{
encoder = new sh::HLSLBlockEncoder(sh::HLSLBlockEncoder::ENCODE_PACKED);
}
ASSERT(encoder);
defineUniformBlockMembers(interfaceBlock.fields, "", blockIndex, encoder, &blockUniformIndexes, interfaceBlock.isRowMajorLayout);
size_t dataSize = encoder->getBlockSize();
// create all the uniform blocks
if (interfaceBlock.arraySize > 0)
{
for (unsigned int uniformBlockElement = 0; uniformBlockElement < interfaceBlock.arraySize; uniformBlockElement++)
{
gl::UniformBlock *newUniformBlock = new gl::UniformBlock(interfaceBlock.name, uniformBlockElement, dataSize);
newUniformBlock->memberUniformIndexes = blockUniformIndexes;
mUniformBlocks.push_back(newUniformBlock);
}
}
else
{
gl::UniformBlock *newUniformBlock = new gl::UniformBlock(interfaceBlock.name, GL_INVALID_INDEX, dataSize);
newUniformBlock->memberUniformIndexes = blockUniformIndexes;
mUniformBlocks.push_back(newUniformBlock);
}
}
if (interfaceBlock.staticUse)
{
// Assign registers to the uniform blocks
const GLuint blockIndex = getUniformBlockIndex(interfaceBlock.name);
const unsigned int elementCount = std::max(1u, interfaceBlock.arraySize);
ASSERT(blockIndex != GL_INVALID_INDEX);
ASSERT(blockIndex + elementCount <= mUniformBlocks.size());
unsigned int interfaceBlockRegister = shaderD3D->getInterfaceBlockRegister(interfaceBlock.name);
for (unsigned int uniformBlockElement = 0; uniformBlockElement < elementCount; uniformBlockElement++)
{
gl::UniformBlock *uniformBlock = mUniformBlocks[blockIndex + uniformBlockElement];
ASSERT(uniformBlock->name == interfaceBlock.name);
if (!assignUniformBlockRegister(infoLog, uniformBlock, shader.getType(),
interfaceBlockRegister + uniformBlockElement, caps))
{
return false;
}
}
}
return true;
}
bool ProgramD3D::assignSamplers(unsigned int startSamplerIndex,
GLenum samplerType,
unsigned int samplerCount,
std::vector<Sampler> &outSamplers,
GLuint *outUsedRange)
{
unsigned int samplerIndex = startSamplerIndex;
do
{
if (samplerIndex < outSamplers.size())
{
Sampler& sampler = outSamplers[samplerIndex];
sampler.active = true;
sampler.textureType = GetTextureType(samplerType);
sampler.logicalTextureUnit = 0;
*outUsedRange = std::max(samplerIndex + 1, *outUsedRange);
}
else
{
return false;
}
samplerIndex++;
} while (samplerIndex < startSamplerIndex + samplerCount);
return true;
}
bool ProgramD3D::indexSamplerUniform(const gl::LinkedUniform &uniform, gl::InfoLog &infoLog, const gl::Caps &caps)
{
ASSERT(gl::IsSamplerType(uniform.type));
ASSERT(uniform.vsRegisterIndex != GL_INVALID_INDEX || uniform.psRegisterIndex != GL_INVALID_INDEX);
if (uniform.vsRegisterIndex != GL_INVALID_INDEX)
{
if (!assignSamplers(uniform.vsRegisterIndex, uniform.type, uniform.arraySize, mSamplersVS,
&mUsedVertexSamplerRange))
{
infoLog << "Vertex shader sampler count exceeds the maximum vertex texture units ("
<< mSamplersVS.size() << ").";
return false;
}
unsigned int maxVertexVectors = mRenderer->getReservedVertexUniformVectors() + caps.maxVertexUniformVectors;
if (uniform.vsRegisterIndex + uniform.registerCount > maxVertexVectors)
{
infoLog << "Vertex shader active uniforms exceed GL_MAX_VERTEX_UNIFORM_VECTORS ("
<< caps.maxVertexUniformVectors << ").";
return false;
}
}
if (uniform.psRegisterIndex != GL_INVALID_INDEX)
{
if (!assignSamplers(uniform.psRegisterIndex, uniform.type, uniform.arraySize, mSamplersPS,
&mUsedPixelSamplerRange))
{
infoLog << "Pixel shader sampler count exceeds MAX_TEXTURE_IMAGE_UNITS ("
<< mSamplersPS.size() << ").";
return false;
}
unsigned int maxFragmentVectors = mRenderer->getReservedFragmentUniformVectors() + caps.maxFragmentUniformVectors;
if (uniform.psRegisterIndex + uniform.registerCount > maxFragmentVectors)
{
infoLog << "Fragment shader active uniforms exceed GL_MAX_FRAGMENT_UNIFORM_VECTORS ("
<< caps.maxFragmentUniformVectors << ").";
return false;
}
}
return true;
}
bool ProgramD3D::indexUniforms(gl::InfoLog &infoLog, const gl::Caps &caps)
{
for (size_t uniformIndex = 0; uniformIndex < mUniforms.size(); uniformIndex++)
{
const gl::LinkedUniform &uniform = *mUniforms[uniformIndex];
if (gl::IsSamplerType(uniform.type))
{
if (!indexSamplerUniform(uniform, infoLog, caps))
{
return false;
}
}
for (unsigned int arrayIndex = 0; arrayIndex < uniform.elementCount(); arrayIndex++)
{
if (!uniform.isBuiltIn())
{
mUniformIndex.push_back(gl::VariableLocation(uniform.name, arrayIndex, uniformIndex));
}
}
}
return true;
}
void ProgramD3D::reset()
{
ProgramImpl::reset();
SafeDeleteContainer(mVertexExecutables);
SafeDeleteContainer(mPixelExecutables);
SafeDelete(mGeometryExecutable);
mTransformFeedbackBufferMode = GL_NONE;
mVertexHLSL.clear();
mVertexWorkarounds.reset();
mShaderVersion = 100;
mPixelHLSL.clear();
mPixelWorkarounds.reset();
mUsesFragDepth = false;
mPixelShaderKey.clear();
mUsesPointSize = false;
SafeDelete(mVertexUniformStorage);
SafeDelete(mFragmentUniformStorage);
mSamplersPS.clear();
mSamplersVS.clear();
mUsedVertexSamplerRange = 0;
mUsedPixelSamplerRange = 0;
mDirtySamplerMapping = true;
std::fill(mAttributesByLayout, mAttributesByLayout + ArraySize(mAttributesByLayout), -1);
}
unsigned int ProgramD3D::getSerial() const
{
return mSerial;
}
unsigned int ProgramD3D::issueSerial()
{
return mCurrentSerial++;
}
void ProgramD3D::initAttributesByLayout()
{
for (int i = 0; i < gl::MAX_VERTEX_ATTRIBS; i++)
{
mAttributesByLayout[i] = i;
}
std::sort(&mAttributesByLayout[0], &mAttributesByLayout[gl::MAX_VERTEX_ATTRIBS], AttributeSorter(mSemanticIndex));
}
void ProgramD3D::sortAttributesByLayout(const std::vector<TranslatedAttribute> &unsortedAttributes,
int sortedSemanticIndicesOut[gl::MAX_VERTEX_ATTRIBS],
const rx::TranslatedAttribute *sortedAttributesOut[gl::MAX_VERTEX_ATTRIBS]) const
{
for (size_t attribIndex = 0; attribIndex < unsortedAttributes.size(); ++attribIndex)
{
int oldIndex = mAttributesByLayout[attribIndex];
sortedSemanticIndicesOut[attribIndex] = mSemanticIndex[oldIndex];
sortedAttributesOut[attribIndex] = &unsortedAttributes[oldIndex];
}
}
void ProgramD3D::updateCachedInputLayout(const gl::Program *program, const gl::State &state)
{
mCachedInputLayout.resize(gl::MAX_VERTEX_ATTRIBS, gl::VERTEX_FORMAT_INVALID);
const int *semanticIndexes = program->getSemanticIndexes();
const auto &vertexAttributes = state.getVertexArray()->getVertexAttributes();
for (unsigned int attributeIndex = 0; attributeIndex < vertexAttributes.size(); attributeIndex++)
{
int semanticIndex = semanticIndexes[attributeIndex];
if (semanticIndex != -1)
{
mCachedInputLayout[semanticIndex] =
GetVertexFormatType(vertexAttributes[attributeIndex],
state.getVertexAttribCurrentValue(attributeIndex).Type);
}
}
}
}