blob: 04f099d546eec3f72ea51cc928d7a45c26101c6a [file] [log] [blame]
//
// Copyright (c) 2012-2014 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// Renderer11.cpp: Implements a back-end specific class for the D3D11 renderer.
#include "libANGLE/renderer/d3d/d3d11/Renderer11.h"
#include <sstream>
#include <EGL/eglext.h>
#include "common/utilities.h"
#include "common/tls.h"
#include "libANGLE/Buffer.h"
#include "libANGLE/Display.h"
#include "libANGLE/Framebuffer.h"
#include "libANGLE/FramebufferAttachment.h"
#include "libANGLE/Program.h"
#include "libANGLE/State.h"
#include "libANGLE/Surface.h"
#include "libANGLE/formatutils.h"
#include "libANGLE/histogram_macros.h"
#include "libANGLE/renderer/d3d/CompilerD3D.h"
#include "libANGLE/renderer/d3d/FramebufferD3D.h"
#include "libANGLE/renderer/d3d/IndexDataManager.h"
#include "libANGLE/renderer/d3d/ProgramD3D.h"
#include "libANGLE/renderer/d3d/RenderbufferD3D.h"
#include "libANGLE/renderer/d3d/ShaderD3D.h"
#include "libANGLE/renderer/d3d/SurfaceD3D.h"
#include "libANGLE/renderer/d3d/TextureD3D.h"
#include "libANGLE/renderer/d3d/TransformFeedbackD3D.h"
#include "libANGLE/renderer/d3d/VertexDataManager.h"
#include "libANGLE/renderer/d3d/d3d11/Blit11.h"
#include "libANGLE/renderer/d3d/d3d11/Buffer11.h"
#include "libANGLE/renderer/d3d/d3d11/Clear11.h"
#include "libANGLE/renderer/d3d/d3d11/Fence11.h"
#include "libANGLE/renderer/d3d/d3d11/Framebuffer11.h"
#include "libANGLE/renderer/d3d/d3d11/Image11.h"
#include "libANGLE/renderer/d3d/d3d11/IndexBuffer11.h"
#include "libANGLE/renderer/d3d/d3d11/PixelTransfer11.h"
#include "libANGLE/renderer/d3d/d3d11/Query11.h"
#include "libANGLE/renderer/d3d/d3d11/RenderTarget11.h"
#include "libANGLE/renderer/d3d/d3d11/ShaderExecutable11.h"
#include "libANGLE/renderer/d3d/d3d11/SwapChain11.h"
#include "libANGLE/renderer/d3d/d3d11/TextureStorage11.h"
#include "libANGLE/renderer/d3d/d3d11/Trim11.h"
#include "libANGLE/renderer/d3d/d3d11/VertexArray11.h"
#include "libANGLE/renderer/d3d/d3d11/VertexBuffer11.h"
#include "libANGLE/renderer/d3d/d3d11/dxgi_support_table.h"
#include "libANGLE/renderer/d3d/d3d11/formatutils11.h"
#include "libANGLE/renderer/d3d/d3d11/renderer11_utils.h"
// Include the D3D9 debug annotator header for use by the desktop D3D11 renderer
// because the D3D11 interface method ID3DUserDefinedAnnotation::GetStatus
// doesn't work with the Graphics Diagnostics tools in Visual Studio 2013.
#ifdef ANGLE_ENABLE_D3D9
#include "libANGLE/renderer/d3d/d3d9/DebugAnnotator9.h"
#endif
#include "third_party/trace_event/trace_event.h"
// Enable ANGLE_SKIP_DXGI_1_2_CHECK if there is not a possibility of using cross-process
// HWNDs or the Windows 7 Platform Update (KB2670838) is expected to be installed.
#ifndef ANGLE_SKIP_DXGI_1_2_CHECK
#define ANGLE_SKIP_DXGI_1_2_CHECK 0
#endif
#ifdef _DEBUG
// this flag enables suppressing some spurious warnings that pop up in certain WebGL samples
// and conformance tests. to enable all warnings, remove this define.
#define ANGLE_SUPPRESS_D3D11_HAZARD_WARNINGS 1
#endif
namespace rx
{
namespace
{
enum
{
MAX_TEXTURE_IMAGE_UNITS_VTF_SM4 = 16
};
bool ImageIndexConflictsWithSRV(const gl::ImageIndex &index, D3D11_SHADER_RESOURCE_VIEW_DESC desc)
{
unsigned mipLevel = index.mipIndex;
unsigned layerIndex = index.layerIndex;
GLenum type = index.type;
switch (desc.ViewDimension)
{
case D3D11_SRV_DIMENSION_TEXTURE2D:
{
unsigned maxSrvMip = desc.Texture2D.MipLevels + desc.Texture2D.MostDetailedMip;
maxSrvMip = (desc.Texture2D.MipLevels == -1) ? INT_MAX : maxSrvMip;
unsigned mipMin = index.mipIndex;
unsigned mipMax = (layerIndex == -1) ? INT_MAX : layerIndex;
return type == GL_TEXTURE_2D && gl::RangeUI(mipMin, mipMax).intersects(gl::RangeUI(desc.Texture2D.MostDetailedMip, maxSrvMip));
}
case D3D11_SRV_DIMENSION_TEXTURE2DARRAY:
{
unsigned maxSrvMip = desc.Texture2DArray.MipLevels + desc.Texture2DArray.MostDetailedMip;
maxSrvMip = (desc.Texture2DArray.MipLevels == -1) ? INT_MAX : maxSrvMip;
unsigned maxSlice = desc.Texture2DArray.FirstArraySlice + desc.Texture2DArray.ArraySize;
// Cube maps can be mapped to Texture2DArray SRVs
return (type == GL_TEXTURE_2D_ARRAY || gl::IsCubeMapTextureTarget(type)) &&
desc.Texture2DArray.MostDetailedMip <= mipLevel && mipLevel < maxSrvMip &&
desc.Texture2DArray.FirstArraySlice <= layerIndex && layerIndex < maxSlice;
}
case D3D11_SRV_DIMENSION_TEXTURECUBE:
{
unsigned maxSrvMip = desc.TextureCube.MipLevels + desc.TextureCube.MostDetailedMip;
maxSrvMip = (desc.TextureCube.MipLevels == -1) ? INT_MAX : maxSrvMip;
return gl::IsCubeMapTextureTarget(type) &&
desc.TextureCube.MostDetailedMip <= mipLevel && mipLevel < maxSrvMip;
}
case D3D11_SRV_DIMENSION_TEXTURE3D:
{
unsigned maxSrvMip = desc.Texture3D.MipLevels + desc.Texture3D.MostDetailedMip;
maxSrvMip = (desc.Texture3D.MipLevels == -1) ? INT_MAX : maxSrvMip;
return type == GL_TEXTURE_3D &&
desc.Texture3D.MostDetailedMip <= mipLevel && mipLevel < maxSrvMip;
}
default:
// We only handle the cases corresponding to valid image indexes
UNIMPLEMENTED();
}
return false;
}
// Does *not* increment the resource ref count!!
ID3D11Resource *GetViewResource(ID3D11View *view)
{
ID3D11Resource *resource = NULL;
ASSERT(view);
view->GetResource(&resource);
resource->Release();
return resource;
}
void CalculateConstantBufferParams(GLintptr offset, GLsizeiptr size, UINT *outFirstConstant, UINT *outNumConstants)
{
// The offset must be aligned to 256 bytes (should have been enforced by glBindBufferRange).
ASSERT(offset % 256 == 0);
// firstConstant and numConstants are expressed in constants of 16-bytes. Furthermore they must be a multiple of 16 constants.
*outFirstConstant = static_cast<UINT>(offset / 16);
// The GL size is not required to be aligned to a 256 bytes boundary.
// Round the size up to a 256 bytes boundary then express the results in constants of 16-bytes.
*outNumConstants = static_cast<UINT>(rx::roundUp(size, static_cast<GLsizeiptr>(256)) / 16);
// Since the size is rounded up, firstConstant + numConstants may be bigger than the actual size of the buffer.
// This behaviour is explictly allowed according to the documentation on ID3D11DeviceContext1::PSSetConstantBuffers1
// https://msdn.microsoft.com/en-us/library/windows/desktop/hh404649%28v=vs.85%29.aspx
}
enum ANGLEFeatureLevel
{
ANGLE_FEATURE_LEVEL_INVALID,
ANGLE_FEATURE_LEVEL_9_3,
ANGLE_FEATURE_LEVEL_10_0,
ANGLE_FEATURE_LEVEL_10_1,
ANGLE_FEATURE_LEVEL_11_0,
ANGLE_FEATURE_LEVEL_11_1,
NUM_ANGLE_FEATURE_LEVELS
};
ANGLEFeatureLevel GetANGLEFeatureLevel(D3D_FEATURE_LEVEL d3dFeatureLevel)
{
switch (d3dFeatureLevel)
{
case D3D_FEATURE_LEVEL_9_3: return ANGLE_FEATURE_LEVEL_9_3;
case D3D_FEATURE_LEVEL_10_0: return ANGLE_FEATURE_LEVEL_10_0;
case D3D_FEATURE_LEVEL_10_1: return ANGLE_FEATURE_LEVEL_10_1;
case D3D_FEATURE_LEVEL_11_0: return ANGLE_FEATURE_LEVEL_11_0;
// Note: we don't ever request a 11_1 device, because this gives
// an E_INVALIDARG error on systems that don't have the platform update.
case D3D_FEATURE_LEVEL_11_1: return ANGLE_FEATURE_LEVEL_11_1;
default: return ANGLE_FEATURE_LEVEL_INVALID;
}
}
}
void Renderer11::SRVCache::update(size_t resourceIndex, ID3D11ShaderResourceView *srv)
{
ASSERT(resourceIndex < mCurrentSRVs.size());
SRVRecord *record = &mCurrentSRVs[resourceIndex];
record->srv = reinterpret_cast<uintptr_t>(srv);
if (srv)
{
record->resource = reinterpret_cast<uintptr_t>(GetViewResource(srv));
srv->GetDesc(&record->desc);
mHighestUsedSRV = std::max(resourceIndex + 1, mHighestUsedSRV);
}
else
{
record->resource = 0;
if (resourceIndex + 1 == mHighestUsedSRV)
{
do
{
--mHighestUsedSRV;
}
while (mHighestUsedSRV > 0 &&
mCurrentSRVs[mHighestUsedSRV].srv == 0);
}
}
}
void Renderer11::SRVCache::clear()
{
if (mCurrentSRVs.empty())
{
return;
}
memset(&mCurrentSRVs[0], 0, sizeof(SRVRecord) * mCurrentSRVs.size());
mHighestUsedSRV = 0;
}
Renderer11::Renderer11(egl::Display *display)
: RendererD3D(display),
mStateCache(this),
mDebug(nullptr)
{
mVertexDataManager = NULL;
mIndexDataManager = NULL;
mLineLoopIB = NULL;
mTriangleFanIB = NULL;
mAppliedIBChanged = false;
mBlit = NULL;
mPixelTransfer = NULL;
mClear = NULL;
mTrim = NULL;
mSyncQuery = NULL;
mRenderer11DeviceCaps.supportsClearView = false;
mRenderer11DeviceCaps.supportsConstantBufferOffsets = false;
mRenderer11DeviceCaps.supportsDXGI1_2 = false;
mRenderer11DeviceCaps.B5G6R5support = 0;
mRenderer11DeviceCaps.B4G4R4A4support = 0;
mRenderer11DeviceCaps.B5G5R5A1support = 0;
mD3d11Module = NULL;
mDxgiModule = NULL;
mDevice = NULL;
mDeviceContext = NULL;
mDeviceContext1 = NULL;
mDxgiAdapter = NULL;
mDxgiFactory = NULL;
mDriverConstantBufferVS = NULL;
mDriverConstantBufferPS = NULL;
mAppliedVertexShader = NULL;
mAppliedGeometryShader = NULL;
mAppliedPixelShader = NULL;
mAppliedNumXFBBindings = static_cast<size_t>(-1);
ZeroMemory(&mAdapterDescription, sizeof(mAdapterDescription));
const auto &attributes = mDisplay->getAttributeMap();
EGLint requestedMajorVersion = attributes.get(EGL_PLATFORM_ANGLE_MAX_VERSION_MAJOR_ANGLE, EGL_DONT_CARE);
EGLint requestedMinorVersion = attributes.get(EGL_PLATFORM_ANGLE_MAX_VERSION_MINOR_ANGLE, EGL_DONT_CARE);
if (requestedMajorVersion == EGL_DONT_CARE || requestedMajorVersion >= 11)
{
if (requestedMinorVersion == EGL_DONT_CARE || requestedMinorVersion >= 0)
{
mAvailableFeatureLevels.push_back(D3D_FEATURE_LEVEL_11_0);
}
}
if (requestedMajorVersion == EGL_DONT_CARE || requestedMajorVersion >= 10)
{
if (requestedMinorVersion == EGL_DONT_CARE || requestedMinorVersion >= 1)
{
mAvailableFeatureLevels.push_back(D3D_FEATURE_LEVEL_10_1);
}
if (requestedMinorVersion == EGL_DONT_CARE || requestedMinorVersion >= 0)
{
mAvailableFeatureLevels.push_back(D3D_FEATURE_LEVEL_10_0);
}
}
if (requestedMajorVersion == 9 && requestedMinorVersion == 3)
{
mAvailableFeatureLevels.push_back(D3D_FEATURE_LEVEL_9_3);
}
EGLint requestedDeviceType = attributes.get(EGL_PLATFORM_ANGLE_DEVICE_TYPE_ANGLE,
EGL_PLATFORM_ANGLE_DEVICE_TYPE_HARDWARE_ANGLE);
switch (requestedDeviceType)
{
case EGL_PLATFORM_ANGLE_DEVICE_TYPE_HARDWARE_ANGLE:
mDriverType = D3D_DRIVER_TYPE_HARDWARE;
break;
case EGL_PLATFORM_ANGLE_DEVICE_TYPE_WARP_ANGLE:
mDriverType = D3D_DRIVER_TYPE_WARP;
break;
case EGL_PLATFORM_ANGLE_DEVICE_TYPE_REFERENCE_ANGLE:
mDriverType = D3D_DRIVER_TYPE_REFERENCE;
break;
case EGL_PLATFORM_ANGLE_DEVICE_TYPE_NULL_ANGLE:
mDriverType = D3D_DRIVER_TYPE_NULL;
break;
default:
UNREACHABLE();
}
initializeDebugAnnotator();
}
Renderer11::~Renderer11()
{
release();
}
#ifndef __d3d11_1_h__
#define D3D11_MESSAGE_ID_DEVICE_DRAW_RENDERTARGETVIEW_NOT_SET ((D3D11_MESSAGE_ID)3146081)
#endif
egl::Error Renderer11::initialize()
{
double loadDLLsBegin = ANGLEPlatformCurrent()->currentTime();
#if !defined(ANGLE_ENABLE_WINDOWS_STORE)
PFN_D3D11_CREATE_DEVICE D3D11CreateDevice = nullptr;
{
TRACE_EVENT0("gpu.angle", "Renderer11::initialize (Load DLLs)");
mDxgiModule = LoadLibrary(TEXT("dxgi.dll"));
mD3d11Module = LoadLibrary(TEXT("d3d11.dll"));
if (mD3d11Module == nullptr || mDxgiModule == nullptr)
{
return egl::Error(EGL_NOT_INITIALIZED,
D3D11_INIT_MISSING_DEP,
"Could not load D3D11 or DXGI library.");
}
// create the D3D11 device
ASSERT(mDevice == nullptr);
D3D11CreateDevice = reinterpret_cast<PFN_D3D11_CREATE_DEVICE>(GetProcAddress(mD3d11Module, "D3D11CreateDevice"));
if (D3D11CreateDevice == nullptr)
{
return egl::Error(EGL_NOT_INITIALIZED,
D3D11_INIT_MISSING_DEP,
"Could not retrieve D3D11CreateDevice address.");
}
}
#endif
double loadDLLsSec = ANGLEPlatformCurrent()->currentTime() - loadDLLsBegin;
int loadDLLsMS = static_cast<int>(loadDLLsSec * 1000);
ANGLE_HISTOGRAM_TIMES("GPU.ANGLE.Renderer11InitializeDLLsMS", loadDLLsMS);
HRESULT result = S_OK;
#ifdef _DEBUG
{
TRACE_EVENT0("gpu.angle", "D3D11CreateDevice (Debug)");
result = D3D11CreateDevice(NULL,
mDriverType,
NULL,
D3D11_CREATE_DEVICE_DEBUG,
mAvailableFeatureLevels.data(),
mAvailableFeatureLevels.size(),
D3D11_SDK_VERSION,
&mDevice,
&(mRenderer11DeviceCaps.featureLevel),
&mDeviceContext);
}
if (!mDevice || FAILED(result))
{
ERR("Failed creating Debug D3D11 device - falling back to release runtime.\n");
}
if (!mDevice || FAILED(result))
#endif
{
double createDeviceBegin = ANGLEPlatformCurrent()->currentTime();
TRACE_EVENT0("gpu.angle", "D3D11CreateDevice");
result = D3D11CreateDevice(NULL,
mDriverType,
NULL,
0,
mAvailableFeatureLevels.data(),
mAvailableFeatureLevels.size(),
D3D11_SDK_VERSION,
&mDevice,
&(mRenderer11DeviceCaps.featureLevel),
&mDeviceContext);
// Cleanup done by destructor
if (!mDevice || FAILED(result))
{
ANGLE_HISTOGRAM_SPARSE_SLOWLY("GPU.ANGLE.D3D11CreateDeviceError", static_cast<int>(result));
return egl::Error(EGL_NOT_INITIALIZED,
D3D11_INIT_CREATEDEVICE_ERROR,
"Could not create D3D11 device.");
}
double createDeviceSec = ANGLEPlatformCurrent()->currentTime() - createDeviceBegin;
int createDeviceMS = static_cast<int>(createDeviceSec * 1000);
ANGLE_HISTOGRAM_TIMES("GPU.ANGLE.D3D11CreateDeviceMS", createDeviceMS);
}
#if !defined(ANGLE_ENABLE_WINDOWS_STORE)
#if !ANGLE_SKIP_DXGI_1_2_CHECK
{
TRACE_EVENT0("gpu.angle", "Renderer11::initialize (DXGICheck)");
// In order to create a swap chain for an HWND owned by another process, DXGI 1.2 is required.
// The easiest way to check is to query for a IDXGIDevice2.
bool requireDXGI1_2 = false;
HWND hwnd = WindowFromDC(mDisplay->getNativeDisplayId());
if (hwnd)
{
DWORD currentProcessId = GetCurrentProcessId();
DWORD wndProcessId;
GetWindowThreadProcessId(hwnd, &wndProcessId);
requireDXGI1_2 = (currentProcessId != wndProcessId);
}
else
{
requireDXGI1_2 = true;
}
if (requireDXGI1_2)
{
IDXGIDevice2 *dxgiDevice2 = NULL;
result = mDevice->QueryInterface(__uuidof(IDXGIDevice2), (void**)&dxgiDevice2);
if (FAILED(result))
{
return egl::Error(EGL_NOT_INITIALIZED,
D3D11_INIT_INCOMPATIBLE_DXGI,
"DXGI 1.2 required to present to HWNDs owned by another process.");
}
SafeRelease(dxgiDevice2);
}
}
#endif
#endif
{
TRACE_EVENT0("gpu.angle", "Renderer11::initialize (ComQueries)");
// Cast the DeviceContext to a DeviceContext1.
// This could fail on Windows 7 without the Platform Update.
// Don't error in this case- just don't use mDeviceContext1.
mDeviceContext1 = d3d11::DynamicCastComObject<ID3D11DeviceContext1>(mDeviceContext);
IDXGIDevice *dxgiDevice = NULL;
result = mDevice->QueryInterface(__uuidof(IDXGIDevice), (void**)&dxgiDevice);
if (FAILED(result))
{
return egl::Error(EGL_NOT_INITIALIZED,
D3D11_INIT_OTHER_ERROR,
"Could not query DXGI device.");
}
result = dxgiDevice->GetParent(__uuidof(IDXGIAdapter), (void**)&mDxgiAdapter);
if (FAILED(result))
{
return egl::Error(EGL_NOT_INITIALIZED,
D3D11_INIT_OTHER_ERROR,
"Could not retrieve DXGI adapter");
}
SafeRelease(dxgiDevice);
IDXGIAdapter2 *dxgiAdapter2 = d3d11::DynamicCastComObject<IDXGIAdapter2>(mDxgiAdapter);
// On D3D_FEATURE_LEVEL_9_*, IDXGIAdapter::GetDesc returns "Software Adapter" for the description string.
// If DXGI1.2 is available then IDXGIAdapter2::GetDesc2 can be used to get the actual hardware values.
if (mRenderer11DeviceCaps.featureLevel <= D3D_FEATURE_LEVEL_9_3 && dxgiAdapter2 != NULL)
{
DXGI_ADAPTER_DESC2 adapterDesc2 = {};
result = dxgiAdapter2->GetDesc2(&adapterDesc2);
if (SUCCEEDED(result))
{
// Copy the contents of the DXGI_ADAPTER_DESC2 into mAdapterDescription (a DXGI_ADAPTER_DESC).
memcpy(mAdapterDescription.Description, adapterDesc2.Description, sizeof(mAdapterDescription.Description));
mAdapterDescription.VendorId = adapterDesc2.VendorId;
mAdapterDescription.DeviceId = adapterDesc2.DeviceId;
mAdapterDescription.SubSysId = adapterDesc2.SubSysId;
mAdapterDescription.Revision = adapterDesc2.Revision;
mAdapterDescription.DedicatedVideoMemory = adapterDesc2.DedicatedVideoMemory;
mAdapterDescription.DedicatedSystemMemory = adapterDesc2.DedicatedSystemMemory;
mAdapterDescription.SharedSystemMemory = adapterDesc2.SharedSystemMemory;
mAdapterDescription.AdapterLuid = adapterDesc2.AdapterLuid;
}
}
else
{
result = mDxgiAdapter->GetDesc(&mAdapterDescription);
}
SafeRelease(dxgiAdapter2);
if (FAILED(result))
{
return egl::Error(EGL_NOT_INITIALIZED,
D3D11_INIT_OTHER_ERROR,
"Could not read DXGI adaptor description.");
}
memset(mDescription, 0, sizeof(mDescription));
wcstombs(mDescription, mAdapterDescription.Description, sizeof(mDescription) - 1);
result = mDxgiAdapter->GetParent(__uuidof(IDXGIFactory), (void**)&mDxgiFactory);
if (!mDxgiFactory || FAILED(result))
{
return egl::Error(EGL_NOT_INITIALIZED,
D3D11_INIT_OTHER_ERROR,
"Could not create DXGI factory.");
}
}
// Disable some spurious D3D11 debug warnings to prevent them from flooding the output log
#if defined(ANGLE_SUPPRESS_D3D11_HAZARD_WARNINGS) && defined(_DEBUG)
{
TRACE_EVENT0("gpu.angle", "Renderer11::initialize (HideWarnings)");
ID3D11InfoQueue *infoQueue;
result = mDevice->QueryInterface(__uuidof(ID3D11InfoQueue), (void **)&infoQueue);
if (SUCCEEDED(result))
{
D3D11_MESSAGE_ID hideMessages[] =
{
D3D11_MESSAGE_ID_DEVICE_DRAW_RENDERTARGETVIEW_NOT_SET
};
D3D11_INFO_QUEUE_FILTER filter = {};
filter.DenyList.NumIDs = ArraySize(hideMessages);
filter.DenyList.pIDList = hideMessages;
infoQueue->AddStorageFilterEntries(&filter);
SafeRelease(infoQueue);
}
}
#endif
#if !defined(NDEBUG)
mDebug = d3d11::DynamicCastComObject<ID3D11Debug>(mDevice);
#endif
initializeDevice();
return egl::Error(EGL_SUCCESS);
}
// do any one-time device initialization
// NOTE: this is also needed after a device lost/reset
// to reset the scene status and ensure the default states are reset.
void Renderer11::initializeDevice()
{
double startTimeSeconds = ANGLEPlatformCurrent()->currentTime();
TRACE_EVENT0("gpu.angle", "Renderer11::initializeDevice");
populateRenderer11DeviceCaps();
mStateCache.initialize(mDevice);
mInputLayoutCache.initialize(mDevice, mDeviceContext);
ASSERT(!mVertexDataManager && !mIndexDataManager);
mVertexDataManager = new VertexDataManager(this);
mIndexDataManager = new IndexDataManager(this, getRendererClass());
ASSERT(!mBlit);
mBlit = new Blit11(this);
ASSERT(!mClear);
mClear = new Clear11(this);
const auto &attributes = mDisplay->getAttributeMap();
// If automatic trim is enabled, DXGIDevice3::Trim( ) is called for the application
// automatically when an application is suspended by the OS. This feature is currently
// only supported for Windows Store applications.
EGLint enableAutoTrim = attributes.get(EGL_PLATFORM_ANGLE_ENABLE_AUTOMATIC_TRIM_ANGLE, EGL_FALSE);
if (enableAutoTrim == EGL_TRUE)
{
ASSERT(!mTrim);
mTrim = new Trim11(this);
}
ASSERT(!mPixelTransfer);
mPixelTransfer = new PixelTransfer11(this);
const gl::Caps &rendererCaps = getRendererCaps();
mForceSetVertexSamplerStates.resize(rendererCaps.maxVertexTextureImageUnits);
mCurVertexSamplerStates.resize(rendererCaps.maxVertexTextureImageUnits);
mForceSetPixelSamplerStates.resize(rendererCaps.maxTextureImageUnits);
mCurPixelSamplerStates.resize(rendererCaps.maxTextureImageUnits);
mCurVertexSRVs.initialize(rendererCaps.maxVertexTextureImageUnits);
mCurPixelSRVs.initialize(rendererCaps.maxTextureImageUnits);
markAllStateDirty();
// Gather stats on DXGI and D3D feature level
ANGLE_HISTOGRAM_BOOLEAN("GPU.ANGLE.SupportsDXGI1_2", mRenderer11DeviceCaps.supportsDXGI1_2);
ANGLEFeatureLevel angleFeatureLevel = GetANGLEFeatureLevel(mRenderer11DeviceCaps.featureLevel);
// We don't actually request a 11_1 device, because of complications with the platform
// update. Instead we check if the mDeviceContext1 pointer cast succeeded.
// Note: we should support D3D11_0 always, but we aren't guaranteed to be at FL11_0
// because the app can specify a lower version (such as 9_3) on Display creation.
if (mDeviceContext1 != nullptr)
{
angleFeatureLevel = ANGLE_FEATURE_LEVEL_11_1;
}
// Initialize cached NULL SRV block
mNullSRVs.resize(getRendererCaps().maxTextureImageUnits, nullptr);
ANGLE_HISTOGRAM_ENUMERATION("GPU.ANGLE.D3D11FeatureLevel",
angleFeatureLevel,
NUM_ANGLE_FEATURE_LEVELS);
// TODO(jmadill): use context caps, and place in common D3D location
mTranslatedAttribCache.resize(getRendererCaps().maxVertexAttributes);
double elapsedTimeSeconds = ANGLEPlatformCurrent()->currentTime() - startTimeSeconds;
int initializeDeviceMS = static_cast<int>(elapsedTimeSeconds * 1000);
ANGLE_HISTOGRAM_TIMES("GPU.ANGLE.Renderer11InitializeDeviceMS", initializeDeviceMS);
}
void Renderer11::populateRenderer11DeviceCaps()
{
HRESULT hr = S_OK;
if (mDeviceContext1)
{
D3D11_FEATURE_DATA_D3D11_OPTIONS d3d11Options;
HRESULT result = mDevice->CheckFeatureSupport(D3D11_FEATURE_D3D11_OPTIONS, &d3d11Options, sizeof(D3D11_FEATURE_DATA_D3D11_OPTIONS));
if (SUCCEEDED(result))
{
mRenderer11DeviceCaps.supportsClearView = (d3d11Options.ClearView != FALSE);
mRenderer11DeviceCaps.supportsConstantBufferOffsets = (d3d11Options.ConstantBufferOffsetting != FALSE);
}
}
hr = mDevice->CheckFormatSupport(DXGI_FORMAT_B5G6R5_UNORM, &(mRenderer11DeviceCaps.B5G6R5support));
if (FAILED(hr))
{
mRenderer11DeviceCaps.B5G6R5support = 0;
}
hr = mDevice->CheckFormatSupport(DXGI_FORMAT_B4G4R4A4_UNORM, &(mRenderer11DeviceCaps.B4G4R4A4support));
if (FAILED(hr))
{
mRenderer11DeviceCaps.B4G4R4A4support = 0;
}
hr = mDevice->CheckFormatSupport(DXGI_FORMAT_B5G5R5A1_UNORM, &(mRenderer11DeviceCaps.B5G5R5A1support));
if (FAILED(hr))
{
mRenderer11DeviceCaps.B5G5R5A1support = 0;
}
IDXGIAdapter2 *dxgiAdapter2 = d3d11::DynamicCastComObject<IDXGIAdapter2>(mDxgiAdapter);
mRenderer11DeviceCaps.supportsDXGI1_2 = (dxgiAdapter2 != nullptr);
SafeRelease(dxgiAdapter2);
}
egl::ConfigSet Renderer11::generateConfigs() const
{
static const GLenum colorBufferFormats[] =
{
// 32-bit supported formats
GL_BGRA8_EXT,
GL_RGBA8_OES,
// 16-bit supported formats
GL_RGBA4,
GL_RGB5_A1,
GL_RGB565,
};
static const GLenum depthStencilBufferFormats[] =
{
GL_NONE,
GL_DEPTH24_STENCIL8_OES,
GL_DEPTH_COMPONENT16,
};
const gl::Caps &rendererCaps = getRendererCaps();
const gl::TextureCapsMap &rendererTextureCaps = getRendererTextureCaps();
egl::ConfigSet configs;
for (size_t formatIndex = 0; formatIndex < ArraySize(colorBufferFormats); formatIndex++)
{
GLenum colorBufferInternalFormat = colorBufferFormats[formatIndex];
const gl::TextureCaps &colorBufferFormatCaps = rendererTextureCaps.get(colorBufferInternalFormat);
if (colorBufferFormatCaps.renderable)
{
for (size_t depthStencilIndex = 0; depthStencilIndex < ArraySize(depthStencilBufferFormats); depthStencilIndex++)
{
GLenum depthStencilBufferInternalFormat = depthStencilBufferFormats[depthStencilIndex];
const gl::TextureCaps &depthStencilBufferFormatCaps = rendererTextureCaps.get(depthStencilBufferInternalFormat);
if (depthStencilBufferFormatCaps.renderable || depthStencilBufferInternalFormat == GL_NONE)
{
const gl::InternalFormat &colorBufferFormatInfo = gl::GetInternalFormatInfo(colorBufferInternalFormat);
const gl::InternalFormat &depthStencilBufferFormatInfo = gl::GetInternalFormatInfo(depthStencilBufferInternalFormat);
egl::Config config;
config.renderTargetFormat = colorBufferInternalFormat;
config.depthStencilFormat = depthStencilBufferInternalFormat;
config.bufferSize = colorBufferFormatInfo.pixelBytes * 8;
config.redSize = colorBufferFormatInfo.redBits;
config.greenSize = colorBufferFormatInfo.greenBits;
config.blueSize = colorBufferFormatInfo.blueBits;
config.luminanceSize = colorBufferFormatInfo.luminanceBits;
config.alphaSize = colorBufferFormatInfo.alphaBits;
config.alphaMaskSize = 0;
config.bindToTextureRGB = (colorBufferFormatInfo.format == GL_RGB);
config.bindToTextureRGBA = (colorBufferFormatInfo.format == GL_RGBA || colorBufferFormatInfo.format == GL_BGRA_EXT);
config.colorBufferType = EGL_RGB_BUFFER;
config.configCaveat = EGL_NONE;
config.configID = static_cast<EGLint>(configs.size() + 1);
// Can only support a conformant ES2 with feature level greater than 10.0.
config.conformant = (mRenderer11DeviceCaps.featureLevel >= D3D_FEATURE_LEVEL_10_0) ? (EGL_OPENGL_ES2_BIT | EGL_OPENGL_ES3_BIT_KHR) : 0;
config.depthSize = depthStencilBufferFormatInfo.depthBits;
config.level = 0;
config.matchNativePixmap = EGL_NONE;
config.maxPBufferWidth = rendererCaps.max2DTextureSize;
config.maxPBufferHeight = rendererCaps.max2DTextureSize;
config.maxPBufferPixels = rendererCaps.max2DTextureSize * rendererCaps.max2DTextureSize;
config.maxSwapInterval = 4;
config.minSwapInterval = 0;
config.nativeRenderable = EGL_FALSE;
config.nativeVisualID = 0;
config.nativeVisualType = EGL_NONE;
// Can't support ES3 at all without feature level 10.0
config.renderableType = EGL_OPENGL_ES2_BIT | ((mRenderer11DeviceCaps.featureLevel >= D3D_FEATURE_LEVEL_10_0) ? EGL_OPENGL_ES3_BIT_KHR : 0);
config.sampleBuffers = 0; // FIXME: enumerate multi-sampling
config.samples = 0;
config.stencilSize = depthStencilBufferFormatInfo.stencilBits;
config.surfaceType = EGL_PBUFFER_BIT | EGL_WINDOW_BIT | EGL_SWAP_BEHAVIOR_PRESERVED_BIT;
config.transparentType = EGL_NONE;
config.transparentRedValue = 0;
config.transparentGreenValue = 0;
config.transparentBlueValue = 0;
configs.add(config);
}
}
}
}
ASSERT(configs.size() > 0);
return configs;
}
gl::Error Renderer11::flush()
{
mDeviceContext->Flush();
return gl::Error(GL_NO_ERROR);
}
gl::Error Renderer11::finish()
{
HRESULT result;
if (!mSyncQuery)
{
D3D11_QUERY_DESC queryDesc;
queryDesc.Query = D3D11_QUERY_EVENT;
queryDesc.MiscFlags = 0;
result = mDevice->CreateQuery(&queryDesc, &mSyncQuery);
ASSERT(SUCCEEDED(result));
if (FAILED(result))
{
return gl::Error(GL_OUT_OF_MEMORY, "Failed to create event query, result: 0x%X.", result);
}
}
mDeviceContext->End(mSyncQuery);
mDeviceContext->Flush();
do
{
result = mDeviceContext->GetData(mSyncQuery, NULL, 0, D3D11_ASYNC_GETDATA_DONOTFLUSH);
if (FAILED(result))
{
return gl::Error(GL_OUT_OF_MEMORY, "Failed to get event query data, result: 0x%X.", result);
}
// Keep polling, but allow other threads to do something useful first
ScheduleYield();
if (testDeviceLost())
{
mDisplay->notifyDeviceLost();
return gl::Error(GL_OUT_OF_MEMORY, "Device was lost while waiting for sync.");
}
}
while (result == S_FALSE);
return gl::Error(GL_NO_ERROR);
}
SwapChainD3D *Renderer11::createSwapChain(NativeWindow nativeWindow, HANDLE shareHandle, GLenum backBufferFormat, GLenum depthBufferFormat)
{
return new SwapChain11(this, nativeWindow, shareHandle, backBufferFormat, depthBufferFormat);
}
void *Renderer11::getD3DDevice()
{
return reinterpret_cast<void*>(mDevice);
}
gl::Error Renderer11::generateSwizzle(gl::Texture *texture)
{
if (texture)
{
TextureD3D *textureD3D = GetImplAs<TextureD3D>(texture);
ASSERT(textureD3D);
TextureStorage *texStorage = nullptr;
gl::Error error = textureD3D->getNativeTexture(&texStorage);
if (error.isError())
{
return error;
}
if (texStorage)
{
TextureStorage11 *storage11 = GetAs<TextureStorage11>(texStorage);
error = storage11->generateSwizzles(texture->getSamplerState().swizzleRed,
texture->getSamplerState().swizzleGreen,
texture->getSamplerState().swizzleBlue,
texture->getSamplerState().swizzleAlpha);
if (error.isError())
{
return error;
}
}
}
return gl::Error(GL_NO_ERROR);
}
gl::Error Renderer11::setSamplerState(gl::SamplerType type, int index, gl::Texture *texture, const gl::SamplerState &samplerStateParam)
{
// Make sure to add the level offset for our tiny compressed texture workaround
TextureD3D *textureD3D = GetImplAs<TextureD3D>(texture);
gl::SamplerState samplerStateInternal = samplerStateParam;
TextureStorage *storage = nullptr;
gl::Error error = textureD3D->getNativeTexture(&storage);
if (error.isError())
{
return error;
}
// Storage should exist, texture should be complete
ASSERT(storage);
samplerStateInternal.baseLevel += storage->getTopLevel();
if (type == gl::SAMPLER_PIXEL)
{
ASSERT(static_cast<unsigned int>(index) < getRendererCaps().maxTextureImageUnits);
if (mForceSetPixelSamplerStates[index] || memcmp(&samplerStateInternal, &mCurPixelSamplerStates[index], sizeof(gl::SamplerState)) != 0)
{
ID3D11SamplerState *dxSamplerState = NULL;
error = mStateCache.getSamplerState(samplerStateInternal, &dxSamplerState);
if (error.isError())
{
return error;
}
ASSERT(dxSamplerState != NULL);
mDeviceContext->PSSetSamplers(index, 1, &dxSamplerState);
mCurPixelSamplerStates[index] = samplerStateInternal;
}
mForceSetPixelSamplerStates[index] = false;
}
else if (type == gl::SAMPLER_VERTEX)
{
ASSERT(static_cast<unsigned int>(index) < getRendererCaps().maxVertexTextureImageUnits);
if (mForceSetVertexSamplerStates[index] || memcmp(&samplerStateInternal, &mCurVertexSamplerStates[index], sizeof(gl::SamplerState)) != 0)
{
ID3D11SamplerState *dxSamplerState = NULL;
error = mStateCache.getSamplerState(samplerStateInternal, &dxSamplerState);
if (error.isError())
{
return error;
}
ASSERT(dxSamplerState != NULL);
mDeviceContext->VSSetSamplers(index, 1, &dxSamplerState);
mCurVertexSamplerStates[index] = samplerStateInternal;
}
mForceSetVertexSamplerStates[index] = false;
}
else UNREACHABLE();
return gl::Error(GL_NO_ERROR);
}
gl::Error Renderer11::setTexture(gl::SamplerType type, int index, gl::Texture *texture)
{
ID3D11ShaderResourceView *textureSRV = NULL;
if (texture)
{
TextureD3D *textureImpl = GetImplAs<TextureD3D>(texture);
TextureStorage *texStorage = nullptr;
gl::Error error = textureImpl->getNativeTexture(&texStorage);
if (error.isError())
{
return error;
}
// Texture should be complete and have a storage
ASSERT(texStorage);
TextureStorage11 *storage11 = GetAs<TextureStorage11>(texStorage);
// Make sure to add the level offset for our tiny compressed texture workaround
gl::SamplerState samplerState = texture->getSamplerState();
samplerState.baseLevel += storage11->getTopLevel();
error = storage11->getSRV(samplerState, &textureSRV);
if (error.isError())
{
return error;
}
// If we get NULL back from getSRV here, something went wrong in the texture class and we're unexpectedly
// missing the shader resource view
ASSERT(textureSRV != NULL);
textureImpl->resetDirty();
}
ASSERT((type == gl::SAMPLER_PIXEL && static_cast<unsigned int>(index) < getRendererCaps().maxTextureImageUnits) ||
(type == gl::SAMPLER_VERTEX && static_cast<unsigned int>(index) < getRendererCaps().maxVertexTextureImageUnits));
setShaderResource(type, index, textureSRV);
return gl::Error(GL_NO_ERROR);
}
gl::Error Renderer11::setUniformBuffers(const gl::Data &data,
const std::vector<GLint> &vertexUniformBuffers,
const std::vector<GLint> &fragmentUniformBuffers)
{
for (size_t uniformBufferIndex = 0; uniformBufferIndex < vertexUniformBuffers.size(); uniformBufferIndex++)
{
GLint binding = vertexUniformBuffers[uniformBufferIndex];
if (binding == -1)
{
continue;
}
gl::Buffer *uniformBuffer = data.state->getIndexedUniformBuffer(binding);
GLintptr uniformBufferOffset = data.state->getIndexedUniformBufferOffset(binding);
GLsizeiptr uniformBufferSize = data.state->getIndexedUniformBufferSize(binding);
if (uniformBuffer)
{
Buffer11 *bufferStorage = GetImplAs<Buffer11>(uniformBuffer);
ID3D11Buffer *constantBuffer;
if (mRenderer11DeviceCaps.supportsConstantBufferOffsets)
{
constantBuffer = bufferStorage->getBuffer(BUFFER_USAGE_UNIFORM);
}
else
{
constantBuffer = bufferStorage->getConstantBufferRange(uniformBufferOffset, uniformBufferSize);
}
if (!constantBuffer)
{
return gl::Error(GL_OUT_OF_MEMORY);
}
if (mCurrentConstantBufferVS[uniformBufferIndex] != bufferStorage->getSerial() ||
mCurrentConstantBufferVSOffset[uniformBufferIndex] != uniformBufferOffset ||
mCurrentConstantBufferVSSize[uniformBufferIndex] != uniformBufferSize)
{
if (mRenderer11DeviceCaps.supportsConstantBufferOffsets && uniformBufferSize != 0)
{
UINT firstConstant = 0, numConstants = 0;
CalculateConstantBufferParams(uniformBufferOffset, uniformBufferSize, &firstConstant, &numConstants);
mDeviceContext1->VSSetConstantBuffers1(getReservedVertexUniformBuffers() + uniformBufferIndex,
1, &constantBuffer, &firstConstant, &numConstants);
}
else
{
mDeviceContext->VSSetConstantBuffers(getReservedVertexUniformBuffers() + uniformBufferIndex,
1, &constantBuffer);
}
mCurrentConstantBufferVS[uniformBufferIndex] = bufferStorage->getSerial();
mCurrentConstantBufferVSOffset[uniformBufferIndex] = uniformBufferOffset;
mCurrentConstantBufferVSSize[uniformBufferIndex] = uniformBufferSize;
}
}
}
for (size_t uniformBufferIndex = 0; uniformBufferIndex < fragmentUniformBuffers.size(); uniformBufferIndex++)
{
GLint binding = fragmentUniformBuffers[uniformBufferIndex];
if (binding == -1)
{
continue;
}
gl::Buffer *uniformBuffer = data.state->getIndexedUniformBuffer(binding);
GLintptr uniformBufferOffset = data.state->getIndexedUniformBufferOffset(binding);
GLsizeiptr uniformBufferSize = data.state->getIndexedUniformBufferSize(binding);
if (uniformBuffer)
{
Buffer11 *bufferStorage = GetImplAs<Buffer11>(uniformBuffer);
ID3D11Buffer *constantBuffer;
if (mRenderer11DeviceCaps.supportsConstantBufferOffsets)
{
constantBuffer = bufferStorage->getBuffer(BUFFER_USAGE_UNIFORM);
}
else
{
constantBuffer = bufferStorage->getConstantBufferRange(uniformBufferOffset, uniformBufferSize);
}
if (!constantBuffer)
{
return gl::Error(GL_OUT_OF_MEMORY);
}
if (mCurrentConstantBufferPS[uniformBufferIndex] != bufferStorage->getSerial() ||
mCurrentConstantBufferPSOffset[uniformBufferIndex] != uniformBufferOffset ||
mCurrentConstantBufferPSSize[uniformBufferIndex] != uniformBufferSize)
{
if (mRenderer11DeviceCaps.supportsConstantBufferOffsets && uniformBufferSize != 0)
{
UINT firstConstant = 0, numConstants = 0;
CalculateConstantBufferParams(uniformBufferOffset, uniformBufferSize, &firstConstant, &numConstants);
mDeviceContext1->PSSetConstantBuffers1(getReservedFragmentUniformBuffers() + uniformBufferIndex,
1, &constantBuffer, &firstConstant, &numConstants);
}
else
{
mDeviceContext->PSSetConstantBuffers(getReservedFragmentUniformBuffers() + uniformBufferIndex,
1, &constantBuffer);
}
mCurrentConstantBufferPS[uniformBufferIndex] = bufferStorage->getSerial();
mCurrentConstantBufferPSOffset[uniformBufferIndex] = uniformBufferOffset;
mCurrentConstantBufferPSSize[uniformBufferIndex] = uniformBufferSize;
}
}
}
return gl::Error(GL_NO_ERROR);
}
gl::Error Renderer11::setRasterizerState(const gl::RasterizerState &rasterState)
{
if (mForceSetRasterState || memcmp(&rasterState, &mCurRasterState, sizeof(gl::RasterizerState)) != 0)
{
ID3D11RasterizerState *dxRasterState = NULL;
gl::Error error = mStateCache.getRasterizerState(rasterState, mScissorEnabled, &dxRasterState);
if (error.isError())
{
return error;
}
mDeviceContext->RSSetState(dxRasterState);
mCurRasterState = rasterState;
}
mForceSetRasterState = false;
return gl::Error(GL_NO_ERROR);
}
gl::Error Renderer11::setBlendState(const gl::Framebuffer *framebuffer, const gl::BlendState &blendState, const gl::ColorF &blendColor,
unsigned int sampleMask)
{
if (mForceSetBlendState ||
memcmp(&blendState, &mCurBlendState, sizeof(gl::BlendState)) != 0 ||
memcmp(&blendColor, &mCurBlendColor, sizeof(gl::ColorF)) != 0 ||
sampleMask != mCurSampleMask)
{
ID3D11BlendState *dxBlendState = NULL;
gl::Error error = mStateCache.getBlendState(framebuffer, blendState, &dxBlendState);
if (error.isError())
{
return error;
}
ASSERT(dxBlendState != NULL);
float blendColors[4] = {0.0f};
if (blendState.sourceBlendRGB != GL_CONSTANT_ALPHA && blendState.sourceBlendRGB != GL_ONE_MINUS_CONSTANT_ALPHA &&
blendState.destBlendRGB != GL_CONSTANT_ALPHA && blendState.destBlendRGB != GL_ONE_MINUS_CONSTANT_ALPHA)
{
blendColors[0] = blendColor.red;
blendColors[1] = blendColor.green;
blendColors[2] = blendColor.blue;
blendColors[3] = blendColor.alpha;
}
else
{
blendColors[0] = blendColor.alpha;
blendColors[1] = blendColor.alpha;
blendColors[2] = blendColor.alpha;
blendColors[3] = blendColor.alpha;
}
mDeviceContext->OMSetBlendState(dxBlendState, blendColors, sampleMask);
mCurBlendState = blendState;
mCurBlendColor = blendColor;
mCurSampleMask = sampleMask;
}
mForceSetBlendState = false;
return gl::Error(GL_NO_ERROR);
}
gl::Error Renderer11::setDepthStencilState(const gl::DepthStencilState &depthStencilState, int stencilRef,
int stencilBackRef, bool frontFaceCCW)
{
if (mForceSetDepthStencilState ||
memcmp(&depthStencilState, &mCurDepthStencilState, sizeof(gl::DepthStencilState)) != 0 ||
stencilRef != mCurStencilRef || stencilBackRef != mCurStencilBackRef)
{
ASSERT(depthStencilState.stencilWritemask == depthStencilState.stencilBackWritemask);
ASSERT(stencilRef == stencilBackRef);
ASSERT(depthStencilState.stencilMask == depthStencilState.stencilBackMask);
ID3D11DepthStencilState *dxDepthStencilState = NULL;
gl::Error error = mStateCache.getDepthStencilState(depthStencilState, &dxDepthStencilState);
if (error.isError())
{
return error;
}
ASSERT(dxDepthStencilState);
// Max D3D11 stencil reference value is 0xFF, corresponding to the max 8 bits in a stencil buffer
// GL specifies we should clamp the ref value to the nearest bit depth when doing stencil ops
static_assert(D3D11_DEFAULT_STENCIL_READ_MASK == 0xFF, "Unexpected value of D3D11_DEFAULT_STENCIL_READ_MASK");
static_assert(D3D11_DEFAULT_STENCIL_WRITE_MASK == 0xFF, "Unexpected value of D3D11_DEFAULT_STENCIL_WRITE_MASK");
UINT dxStencilRef = std::min<UINT>(stencilRef, 0xFFu);
mDeviceContext->OMSetDepthStencilState(dxDepthStencilState, dxStencilRef);
mCurDepthStencilState = depthStencilState;
mCurStencilRef = stencilRef;
mCurStencilBackRef = stencilBackRef;
}
mForceSetDepthStencilState = false;
return gl::Error(GL_NO_ERROR);
}
void Renderer11::setScissorRectangle(const gl::Rectangle &scissor, bool enabled)
{
if (mForceSetScissor || memcmp(&scissor, &mCurScissor, sizeof(gl::Rectangle)) != 0 ||
enabled != mScissorEnabled)
{
if (enabled)
{
D3D11_RECT rect;
rect.left = std::max(0, scissor.x);
rect.top = std::max(0, scissor.y);
rect.right = scissor.x + std::max(0, scissor.width);
rect.bottom = scissor.y + std::max(0, scissor.height);
mDeviceContext->RSSetScissorRects(1, &rect);
}
if (enabled != mScissorEnabled)
{
mForceSetRasterState = true;
}
mCurScissor = scissor;
mScissorEnabled = enabled;
}
mForceSetScissor = false;
}
void Renderer11::setViewport(const gl::Rectangle &viewport, float zNear, float zFar, GLenum drawMode, GLenum frontFace,
bool ignoreViewport)
{
gl::Rectangle actualViewport = viewport;
float actualZNear = gl::clamp01(zNear);
float actualZFar = gl::clamp01(zFar);
if (ignoreViewport)
{
actualViewport.x = 0;
actualViewport.y = 0;
actualViewport.width = mRenderTargetDesc.width;
actualViewport.height = mRenderTargetDesc.height;
actualZNear = 0.0f;
actualZFar = 1.0f;
}
bool viewportChanged = mForceSetViewport || memcmp(&actualViewport, &mCurViewport, sizeof(gl::Rectangle)) != 0 ||
actualZNear != mCurNear || actualZFar != mCurFar;
if (viewportChanged)
{
const gl::Caps& caps = getRendererCaps();
int dxMaxViewportBoundsX = static_cast<int>(caps.maxViewportWidth);
int dxMaxViewportBoundsY = static_cast<int>(caps.maxViewportHeight);
int dxMinViewportBoundsX = -dxMaxViewportBoundsX;
int dxMinViewportBoundsY = -dxMaxViewportBoundsY;
if (mRenderer11DeviceCaps.featureLevel <= D3D_FEATURE_LEVEL_9_3)
{
// Feature Level 9 viewports shouldn't exceed the dimensions of the rendertarget.
dxMaxViewportBoundsX = mRenderTargetDesc.width;
dxMaxViewportBoundsY = mRenderTargetDesc.height;
dxMinViewportBoundsX = 0;
dxMinViewportBoundsY = 0;
}
int dxViewportTopLeftX = gl::clamp(actualViewport.x, dxMinViewportBoundsX, dxMaxViewportBoundsX);
int dxViewportTopLeftY = gl::clamp(actualViewport.y, dxMinViewportBoundsY, dxMaxViewportBoundsY);
int dxViewportWidth = gl::clamp(actualViewport.width, 0, dxMaxViewportBoundsX - dxViewportTopLeftX);
int dxViewportHeight = gl::clamp(actualViewport.height, 0, dxMaxViewportBoundsY - dxViewportTopLeftY);
D3D11_VIEWPORT dxViewport;
dxViewport.TopLeftX = static_cast<float>(dxViewportTopLeftX);
dxViewport.TopLeftY = static_cast<float>(dxViewportTopLeftY);
dxViewport.Width = static_cast<float>(dxViewportWidth);
dxViewport.Height = static_cast<float>(dxViewportHeight);
dxViewport.MinDepth = actualZNear;
dxViewport.MaxDepth = actualZFar;
mDeviceContext->RSSetViewports(1, &dxViewport);
mCurViewport = actualViewport;
mCurNear = actualZNear;
mCurFar = actualZFar;
// On Feature Level 9_*, we must emulate large and/or negative viewports in the shaders using viewAdjust (like the D3D9 renderer).
if (mRenderer11DeviceCaps.featureLevel <= D3D_FEATURE_LEVEL_9_3)
{
mVertexConstants.viewAdjust[0] = static_cast<float>((actualViewport.width - dxViewportWidth) + 2 * (actualViewport.x - dxViewportTopLeftX)) / dxViewport.Width;
mVertexConstants.viewAdjust[1] = static_cast<float>((actualViewport.height - dxViewportHeight) + 2 * (actualViewport.y - dxViewportTopLeftY)) / dxViewport.Height;
mVertexConstants.viewAdjust[2] = static_cast<float>(actualViewport.width) / dxViewport.Width;
mVertexConstants.viewAdjust[3] = static_cast<float>(actualViewport.height) / dxViewport.Height;
}
mPixelConstants.viewCoords[0] = actualViewport.width * 0.5f;
mPixelConstants.viewCoords[1] = actualViewport.height * 0.5f;
mPixelConstants.viewCoords[2] = actualViewport.x + (actualViewport.width * 0.5f);
mPixelConstants.viewCoords[3] = actualViewport.y + (actualViewport.height * 0.5f);
// Instanced pointsprite emulation requires ViewCoords to be defined in the
// the vertex shader.
mVertexConstants.viewCoords[0] = mPixelConstants.viewCoords[0];
mVertexConstants.viewCoords[1] = mPixelConstants.viewCoords[1];
mVertexConstants.viewCoords[2] = mPixelConstants.viewCoords[2];
mVertexConstants.viewCoords[3] = mPixelConstants.viewCoords[3];
mPixelConstants.depthFront[0] = (actualZFar - actualZNear) * 0.5f;
mPixelConstants.depthFront[1] = (actualZNear + actualZFar) * 0.5f;
mVertexConstants.depthRange[0] = actualZNear;
mVertexConstants.depthRange[1] = actualZFar;
mVertexConstants.depthRange[2] = actualZFar - actualZNear;
mPixelConstants.depthRange[0] = actualZNear;
mPixelConstants.depthRange[1] = actualZFar;
mPixelConstants.depthRange[2] = actualZFar - actualZNear;
}
mForceSetViewport = false;
}
bool Renderer11::applyPrimitiveType(GLenum mode, GLsizei count, bool usesPointSize)
{
D3D11_PRIMITIVE_TOPOLOGY primitiveTopology = D3D_PRIMITIVE_TOPOLOGY_UNDEFINED;
GLsizei minCount = 0;
switch (mode)
{
case GL_POINTS: primitiveTopology = D3D11_PRIMITIVE_TOPOLOGY_POINTLIST; minCount = 1; break;
case GL_LINES: primitiveTopology = D3D_PRIMITIVE_TOPOLOGY_LINELIST; minCount = 2; break;
case GL_LINE_LOOP: primitiveTopology = D3D_PRIMITIVE_TOPOLOGY_LINESTRIP; minCount = 2; break;
case GL_LINE_STRIP: primitiveTopology = D3D_PRIMITIVE_TOPOLOGY_LINESTRIP; minCount = 2; break;
case GL_TRIANGLES: primitiveTopology = D3D_PRIMITIVE_TOPOLOGY_TRIANGLELIST; minCount = 3; break;
case GL_TRIANGLE_STRIP: primitiveTopology = D3D_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP; minCount = 3; break;
// emulate fans via rewriting index buffer
case GL_TRIANGLE_FAN: primitiveTopology = D3D_PRIMITIVE_TOPOLOGY_TRIANGLELIST; minCount = 3; break;
default:
UNREACHABLE();
return false;
}
// If instanced pointsprite emulation is being used and If gl_PointSize is used in the shader,
// GL_POINTS mode is expected to render pointsprites.
// Instanced PointSprite emulation requires that the topology to be D3D_PRIMITIVE_TOPOLOGY_TRIANGLELIST.
if (mode == GL_POINTS && usesPointSize && getWorkarounds().useInstancedPointSpriteEmulation)
{
primitiveTopology = D3D_PRIMITIVE_TOPOLOGY_TRIANGLELIST;
}
if (primitiveTopology != mCurrentPrimitiveTopology)
{
mDeviceContext->IASetPrimitiveTopology(primitiveTopology);
mCurrentPrimitiveTopology = primitiveTopology;
}
return count >= minCount;
}
void Renderer11::unsetConflictingSRVs(gl::SamplerType samplerType, uintptr_t resource, const gl::ImageIndex &index)
{
auto &currentSRVs = (samplerType == gl::SAMPLER_VERTEX ? mCurVertexSRVs : mCurPixelSRVs);
for (size_t resourceIndex = 0; resourceIndex < currentSRVs.size(); ++resourceIndex)
{
auto &record = currentSRVs[resourceIndex];
if (record.srv && record.resource == resource && ImageIndexConflictsWithSRV(index, record.desc))
{
setShaderResource(samplerType, static_cast<UINT>(resourceIndex), NULL);
}
}
}
gl::Error Renderer11::applyRenderTarget(const gl::Framebuffer *framebuffer)
{
// Get the color render buffer and serial
// Also extract the render target dimensions and view
unsigned int renderTargetWidth = 0;
unsigned int renderTargetHeight = 0;
DXGI_FORMAT renderTargetFormat = DXGI_FORMAT_UNKNOWN;
ID3D11RenderTargetView* framebufferRTVs[gl::IMPLEMENTATION_MAX_DRAW_BUFFERS] = {NULL};
bool missingColorRenderTarget = true;
const FramebufferD3D *framebufferD3D = GetImplAs<FramebufferD3D>(framebuffer);
const gl::AttachmentList &colorbuffers = framebufferD3D->getColorAttachmentsForRender(getWorkarounds());
for (size_t colorAttachment = 0; colorAttachment < colorbuffers.size(); ++colorAttachment)
{
const gl::FramebufferAttachment *colorbuffer = colorbuffers[colorAttachment];
if (colorbuffer)
{
// the draw buffer must be either "none", "back" for the default buffer or the same index as this color (in order)
// check for zero-sized default framebuffer, which is a special case.
// in this case we do not wish to modify any state and just silently return false.
// this will not report any gl error but will cause the calling method to return.
if (colorbuffer->getWidth() == 0 || colorbuffer->getHeight() == 0)
{
return gl::Error(GL_NO_ERROR);
}
// Extract the render target dimensions and view
RenderTarget11 *renderTarget = NULL;
gl::Error error = colorbuffer->getRenderTarget(&renderTarget);
if (error.isError())
{
return error;
}
ASSERT(renderTarget);
framebufferRTVs[colorAttachment] = renderTarget->getRenderTargetView();
ASSERT(framebufferRTVs[colorAttachment]);
if (missingColorRenderTarget)
{
renderTargetWidth = renderTarget->getWidth();
renderTargetHeight = renderTarget->getHeight();
renderTargetFormat = renderTarget->getDXGIFormat();
missingColorRenderTarget = false;
}
// Unbind render target SRVs from the shader here to prevent D3D11 warnings.
if (colorbuffer->type() == GL_TEXTURE)
{
uintptr_t rtResource = reinterpret_cast<uintptr_t>(GetViewResource(framebufferRTVs[colorAttachment]));
const gl::ImageIndex &index = colorbuffer->getTextureImageIndex();
// The index doesn't need to be corrected for the small compressed texture workaround
// because a rendertarget is never compressed.
unsetConflictingSRVs(gl::SAMPLER_VERTEX, rtResource, index);
unsetConflictingSRVs(gl::SAMPLER_PIXEL, rtResource, index);
}
}
}
// Get the depth stencil buffers
ID3D11DepthStencilView* framebufferDSV = NULL;
const gl::FramebufferAttachment *depthStencil = framebuffer->getDepthOrStencilbuffer();
if (depthStencil)
{
RenderTarget11 *depthStencilRenderTarget = NULL;
gl::Error error = depthStencil->getRenderTarget(&depthStencilRenderTarget);
if (error.isError())
{
SafeRelease(framebufferRTVs);
return error;
}
ASSERT(depthStencilRenderTarget);
framebufferDSV = depthStencilRenderTarget->getDepthStencilView();
ASSERT(framebufferDSV);
// If there is no render buffer, the width, height and format values come from
// the depth stencil
if (missingColorRenderTarget)
{
renderTargetWidth = depthStencilRenderTarget->getWidth();
renderTargetHeight = depthStencilRenderTarget->getHeight();
renderTargetFormat = depthStencilRenderTarget->getDXGIFormat();
}
// Unbind render target SRVs from the shader here to prevent D3D11 warnings.
if (depthStencil->type() == GL_TEXTURE)
{
uintptr_t depthStencilResource = reinterpret_cast<uintptr_t>(GetViewResource(framebufferDSV));
const gl::ImageIndex &index = depthStencil->getTextureImageIndex();
// The index doesn't need to be corrected for the small compressed texture workaround
// because a rendertarget is never compressed.
unsetConflictingSRVs(gl::SAMPLER_VERTEX, depthStencilResource, index);
unsetConflictingSRVs(gl::SAMPLER_PIXEL, depthStencilResource, index);
}
}
// Apply the render target and depth stencil
if (!mRenderTargetDescInitialized || !mDepthStencilInitialized ||
memcmp(framebufferRTVs, mAppliedRTVs, sizeof(framebufferRTVs)) != 0 ||
reinterpret_cast<uintptr_t>(framebufferDSV) != mAppliedDSV)
{
mDeviceContext->OMSetRenderTargets(getRendererCaps().maxDrawBuffers, framebufferRTVs, framebufferDSV);
mRenderTargetDesc.width = renderTargetWidth;
mRenderTargetDesc.height = renderTargetHeight;
mRenderTargetDesc.format = renderTargetFormat;
mForceSetViewport = true;
mForceSetScissor = true;
mForceSetBlendState = true;
if (!mDepthStencilInitialized)
{
mForceSetRasterState = true;
}
for (size_t rtIndex = 0; rtIndex < ArraySize(framebufferRTVs); rtIndex++)
{
mAppliedRTVs[rtIndex] = reinterpret_cast<uintptr_t>(framebufferRTVs[rtIndex]);
}
mAppliedDSV = reinterpret_cast<uintptr_t>(framebufferDSV);
mRenderTargetDescInitialized = true;
mDepthStencilInitialized = true;
}
const Framebuffer11 *framebuffer11 = GetImplAs<Framebuffer11>(framebuffer);
gl::Error error = framebuffer11->invalidateSwizzles();
if (error.isError())
{
return error;
}
return gl::Error(GL_NO_ERROR);
}
gl::Error Renderer11::applyVertexBuffer(const gl::State &state, GLenum mode, GLint first, GLsizei count, GLsizei instances, SourceIndexData *sourceInfo)
{
gl::Error error = mVertexDataManager->prepareVertexData(state, first, count, &mTranslatedAttribCache, instances);
if (error.isError())
{
return error;
}
// If index information is passed, mark it with the current changed status.
if (sourceInfo)
{
sourceInfo->srcIndicesChanged = mAppliedIBChanged;
}
return mInputLayoutCache.applyVertexBuffers(mTranslatedAttribCache, mode, state.getProgram(), sourceInfo);
}
gl::Error Renderer11::applyIndexBuffer(const GLvoid *indices, gl::Buffer *elementArrayBuffer, GLsizei count, GLenum mode, GLenum type, TranslatedIndexData *indexInfo, SourceIndexData *sourceIndexInfo)
{
gl::Error error = mIndexDataManager->prepareIndexData(type, count, elementArrayBuffer, indices, indexInfo, sourceIndexInfo);
if (error.isError())
{
return error;
}
ID3D11Buffer *buffer = NULL;
DXGI_FORMAT bufferFormat = (indexInfo->indexType == GL_UNSIGNED_INT) ? DXGI_FORMAT_R32_UINT : DXGI_FORMAT_R16_UINT;
if (indexInfo->storage)
{
Buffer11 *storage = GetAs<Buffer11>(indexInfo->storage);
buffer = storage->getBuffer(BUFFER_USAGE_INDEX);
}
else
{
IndexBuffer11* indexBuffer = GetAs<IndexBuffer11>(indexInfo->indexBuffer);
buffer = indexBuffer->getBuffer();
}
mAppliedIBChanged = false;
if (buffer != mAppliedIB || bufferFormat != mAppliedIBFormat || indexInfo->startOffset != mAppliedIBOffset)
{
mDeviceContext->IASetIndexBuffer(buffer, bufferFormat, indexInfo->startOffset);
mAppliedIB = buffer;
mAppliedIBFormat = bufferFormat;
mAppliedIBOffset = indexInfo->startOffset;
mAppliedIBChanged = true;
}
return gl::Error(GL_NO_ERROR);
}
void Renderer11::applyTransformFeedbackBuffers(const gl::State &state)
{
size_t numXFBBindings = 0;
bool requiresUpdate = false;
if (state.isTransformFeedbackActiveUnpaused())
{
const gl::TransformFeedback *transformFeedback = state.getCurrentTransformFeedback();
numXFBBindings = transformFeedback->getIndexedBufferCount();
ASSERT(numXFBBindings <= gl::IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_BUFFERS);
for (size_t i = 0; i < numXFBBindings; i++)
{
const OffsetBindingPointer<gl::Buffer> &binding = transformFeedback->getIndexedBuffer(i);
ID3D11Buffer *d3dBuffer = NULL;
if (binding.get() != nullptr)
{
Buffer11 *storage = GetImplAs<Buffer11>(binding.get());
d3dBuffer = storage->getBuffer(BUFFER_USAGE_VERTEX_OR_TRANSFORM_FEEDBACK);
}
// TODO: mAppliedTFBuffers and friends should also be kept in a vector.
if (d3dBuffer != mAppliedTFBuffers[i] || binding.getOffset() != mAppliedTFOffsets[i])
{
requiresUpdate = true;
}
}
}
if (requiresUpdate || numXFBBindings != mAppliedNumXFBBindings)
{
const gl::TransformFeedback *transformFeedback = state.getCurrentTransformFeedback();
for (size_t i = 0; i < numXFBBindings; ++i)
{
const OffsetBindingPointer<gl::Buffer> &binding = transformFeedback->getIndexedBuffer(i);
if (binding.get() != nullptr)
{
Buffer11 *storage = GetImplAs<Buffer11>(binding.get());
ID3D11Buffer *d3dBuffer = storage->getBuffer(BUFFER_USAGE_VERTEX_OR_TRANSFORM_FEEDBACK);
mCurrentD3DOffsets[i] = (mAppliedTFBuffers[i] != d3dBuffer || mAppliedTFOffsets[i] != binding.getOffset()) ?
static_cast<UINT>(binding.getOffset()) : -1;
mAppliedTFBuffers[i] = d3dBuffer;
}
else
{
mAppliedTFBuffers[i] = NULL;
mCurrentD3DOffsets[i] = 0;
}
mAppliedTFOffsets[i] = binding.getOffset();
}
mAppliedNumXFBBindings = numXFBBindings;
mDeviceContext->SOSetTargets(numXFBBindings, mAppliedTFBuffers, mCurrentD3DOffsets);
}
}
gl::Error Renderer11::drawArrays(const gl::Data &data, GLenum mode, GLsizei count, GLsizei instances, bool usesPointSize)
{
bool useInstancedPointSpriteEmulation = usesPointSize && getWorkarounds().useInstancedPointSpriteEmulation;
if (mode == GL_POINTS && data.state->isTransformFeedbackActiveUnpaused())
{
// Since point sprites are generated with a geometry shader, too many vertices will
// be written if transform feedback is active. To work around this, draw only the points
// with the stream out shader and no pixel shader to feed the stream out buffers and then
// draw again with the point sprite geometry shader to rasterize the point sprites.
mDeviceContext->PSSetShader(NULL, NULL, 0);
if (instances > 0)
{
mDeviceContext->DrawInstanced(count, instances, 0, 0);
}
else
{
mDeviceContext->Draw(count, 0);
}
ProgramD3D *programD3D = GetImplAs<ProgramD3D>(data.state->getProgram());
rx::ShaderExecutableD3D *pixelExe = NULL;
gl::Error error = programD3D->getPixelExecutableForFramebuffer(data.state->getDrawFramebuffer(), &pixelExe);
if (error.isError())
{
return error;
}
// Skip this step if we're doing rasterizer discard.
if (pixelExe && !data.state->getRasterizerState().rasterizerDiscard && usesPointSize)
{
ID3D11PixelShader *pixelShader = GetAs<ShaderExecutable11>(pixelExe)->getPixelShader();
ASSERT(reinterpret_cast<uintptr_t>(pixelShader) == mAppliedPixelShader);
mDeviceContext->PSSetShader(pixelShader, NULL, 0);
// Retrieve the point sprite geometry shader
rx::ShaderExecutableD3D *geometryExe = programD3D->getGeometryExecutable();
ID3D11GeometryShader *geometryShader = (geometryExe ? GetAs<ShaderExecutable11>(geometryExe)->getGeometryShader() : NULL);
mAppliedGeometryShader = reinterpret_cast<uintptr_t>(geometryShader);
ASSERT(geometryShader);
mDeviceContext->GSSetShader(geometryShader, NULL, 0);
if (instances > 0)
{
mDeviceContext->DrawInstanced(count, instances, 0, 0);
}
else
{
mDeviceContext->Draw(count, 0);
}
}
return gl::Error(GL_NO_ERROR);
}
else if (mode == GL_LINE_LOOP)
{
return drawLineLoop(count, GL_NONE, NULL, 0, NULL);
}
else if (mode == GL_TRIANGLE_FAN)
{
return drawTriangleFan(count, GL_NONE, NULL, 0, NULL, instances);
}
else if (instances > 0)
{
mDeviceContext->DrawInstanced(count, instances, 0, 0);
return gl::Error(GL_NO_ERROR);
}
else
{
// If the shader is writing to gl_PointSize, then pointsprites are being rendered.
// Emulating instanced point sprites for FL9_3 requires the topology to be
// D3D_PRIMITIVE_TOPOLOGY_TRIANGLELIST and DrawIndexedInstanced is called instead.
if (mode == GL_POINTS && useInstancedPointSpriteEmulation)
{
mDeviceContext->DrawIndexedInstanced(6, count, 0, 0, 0);
}
else
{
mDeviceContext->Draw(count, 0);
}
return gl::Error(GL_NO_ERROR);
}
}
gl::Error Renderer11::drawElements(GLenum mode, GLsizei count, GLenum type, const GLvoid *indices,
gl::Buffer *elementArrayBuffer, const TranslatedIndexData &indexInfo, GLsizei instances,
bool usesPointSize)
{
bool useInstancedPointSpriteEmulation = usesPointSize && getWorkarounds().useInstancedPointSpriteEmulation;
int minIndex = static_cast<int>(indexInfo.indexRange.start);
if (mode == GL_LINE_LOOP)
{
return drawLineLoop(count, type, indices, minIndex, elementArrayBuffer);
}
else if (mode == GL_TRIANGLE_FAN)
{
return drawTriangleFan(count, type, indices, minIndex, elementArrayBuffer, instances);
}
else if (instances > 0)
{
mDeviceContext->DrawIndexedInstanced(count, instances, 0, -minIndex, 0);
return gl::Error(GL_NO_ERROR);
}
else
{
// If the shader is writing to gl_PointSize, then pointsprites are being rendered.
// Emulating instanced point sprites for FL9_3 requires the topology to be
// D3D_PRIMITIVE_TOPOLOGY_TRIANGLELIST and DrawIndexedInstanced is called instead.
if (mode == GL_POINTS && useInstancedPointSpriteEmulation)
{
// The count parameter passed to drawElements represents the total number of instances
// to be rendered. Each instance is referenced by the bound index buffer from the
// the caller.
//
// Indexed pointsprite emulation replicates data for duplicate entries found
// in the index buffer.
// This is not an efficent rendering mechanism and is only used on downlevel renderers
// that do not support geometry shaders.
mDeviceContext->DrawIndexedInstanced(6, count, 0, 0, 0);
return gl::Error(GL_NO_ERROR);
}
else
{
mDeviceContext->DrawIndexed(count, 0, -minIndex);
return gl::Error(GL_NO_ERROR);
}
}
}
gl::Error Renderer11::drawLineLoop(GLsizei count, GLenum type, const GLvoid *indices, int minIndex, gl::Buffer *elementArrayBuffer)
{
// Get the raw indices for an indexed draw
if (type != GL_NONE && elementArrayBuffer)
{
BufferD3D *storage = GetImplAs<BufferD3D>(elementArrayBuffer);
intptr_t offset = reinterpret_cast<intptr_t>(indices);
const uint8_t *bufferData = NULL;
gl::Error error = storage->getData(&bufferData);
if (error.isError())
{
return error;
}
indices = bufferData + offset;
}
if (!mLineLoopIB)
{
mLineLoopIB = new StreamingIndexBufferInterface(this);
gl::Error error = mLineLoopIB->reserveBufferSpace(INITIAL_INDEX_BUFFER_SIZE, GL_UNSIGNED_INT);
if (error.isError())
{
SafeDelete(mLineLoopIB);
return error;
}
}
// Checked by Renderer11::applyPrimitiveType
ASSERT(count >= 0);
if (static_cast<unsigned int>(count) + 1 > (std::numeric_limits<unsigned int>::max() / sizeof(unsigned int)))
{
return gl::Error(GL_OUT_OF_MEMORY, "Failed to create a 32-bit looping index buffer for GL_LINE_LOOP, too many indices required.");
}
const unsigned int spaceNeeded = (static_cast<unsigned int>(count) + 1) * sizeof(unsigned int);
gl::Error error = mLineLoopIB->reserveBufferSpace(spaceNeeded, GL_UNSIGNED_INT);
if (error.isError())
{
return error;
}
void* mappedMemory = NULL;
unsigned int offset;
error = mLineLoopIB->mapBuffer(spaceNeeded, &mappedMemory, &offset);
if (error.isError())
{
return error;
}
unsigned int *data = reinterpret_cast<unsigned int*>(mappedMemory);
unsigned int indexBufferOffset = offset;
switch (type)
{
case GL_NONE: // Non-indexed draw
for (int i = 0; i < count; i++)
{
data[i] = i;
}
data[count] = 0;
break;
case GL_UNSIGNED_BYTE:
for (int i = 0; i < count; i++)
{
data[i] = static_cast<const GLubyte*>(indices)[i];
}
data[count] = static_cast<const GLubyte*>(indices)[0];
break;
case GL_UNSIGNED_SHORT:
for (int i = 0; i < count; i++)
{
data[i] = static_cast<const GLushort*>(indices)[i];
}
data[count] = static_cast<const GLushort*>(indices)[0];
break;
case GL_UNSIGNED_INT:
for (int i = 0; i < count; i++)
{
data[i] = static_cast<const GLuint*>(indices)[i];
}
data[count] = static_cast<const GLuint*>(indices)[0];
break;
default: UNREACHABLE();
}
error = mLineLoopIB->unmapBuffer();
if (error.isError())
{
return error;
}
IndexBuffer11 *indexBuffer = GetAs<IndexBuffer11>(mLineLoopIB->getIndexBuffer());
ID3D11Buffer *d3dIndexBuffer = indexBuffer->getBuffer();
DXGI_FORMAT indexFormat = indexBuffer->getIndexFormat();
if (mAppliedIB != d3dIndexBuffer || mAppliedIBFormat != indexFormat || mAppliedIBOffset != indexBufferOffset)
{
mDeviceContext->IASetIndexBuffer(d3dIndexBuffer, indexFormat, indexBufferOffset);
mAppliedIB = d3dIndexBuffer;
mAppliedIBFormat = indexFormat;
mAppliedIBOffset = indexBufferOffset;
}
mDeviceContext->DrawIndexed(count + 1, 0, -minIndex);
return gl::Error(GL_NO_ERROR);
}
gl::Error Renderer11::drawTriangleFan(GLsizei count, GLenum type, const GLvoid *indices, int minIndex, gl::Buffer *elementArrayBuffer, int instances)
{
// Get the raw indices for an indexed draw
if (type != GL_NONE && elementArrayBuffer)
{
BufferD3D *storage = GetImplAs<BufferD3D>(elementArrayBuffer);
intptr_t offset = reinterpret_cast<intptr_t>(indices);
const uint8_t *bufferData = NULL;
gl::Error error = storage->getData(&bufferData);
if (error.isError())
{
return error;
}
indices = bufferData + offset;
}
if (!mTriangleFanIB)
{
mTriangleFanIB = new StreamingIndexBufferInterface(this);
gl::Error error = mTriangleFanIB->reserveBufferSpace(INITIAL_INDEX_BUFFER_SIZE, GL_UNSIGNED_INT);
if (error.isError())
{
SafeDelete(mTriangleFanIB);
return error;
}
}
// Checked by Renderer11::applyPrimitiveType
ASSERT(count >= 3);
const unsigned int numTris = count - 2;
if (numTris > (std::numeric_limits<unsigned int>::max() / (sizeof(unsigned int) * 3)))
{
return gl::Error(GL_OUT_OF_MEMORY, "Failed to create a scratch index buffer for GL_TRIANGLE_FAN, too many indices required.");
}
const unsigned int spaceNeeded = (numTris * 3) * sizeof(unsigned int);
gl::Error error = mTriangleFanIB->reserveBufferSpace(spaceNeeded, GL_UNSIGNED_INT);
if (error.isError())
{
return error;
}
void* mappedMemory = NULL;
unsigned int offset;
error = mTriangleFanIB->mapBuffer(spaceNeeded, &mappedMemory, &offset);
if (error.isError())
{
return error;
}
unsigned int *data = reinterpret_cast<unsigned int*>(mappedMemory);
unsigned int indexBufferOffset = offset;
switch (type)
{
case GL_NONE: // Non-indexed draw
for (unsigned int i = 0; i < numTris; i++)
{
data[i*3 + 0] = 0;
data[i*3 + 1] = i + 1;
data[i*3 + 2] = i + 2;
}
break;
case GL_UNSIGNED_BYTE:
for (unsigned int i = 0; i < numTris; i++)
{
data[i*3 + 0] = static_cast<const GLubyte*>(indices)[0];
data[i*3 + 1] = static_cast<const GLubyte*>(indices)[i + 1];
data[i*3 + 2] = static_cast<const GLubyte*>(indices)[i + 2];
}
break;
case GL_UNSIGNED_SHORT:
for (unsigned int i = 0; i < numTris; i++)
{
data[i*3 + 0] = static_cast<const GLushort*>(indices)[0];
data[i*3 + 1] = static_cast<const GLushort*>(indices)[i + 1];
data[i*3 + 2] = static_cast<const GLushort*>(indices)[i + 2];
}
break;
case GL_UNSIGNED_INT:
for (unsigned int i = 0; i < numTris; i++)
{
data[i*3 + 0] = static_cast<const GLuint*>(indices)[0];
data[i*3 + 1] = static_cast<const GLuint*>(indices)[i + 1];
data[i*3 + 2] = static_cast<const GLuint*>(indices)[i + 2];
}
break;
default: UNREACHABLE();
}
error = mTriangleFanIB->unmapBuffer();
if (error.isError())
{
return error;
}
IndexBuffer11 *indexBuffer = GetAs<IndexBuffer11>(mTriangleFanIB->getIndexBuffer());
ID3D11Buffer *d3dIndexBuffer = indexBuffer->getBuffer();
DXGI_FORMAT indexFormat = indexBuffer->getIndexFormat();
if (mAppliedIB != d3dIndexBuffer || mAppliedIBFormat != indexFormat || mAppliedIBOffset != indexBufferOffset)
{
mDeviceContext->IASetIndexBuffer(d3dIndexBuffer, indexFormat, indexBufferOffset);
mAppliedIB = d3dIndexBuffer;
mAppliedIBFormat = indexFormat;
mAppliedIBOffset = indexBufferOffset;
}
if (instances > 0)
{
mDeviceContext->DrawIndexedInstanced(numTris * 3, instances, 0, -minIndex, 0);
}
else
{
mDeviceContext->DrawIndexed(numTris * 3, 0, -minIndex);
}
return gl::Error(GL_NO_ERROR);
}
gl::Error Renderer11::applyShaders(gl::Program *program,
const gl::Framebuffer *framebuffer,
bool rasterizerDiscard,
bool transformFeedbackActive)
{
ProgramD3D *programD3D = GetImplAs<ProgramD3D>(program);
const auto &inputLayout = programD3D->getCachedInputLayout();
ShaderExecutableD3D *vertexExe = NULL;
gl::Error error = programD3D->getVertexExecutableForInputLayout(inputLayout, &vertexExe, nullptr);
if (error.isError())
{
return error;
}
ShaderExecutableD3D *pixelExe = NULL;
error = programD3D->getPixelExecutableForFramebuffer(framebuffer, &pixelExe);
if (error.isError())
{
return error;
}
ShaderExecutableD3D *geometryExe = programD3D->getGeometryExecutable();
ID3D11VertexShader *vertexShader = (vertexExe ? GetAs<ShaderExecutable11>(vertexExe)->getVertexShader() : NULL);
ID3D11PixelShader *pixelShader = NULL;
// Skip pixel shader if we're doing rasterizer discard.
if (!rasterizerDiscard)
{
pixelShader = (pixelExe ? GetAs<ShaderExecutable11>(pixelExe)->getPixelShader() : NULL);
}
ID3D11GeometryShader *geometryShader = NULL;
if (transformFeedbackActive)
{
geometryShader = (vertexExe ? GetAs<ShaderExecutable11>(vertexExe)->getStreamOutShader() : NULL);
}
else if (mCurRasterState.pointDrawMode)
{
geometryShader = (geometryExe ? GetAs<ShaderExecutable11>(geometryExe)->getGeometryShader() : NULL);
}
bool dirtyUniforms = false;
if (reinterpret_cast<uintptr_t>(vertexShader) != mAppliedVertexShader)
{
mDeviceContext->VSSetShader(vertexShader, NULL, 0);
mAppliedVertexShader = reinterpret_cast<uintptr_t>(vertexShader);
dirtyUniforms = true;
}
if (reinterpret_cast<uintptr_t>(geometryShader) != mAppliedGeometryShader)
{
mDeviceContext->GSSetShader(geometryShader, NULL, 0);
mAppliedGeometryShader = reinterpret_cast<uintptr_t>(geometryShader);
dirtyUniforms = true;
}
if (reinterpret_cast<uintptr_t>(pixelShader) != mAppliedPixelShader)
{
mDeviceContext->PSSetShader(pixelShader, NULL, 0);
mAppliedPixelShader = reinterpret_cast<uintptr_t>(pixelShader);
dirtyUniforms = true;
}
if (dirtyUniforms)
{
programD3D->dirtyAllUniforms();
}
return gl::Error(GL_NO_ERROR);
}
gl::Error Renderer11::applyUniforms(const ProgramImpl &program, const std::vector<gl::LinkedUniform*> &uniformArray)
{
unsigned int totalRegisterCountVS = 0;
unsigned int totalRegisterCountPS = 0;
bool vertexUniformsDirty = false;
bool pixelUniformsDirty = false;
for (size_t uniformIndex = 0; uniformIndex < uniformArray.size(); uniformIndex++)
{
const gl::LinkedUniform &uniform = *uniformArray[uniformIndex];
if (uniform.isReferencedByVertexShader() && !uniform.isSampler())
{
totalRegisterCountVS += uniform.registerCount;
vertexUniformsDirty = (vertexUniformsDirty || uniform.dirty);
}
if (uniform.isReferencedByFragmentShader() && !uniform.isSampler())
{
totalRegisterCountPS += uniform.registerCount;
pixelUniformsDirty = (pixelUniformsDirty || uniform.dirty);
}
}
const ProgramD3D *programD3D = GetAs<ProgramD3D>(&program);
const UniformStorage11 *vertexUniformStorage = GetAs<UniformStorage11>(&programD3D->getVertexUniformStorage());
const UniformStorage11 *fragmentUniformStorage = GetAs<UniformStorage11>(&programD3D->getFragmentUniformStorage());
ASSERT(vertexUniformStorage);
ASSERT(fragmentUniformStorage);
ID3D11Buffer *vertexConstantBuffer = vertexUniformStorage->getConstantBuffer();
ID3D11Buffer *pixelConstantBuffer = fragmentUniformStorage->getConstantBuffer();
float (*mapVS)[4] = NULL;
float (*mapPS)[4] = NULL;
if (totalRegisterCountVS > 0 && vertexUniformsDirty)
{
D3D11_MAPPED_SUBRESOURCE map = {0};
HRESULT result = mDeviceContext->Map(vertexConstantBuffer, 0, D3D11_MAP_WRITE_DISCARD, 0, &map);
UNUSED_ASSERTION_VARIABLE(result);
ASSERT(SUCCEEDED(result));
mapVS = (float(*)[4])map.pData;
}
if (totalRegisterCountPS > 0 && pixelUniformsDirty)
{
D3D11_MAPPED_SUBRESOURCE map = {0};
HRESULT result = mDeviceContext->Map(pixelConstantBuffer, 0, D3D11_MAP_WRITE_DISCARD, 0, &map);
UNUSED_ASSERTION_VARIABLE(result);
ASSERT(SUCCEEDED(result));
mapPS = (float(*)[4])map.pData;
}
for (size_t uniformIndex = 0; uniformIndex < uniformArray.size(); uniformIndex++)
{
gl::LinkedUniform *uniform = uniformArray[uniformIndex];
if (!uniform->isSampler())
{
unsigned int componentCount = (4 - uniform->registerElement);
// we assume that uniforms from structs are arranged in struct order in our uniforms list. otherwise we would
// overwrite previously written regions of memory.
if (uniform->isReferencedByVertexShader() && mapVS)
{
memcpy(&mapVS[uniform->vsRegisterIndex][uniform->registerElement], uniform->data, uniform->registerCount * sizeof(float) * componentCount);
}
if (uniform->isReferencedByFragmentShader() && mapPS)
{
memcpy(&mapPS[uniform->psRegisterIndex][uniform->registerElement], uniform->data, uniform->registerCount * sizeof(float) * componentCount);
}
}
}
if (mapVS)
{
mDeviceContext->Unmap(vertexConstantBuffer, 0);
}
if (mapPS)
{
mDeviceContext->Unmap(pixelConstantBuffer, 0);
}
if (mCurrentVertexConstantBuffer != vertexConstantBuffer)
{
mDeviceContext->VSSetConstantBuffers(0, 1, &vertexConstantBuffer);
mCurrentVertexConstantBuffer = vertexConstantBuffer;
}
if (mCurrentPixelConstantBuffer != pixelConstantBuffer)
{
mDeviceContext->PSSetConstantBuffers(0, 1, &pixelConstantBuffer);
mCurrentPixelConstantBuffer = pixelConstantBuffer;
}
// Driver uniforms
if (!mDriverConstantBufferVS)
{
D3D11_BUFFER_DESC constantBufferDescription = {0};
constantBufferDescription.ByteWidth = sizeof(dx_VertexConstants);
constantBufferDescription.Usage = D3D11_USAGE_DEFAULT;
constantBufferDescription.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
constantBufferDescription.CPUAccessFlags = 0;
constantBufferDescription.MiscFlags = 0;
constantBufferDescription.StructureByteStride = 0;
HRESULT result = mDevice->CreateBuffer(&constantBufferDescription, NULL, &mDriverConstantBufferVS);
ASSERT(SUCCEEDED(result));
if (FAILED(result))
{
return gl::Error(GL_OUT_OF_MEMORY, "Failed to create vertex shader constant buffer, result: 0x%X.", result);
}
mDeviceContext->VSSetConstantBuffers(1, 1, &mDriverConstantBufferVS);
}
if (!mDriverConstantBufferPS)
{
D3D11_BUFFER_DESC constantBufferDescription = {0};
constantBufferDescription.ByteWidth = sizeof(dx_PixelConstants);
constantBufferDescription.Usage = D3D11_USAGE_DEFAULT;
constantBufferDescription.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
constantBufferDescription.CPUAccessFlags = 0;
constantBufferDescription.MiscFlags = 0;
constantBufferDescription.StructureByteStride = 0;
HRESULT result = mDevice->CreateBuffer(&constantBufferDescription, NULL, &mDriverConstantBufferPS);
ASSERT(SUCCEEDED(result));
if (FAILED(result))
{
return gl::Error(GL_OUT_OF_MEMORY, "Failed to create pixel shader constant buffer, result: 0x%X.", result);
}
mDeviceContext->PSSetConstantBuffers(1, 1, &mDriverConstantBufferPS);
}
if (memcmp(&mVertexConstants, &mAppliedVertexConstants, sizeof(dx_VertexConstants)) != 0)
{
ASSERT(mDriverConstantBufferVS != nullptr);
if (mDriverConstantBufferVS)
{
mDeviceContext->UpdateSubresource(mDriverConstantBufferVS, 0, NULL, &mVertexConstants, 16, 0);
memcpy(&mAppliedVertexConstants, &mVertexConstants, sizeof(dx_VertexConstants));
}
}
if (memcmp(&mPixelConstants, &mAppliedPixelConstants, sizeof(dx_PixelConstants)) != 0)
{
ASSERT(mDriverConstantBufferPS != nullptr);
if (mDriverConstantBufferPS)
{
mDeviceContext->UpdateSubresource(mDriverConstantBufferPS, 0, NULL, &mPixelConstants, 16, 0);
memcpy(&mAppliedPixelConstants, &mPixelConstants, sizeof(dx_PixelConstants));
}
}
// GSSetConstantBuffers triggers device removal on 9_3, so we should only call it if necessary
if (programD3D->usesGeometryShader())
{
// needed for the point sprite geometry shader
if (mCurrentGeometryConstantBuffer != mDriverConstantBufferPS)
{
ASSERT(mDriverConstantBufferPS != nullptr);
if (mDriverConstantBufferPS)
{
mDeviceContext->GSSetConstantBuffers(0, 1, &mDriverConstantBufferPS);
mCurrentGeometryConstantBuffer = mDriverConstantBufferPS;
}
}
}
return gl::Error(GL_NO_ERROR);
}
void Renderer11::markAllStateDirty()
{
TRACE_EVENT0("gpu.angle", "Renderer11::markAllStateDirty");
for (size_t rtIndex = 0; rtIndex < ArraySize(mAppliedRTVs); rtIndex++)
{
mAppliedRTVs[rtIndex] = DirtyPointer;
}
mAppliedDSV = DirtyPointer;
mDepthStencilInitialized = false;
mRenderTargetDescInitialized = false;
// We reset the current SRV data because it might not be in sync with D3D's state
// anymore. For example when a currently used SRV is used as an RTV, D3D silently
// remove it from its state.
mCurVertexSRVs.clear();
mCurPixelSRVs.clear();
ASSERT(mForceSetVertexSamplerStates.size() == mCurVertexSRVs.size());
for (size_t vsamplerId = 0; vsamplerId < mForceSetVertexSamplerStates.size(); ++vsamplerId)
{
mForceSetVertexSamplerStates[vsamplerId] = true;
}
ASSERT(mForceSetPixelSamplerStates.size() == mCurPixelSRVs.size());
for (size_t fsamplerId = 0; fsamplerId < mForceSetPixelSamplerStates.size(); ++fsamplerId)
{
mForceSetPixelSamplerStates[fsamplerId] = true;
}
mForceSetBlendState = true;
mForceSetRasterState = true;
mForceSetDepthStencilState = true;
mForceSetScissor = true;
mForceSetViewport = true;
mAppliedIB = NULL;
mAppliedIBFormat = DXGI_FORMAT_UNKNOWN;
mAppliedIBOffset = 0;
mAppliedVertexShader = DirtyPointer;
mAppliedGeometryShader = DirtyPointer;
mAppliedPixelShader = DirtyPointer;
mAppliedNumXFBBindings = static_cast<size_t>(-1);
for (size_t i = 0; i < gl::IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_BUFFERS; i++)
{
mAppliedTFBuffers[i] = NULL;
mAppliedTFOffsets[i] = 0;
}
memset(&mAppliedVertexConstants, 0, sizeof(dx_VertexConstants));
memset(&mAppliedPixelConstants, 0, sizeof(dx_PixelConstants));
mInputLayoutCache.markDirty();
for (unsigned int i = 0; i < gl::IMPLEMENTATION_MAX_VERTEX_SHADER_UNIFORM_BUFFERS; i++)
{
mCurrentConstantBufferVS[i] = static_cast<unsigned int>(-1);
mCurrentConstantBufferVSOffset[i] = 0;
mCurrentConstantBufferVSSize[i] = 0;
mCurrentConstantBufferPS[i] = static_cast<unsigned int>(-1);
mCurrentConstantBufferPSOffset[i] = 0;
mCurrentConstantBufferPSSize[i] = 0;
}
mCurrentVertexConstantBuffer = NULL;
mCurrentPixelConstantBuffer = NULL;
mCurrentGeometryConstantBuffer = NULL;
mCurrentPrimitiveTopology = D3D_PRIMITIVE_TOPOLOGY_UNDEFINED;
}
void Renderer11::releaseDeviceResources()
{
mStateCache.clear();
mInputLayoutCache.clear();
SafeDelete(mVertexDataManager);
SafeDelete(mIndexDataManager);
SafeDelete(mLineLoopIB);
SafeDelete(mTriangleFanIB);
SafeDelete(mBlit);
SafeDelete(mClear);
SafeDelete(mTrim);
SafeDelete(mPixelTransfer);
SafeRelease(mDriverConstantBufferVS);
SafeRelease(mDriverConstantBufferPS);
SafeRelease(mSyncQuery);
}
// set notify to true to broadcast a message to all contexts of the device loss
bool Renderer11::testDeviceLost()
{
bool isLost = false;
// GetRemovedReason is used to test if the device is removed
HRESULT result = mDevice->GetDeviceRemovedReason();
isLost = d3d11::isDeviceLostError(result);
if (isLost)
{
// Log error if this is a new device lost event
if (mDeviceLost == false)
{
ERR("The D3D11 device was removed: 0x%08X", result);
}
// ensure we note the device loss --
// we'll probably get this done again by notifyDeviceLost
// but best to remember it!
// Note that we don't want to clear the device loss status here
// -- this needs to be done by resetDevice
mDeviceLost = true;
}
return isLost;
}
bool Renderer11::testDeviceResettable()
{
// determine if the device is resettable by creating a dummy device
PFN_D3D11_CREATE_DEVICE D3D11CreateDevice = (PFN_D3D11_CREATE_DEVICE)GetProcAddress(mD3d11Module, "D3D11CreateDevice");
if (D3D11CreateDevice == NULL)
{
return false;
}
ID3D11Device* dummyDevice;
D3D_FEATURE_LEVEL dummyFeatureLevel;
ID3D11DeviceContext* dummyContext;
HRESULT result = D3D11CreateDevice(NULL,
mDriverType,
NULL,
#if defined(_DEBUG)
D3D11_CREATE_DEVICE_DEBUG,
#else
0,
#endif
mAvailableFeatureLevels.data(),
mAvailableFeatureLevels.size(),
D3D11_SDK_VERSION,
&dummyDevice,
&dummyFeatureLevel,
&dummyContext);
if (!mDevice || FAILED(result))
{
return false;
}
SafeRelease(dummyContext);
SafeRelease(dummyDevice);
return true;
}
void Renderer11::release()
{
RendererD3D::cleanup();
releaseDeviceResources();
SafeRelease(mDxgiFactory);
SafeRelease(mDxgiAdapter);
SafeRelease(mDeviceContext1);
if (mDeviceContext)
{
mDeviceContext->ClearState();
mDeviceContext->Flush();
SafeRelease(mDeviceContext);
}
SafeRelease(mDevice);
SafeRelease(mDebug);
if (mD3d11Module)
{
FreeLibrary(mD3d11Module);
mD3d11Module = NULL;
}
if (mDxgiModule)
{
FreeLibrary(mDxgiModule);
mDxgiModule = NULL;
}
mCompiler.release();
}
bool Renderer11::resetDevice()
{
// recreate everything
release();
egl::Error result = initialize();
if (result.isError())
{
ERR("Could not reinitialize D3D11 device: %08X", result.getCode());
return false;
}
mDeviceLost = false;
return true;
}
VendorID Renderer11::getVendorId() const
{
return static_cast<VendorID>(mAdapterDescription.VendorId);
}
std::string Renderer11::getRendererDescription() const
{
std::ostringstream rendererString;
rendererString << mDescription;
rendererString << " Direct3D11";
rendererString << " vs_" << getMajorShaderModel() << "_" << getMinorShaderModel() << getShaderModelSuffix();
rendererString << " ps_" << getMajorShaderModel() << "_" << getMinorShaderModel() << getShaderModelSuffix();
return rendererString.str();
}
DeviceIdentifier Renderer11::getAdapterIdentifier() const
{
// Don't use the AdapterLuid here, since that doesn't persist across reboot.
DeviceIdentifier deviceIdentifier = { 0 };
deviceIdentifier.VendorId = mAdapterDescription.VendorId;
deviceIdentifier.DeviceId = mAdapterDescription.DeviceId;
deviceIdentifier.SubSysId = mAdapterDescription.SubSysId;
deviceIdentifier.Revision = mAdapterDescription.Revision;
deviceIdentifier.FeatureLevel = static_cast<UINT>(mRenderer11DeviceCaps.featureLevel);
return deviceIdentifier;
}
unsigned int Renderer11::getReservedVertexUniformVectors() const
{
return 0; // Driver uniforms are stored in a separate constant buffer
}
unsigned int Renderer11::getReservedFragmentUniformVectors() const
{
return 0; // Driver uniforms are stored in a separate constant buffer
}
unsigned int Renderer11::getReservedVertexUniformBuffers() const
{
// we reserve one buffer for the application uniforms, and one for driver uniforms
return 2;
}
unsigned int Renderer11::getReservedFragmentUniformBuffers() const
{
// we reserve one buffer for the application uniforms, and one for driver uniforms
return 2;
}
bool Renderer11::getShareHandleSupport() const
{
// We only currently support share handles with BGRA surfaces, because
// chrome needs BGRA. Once chrome fixes this, we should always support them.
if (!getRendererExtensions().textureFormatBGRA8888)
{
return false;
}
// PIX doesn't seem to support using share handles, so disable them.
if (gl::DebugAnnotationsActive())
{
return false;
}
// Also disable share handles on Feature Level 9_3, since it doesn't support share handles on RGBA8 textures/swapchains.
if (mRenderer11DeviceCaps.featureLevel <= D3D_FEATURE_LEVEL_9_3)
{
return false;
}
// Also disable on non-hardware drivers, since sharing doesn't work cross-driver.
if (mDriverType != D3D_DRIVER_TYPE_HARDWARE)
{
return false;
}
return true;
}
bool Renderer11::getPostSubBufferSupport() const
{
// D3D11 does not support present with dirty rectangles until DXGI 1.2.
return mRenderer11DeviceCaps.supportsDXGI1_2;
}
int Renderer11::getMajorShaderModel() const
{
switch (mRenderer11DeviceCaps.featureLevel)
{
case D3D_FEATURE_LEVEL_11_0: return D3D11_SHADER_MAJOR_VERSION; // 5
case D3D_FEATURE_LEVEL_10_1: return D3D10_1_SHADER_MAJOR_VERSION; // 4
case D3D_FEATURE_LEVEL_10_0: return D3D10_SHADER_MAJOR_VERSION; // 4
case D3D_FEATURE_LEVEL_9_3: return D3D10_SHADER_MAJOR_VERSION; // 4
default: UNREACHABLE(); return 0;
}
}
int Renderer11::getMinorShaderModel() const
{
switch (mRenderer11DeviceCaps.featureLevel)
{
case D3D_FEATURE_LEVEL_11_0: return D3D11_SHADER_MINOR_VERSION; // 0
case D3D_FEATURE_LEVEL_10_1: return D3D10_1_SHADER_MINOR_VERSION; // 1
case D3D_FEATURE_LEVEL_10_0: return D3D10_SHADER_MINOR_VERSION; // 0
case D3D_FEATURE_LEVEL_9_3: return D3D10_SHADER_MINOR_VERSION; // 0
default: UNREACHABLE(); return 0;
}
}
std::string Renderer11::getShaderModelSuffix() const
{
switch (mRenderer11DeviceCaps.featureLevel)
{
case D3D_FEATURE_LEVEL_11_0: return "";
case D3D_FEATURE_LEVEL_10_1: return "";
case D3D_FEATURE_LEVEL_10_0: return "";
case D3D_FEATURE_LEVEL_9_3: return "_level_9_3";
default: UNREACHABLE(); return "";
}
}
gl::Error Renderer11::copyImage2D(const gl::Framebuffer *framebuffer, const gl::Rectangle &sourceRect, GLenum destFormat,
const gl::Offset &destOffset, TextureStorage *storage, GLint level)
{
const gl::FramebufferAttachment *colorbuffer = framebuffer->getReadColorbuffer();
ASSERT(colorbuffer);
RenderTarget11 *sourceRenderTarget = NULL;
gl::Error error = colorbuffer->getRenderTarget(&sourceRenderTarget);
if (error.isError())
{
return error;
}
ASSERT(sourceRenderTarget);
ID3D11ShaderResourceView *source = sourceRenderTarget->getShaderResourceView();
ASSERT(source);
TextureStorage11_2D *storage11 = GetAs<TextureStorage11_2D>(storage);
ASSERT(storage11);
gl::ImageIndex index = gl::ImageIndex::Make2D(level);
RenderTargetD3D *destRenderTarget = NULL;
error = storage11->getRenderTarget(index, &destRenderTarget);
if (error.isError())
{
return error;
}
ASSERT(destRenderTarget);
ID3D11RenderTargetView *dest = GetAs<RenderTarget11>(destRenderTarget)->getRenderTargetView();
ASSERT(dest);
gl::Box sourceArea(sourceRect.x, sourceRect.y, 0, sourceRect.width, sourceRect.height, 1);
gl::Extents sourceSize(sourceRenderTarget->getWidth(), sourceRenderTarget->getHeight(), 1);
gl::Box destArea(destOffset.x, destOffset.y, 0, sourceRect.width, sourceRect.height, 1);
gl::Extents destSize(destRenderTarget->getWidth(), destRenderTarget->getHeight(), 1);
// Use nearest filtering because source and destination are the same size for the direct
// copy
error = mBlit->copyTexture(source, sourceArea, sourceSize, dest, destArea, destSize, NULL, destFormat, GL_NEAREST);
if (error.isError())
{
return error;
}
storage11->invalidateSwizzleCacheLevel(level);
return gl::Error(GL_NO_ERROR);
}
gl::Error Renderer11::copyImageCube(const gl::Framebuffer *framebuffer, const gl::Rectangle &sourceRect, GLenum destFormat,
const gl::Offset &destOffset, TextureStorage *storage, GLenum target, GLint level)
{
const gl::FramebufferAttachment *colorbuffer = framebuffer->getReadColorbuffer();
ASSERT(colorbuffer);
RenderTarget11 *sourceRenderTarget = NULL;
gl::Error error = colorbuffer->getRenderTarget(&sourceRenderTarget);
if (error.isError())
{
return error;
}
ASSERT(sourceRenderTarget);
ID3D11ShaderResourceView *source = sourceRenderTarget->getShaderResourceView();
ASSERT(source);
TextureStorage11_Cube *storage11 = GetAs<TextureStorage11_Cube>(storage);
ASSERT(storage11);
gl::ImageIndex index = gl::ImageIndex::MakeCube(target, level);
RenderTargetD3D *destRenderTarget = NULL;
error = storage11->getRenderTarget(index, &destRenderTarget);
if (error.isError())
{
return error;
}
ASSERT(destRenderTarget);
ID3D11RenderTargetView *dest = GetAs<RenderTarget11>(destRenderTarget)->getRenderTargetView();
ASSERT(dest);
gl::Box sourceArea(sourceRect.x, sourceRect.y, 0, sourceRect.width, sourceRect.height, 1);
gl::Extents sourceSize(sourceRenderTarget->getWidth(), sourceRenderTarget->getHeight(), 1);
gl::Box destArea(destOffset.x, destOffset.y, 0, sourceRect.width, sourceRect.height, 1);
gl::Extents destSize(destRenderTarget->getWidth(), destRenderTarget->getHeight(), 1);
// Use nearest filtering because source and destination are the same size for the direct
// copy
error = mBlit->copyTexture(source, sourceArea, sourceSize, dest, destArea, destSize, NULL, destFormat, GL_NEAREST);
if (error.isError())
{
return error;
}
storage11->invalidateSwizzleCacheLevel(level);
return gl::Error(GL_NO_ERROR);
}
gl::Error Renderer11::copyImage3D(const gl::Framebuffer *framebuffer, const gl::Rectangle &sourceRect, GLenum destFormat,
const gl::Offset &destOffset, TextureStorage *storage, GLint level)
{
const gl::FramebufferAttachment *colorbuffer = framebuffer->getReadColorbuffer();
ASSERT(colorbuffer);
RenderTarget11 *sourceRenderTarget = NULL;
gl::Error error = colorbuffer->getRenderTarget(&sourceRenderTarget);
if (error.isError())
{
return error;
}
ASSERT(sourceRenderTarget);
ID3D11ShaderResourceView *source = sourceRenderTarget->getShaderResourceView();
ASSERT(source);
TextureStorage11_3D *storage11 = GetAs<TextureStorage11_3D>(storage);
ASSERT(storage11);
gl::ImageIndex index = gl::ImageIndex::Make3D(level, destOffset.z);
RenderTargetD3D *destRenderTarget = NULL;
error = storage11->getRenderTarget(index, &destRenderTarget);
if (error.isError())
{
return error;
}
ASSERT(destRenderTarget);
ID3D11RenderTargetView *dest = GetAs<RenderTarget11>(destRenderTarget)->getRenderTargetView();
ASSERT(dest);
gl::Box sourceArea(sourceRect.x, sourceRect.y, 0, sourceRect.width, sourceRect.height, 1);
gl::Extents sourceSize(sourceRenderTarget->getWidth(), sourceRenderTarget->getHeight(), 1);
gl::Box destArea(destOffset.x, destOffset.y, 0, sourceRect.width, sourceRect.height, 1);
gl::Extents destSize(destRenderTarget->getWidth(), destRenderTarget->getHeight(), 1);
// Use nearest filtering because source and destination are the same size for the direct
// copy
error = mBlit->copyTexture(source, sourceArea, sourceSize, dest, destArea, destSize, NULL, destFormat, GL_NEAREST);
if (error.isError())
{
return error;
}
storage11->invalidateSwizzleCacheLevel(level);
return gl::Error(GL_NO_ERROR);
}
gl::Error Renderer11::copyImage2DArray(const gl::Framebuffer *framebuffer, const gl::Rectangle &sourceRect, GLenum destFormat,
const gl::Offset &destOffset, TextureStorage *storage, GLint level)
{
const gl::FramebufferAttachment *colorbuffer = framebuffer->getReadColorbuffer();
ASSERT(colorbuffer);
RenderTarget11 *sourceRenderTarget = NULL;
gl::Error error = colorbuffer->getRenderTarget(&sourceRenderTarget);
if (error.isError())
{
return error;
}
ASSERT(sourceRenderTarget);
ID3D11ShaderResourceView *source = sourceRenderTarget->getShaderResourceView();
ASSERT(source);
TextureStorage11_2DArray *storage11 = GetAs<TextureStorage11_2DArray>(storage);
ASSERT(storage11);
gl::ImageIndex index = gl::ImageIndex::Make2DArray(level, destOffset.z);
RenderTargetD3D *destRenderTarget = NULL;
error = storage11->getRenderTarget(index, &destRenderTarget);
if (error.isError())
{
return error;
}
ASSERT(destRenderTarget);
ID3D11RenderTargetView *dest = GetAs<RenderTarget11>(destRenderTarget)->getRenderTargetView();
ASSERT(dest);
gl::Box sourceArea(sourceRect.x, sourceRect.y, 0, sourceRect.width, sourceRect.height, 1);
gl::Extents sourceSize(sourceRenderTarget->getWidth(), sourceRenderTarget->getHeight(), 1);
gl::Box destArea(destOffset.x, destOffset.y, 0, sourceRect.width, sourceRect.height, 1);
gl::Extents destSize(destRenderTarget->getWidth(), destRenderTarget->getHeight(), 1);
// Use nearest filtering because source and destination are the same size for the direct
// copy
error = mBlit->copyTexture(source, sourceArea, sourceSize, dest, destArea, destSize, NULL, destFormat, GL_NEAREST);
if (error.isError())
{
return error;
}
storage11->invalidateSwizzleCacheLevel(level);
return gl::Error(GL_NO_ERROR);
}
void Renderer11::unapplyRenderTargets()
{
setOneTimeRenderTarget(NULL);
}
// When finished with this rendertarget, markAllStateDirty must be called.
void Renderer11::setOneTimeRenderTarget(ID3D11RenderTargetView *renderTargetView)
{
ID3D11RenderTargetView *rtvArray[gl::IMPLEMENTATION_MAX_DRAW_BUFFERS] = {NULL};
rtvArray[0] = renderTargetView;
mDeviceContext->OMSetRenderTargets(getRendererCaps().maxDrawBuffers, rtvArray, NULL);
// Do not preserve the serial for this one-time-use render target
for (size_t rtIndex = 0; rtIndex < ArraySize(mAppliedRTVs); rtIndex++)
{
mAppliedRTVs[rtIndex] = DirtyPointer;
}
mAppliedDSV = DirtyPointer;
}
gl::Error Renderer11::createRenderTarget(int width, int height, GLenum format, GLsizei samples, RenderTargetD3D **outRT)
{
const d3d11::TextureFormat &formatInfo = d3d11::GetTextureFormatInfo(format, mRenderer11DeviceCaps);
const gl::TextureCaps &textureCaps = getRendererTextureCaps().get(format);
GLuint supportedSamples = textureCaps.getNearestSamples(samples);
if (width > 0 && height > 0)
{
// Create texture resource
D3D11_TEXTURE2D_DESC desc;
desc.Width = width;
desc.Height = height;
desc.MipLevels = 1;
desc.ArraySize = 1;
desc.Format = formatInfo.texFormat;
desc.SampleDesc.Count = (supportedSamples == 0) ? 1 : supportedSamples;
desc.SampleDesc.Quality = 0;
desc.Usage = D3D11_USAGE_DEFAULT;
desc.CPUAccessFlags = 0;
desc.MiscFlags = 0;
// If a rendertarget or depthstencil format exists for this texture format,
// we'll flag it to allow binding that way. Shader resource views are a little
// more complicated.
bool bindRTV = false, bindDSV = false, bindSRV = false;
bindRTV = (formatInfo.rtvFormat != DXGI_FORMAT_UNKNOWN);
bindDSV = (formatInfo.dsvFormat != DXGI_FORMAT_UNKNOWN);
if (formatInfo.srvFormat != DXGI_FORMAT_UNKNOWN)
{
// Multisample targets flagged for binding as depth stencil cannot also be
// flagged for binding as SRV, so make certain not to add the SRV flag for
// these targets.
bindSRV = !(formatInfo.dsvFormat != DXGI_FORMAT_UNKNOWN && desc.SampleDesc.Count > 1);
}
desc.BindFlags = (bindRTV ? D3D11_BIND_RENDER_TARGET : 0) |
(bindDSV ? D3D11_BIND_DEPTH_STENCIL : 0) |
(bindSRV ? D3D11_BIND_SHADER_RESOURCE : 0);
// The format must be either an RTV or a DSV
ASSERT(bindRTV != bindDSV);
ID3D11Texture2D *texture = NULL;
HRESULT result = mDevice->CreateTexture2D(&desc, NULL, &texture);
if (FAILED(result))
{
ASSERT(result == E_OUTOFMEMORY);
return gl::Error(GL_OUT_OF_MEMORY, "Failed to create render target texture, result: 0x%X.", result);
}
ID3D11ShaderResourceView *srv = NULL;
if (bindSRV)
{
D3D11_SHADER_RESOURCE_VIEW_DESC srvDesc;
srvDesc.Format = formatInfo.srvFormat;
srvDesc.ViewDimension = (supportedSamples == 0) ? D3D11_SRV_DIMENSION_TEXTURE2D : D3D11_SRV_DIMENSION_TEXTURE2DMS;
srvDesc.Texture2D.MostDetailedMip = 0;
srvDesc.Texture2D.MipLevels = 1;
result = mDevice->CreateShaderResourceView(texture, &srvDesc, &srv);
if (FAILED(result))
{
ASSERT(result == E_OUTOFMEMORY);
SafeRelease(texture);
return gl::Error(GL_OUT_OF_MEMORY, "Failed to create render target shader resource view, result: 0x%X.", result);
}
}
if (bindDSV)
{
D3D11_DEPTH_STENCIL_VIEW_DESC dsvDesc;
dsvDesc.Format = formatInfo.dsvFormat;
dsvDesc.ViewDimension = (supportedSamples == 0) ? D3D11_DSV_DIMENSION_TEXTURE2D : D3D11_DSV_DIMENSION_TEXTURE2DMS;
dsvDesc.Texture2D.MipSlice = 0;
dsvDesc.Flags = 0;
ID3D11DepthStencilView *dsv = NULL;
result = mDevice->CreateDepthStencilView(texture, &dsvDesc, &dsv);
if (FAILED(result))
{
ASSERT(result == E_OUTOFMEMORY);
SafeRelease(texture);
SafeRelease(srv);
return gl::Error(GL_OUT_OF_MEMORY, "Failed to create render target depth stencil view, result: 0x%X.", result);
}
*outRT = new TextureRenderTarget11(dsv, texture, srv, format, width, height, 1, supportedSamples);
SafeRelease(dsv);
}
else if (bindRTV)
{
D3D11_RENDER_TARGET_VIEW_DESC rtvDesc;
rtvDesc.Format = formatInfo.rtvFormat;
rtvDesc.ViewDimension = (supportedSamples == 0) ? D3D11_RTV_DIMENSION_TEXTURE2D : D3D11_RTV_DIMENSION_TEXTURE2DMS;
rtvDesc.Texture2D.MipSlice = 0;
ID3D11RenderTargetView *rtv = NULL;
result = mDevice->CreateRenderTargetView(texture, &rtvDesc, &rtv);
if (FAILED(result))
{
ASSERT(result == E_OUTOFMEMORY);
SafeRelease(texture);
SafeRelease(srv);
return gl::Error(GL_OUT_OF_MEMORY, "Failed to create render target render target view, result: 0x%X.", result);
}
if (formatInfo.dataInitializerFunction != NULL)
{
const float clearValues[4] = { 0.0f, 0.0f, 0.0f, 1.0f };
mDeviceContext->ClearRenderTargetView(rtv, clearValues);
}
*outRT = new TextureRenderTarget11(rtv, texture, srv, format, width, height, 1, supportedSamples);
SafeRelease(rtv);
}
else
{
UNREACHABLE();
}
SafeRelease(texture);
SafeRelease(srv);
}
else
{
*outRT = new TextureRenderTarget11(reinterpret_cast<ID3D11RenderTargetView*>(NULL), NULL, NULL, format, width, height, 1, supportedSamples);
}
return gl::Error(GL_NO_ERROR);
}
FramebufferImpl *Renderer11::createDefaultFramebuffer(const gl::Framebuffer::Data &data)
{
return createFramebuffer(data);
}
FramebufferImpl *Renderer11::createFramebuffer(const gl::Framebuffer::Data &data)
{
return new Framebuffer11(data, this);
}
CompilerImpl *Renderer11::createCompiler(const gl::Data &data)
{
return new CompilerD3D(data, SH_HLSL11_OUTPUT);
}
ShaderImpl *Renderer11::createShader(GLenum type)
{
return new ShaderD3D(type);
}
ProgramImpl *Renderer11::createProgram()
{
return new ProgramD3D(this);
}
gl::Error Renderer11::loadExecutable(const void *function, size_t length, ShaderType type,
const std::vector<gl::LinkedVarying> &transformFeedbackVaryings,
bool separatedOutputBuffers, ShaderExecutableD3D **outExecutable)
{
switch (type)
{
case SHADER_VERTEX:
{
ID3D11VertexShader *vertexShader = NULL;
ID3D11GeometryShader *streamOutShader = NULL;
HRESULT result = mDevice->CreateVertexShader(function, length, NULL, &vertexShader);
ASSERT(SUCCEEDED(result));
if (FAILED(result))
{
return gl::Error(GL_OUT_OF_MEMORY, "Failed to create vertex shader, result: 0x%X.", result);
}
if (transformFeedbackVaryings.size() > 0)
{
std::vector<D3D11_SO_DECLARATION_ENTRY> soDeclaration;
for (size_t i = 0; i < transformFeedbackVaryings.size(); i++)
{
const gl::LinkedVarying &varying = transformFeedbackVaryings[i];
GLenum transposedType = gl::TransposeMatrixType(varying.type);
for (size_t j = 0; j < varying.semanticIndexCount; j++)
{
D3D11_SO_DECLARATION_ENTRY entry = { 0 };
entry.Stream = 0;
entry.SemanticName = varying.semanticName.c_str();
entry.SemanticIndex = varying.semanticIndex + j;
entry.StartComponent = 0;
entry.ComponentCount = static_cast<BYTE>(gl::VariableColumnCount(transposedType));
entry.OutputSlot = static_cast<BYTE>((separatedOutputBuffers ? i : 0));
soDeclaration.push_back(entry);
}
}
result = mDevice->CreateGeometryShaderWithStreamOutput(function, length, soDeclaration.data(), soDeclaration.size(),
NULL, 0, 0, NULL, &streamOutShader);
ASSERT(SUCCEEDED(result));
if (FAILED(result))
{
return gl::Error(GL_OUT_OF_MEMORY, "Failed to create steam output shader, result: 0x%X.", result);
}
}
*outExecutable = new ShaderExecutable11(function, length, vertexShader, streamOutShader);
}
break;
case SHADER_PIXEL:
{
ID3D11PixelShader *pixelShader = NULL;
HRESULT result = mDevice->CreatePixelShader(function, length, NULL, &pixelShader);
ASSERT(SUCCEEDED(result));
if (FAILED(result))
{
return gl::Error(GL_OUT_OF_MEMORY, "Failed to create pixel shader, result: 0x%X.", result);
}
*outExecutable = new ShaderExecutable11(function, length, pixelShader);
}
break;
case SHADER_GEOMETRY:
{
ID3D11GeometryShader *geometryShader = NULL;
HRESULT result = mDevice->CreateGeometryShader(function, length, NULL, &geometryShader);
ASSERT(SUCCEEDED(result));
if (FAILED(result))
{
return gl::Error(GL_OUT_OF_MEMORY, "Failed to create geometry shader, result: 0x%X.", result);
}
*outExecutable = new ShaderExecutable11(function, length, geometryShader);
}
break;
default:
UNREACHABLE();
return gl::Error(GL_INVALID_OPERATION);
}
return gl::Error(GL_NO_ERROR);
}
gl::Error Renderer11::compileToExecutable(gl::InfoLog &infoLog, const std::string &shaderHLSL, ShaderType type,
const std::vector<gl::LinkedVarying> &transformFeedbackVaryings,
bool separatedOutputBuffers, const D3DCompilerWorkarounds &workarounds,
ShaderExecutableD3D **outExectuable)
{
const char *profileType = NULL;
switch (type)
{
case SHADER_VERTEX:
profileType = "vs";
break;
case SHADER_PIXEL:
profileType = "ps";
break;
case SHADER_GEOMETRY:
profileType = "gs";
break;
default:
UNREACHABLE();
return gl::Error(GL_INVALID_OPERATION);
}
std::string profile = FormatString("%s_%d_%d%s", profileType, getMajorShaderModel(), getMinorShaderModel(), getShaderModelSuffix().c_str());
UINT flags = D3DCOMPILE_OPTIMIZATION_LEVEL2;
if (gl::DebugAnnotationsActive())
{
#ifndef NDEBUG
flags = D3DCOMPILE_SKIP_OPTIMIZATION;
#endif
flags |= D3DCOMPILE_DEBUG;
}
if (workarounds.enableIEEEStrictness)
flags |= D3DCOMPILE_IEEE_STRICTNESS;
// Sometimes D3DCompile will fail with the default compilation flags for complicated shaders when it would otherwise pass with alternative options.
// Try the default flags first and if compilation fails, try some alternatives.
std::vector<CompileConfig> configs;
configs.push_back(CompileConfig(flags, "default" ));
configs.push_back(CompileConfig(flags | D3DCOMPILE_SKIP_VALIDATION, "skip validation" ));
configs.push_back(CompileConfig(flags | D3DCOMPILE_SKIP_OPTIMIZATION, "skip optimization"));
D3D_SHADER_MACRO loopMacros[] = { {"ANGLE_ENABLE_LOOP_FLATTEN", "1"}, {0, 0} };
ID3DBlob *binary = NULL;
std::string debugInfo;
gl::Error error = mCompiler.compileToBinary(infoLog, shaderHLSL, profile, configs, loopMacros, &binary, &debugInfo);
if (error.isError())
{
return error;
}
// It's possible that binary is NULL if the compiler failed in all configurations. Set the executable to NULL
// and return GL_NO_ERROR to signify that there was a link error but the internal state is still OK.
if (!binary)
{
*outExectuable = NULL;
return gl::Error(GL_NO_ERROR);
}
error = loadExecutable(binary->GetBufferPointer(), binary->GetBufferSize(), type,
transformFeedbackVaryings, separatedOutputBuffers, outExectuable);
SafeRelease(binary);
if (error.isError())
{
return error;
}
if (!debugInfo.empty())
{
(*outExectuable)->appendDebugInfo(debugInfo);
}
return gl::Error(GL_NO_ERROR);
}
UniformStorageD3D *Renderer11::createUniformStorage(size_t storageSize)
{
return new UniformStorage11(this, storageSize);
}
VertexBuffer *Renderer11::createVertexBuffer()
{
return new VertexBuffer11(this);
}
IndexBuffer *Renderer11::createIndexBuffer()
{
return new IndexBuffer11(this);
}
BufferImpl *Renderer11::createBuffer()
{
return new Buffer11(this);
}
VertexArrayImpl *Renderer11::createVertexArray(const gl::VertexArray::Data &data)
{
return new VertexArray11(data);
}
QueryImpl *Renderer11::createQuery(GLenum type)
{
return new Query11(this, type);
}
FenceNVImpl *Renderer11::createFenceNV()
{
return new FenceNV11(this);
}
FenceSyncImpl *Renderer11::createFenceSync()
{
return new FenceSync11(this);
}
TransformFeedbackImpl* Renderer11::createTransformFeedback()
{
return new TransformFeedbackD3D();
}
bool Renderer11::supportsFastCopyBufferToTexture(GLenum internalFormat) const
{
ASSERT(getRendererExtensions().pixelBufferObject);
const gl::InternalFormat &internalFormatInfo = gl::GetInternalFormatInfo(internalFormat);
const d3d11::TextureFormat &d3d11FormatInfo = d3d11::GetTextureFormatInfo(internalFormat, mRenderer11DeviceCaps);
const d3d11::DXGIFormat &dxgiFormatInfo = d3d11::GetDXGIFormatInfo(d3d11FormatInfo.texFormat);
// sRGB formats do not work with D3D11 buffer SRVs
if (internalFormatInfo.colorEncoding == GL_SRGB)
{
return false;
}
// We cannot support direct copies to non-color-renderable formats
if (d3d11FormatInfo.rtvFormat == DXGI_FORMAT_UNKNOWN)
{
return false;
}
// We skip all 3-channel formats since sometimes format support is missing
if (internalFormatInfo.componentCount == 3)
{
return false;
}
// We don't support formats which we can't represent without conversion
if (dxgiFormatInfo.internalFormat != internalFormat)
{
return false;
}
return true;
}
gl::Error Renderer11::fastCopyBufferToTexture(const gl::PixelUnpackState &unpack, unsigned int offset, RenderTargetD3D *destRenderTarget,
GLenum destinationFormat, GLenum sourcePixelsType, const gl::Box &destArea)
{
ASSERT(supportsFastCopyBufferToTexture(destinationFormat));
return mPixelTransfer->copyBufferToTexture(unpack, offset, destRenderTarget, destinationFormat, sourcePixelsType, destArea);
}
ImageD3D *Renderer11::createImage()
{
return new Image11(this);
}
gl::Error Renderer11::generateMipmap(ImageD3D *dest, ImageD3D *src)
{
Image11 *dest11 = GetAs<Image11>(dest);
Image11 *src11 = GetAs<Image11>(src);
return Image11::generateMipmap(dest11, src11);
}
gl::Error Renderer11::generateMipmapsUsingD3D(TextureStorage *storage, const gl::SamplerState &samplerState)
{
TextureStorage11 *storage11 = GetAs<TextureStorage11>(storage);
ASSERT(storage11->isRenderTarget());
ASSERT(storage11->supportsNativeMipmapFunction());
ID3D11ShaderResourceView *srv;
gl::Error error = storage11->getSRVLevels(samplerState.baseLevel, samplerState.maxLevel, &srv);
if (error.isError())
{
return error;
}
mDeviceContext->GenerateMips(srv);
return gl::Error(GL_NO_ERROR);
}
TextureStorage *Renderer11::createTextureStorage2D(SwapChainD3D *swapChain)
{
SwapChain11 *swapChain11 = GetAs<SwapChain11>(swapChain);
return new TextureStorage11_2D(this, swapChain11);
}
TextureStorage *Renderer11::createTextureStorage2D(GLenum internalformat, bool renderTarget, GLsizei width, GLsizei height, int levels, bool hintLevelZeroOnly)
{
return new TextureStorage11_2D(this, internalformat, renderTarget, width, height, levels, hintLevelZeroOnly);
}
TextureStorage *Renderer11::createTextureStorageCube(GLenum internalformat, bool renderTarget, int size, int levels, bool hintLevelZeroOnly)
{
return new TextureStorage11_Cube(this, internalformat, renderTarget, size, levels, hintLevelZeroOnly);
}
TextureStorage *Renderer11::createTextureStorage3D(GLenum internalformat, bool renderTarget, GLsizei width, GLsizei height, GLsizei depth, int levels)
{
return new TextureStorage11_3D(this, internalformat, renderTarget, width, height, depth, levels);
}
TextureStorage *Renderer11::createTextureStorage2DArray(GLenum internalformat, bool renderTarget, GLsizei width, GLsizei height, GLsizei depth, int levels)
{
return new TextureStorage11_2DArray(this, internalformat, renderTarget, width, height, depth, levels);
}
TextureImpl *Renderer11::createTexture(GLenum target)
{
switch(target)
{
case GL_TEXTURE_2D: return new TextureD3D_2D(this);
case GL_TEXTURE_CUBE_MAP: return new TextureD3D_Cube(this);
case GL_TEXTURE_3D: return new TextureD3D_3D(this);
case GL_TEXTURE_2D_ARRAY: return new TextureD3D_2DArray(this);
default:
UNREACHABLE();
}
return NULL;
}
RenderbufferImpl *Renderer11::createRenderbuffer()
{
RenderbufferD3D *renderbuffer = new RenderbufferD3D(this);
return renderbuffer;
}
gl::Error Renderer11::readTextureData(ID3D11Texture2D *texture, unsigned int subResource, const gl::Rectangle &area, GLenum format,
GLenum type, GLuint outputPitch, const gl::PixelPackState &pack, uint8_t *pixels)
{
ASSERT(area.width >= 0);
ASSERT(area.height >= 0);
D3D11_TEXTURE2D_DESC textureDesc;
texture->GetDesc(&textureDesc);
// Clamp read region to the defined texture boundaries, preventing out of bounds reads
// and reads of uninitialized data.
gl::Rectangle safeArea;
safeArea.x = gl::clamp(area.x, 0, static_cast<int>(textureDesc.Width));
safeArea.y = gl::clamp(area.y, 0, static_cast<int>(textureDesc.Height));
safeArea.width = gl::clamp(area.width + std::min(area.x, 0), 0,
static_cast<int>(textureDesc.Width) - safeArea.x);
safeArea.height = gl::clamp(area.height + std::min(area.y, 0), 0,
static_cast<int>(textureDesc.Height) - safeArea.y);
ASSERT(safeArea.x >= 0 && safeArea.y >= 0);
ASSERT(safeArea.x + safeArea.width <= static_cast<int>(textureDesc.Width));
ASSERT(safeArea.y + safeArea.height <= static_cast<int>(textureDesc.Height));
if (safeArea.width == 0 || safeArea.height == 0)
{
// no work to do
return gl::Error(GL_NO_ERROR);
}
D3D11_TEXTURE2D_DESC stagingDesc;
stagingDesc.Width = safeArea.width;
stagingDesc.Height = safeArea.height;
stagingDesc.MipLevels = 1;
stagingDesc.ArraySize = 1;
stagingDesc.Format = textureDesc.Format;
stagingDesc.SampleDesc.Count = 1;
stagingDesc.SampleDesc.Quality = 0;
stagingDesc.Usage = D3D11_USAGE_STAGING;
stagingDesc.BindFlags = 0;
stagingDesc.CPUAccessFlags = D3D11_CPU_ACCESS_READ;
stagingDesc.MiscFlags = 0;
ID3D11Texture2D* stagingTex = NULL;
HRESULT result = mDevice->CreateTexture2D(&stagingDesc, NULL, &stagingTex);
if (FAILED(result))
{
return gl::Error(GL_OUT_OF_MEMORY, "Failed to create internal staging texture for ReadPixels, HRESULT: 0x%X.", result);
}
ID3D11Texture2D* srcTex = NULL;
if (textureDesc.SampleDesc.Count > 1)
{
D3D11_TEXTURE2D_DESC resolveDesc;
resolveDesc.Width = textureDesc.Width;
resolveDesc.Height = textureDesc.Height;
resolveDesc.MipLevels = 1;
resolveDesc.ArraySize = 1;
resolveDesc.Format = textureDesc.Format;
resolveDesc.SampleDesc.Count = 1;
resolveDesc.SampleDesc.Quality = 0;
resolveDesc.Usage = D3D11_USAGE_DEFAULT;
resolveDesc.BindFlags = 0;
resolveDesc.CPUAccessFlags = 0;
resolveDesc.MiscFlags = 0;
result = mDevice->CreateTexture2D(&resolveDesc, NULL, &srcTex);
if (FAILED(result))
{
SafeRelease(stagingTex);
return gl::Error(GL_OUT_OF_MEMORY, "Failed to create internal resolve texture for ReadPixels, HRESULT: 0x%X.", result);
}
mDeviceContext->ResolveSubresource(srcTex, 0, texture, subResource, textureDesc.Format);
subResource = 0;
}
else
{
srcTex = texture;
srcTex->AddRef();
}
D3D11_BOX srcBox;
srcBox.left = static_cast<UINT>(safeArea.x);
srcBox.right = static_cast<UINT>(safeArea.x + safeArea.width);
srcBox.top = static_cast<UINT>(safeArea.y);
srcBox.bottom = static_cast<UINT>(safeArea.y + safeArea.height);
srcBox.front = 0;
srcBox.back = 1;
mDeviceContext->CopySubresourceRegion(stagingTex, 0, 0, 0, 0, srcTex, subResource, &srcBox);
SafeRelease(srcTex);
PackPixelsParams packParams(safeArea, format, type, outputPitch, pack, 0);
gl::Error error = packPixels(stagingTex, packParams, pixels);
SafeRelease(stagingTex);
return error;
}
gl::Error Renderer11::packPixels(ID3D11Texture2D *readTexture, const PackPixelsParams &params, uint8_t *pixelsOut)
{
D3D11_TEXTURE2D_DESC textureDesc;
readTexture->GetDesc(&textureDesc);
D3D11_MAPPED_SUBRESOURCE mapping;
HRESULT hr = mDeviceContext->Map(readTexture, 0, D3D11_MAP_READ, 0, &mapping);
if (FAILED(hr))
{
ASSERT(hr == E_OUTOFMEMORY);
return gl::Error(GL_OUT_OF_MEMORY, "Failed to map internal texture for reading, result: 0x%X.", hr);
}
uint8_t *source;
int inputPitch;
if (params.pack.reverseRowOrder)
{
source = static_cast<uint8_t*>(mapping.pData) + mapping.RowPitch * (params.area.height - 1);
inputPitch = -static_cast<int>(mapping.RowPitch);
}
else
{
source = static_cast<uint8_t*>(mapping.pData);
inputPitch = static_cast<int>(mapping.RowPitch);
}
const d3d11::DXGIFormat &dxgiFormatInfo = d3d11::GetDXGIFormatInfo(textureDesc.Format);
const gl::InternalFormat &sourceFormatInfo = gl::GetInternalFormatInfo(dxgiFormatInfo.internalFormat);
if (sourceFormatInfo.format == params.format && sourceFormatInfo.type == params.type)
{
uint8_t *dest = pixelsOut + params.offset;
for (int y = 0; y < params.area.height; y++)
{
memcpy(dest + y * params.outputPitch, source + y * inputPitch, params.area.width * sourceFormatInfo.pixelBytes);
}
}
else
{
const d3d11::DXGIFormat &sourceDXGIFormatInfo = d3d11::GetDXGIFormatInfo(textureDesc.Format);
ColorCopyFunction fastCopyFunc = sourceDXGIFormatInfo.getFastCopyFunction(params.format, params.type);
GLenum sizedDestInternalFormat = gl::GetSizedInternalFormat(params.format, params.type);
const gl::InternalFormat &destFormatInfo = gl::GetInternalFormatInfo(sizedDestInternalFormat);
if (fastCopyFunc)
{
// Fast copy is possible through some special function
for (int y = 0; y < params.area.height; y++)
{
for (int x = 0; x < params.area.width; x++)
{
uint8_t *dest = pixelsOut + params.offset + y * params.outputPitch + x * destFormatInfo.pixelBytes;
const uint8_t *src = source + y * inputPitch + x * sourceFormatInfo.pixelBytes;
fastCopyFunc(src, dest);
}
}
}
else
{
ColorReadFunction colorReadFunction = sourceDXGIFormatInfo.colorReadFunction;
ColorWriteFunction colorWriteFunction = GetColorWriteFunction(params.format, params.type);
uint8_t temp[16]; // Maximum size of any Color<T> type used.
static_assert(sizeof(temp) >= sizeof(gl::ColorF) &&
sizeof(temp) >= sizeof(gl::ColorUI) &&
sizeof(temp) >= sizeof(gl::ColorI),
"Unexpected size of gl::Color struct.");
for (int y = 0; y < params.area.height; y++)
{
for (int x = 0; x < params.area.width; x++)
{
uint8_t *dest = pixelsOut + params.offset + y * params.outputPitch + x * destFormatInfo.pixelBytes;
const uint8_t *src = source + y * inputPitch + x * sourceFormatInfo.pixelBytes;
// readFunc and writeFunc will be using the same type of color, CopyTexImage
// will not allow the copy otherwise.
colorReadFunction(src, temp);
colorWriteFunction(temp, dest);
}
}
}
}
mDeviceContext->Unmap(readTexture, 0);
return gl::Error(GL_NO_ERROR);
}
gl::Error Renderer11::blitRenderbufferRect(const gl::Rectangle &readRect, const gl::Rectangle &drawRect, RenderTargetD3D *readRenderTarget,
RenderTargetD3D *drawRenderTarget, GLenum filter, const gl::Rectangle *scissor,
bool colorBlit, bool depthBlit, bool stencilBlit)
{
// Since blitRenderbufferRect is called for each render buffer that needs to be blitted,
// it should never be the case that both color and depth/stencil need to be blitted at
// at the same time.
ASSERT(colorBlit != (depthBlit || stencilBlit));
RenderTarget11 *drawRenderTarget11 = GetAs<RenderTarget11>(drawRenderTarget);
if (!drawRenderTarget)
{
return gl::Error(GL_OUT_OF_MEMORY, "Failed to retrieve the internal draw render target from the draw framebuffer.");
}
ID3D11Resource *drawTexture = drawRenderTarget11->getTexture();
unsigned int drawSubresource = drawRenderTarget11->getSubresourceIndex();
ID3D11RenderTargetView *drawRTV = drawRenderTarget11->getRenderTargetView();
ID3D11DepthStencilView *drawDSV = drawRenderTarget11->getDepthStencilView();
RenderTarget11 *readRenderTarget11 = GetAs<RenderTarget11>(readRenderTarget);
if (!readRenderTarget)
{
return gl::Error(GL_OUT_OF_MEMORY, "Failed to retrieve the internal read render target from the read framebuffer.");
}
ID3D11Resource *readTexture = NULL;
ID3D11ShaderResourceView *readSRV = NULL;
unsigned int readSubresource = 0;
if (readRenderTarget->getSamples() > 0)
{
ID3D11Resource *unresolvedResource = readRenderTarget11->getTexture();
ID3D11Texture2D *unresolvedTexture = d3d11::DynamicCastComObject<ID3D11Texture2D>(unresolvedResource);
if (unresolvedTexture)
{
readTexture = resolveMultisampledTexture(unresolvedTexture, readRenderTarget11->getSubresourceIndex());
readSubresource = 0;
SafeRelease(unresolvedTexture);
HRESULT hresult = mDevice->CreateShaderResourceView(readTexture, NULL, &readSRV);
if (FAILED(hresult))
{
SafeRelease(readTexture);
return gl::Error(GL_OUT_OF_MEMORY, "Failed to create shader resource view to resolve multisampled framebuffer.");
}
}
}
else
{
readTexture = readRenderTarget11->getTexture();
readTexture->AddRef();
readSubresource = readRenderTarget11->getSubresourceIndex();
readSRV = readRenderTarget11->getShaderResourceView();
readSRV->AddRef();
}
if (!readTexture || !readSRV)
{
SafeRelease(readTexture);
SafeRelease(readSRV);
return gl::Error(GL_OUT_OF_MEMORY, "Failed to retrieve the internal read render target view from the read render target.");
}
gl::Extents readSize(readRenderTarget->getWidth(), readRenderTarget->getHeight(), 1);
gl::Extents drawSize(drawRenderTarget->getWidth(), drawRenderTarget->getHeight(), 1);
bool scissorNeeded = scissor && gl::ClipRectangle(drawRect, *scissor, NULL);
bool wholeBufferCopy = !scissorNeeded &&
readRect.x == 0 && readRect.width == readSize.width &&
readRect.y == 0 && readRect.height == readSize.height &&
drawRect.x == 0 && drawRect.width == drawSize.width &&
drawRect.y == 0 && drawRect.height == drawSize.height;
bool stretchRequired = readRect.width != drawRect.width || readRect.height != drawRect.height;
bool flipRequired = readRect.width < 0 || readRect.height < 0 || drawRect.width < 0 || drawRect.height < 0;
bool outOfBounds = readRect.x < 0 || readRect.x + readRect.width > readSize.width ||
readRect.y < 0 || readRect.y + readRect.height > readSize.height ||
drawRect.x < 0 || drawRect.x + drawRect.width > drawSize.width ||
drawRect.y < 0 || drawRect.y + drawRect.height > drawSize.height;
const d3d11::DXGIFormat &dxgiFormatInfo = d3d11::GetDXGIFormatInfo(drawRenderTarget11->getDXGIFormat());
bool partialDSBlit = (dxgiFormatInfo.depthBits > 0 && depthBlit) != (dxgiFormatInfo.stencilBits > 0 && stencilBlit);
gl::Error result(GL_NO_ERROR);
if (readRenderTarget11->getDXGIFormat() == drawRenderTarget11->getDXGIFormat() &&
!stretchRequired && !outOfBounds && !flipRequired && !partialDSBlit &&
(!(depthBlit || stencilBlit) || wholeBufferCopy))
{
UINT dstX = drawRect.x;
UINT dstY = drawRect.y;
D3D11_BOX readBox;
readBox.left = readRect.x;
readBox.right = readRect.x + readRect.width;
readBox.top = readRect.y;
readBox.bottom = readRect.y + readRect.height;
readBox.front = 0;
readBox.back = 1;
if (scissorNeeded)
{
// drawRect is guaranteed to have positive width and height because stretchRequired is false.
ASSERT(drawRect.width >= 0 || drawRect.height >= 0);
if (drawRect.x < scissor->x)
{
dstX = scissor->x;
readBox.left += (scissor->x - drawRect.x);
}
if (drawRect.y < scissor->y)
{
dstY = scissor->y;
readBox.top += (scissor->y - drawRect.y);
}
if (drawRect.x + drawRect.width > scissor->x + scissor->width)
{
readBox.right -= ((drawRect.x + drawRect.width) - (scissor->x + scissor->width));
}
if (drawRect.y + drawRect.height > scissor->y + scissor->height)
{
readBox.bottom -= ((drawRect.y + drawRect.height) - (scissor->y + scissor->height));
}
}
// D3D11 needs depth-stencil CopySubresourceRegions to have a NULL pSrcBox
// We also require complete framebuffer copies for depth-stencil blit.
D3D11_BOX *pSrcBox = wholeBufferCopy ? NULL : &readBox;
mDeviceContext->CopySubresourceRegion(drawTexture, drawSubresource, dstX, dstY, 0,
readTexture, readSubresource, pSrcBox);
result = gl::Error(GL_NO_ERROR);
}
else
{
gl::Box readArea(readRect.x, readRect.y, 0, readRect.width, readRect.height, 1);
gl::Box drawArea(drawRect.x, drawRect.y, 0, drawRect.width, drawRect.height, 1);
if (depthBlit && stencilBlit)
{
result = mBlit->copyDepthStencil(readTexture, readSubresource, readArea, readSize,
drawTexture, drawSubresource, drawArea, drawSize,
scissor);
}
else if (depthBlit)
{
result = mBlit->copyDepth(readSRV, readArea, readSize, drawDSV, drawArea, drawSize,
scissor);
}
else if (stencilBlit)
{
result = mBlit->copyStencil(readTexture, readSubresource, readArea, readSize,
drawTexture, drawSubresource, drawArea, drawSize,
scissor);
}
else
{
GLenum format = gl::GetInternalFormatInfo(drawRenderTarget->getInternalFormat()).format;
result = mBlit->copyTexture(readSRV, readArea, readSize, drawRTV, drawArea, drawSize,
scissor, format, filter);
}
}
SafeRelease(readTexture);
SafeRelease(readSRV);
return result;
}
bool Renderer11::isES3Capable() const
{
return (d3d11_gl::GetMaximumClientVersion(mRenderer11DeviceCaps.featureLevel) > 2);
};
ID3D11Texture2D *Renderer11::resolveMultisampledTexture(ID3D11Texture2D *source, unsigned int subresource)
{
D3D11_TEXTURE2D_DESC textureDesc;
source->GetDesc(&textureDesc);
if (textureDesc.SampleDesc.Count > 1)
{
D3D11_TEXTURE2D_DESC resolveDesc;
resolveDesc.Width = textureDesc.Width;
resolveDesc.Height = textureDesc.Height;
resolveDesc.MipLevels = 1;
resolveDesc.ArraySize = 1;
resolveDesc.Format = textureDesc.Format;
resolveDesc.SampleDesc.Count = 1;
resolveDesc.SampleDesc.Quality = 0;
resolveDesc.Usage = textureDesc.Usage;
resolveDesc.BindFlags = textureDesc.BindFlags;
resolveDesc.CPUAccessFlags = 0;
resolveDesc.MiscFlags = 0;
ID3D11Texture2D *resolveTexture = NULL;
HRESULT result = mDevice->CreateTexture2D(&resolveDesc, NULL, &resolveTexture);
if (FAILED(result))
{
ERR("Failed to create a multisample resolve texture, HRESULT: 0x%X.", result);
return NULL;
}
mDeviceContext->ResolveSubresource(resolveTexture, 0, source, subresource, textureDesc.Format);
return resolveTexture;
}
else
{
source->AddRef();
return source;
}
}
bool Renderer11::getLUID(LUID *adapterLuid) const
{
adapterLuid->HighPart = 0;
adapterLuid->LowPart = 0;
if (!mDxgiAdapter)
{
return false;
}
DXGI_ADAPTER_DESC adapterDesc;
if (FAILED(mDxgiAdapter->GetDesc(&adapterDesc)))
{
return false;
}
*adapterLuid = adapterDesc.AdapterLuid;
return true;
}
VertexConversionType Renderer11::getVertexConversionType(gl::VertexFormatType vertexFormatType) const
{
return d3d11::GetVertexFormatInfo(vertexFormatType, mRenderer11DeviceCaps.featureLevel).conversionType;
}
GLenum Renderer11::getVertexComponentType(gl::VertexFormatType vertexFormatType) const
{
return d3d11::GetDXGIFormatInfo(d3d11::GetVertexFormatInfo(vertexFormatType, mRenderer11DeviceCaps.featureLevel).nativeFormat).componentType;
}
void Renderer11::generateCaps(gl::Caps *outCaps, gl::TextureCapsMap *outTextureCaps,
gl::Extensions *outExtensions, gl::Limitations *outLimitations) const
{
d3d11_gl::GenerateCaps(mDevice, mDeviceContext, mRenderer11DeviceCaps, outCaps, outTextureCaps,
outExtensions, outLimitations);
}
Workarounds Renderer11::generateWorkarounds() const
{
return d3d11::GenerateWorkarounds(mRenderer11DeviceCaps.featureLevel);
}
void Renderer11::setShaderResource(gl::SamplerType shaderType, UINT resourceSlot, ID3D11ShaderResourceView *srv)
{
auto &currentSRVs = (shaderType == gl::SAMPLER_VERTEX ? mCurVertexSRVs : mCurPixelSRVs);
ASSERT(static_cast<size_t>(resourceSlot) < currentSRVs.size());
const SRVRecord &record = currentSRVs[resourceSlot];
if (record.srv != reinterpret_cast<uintptr_t>(srv))
{
if (shaderType == gl::SAMPLER_VERTEX)
{
mDeviceContext->VSSetShaderResources(resourceSlot, 1, &srv);
}
else
{
mDeviceContext->PSSetShaderResources(resourceSlot, 1, &srv);
}
currentSRVs.update(resourceSlot, srv);
}
}
void Renderer11::createAnnotator()
{
// The D3D11 renderer must choose the D3D9 debug annotator because the D3D11 interface
// method ID3DUserDefinedAnnotation::GetStatus on desktop builds doesn't work with the Graphics
// Diagnostics tools in Visual Studio 2013.
// The D3D9 annotator works properly for both D3D11 and D3D9.
// Incorrect status reporting can cause ANGLE to log unnecessary debug events.
#ifdef ANGLE_ENABLE_D3D9
mAnnotator = new DebugAnnotator9();
#else
mAnnotator = new DebugAnnotator11();
#endif
}
gl::Error Renderer11::clearTextures(gl::SamplerType samplerType, size_t rangeStart, size_t rangeEnd)
{
if (rangeStart == rangeEnd)
{
return gl::Error(GL_NO_ERROR);
}
auto &currentSRVs = (samplerType == gl::SAMPLER_VERTEX ? mCurVertexSRVs : mCurPixelSRVs);
gl::Range<size_t> clearRange(rangeStart, rangeStart);
clearRange.extend(std::min(rangeEnd, currentSRVs.highestUsed()));
if (clearRange.empty())
{
return gl::Error(GL_NO_ERROR);
}
if (samplerType == gl::SAMPLER_VERTEX)
{
mDeviceContext->VSSetShaderResources(rangeStart, rangeEnd - rangeStart, &mNullSRVs[0]);
}
else
{
mDeviceContext->PSSetShaderResources(rangeStart, rangeEnd - rangeStart, &mNullSRVs[0]);
}
for (size_t samplerIndex = rangeStart; samplerIndex < rangeEnd; ++samplerIndex)
{
currentSRVs.update(samplerIndex, nullptr);
}
return gl::Error(GL_NO_ERROR);
}
}