blob: dad178ee016dd5d89f3bedbcdf69d2b4eee63b4b [file] [log] [blame]
//
// Copyright (c) 2012-2014 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// Renderer9.cpp: Implements a back-end specific class for the D3D9 renderer.
#include "libANGLE/renderer/d3d/d3d9/Renderer9.h"
#include "common/utilities.h"
#include "libANGLE/Buffer.h"
#include "libANGLE/Display.h"
#include "libANGLE/Framebuffer.h"
#include "libANGLE/FramebufferAttachment.h"
#include "libANGLE/Program.h"
#include "libANGLE/Renderbuffer.h"
#include "libANGLE/State.h"
#include "libANGLE/Surface.h"
#include "libANGLE/Texture.h"
#include "libANGLE/angletypes.h"
#include "libANGLE/features.h"
#include "libANGLE/formatutils.h"
#include "libANGLE/renderer/d3d/CompilerD3D.h"
#include "libANGLE/renderer/d3d/FramebufferD3D.h"
#include "libANGLE/renderer/d3d/IndexDataManager.h"
#include "libANGLE/renderer/d3d/ProgramD3D.h"
#include "libANGLE/renderer/d3d/RenderbufferD3D.h"
#include "libANGLE/renderer/d3d/ShaderD3D.h"
#include "libANGLE/renderer/d3d/SurfaceD3D.h"
#include "libANGLE/renderer/d3d/TextureD3D.h"
#include "libANGLE/renderer/d3d/TransformFeedbackD3D.h"
#include "libANGLE/renderer/d3d/d3d9/Blit9.h"
#include "libANGLE/renderer/d3d/d3d9/Buffer9.h"
#include "libANGLE/renderer/d3d/d3d9/Fence9.h"
#include "libANGLE/renderer/d3d/d3d9/Framebuffer9.h"
#include "libANGLE/renderer/d3d/d3d9/Image9.h"
#include "libANGLE/renderer/d3d/d3d9/IndexBuffer9.h"
#include "libANGLE/renderer/d3d/d3d9/Query9.h"
#include "libANGLE/renderer/d3d/d3d9/RenderTarget9.h"
#include "libANGLE/renderer/d3d/d3d9/ShaderExecutable9.h"
#include "libANGLE/renderer/d3d/d3d9/SwapChain9.h"
#include "libANGLE/renderer/d3d/d3d9/TextureStorage9.h"
#include "libANGLE/renderer/d3d/d3d9/VertexArray9.h"
#include "libANGLE/renderer/d3d/d3d9/VertexBuffer9.h"
#include "libANGLE/renderer/d3d/d3d9/renderer9_utils.h"
#include "libANGLE/renderer/d3d/d3d9/formatutils9.h"
#include "third_party/trace_event/trace_event.h"
#include <sstream>
#include <EGL/eglext.h>
#include <EGL/eglext.h>
#if !defined(ANGLE_COMPILE_OPTIMIZATION_LEVEL)
#define ANGLE_COMPILE_OPTIMIZATION_LEVEL D3DCOMPILE_OPTIMIZATION_LEVEL3
#endif
// Enable ANGLE_SUPPORT_SHADER_MODEL_2 if you wish devices with only shader model 2.
// Such a device would not be conformant.
#ifndef ANGLE_SUPPORT_SHADER_MODEL_2
#define ANGLE_SUPPORT_SHADER_MODEL_2 0
#endif
namespace rx
{
enum
{
MAX_VERTEX_CONSTANT_VECTORS_D3D9 = 256,
MAX_PIXEL_CONSTANT_VECTORS_SM2 = 32,
MAX_PIXEL_CONSTANT_VECTORS_SM3 = 224,
MAX_VARYING_VECTORS_SM2 = 8,
MAX_VARYING_VECTORS_SM3 = 10,
MAX_TEXTURE_IMAGE_UNITS_VTF_SM3 = 4
};
Renderer9::Renderer9(egl::Display *display)
: RendererD3D(display)
{
mD3d9Module = NULL;
mD3d9 = NULL;
mD3d9Ex = NULL;
mDevice = NULL;
mDeviceEx = NULL;
mDeviceWindow = NULL;
mBlit = NULL;
mAdapter = D3DADAPTER_DEFAULT;
const egl::AttributeMap &attributes = display->getAttributeMap();
EGLint requestedDeviceType = attributes.get(EGL_PLATFORM_ANGLE_DEVICE_TYPE_ANGLE,
EGL_PLATFORM_ANGLE_DEVICE_TYPE_HARDWARE_ANGLE);
switch (requestedDeviceType)
{
case EGL_PLATFORM_ANGLE_DEVICE_TYPE_HARDWARE_ANGLE:
mDeviceType = D3DDEVTYPE_HAL;
break;
case EGL_PLATFORM_ANGLE_DEVICE_TYPE_REFERENCE_ANGLE:
mDeviceType = D3DDEVTYPE_REF;
break;
case EGL_PLATFORM_ANGLE_DEVICE_TYPE_NULL_ANGLE:
mDeviceType = D3DDEVTYPE_NULLREF;
break;
default:
UNREACHABLE();
}
mMaskedClearSavedState = NULL;
mVertexDataManager = NULL;
mIndexDataManager = NULL;
mLineLoopIB = NULL;
mCountingIB = NULL;
mMaxNullColorbufferLRU = 0;
for (int i = 0; i < NUM_NULL_COLORBUFFER_CACHE_ENTRIES; i++)
{
mNullColorbufferCache[i].lruCount = 0;
mNullColorbufferCache[i].width = 0;
mNullColorbufferCache[i].height = 0;
mNullColorbufferCache[i].buffer = NULL;
}
mAppliedVertexShader = NULL;
mAppliedPixelShader = NULL;
mAppliedProgramSerial = 0;
initializeDebugAnnotator();
}
Renderer9::~Renderer9()
{
if (mDevice)
{
// If the device is lost, reset it first to prevent leaving the driver in an unstable state
if (testDeviceLost())
{
resetDevice();
}
}
release();
}
void Renderer9::release()
{
RendererD3D::cleanup();
releaseDeviceResources();
SafeRelease(mDevice);
SafeRelease(mDeviceEx);
SafeRelease(mD3d9);
SafeRelease(mD3d9Ex);
mCompiler.release();
if (mDeviceWindow)
{
DestroyWindow(mDeviceWindow);
mDeviceWindow = NULL;
}
mD3d9Module = NULL;
}
egl::Error Renderer9::initialize()
{
TRACE_EVENT0("gpu.angle", "GetModuleHandle_d3d9");
mD3d9Module = GetModuleHandle(TEXT("d3d9.dll"));
if (mD3d9Module == NULL)
{
return egl::Error(EGL_NOT_INITIALIZED, D3D9_INIT_MISSING_DEP, "No D3D9 module found.");
}
typedef HRESULT (WINAPI *Direct3DCreate9ExFunc)(UINT, IDirect3D9Ex**);
Direct3DCreate9ExFunc Direct3DCreate9ExPtr = reinterpret_cast<Direct3DCreate9ExFunc>(GetProcAddress(mD3d9Module, "Direct3DCreate9Ex"));
// Use Direct3D9Ex if available. Among other things, this version is less
// inclined to report a lost context, for example when the user switches
// desktop. Direct3D9Ex is available in Windows Vista and later if suitable drivers are available.
if (ANGLE_D3D9EX == ANGLE_ENABLED && Direct3DCreate9ExPtr && SUCCEEDED(Direct3DCreate9ExPtr(D3D_SDK_VERSION, &mD3d9Ex)))
{
TRACE_EVENT0("gpu.angle", "D3d9Ex_QueryInterface");
ASSERT(mD3d9Ex);
mD3d9Ex->QueryInterface(__uuidof(IDirect3D9), reinterpret_cast<void**>(&mD3d9));
ASSERT(mD3d9);
}
else
{
TRACE_EVENT0("gpu.angle", "Direct3DCreate9");
mD3d9 = Direct3DCreate9(D3D_SDK_VERSION);
}
if (!mD3d9)
{
return egl::Error(EGL_NOT_INITIALIZED, D3D9_INIT_MISSING_DEP, "Could not create D3D9 device.");
}
if (mDisplay->getNativeDisplayId() != nullptr)
{
// UNIMPLEMENTED(); // FIXME: Determine which adapter index the device context corresponds to
}
HRESULT result;
// Give up on getting device caps after about one second.
{
TRACE_EVENT0("gpu.angle", "GetDeviceCaps");
for (int i = 0; i < 10; ++i)
{
result = mD3d9->GetDeviceCaps(mAdapter, mDeviceType, &mDeviceCaps);
if (SUCCEEDED(result))
{
break;
}
else if (result == D3DERR_NOTAVAILABLE)
{
Sleep(100); // Give the driver some time to initialize/recover
}
else if (FAILED(result)) // D3DERR_OUTOFVIDEOMEMORY, E_OUTOFMEMORY, D3DERR_INVALIDDEVICE, or another error we can't recover from
{
return egl::Error(EGL_NOT_INITIALIZED,
D3D9_INIT_OTHER_ERROR,
"Failed to get device caps: Error code 0x%x\n", result);
}
}
}
#if ANGLE_SUPPORT_SHADER_MODEL_2
size_t minShaderModel = 2;
#else
size_t minShaderModel = 3;
#endif
if (mDeviceCaps.PixelShaderVersion < D3DPS_VERSION(minShaderModel, 0))
{
return egl::Error(EGL_NOT_INITIALIZED,
D3D9_INIT_UNSUPPORTED_VERSION,
"Renderer does not support PS %u.%u.aborting!", minShaderModel, 0);
}
// When DirectX9 is running with an older DirectX8 driver, a StretchRect from a regular texture to a render target texture is not supported.
// This is required by Texture2D::ensureRenderTarget.
if ((mDeviceCaps.DevCaps2 & D3DDEVCAPS2_CAN_STRETCHRECT_FROM_TEXTURES) == 0)
{
return egl::Error(EGL_NOT_INITIALIZED,
D3D9_INIT_UNSUPPORTED_STRETCHRECT,
"Renderer does not support StretctRect from textures.");
}
{
TRACE_EVENT0("gpu.angle", "GetAdapterIdentifier");
mD3d9->GetAdapterIdentifier(mAdapter, 0, &mAdapterIdentifier);
}
static const TCHAR windowName[] = TEXT("AngleHiddenWindow");
static const TCHAR className[] = TEXT("STATIC");
{
TRACE_EVENT0("gpu.angle", "CreateWindowEx");
mDeviceWindow = CreateWindowEx(WS_EX_NOACTIVATE, className, windowName, WS_DISABLED | WS_POPUP, 0, 0, 1, 1, HWND_MESSAGE, NULL, GetModuleHandle(NULL), NULL);
}
D3DPRESENT_PARAMETERS presentParameters = getDefaultPresentParameters();
DWORD behaviorFlags = D3DCREATE_FPU_PRESERVE | D3DCREATE_NOWINDOWCHANGES | D3DCREATE_MULTITHREADED;
{
TRACE_EVENT0("gpu.angle", "D3d9_CreateDevice");
result = mD3d9->CreateDevice(mAdapter, mDeviceType, mDeviceWindow, behaviorFlags | D3DCREATE_HARDWARE_VERTEXPROCESSING | D3DCREATE_PUREDEVICE, &presentParameters, &mDevice);
}
if (result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY || result == D3DERR_DEVICELOST)
{
return egl::Error(EGL_BAD_ALLOC, D3D9_INIT_OUT_OF_MEMORY,
"CreateDevice failed: device lost of out of memory");
}
if (FAILED(result))
{
TRACE_EVENT0("gpu.angle", "D3d9_CreateDevice2");
result = mD3d9->CreateDevice(mAdapter, mDeviceType, mDeviceWindow, behaviorFlags | D3DCREATE_SOFTWARE_VERTEXPROCESSING, &presentParameters, &mDevice);
if (FAILED(result))
{
ASSERT(result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY || result == D3DERR_NOTAVAILABLE || result == D3DERR_DEVICELOST);
return egl::Error(EGL_BAD_ALLOC, D3D9_INIT_OUT_OF_MEMORY,
"CreateDevice2 failed: device lost, not available, or of out of memory");
}
}
if (mD3d9Ex)
{
TRACE_EVENT0("gpu.angle", "mDevice_QueryInterface");
result = mDevice->QueryInterface(__uuidof(IDirect3DDevice9Ex), (void**)&mDeviceEx);
ASSERT(SUCCEEDED(result));
}
{
TRACE_EVENT0("gpu.angle", "ShaderCache initialize");
mVertexShaderCache.initialize(mDevice);
mPixelShaderCache.initialize(mDevice);
}
D3DDISPLAYMODE currentDisplayMode;
mD3d9->GetAdapterDisplayMode(mAdapter, &currentDisplayMode);
// Check vertex texture support
// Only Direct3D 10 ready devices support all the necessary vertex texture formats.
// We test this using D3D9 by checking support for the R16F format.
mVertexTextureSupport = mDeviceCaps.PixelShaderVersion >= D3DPS_VERSION(3, 0) &&
SUCCEEDED(mD3d9->CheckDeviceFormat(mAdapter, mDeviceType, currentDisplayMode.Format,
D3DUSAGE_QUERY_VERTEXTEXTURE, D3DRTYPE_TEXTURE, D3DFMT_R16F));
initializeDevice();
return egl::Error(EGL_SUCCESS);
}
// do any one-time device initialization
// NOTE: this is also needed after a device lost/reset
// to reset the scene status and ensure the default states are reset.
void Renderer9::initializeDevice()
{
// Permanent non-default states
mDevice->SetRenderState(D3DRS_POINTSPRITEENABLE, TRUE);
mDevice->SetRenderState(D3DRS_LASTPIXEL, FALSE);
if (mDeviceCaps.PixelShaderVersion >= D3DPS_VERSION(3, 0))
{
mDevice->SetRenderState(D3DRS_POINTSIZE_MAX, (DWORD&)mDeviceCaps.MaxPointSize);
}
else
{
mDevice->SetRenderState(D3DRS_POINTSIZE_MAX, 0x3F800000); // 1.0f
}
const gl::Caps &rendererCaps = getRendererCaps();
mForceSetVertexSamplerStates.resize(rendererCaps.maxVertexTextureImageUnits);
mCurVertexSamplerStates.resize(rendererCaps.maxVertexTextureImageUnits);
mForceSetPixelSamplerStates.resize(rendererCaps.maxTextureImageUnits);
mCurPixelSamplerStates.resize(rendererCaps.maxTextureImageUnits);
mCurVertexTextures.resize(rendererCaps.maxVertexTextureImageUnits);
mCurPixelTextures.resize(rendererCaps.maxTextureImageUnits);
markAllStateDirty();
mSceneStarted = false;
ASSERT(!mBlit);
mBlit = new Blit9(this);
mBlit->initialize();
ASSERT(!mVertexDataManager && !mIndexDataManager);
mVertexDataManager = new VertexDataManager(this);
mIndexDataManager = new IndexDataManager(this, getRendererClass());
// TODO(jmadill): use context caps, and place in common D3D location
mTranslatedAttribCache.resize(getRendererCaps().maxVertexAttributes);
}
D3DPRESENT_PARAMETERS Renderer9::getDefaultPresentParameters()
{
D3DPRESENT_PARAMETERS presentParameters = {0};
// The default swap chain is never actually used. Surface will create a new swap chain with the proper parameters.
presentParameters.AutoDepthStencilFormat = D3DFMT_UNKNOWN;
presentParameters.BackBufferCount = 1;
presentParameters.BackBufferFormat = D3DFMT_UNKNOWN;
presentParameters.BackBufferWidth = 1;
presentParameters.BackBufferHeight = 1;
presentParameters.EnableAutoDepthStencil = FALSE;
presentParameters.Flags = 0;
presentParameters.hDeviceWindow = mDeviceWindow;
presentParameters.MultiSampleQuality = 0;
presentParameters.MultiSampleType = D3DMULTISAMPLE_NONE;
presentParameters.PresentationInterval = D3DPRESENT_INTERVAL_DEFAULT;
presentParameters.SwapEffect = D3DSWAPEFFECT_DISCARD;
presentParameters.Windowed = TRUE;
return presentParameters;
}
egl::ConfigSet Renderer9::generateConfigs() const
{
static const GLenum colorBufferFormats[] =
{
GL_BGR5_A1_ANGLEX,
GL_BGRA8_EXT,
GL_RGB565,
};
static const GLenum depthStencilBufferFormats[] =
{
GL_NONE,
GL_DEPTH_COMPONENT32_OES,
GL_DEPTH24_STENCIL8_OES,
GL_DEPTH_COMPONENT24_OES,
GL_DEPTH_COMPONENT16,
};
const gl::Caps &rendererCaps = getRendererCaps();
const gl::TextureCapsMap &rendererTextureCaps = getRendererTextureCaps();
D3DDISPLAYMODE currentDisplayMode;
mD3d9->GetAdapterDisplayMode(mAdapter, &currentDisplayMode);
// Determine the min and max swap intervals
int minSwapInterval = 4;
int maxSwapInterval = 0;
if (mDeviceCaps.PresentationIntervals & D3DPRESENT_INTERVAL_IMMEDIATE)
{
minSwapInterval = std::min(minSwapInterval, 0);
maxSwapInterval = std::max(maxSwapInterval, 0);
}
if (mDeviceCaps.PresentationIntervals & D3DPRESENT_INTERVAL_ONE)
{
minSwapInterval = std::min(minSwapInterval, 1);
maxSwapInterval = std::max(maxSwapInterval, 1);
}
if (mDeviceCaps.PresentationIntervals & D3DPRESENT_INTERVAL_TWO)
{
minSwapInterval = std::min(minSwapInterval, 2);
maxSwapInterval = std::max(maxSwapInterval, 2);
}
if (mDeviceCaps.PresentationIntervals & D3DPRESENT_INTERVAL_THREE)
{
minSwapInterval = std::min(minSwapInterval, 3);
maxSwapInterval = std::max(maxSwapInterval, 3);
}
if (mDeviceCaps.PresentationIntervals & D3DPRESENT_INTERVAL_FOUR)
{
minSwapInterval = std::min(minSwapInterval, 4);
maxSwapInterval = std::max(maxSwapInterval, 4);
}
egl::ConfigSet configs;
for (size_t formatIndex = 0; formatIndex < ArraySize(colorBufferFormats); formatIndex++)
{
GLenum colorBufferInternalFormat = colorBufferFormats[formatIndex];
const gl::TextureCaps &colorBufferFormatCaps = rendererTextureCaps.get(colorBufferInternalFormat);
if (colorBufferFormatCaps.renderable)
{
for (size_t depthStencilIndex = 0; depthStencilIndex < ArraySize(depthStencilBufferFormats); depthStencilIndex++)
{
GLenum depthStencilBufferInternalFormat = depthStencilBufferFormats[depthStencilIndex];
const gl::TextureCaps &depthStencilBufferFormatCaps = rendererTextureCaps.get(depthStencilBufferInternalFormat);
if (depthStencilBufferFormatCaps.renderable || depthStencilBufferInternalFormat == GL_NONE)
{
const gl::InternalFormat &colorBufferFormatInfo = gl::GetInternalFormatInfo(colorBufferInternalFormat);
const gl::InternalFormat &depthStencilBufferFormatInfo = gl::GetInternalFormatInfo(depthStencilBufferInternalFormat);
const d3d9::TextureFormat &d3d9ColorBufferFormatInfo = d3d9::GetTextureFormatInfo(colorBufferInternalFormat);
egl::Config config;
config.renderTargetFormat = colorBufferInternalFormat;
config.depthStencilFormat = depthStencilBufferInternalFormat;
config.bufferSize = colorBufferFormatInfo.pixelBytes * 8;
config.redSize = colorBufferFormatInfo.redBits;
config.greenSize = colorBufferFormatInfo.greenBits;
config.blueSize = colorBufferFormatInfo.blueBits;
config.luminanceSize = colorBufferFormatInfo.luminanceBits;
config.alphaSize = colorBufferFormatInfo.alphaBits;
config.alphaMaskSize = 0;
config.bindToTextureRGB = (colorBufferFormatInfo.format == GL_RGB);
config.bindToTextureRGBA = (colorBufferFormatInfo.format == GL_RGBA || colorBufferFormatInfo.format == GL_BGRA_EXT);
config.colorBufferType = EGL_RGB_BUFFER;
// Mark as slow if blits to the back-buffer won't be straight forward
config.configCaveat = (currentDisplayMode.Format == d3d9ColorBufferFormatInfo.renderFormat) ? EGL_NONE : EGL_SLOW_CONFIG;
config.configID = static_cast<EGLint>(configs.size() + 1);
config.conformant = EGL_OPENGL_ES2_BIT;
config.depthSize = depthStencilBufferFormatInfo.depthBits;
config.level = 0;
config.matchNativePixmap = EGL_NONE;
config.maxPBufferWidth = rendererCaps.max2DTextureSize;
config.maxPBufferHeight = rendererCaps.max2DTextureSize;
config.maxPBufferPixels = rendererCaps.max2DTextureSize * rendererCaps.max2DTextureSize;
config.maxSwapInterval = maxSwapInterval;
config.minSwapInterval = minSwapInterval;
config.nativeRenderable = EGL_FALSE;
config.nativeVisualID = 0;
config.nativeVisualType = EGL_NONE;
config.renderableType = EGL_OPENGL_ES2_BIT;
config.sampleBuffers = 0; // FIXME: enumerate multi-sampling
config.samples = 0;
config.stencilSize = depthStencilBufferFormatInfo.stencilBits;
config.surfaceType = EGL_PBUFFER_BIT | EGL_WINDOW_BIT | EGL_SWAP_BEHAVIOR_PRESERVED_BIT;
config.transparentType = EGL_NONE;
config.transparentRedValue = 0;
config.transparentGreenValue = 0;
config.transparentBlueValue = 0;
configs.add(config);
}
}
}
}
ASSERT(configs.size() > 0);
return configs;
}
void Renderer9::startScene()
{
if (!mSceneStarted)
{
long result = mDevice->BeginScene();
if (SUCCEEDED(result)) {
// This is defensive checking against the device being
// lost at unexpected times.
mSceneStarted = true;
}
}
}
void Renderer9::endScene()
{
if (mSceneStarted)
{
// EndScene can fail if the device was lost, for example due
// to a TDR during a draw call.
mDevice->EndScene();
mSceneStarted = false;
}
}
gl::Error Renderer9::flush()
{
IDirect3DQuery9* query = NULL;
gl::Error error = allocateEventQuery(&query);
if (error.isError())
{
return error;
}
HRESULT result = query->Issue(D3DISSUE_END);
if (FAILED(result))
{
ASSERT(result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY);
return gl::Error(GL_OUT_OF_MEMORY, "Failed to issue event query, result: 0x%X.", result);
}
// Grab the query data once
result = query->GetData(NULL, 0, D3DGETDATA_FLUSH);
freeEventQuery(query);
if (FAILED(result))
{
if (d3d9::isDeviceLostError(result))
{
notifyDeviceLost();
}
return gl::Error(GL_OUT_OF_MEMORY, "Failed to get event query data, result: 0x%X.", result);
}
return gl::Error(GL_NO_ERROR);
}
gl::Error Renderer9::finish()
{
IDirect3DQuery9* query = NULL;
gl::Error error = allocateEventQuery(&query);
if (error.isError())
{
return error;
}
HRESULT result = query->Issue(D3DISSUE_END);
if (FAILED(result))
{
ASSERT(result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY);
return gl::Error(GL_OUT_OF_MEMORY, "Failed to issue event query, result: 0x%X.", result);
}
// Grab the query data once
result = query->GetData(NULL, 0, D3DGETDATA_FLUSH);
if (FAILED(result))
{
if (d3d9::isDeviceLostError(result))
{
notifyDeviceLost();
}
freeEventQuery(query);
return gl::Error(GL_OUT_OF_MEMORY, "Failed to get event query data, result: 0x%X.", result);
}
// Loop until the query completes
while (result == S_FALSE)
{
// Keep polling, but allow other threads to do something useful first
Sleep(0);
result = query->GetData(NULL, 0, D3DGETDATA_FLUSH);
// explicitly check for device loss
// some drivers seem to return S_FALSE even if the device is lost
// instead of D3DERR_DEVICELOST like they should
if (result == S_FALSE && testDeviceLost())
{
result = D3DERR_DEVICELOST;
}
if (FAILED(result))
{
if (d3d9::isDeviceLostError(result))
{
notifyDeviceLost();
}
freeEventQuery(query);
return gl::Error(GL_OUT_OF_MEMORY, "Failed to get event query data, result: 0x%X.", result);
}
}
freeEventQuery(query);
return gl::Error(GL_NO_ERROR);
}
SwapChainD3D *Renderer9::createSwapChain(NativeWindow nativeWindow, HANDLE shareHandle, GLenum backBufferFormat, GLenum depthBufferFormat)
{
return new SwapChain9(this, nativeWindow, shareHandle, backBufferFormat, depthBufferFormat);
}
void *Renderer9::getD3DDevice()
{
return reinterpret_cast<void*>(mDevice);
}
gl::Error Renderer9::allocateEventQuery(IDirect3DQuery9 **outQuery)
{
if (mEventQueryPool.empty())
{
HRESULT result = mDevice->CreateQuery(D3DQUERYTYPE_EVENT, outQuery);
if (FAILED(result))
{
ASSERT(result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY);
return gl::Error(GL_OUT_OF_MEMORY, "Failed to allocate event query, result: 0x%X.", result);
}
}
else
{
*outQuery = mEventQueryPool.back();
mEventQueryPool.pop_back();
}
return gl::Error(GL_NO_ERROR);
}
void Renderer9::freeEventQuery(IDirect3DQuery9* query)
{
if (mEventQueryPool.size() > 1000)
{
SafeRelease(query);
}
else
{
mEventQueryPool.push_back(query);
}
}
gl::Error Renderer9::createVertexShader(const DWORD *function, size_t length, IDirect3DVertexShader9 **outShader)
{
return mVertexShaderCache.create(function, length, outShader);
}
gl::Error Renderer9::createPixelShader(const DWORD *function, size_t length, IDirect3DPixelShader9 **outShader)
{
return mPixelShaderCache.create(function, length, outShader);
}
HRESULT Renderer9::createVertexBuffer(UINT Length, DWORD Usage, IDirect3DVertexBuffer9 **ppVertexBuffer)
{
D3DPOOL Pool = getBufferPool(Usage);
return mDevice->CreateVertexBuffer(Length, Usage, 0, Pool, ppVertexBuffer, NULL);
}
VertexBuffer *Renderer9::createVertexBuffer()
{
return new VertexBuffer9(this);
}
HRESULT Renderer9::createIndexBuffer(UINT Length, DWORD Usage, D3DFORMAT Format, IDirect3DIndexBuffer9 **ppIndexBuffer)
{
D3DPOOL Pool = getBufferPool(Usage);
return mDevice->CreateIndexBuffer(Length, Usage, Format, Pool, ppIndexBuffer, NULL);
}
IndexBuffer *Renderer9::createIndexBuffer()
{
return new IndexBuffer9(this);
}
BufferImpl *Renderer9::createBuffer()
{
return new Buffer9(this);
}
VertexArrayImpl *Renderer9::createVertexArray(const gl::VertexArray::Data &data)
{
return new VertexArray9(data);
}
QueryImpl *Renderer9::createQuery(GLenum type)
{
return new Query9(this, type);
}
FenceNVImpl *Renderer9::createFenceNV()
{
return new FenceNV9(this);
}
FenceSyncImpl *Renderer9::createFenceSync()
{
// Renderer9 doesn't support ES 3.0 and its sync objects.
UNREACHABLE();
return NULL;
}
TransformFeedbackImpl* Renderer9::createTransformFeedback()
{
return new TransformFeedbackD3D();
}
bool Renderer9::supportsFastCopyBufferToTexture(GLenum internalFormat) const
{
// Pixel buffer objects are not supported in D3D9, since D3D9 is ES2-only and PBOs are ES3.
return false;
}
gl::Error Renderer9::fastCopyBufferToTexture(const gl::PixelUnpackState &unpack, unsigned int offset, RenderTargetD3D *destRenderTarget,
GLenum destinationFormat, GLenum sourcePixelsType, const gl::Box &destArea)
{
// Pixel buffer objects are not supported in D3D9, since D3D9 is ES2-only and PBOs are ES3.
UNREACHABLE();
return gl::Error(GL_INVALID_OPERATION);
}
gl::Error Renderer9::generateSwizzle(gl::Texture *texture)
{
// Swizzled textures are not available in ES2 or D3D9
UNREACHABLE();
return gl::Error(GL_INVALID_OPERATION);
}
gl::Error Renderer9::setSamplerState(gl::SamplerType type, int index, gl::Texture *texture, const gl::SamplerState &samplerState)
{
std::vector<bool> &forceSetSamplers = (type == gl::SAMPLER_PIXEL) ? mForceSetPixelSamplerStates : mForceSetVertexSamplerStates;
std::vector<gl::SamplerState> &appliedSamplers = (type == gl::SAMPLER_PIXEL) ? mCurPixelSamplerStates: mCurVertexSamplerStates;
if (forceSetSamplers[index] || memcmp(&samplerState, &appliedSamplers[index], sizeof(gl::SamplerState)) != 0)
{
int d3dSamplerOffset = (type == gl::SAMPLER_PIXEL) ? 0 : D3DVERTEXTEXTURESAMPLER0;
int d3dSampler = index + d3dSamplerOffset;
// Make sure to add the level offset for our tiny compressed texture workaround
TextureD3D *textureD3D = GetImplAs<TextureD3D>(texture);
TextureStorage *storage = nullptr;
gl::Error error = textureD3D->getNativeTexture(&storage);
if (error.isError())
{
return error;
}
// Storage should exist, texture should be complete
ASSERT(storage);
DWORD baseLevel = samplerState.baseLevel + storage->getTopLevel();
mDevice->SetSamplerState(d3dSampler, D3DSAMP_ADDRESSU, gl_d3d9::ConvertTextureWrap(samplerState.wrapS));
mDevice->SetSamplerState(d3dSampler, D3DSAMP_ADDRESSV, gl_d3d9::ConvertTextureWrap(samplerState.wrapT));
mDevice->SetSamplerState(d3dSampler, D3DSAMP_MAGFILTER, gl_d3d9::ConvertMagFilter(samplerState.magFilter, samplerState.maxAnisotropy));
D3DTEXTUREFILTERTYPE d3dMinFilter, d3dMipFilter;
gl_d3d9::ConvertMinFilter(samplerState.minFilter, &d3dMinFilter, &d3dMipFilter, samplerState.maxAnisotropy);
mDevice->SetSamplerState(d3dSampler, D3DSAMP_MINFILTER, d3dMinFilter);
mDevice->SetSamplerState(d3dSampler, D3DSAMP_MIPFILTER, d3dMipFilter);
mDevice->SetSamplerState(d3dSampler, D3DSAMP_MAXMIPLEVEL, baseLevel);
if (getRendererExtensions().textureFilterAnisotropic)
{
mDevice->SetSamplerState(d3dSampler, D3DSAMP_MAXANISOTROPY, (DWORD)samplerState.maxAnisotropy);
}
}
forceSetSamplers[index] = false;
appliedSamplers[index] = samplerState;
return gl::Error(GL_NO_ERROR);
}
gl::Error Renderer9::setTexture(gl::SamplerType type, int index, gl::Texture *texture)
{
int d3dSamplerOffset = (type == gl::SAMPLER_PIXEL) ? 0 : D3DVERTEXTEXTURESAMPLER0;
int d3dSampler = index + d3dSamplerOffset;
IDirect3DBaseTexture9 *d3dTexture = NULL;
bool forceSetTexture = false;
std::vector<uintptr_t> &appliedTextures = (type == gl::SAMPLER_PIXEL) ? mCurPixelTextures : mCurVertexTextures;
if (texture)
{
TextureD3D *textureImpl = GetImplAs<TextureD3D>(texture);
TextureStorage *texStorage = nullptr;
gl::Error error = textureImpl->getNativeTexture(&texStorage);
if (error.isError())
{
return error;
}
// Texture should be complete and have a storage
ASSERT(texStorage);
TextureStorage9 *storage9 = GetAs<TextureStorage9>(texStorage);
error = storage9->getBaseTexture(&d3dTexture);
if (error.isError())
{
return error;
}
// If we get NULL back from getBaseTexture here, something went wrong
// in the texture class and we're unexpectedly missing the d3d texture
ASSERT(d3dTexture != NULL);
forceSetTexture = textureImpl->hasDirtyImages();
textureImpl->resetDirty();
}
if (forceSetTexture || appliedTextures[index] != reinterpret_cast<uintptr_t>(d3dTexture))
{
mDevice->SetTexture(d3dSampler, d3dTexture);
}
appliedTextures[index] = reinterpret_cast<uintptr_t>(d3dTexture);
return gl::Error(GL_NO_ERROR);
}
gl::Error Renderer9::setUniformBuffers(const gl::Data &/*data*/,
const std::vector<GLint> &/*vertexUniformBuffers*/,
const std::vector<GLint> &/*fragmentUniformBuffers*/)
{
// No effect in ES2/D3D9
return gl::Error(GL_NO_ERROR);
}
gl::Error Renderer9::setRasterizerState(const gl::RasterizerState &rasterState)
{
bool rasterStateChanged = mForceSetRasterState || memcmp(&rasterState, &mCurRasterState, sizeof(gl::RasterizerState)) != 0;
if (rasterStateChanged)
{
// Set the cull mode
if (rasterState.cullFace)
{
mDevice->SetRenderState(D3DRS_CULLMODE, gl_d3d9::ConvertCullMode(rasterState.cullMode, rasterState.frontFace));
}
else
{
mDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_NONE);
}
if (rasterState.polygonOffsetFill)
{
if (mCurDepthSize > 0)
{
mDevice->SetRenderState(D3DRS_SLOPESCALEDEPTHBIAS, *(DWORD*)&rasterState.polygonOffsetFactor);
float depthBias = ldexp(rasterState.polygonOffsetUnits, -static_cast<int>(mCurDepthSize));
mDevice->SetRenderState(D3DRS_DEPTHBIAS, *(DWORD*)&depthBias);
}
}
else
{
mDevice->SetRenderState(D3DRS_SLOPESCALEDEPTHBIAS, 0);
mDevice->SetRenderState(D3DRS_DEPTHBIAS, 0);
}
mCurRasterState = rasterState;
}
mForceSetRasterState = false;
return gl::Error(GL_NO_ERROR);
}
gl::Error Renderer9::setBlendState(const gl::Framebuffer *framebuffer, const gl::BlendState &blendState, const gl::ColorF &blendColor,
unsigned int sampleMask)
{
bool blendStateChanged = mForceSetBlendState || memcmp(&blendState, &mCurBlendState, sizeof(gl::BlendState)) != 0;
bool blendColorChanged = mForceSetBlendState || memcmp(&blendColor, &mCurBlendColor, sizeof(gl::ColorF)) != 0;
bool sampleMaskChanged = mForceSetBlendState || sampleMask != mCurSampleMask;
if (blendStateChanged || blendColorChanged)
{
if (blendState.blend)
{
mDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
if (blendState.sourceBlendRGB != GL_CONSTANT_ALPHA && blendState.sourceBlendRGB != GL_ONE_MINUS_CONSTANT_ALPHA &&
blendState.destBlendRGB != GL_CONSTANT_ALPHA && blendState.destBlendRGB != GL_ONE_MINUS_CONSTANT_ALPHA)
{
mDevice->SetRenderState(D3DRS_BLENDFACTOR, gl_d3d9::ConvertColor(blendColor));
}
else
{
mDevice->SetRenderState(D3DRS_BLENDFACTOR, D3DCOLOR_RGBA(gl::unorm<8>(blendColor.alpha),
gl::unorm<8>(blendColor.alpha),
gl::unorm<8>(blendColor.alpha),
gl::unorm<8>(blendColor.alpha)));
}
mDevice->SetRenderState(D3DRS_SRCBLEND, gl_d3d9::ConvertBlendFunc(blendState.sourceBlendRGB));
mDevice->SetRenderState(D3DRS_DESTBLEND, gl_d3d9::ConvertBlendFunc(blendState.destBlendRGB));
mDevice->SetRenderState(D3DRS_BLENDOP, gl_d3d9::ConvertBlendOp(blendState.blendEquationRGB));
if (blendState.sourceBlendRGB != blendState.sourceBlendAlpha ||
blendState.destBlendRGB != blendState.destBlendAlpha ||
blendState.blendEquationRGB != blendState.blendEquationAlpha)
{
mDevice->SetRenderState(D3DRS_SEPARATEALPHABLENDENABLE, TRUE);
mDevice->SetRenderState(D3DRS_SRCBLENDALPHA, gl_d3d9::ConvertBlendFunc(blendState.sourceBlendAlpha));
mDevice->SetRenderState(D3DRS_DESTBLENDALPHA, gl_d3d9::ConvertBlendFunc(blendState.destBlendAlpha));
mDevice->SetRenderState(D3DRS_BLENDOPALPHA, gl_d3d9::ConvertBlendOp(blendState.blendEquationAlpha));
}
else
{
mDevice->SetRenderState(D3DRS_SEPARATEALPHABLENDENABLE, FALSE);
}
}
else
{
mDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);
}
if (blendState.sampleAlphaToCoverage)
{
FIXME("Sample alpha to coverage is unimplemented.");
}
const gl::FramebufferAttachment *attachment = framebuffer->getFirstColorbuffer();
GLenum internalFormat = attachment ? attachment->getInternalFormat() : GL_NONE;
// Set the color mask
bool zeroColorMaskAllowed = getVendorId() != VENDOR_ID_AMD;
// Apparently some ATI cards have a bug where a draw with a zero color
// write mask can cause later draws to have incorrect results. Instead,
// set a nonzero color write mask but modify the blend state so that no
// drawing is done.
// http://code.google.com/p/angleproject/issues/detail?id=169
const gl::InternalFormat &formatInfo = gl::GetInternalFormatInfo(internalFormat);
DWORD colorMask = gl_d3d9::ConvertColorMask(formatInfo.redBits > 0 && blendState.colorMaskRed,
formatInfo.greenBits > 0 && blendState.colorMaskGreen,
formatInfo.blueBits > 0 && blendState.colorMaskBlue,
formatInfo.alphaBits > 0 && blendState.colorMaskAlpha);
if (colorMask == 0 && !zeroColorMaskAllowed)
{
// Enable green channel, but set blending so nothing will be drawn.
mDevice->SetRenderState(D3DRS_COLORWRITEENABLE, D3DCOLORWRITEENABLE_GREEN);
mDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
mDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_ZERO);
mDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_ONE);
mDevice->SetRenderState(D3DRS_BLENDOP, D3DBLENDOP_ADD);
}
else
{
mDevice->SetRenderState(D3DRS_COLORWRITEENABLE, colorMask);
}
mDevice->SetRenderState(D3DRS_DITHERENABLE, blendState.dither ? TRUE : FALSE);
mCurBlendState = blendState;
mCurBlendColor = blendColor;
}
if (sampleMaskChanged)
{
// Set the multisample mask
mDevice->SetRenderState(D3DRS_MULTISAMPLEANTIALIAS, TRUE);
mDevice->SetRenderState(D3DRS_MULTISAMPLEMASK, static_cast<DWORD>(sampleMask));
mCurSampleMask = sampleMask;
}
mForceSetBlendState = false;
return gl::Error(GL_NO_ERROR);
}
gl::Error Renderer9::setDepthStencilState(const gl::DepthStencilState &depthStencilState, int stencilRef,
int stencilBackRef, bool frontFaceCCW)
{
bool depthStencilStateChanged = mForceSetDepthStencilState ||
memcmp(&depthStencilState, &mCurDepthStencilState, sizeof(gl::DepthStencilState)) != 0;
bool stencilRefChanged = mForceSetDepthStencilState || stencilRef != mCurStencilRef ||
stencilBackRef != mCurStencilBackRef;
bool frontFaceCCWChanged = mForceSetDepthStencilState || frontFaceCCW != mCurFrontFaceCCW;
if (depthStencilStateChanged)
{
if (depthStencilState.depthTest)
{
mDevice->SetRenderState(D3DRS_ZENABLE, D3DZB_TRUE);
mDevice->SetRenderState(D3DRS_ZFUNC, gl_d3d9::ConvertComparison(depthStencilState.depthFunc));
}
else
{
mDevice->SetRenderState(D3DRS_ZENABLE, D3DZB_FALSE);
}
mCurDepthStencilState = depthStencilState;
}
if (depthStencilStateChanged || stencilRefChanged || frontFaceCCWChanged)
{
if (depthStencilState.stencilTest && mCurStencilSize > 0)
{
mDevice->SetRenderState(D3DRS_STENCILENABLE, TRUE);
mDevice->SetRenderState(D3DRS_TWOSIDEDSTENCILMODE, TRUE);
// FIXME: Unsupported by D3D9
const D3DRENDERSTATETYPE D3DRS_CCW_STENCILREF = D3DRS_STENCILREF;
const D3DRENDERSTATETYPE D3DRS_CCW_STENCILMASK = D3DRS_STENCILMASK;
const D3DRENDERSTATETYPE D3DRS_CCW_STENCILWRITEMASK = D3DRS_STENCILWRITEMASK;
ASSERT(depthStencilState.stencilWritemask == depthStencilState.stencilBackWritemask);
ASSERT(stencilRef == stencilBackRef);
ASSERT(depthStencilState.stencilMask == depthStencilState.stencilBackMask);
// get the maximum size of the stencil ref
unsigned int maxStencil = (1 << mCurStencilSize) - 1;
mDevice->SetRenderState(frontFaceCCW ? D3DRS_STENCILWRITEMASK : D3DRS_CCW_STENCILWRITEMASK,
depthStencilState.stencilWritemask);
mDevice->SetRenderState(frontFaceCCW ? D3DRS_STENCILFUNC : D3DRS_CCW_STENCILFUNC,
gl_d3d9::ConvertComparison(depthStencilState.stencilFunc));
mDevice->SetRenderState(frontFaceCCW ? D3DRS_STENCILREF : D3DRS_CCW_STENCILREF,
(stencilRef < (int)maxStencil) ? stencilRef : maxStencil);
mDevice->SetRenderState(frontFaceCCW ? D3DRS_STENCILMASK : D3DRS_CCW_STENCILMASK,
depthStencilState.stencilMask);
mDevice->SetRenderState(frontFaceCCW ? D3DRS_STENCILFAIL : D3DRS_CCW_STENCILFAIL,
gl_d3d9::ConvertStencilOp(depthStencilState.stencilFail));
mDevice->SetRenderState(frontFaceCCW ? D3DRS_STENCILZFAIL : D3DRS_CCW_STENCILZFAIL,
gl_d3d9::ConvertStencilOp(depthStencilState.stencilPassDepthFail));
mDevice->SetRenderState(frontFaceCCW ? D3DRS_STENCILPASS : D3DRS_CCW_STENCILPASS,
gl_d3d9::ConvertStencilOp(depthStencilState.stencilPassDepthPass));
mDevice->SetRenderState(!frontFaceCCW ? D3DRS_STENCILWRITEMASK : D3DRS_CCW_STENCILWRITEMASK,
depthStencilState.stencilBackWritemask);
mDevice->SetRenderState(!frontFaceCCW ? D3DRS_STENCILFUNC : D3DRS_CCW_STENCILFUNC,
gl_d3d9::ConvertComparison(depthStencilState.stencilBackFunc));
mDevice->SetRenderState(!frontFaceCCW ? D3DRS_STENCILREF : D3DRS_CCW_STENCILREF,
(stencilBackRef < (int)maxStencil) ? stencilBackRef : maxStencil);
mDevice->SetRenderState(!frontFaceCCW ? D3DRS_STENCILMASK : D3DRS_CCW_STENCILMASK,
depthStencilState.stencilBackMask);
mDevice->SetRenderState(!frontFaceCCW ? D3DRS_STENCILFAIL : D3DRS_CCW_STENCILFAIL,
gl_d3d9::ConvertStencilOp(depthStencilState.stencilBackFail));
mDevice->SetRenderState(!frontFaceCCW ? D3DRS_STENCILZFAIL : D3DRS_CCW_STENCILZFAIL,
gl_d3d9::ConvertStencilOp(depthStencilState.stencilBackPassDepthFail));
mDevice->SetRenderState(!frontFaceCCW ? D3DRS_STENCILPASS : D3DRS_CCW_STENCILPASS,
gl_d3d9::ConvertStencilOp(depthStencilState.stencilBackPassDepthPass));
}
else
{
mDevice->SetRenderState(D3DRS_STENCILENABLE, FALSE);
}
mDevice->SetRenderState(D3DRS_ZWRITEENABLE, depthStencilState.depthMask ? TRUE : FALSE);
mCurStencilRef = stencilRef;
mCurStencilBackRef = stencilBackRef;
mCurFrontFaceCCW = frontFaceCCW;
}
mForceSetDepthStencilState = false;
return gl::Error(GL_NO_ERROR);
}
void Renderer9::setScissorRectangle(const gl::Rectangle &scissor, bool enabled)
{
bool scissorChanged = mForceSetScissor ||
memcmp(&scissor, &mCurScissor, sizeof(gl::Rectangle)) != 0 ||
enabled != mScissorEnabled;
if (scissorChanged)
{
if (enabled)
{
RECT rect;
rect.left = gl::clamp(scissor.x, 0, static_cast<int>(mRenderTargetDesc.width));
rect.top = gl::clamp(scissor.y, 0, static_cast<int>(mRenderTargetDesc.height));
rect.right = gl::clamp(scissor.x + scissor.width, 0, static_cast<int>(mRenderTargetDesc.width));
rect.bottom = gl::clamp(scissor.y + scissor.height, 0, static_cast<int>(mRenderTargetDesc.height));
mDevice->SetScissorRect(&rect);
}
mDevice->SetRenderState(D3DRS_SCISSORTESTENABLE, enabled ? TRUE : FALSE);
mScissorEnabled = enabled;
mCurScissor = scissor;
}
mForceSetScissor = false;
}
void Renderer9::setViewport(const gl::Rectangle &viewport, float zNear, float zFar, GLenum drawMode, GLenum frontFace,
bool ignoreViewport)
{
gl::Rectangle actualViewport = viewport;
float actualZNear = gl::clamp01(zNear);
float actualZFar = gl::clamp01(zFar);
if (ignoreViewport)
{
actualViewport.x = 0;
actualViewport.y = 0;
actualViewport.width = mRenderTargetDesc.width;
actualViewport.height = mRenderTargetDesc.height;
actualZNear = 0.0f;
actualZFar = 1.0f;
}
D3DVIEWPORT9 dxViewport;
dxViewport.X = gl::clamp(actualViewport.x, 0, static_cast<int>(mRenderTargetDesc.width));
dxViewport.Y = gl::clamp(actualViewport.y, 0, static_cast<int>(mRenderTargetDesc.height));
dxViewport.Width = gl::clamp(actualViewport.width, 0, static_cast<int>(mRenderTargetDesc.width) - static_cast<int>(dxViewport.X));
dxViewport.Height = gl::clamp(actualViewport.height, 0, static_cast<int>(mRenderTargetDesc.height) - static_cast<int>(dxViewport.Y));
dxViewport.MinZ = actualZNear;
dxViewport.MaxZ = actualZFar;
float depthFront = !gl::IsTriangleMode(drawMode) ? 0.0f : (frontFace == GL_CCW ? 1.0f : -1.0f);
bool viewportChanged = mForceSetViewport || memcmp(&actualViewport, &mCurViewport, sizeof(gl::Rectangle)) != 0 ||
actualZNear != mCurNear || actualZFar != mCurFar || mCurDepthFront != depthFront;
if (viewportChanged)
{
mDevice->SetViewport(&dxViewport);
mCurViewport = actualViewport;
mCurNear = actualZNear;
mCurFar = actualZFar;
mCurDepthFront = depthFront;
dx_VertexConstants vc = {};
dx_PixelConstants pc = {};
vc.viewAdjust[0] = (float)((actualViewport.width - (int)dxViewport.Width) + 2 * (actualViewport.x - (int)dxViewport.X) - 1) / dxViewport.Width;
vc.viewAdjust[1] = (float)((actualViewport.height - (int)dxViewport.Height) + 2 * (actualViewport.y - (int)dxViewport.Y) - 1) / dxViewport.Height;
vc.viewAdjust[2] = (float)actualViewport.width / dxViewport.Width;
vc.viewAdjust[3] = (float)actualViewport.height / dxViewport.Height;
pc.viewCoords[0] = actualViewport.width * 0.5f;
pc.viewCoords[1] = actualViewport.height * 0.5f;
pc.viewCoords[2] = actualViewport.x + (actualViewport.width * 0.5f);
pc.viewCoords[3] = actualViewport.y + (actualViewport.height * 0.5f);
pc.depthFront[0] = (actualZFar - actualZNear) * 0.5f;
pc.depthFront[1] = (actualZNear + actualZFar) * 0.5f;
pc.depthFront[2] = depthFront;
vc.depthRange[0] = actualZNear;
vc.depthRange[1] = actualZFar;
vc.depthRange[2] = actualZFar - actualZNear;
pc.depthRange[0] = actualZNear;
pc.depthRange[1] = actualZFar;
pc.depthRange[2] = actualZFar - actualZNear;
if (memcmp(&vc, &mVertexConstants, sizeof(dx_VertexConstants)) != 0)
{
mVertexConstants = vc;
mDxUniformsDirty = true;
}
if (memcmp(&pc, &mPixelConstants, sizeof(dx_PixelConstants)) != 0)
{
mPixelConstants = pc;
mDxUniformsDirty = true;
}
}
mForceSetViewport = false;
}
bool Renderer9::applyPrimitiveType(GLenum mode, GLsizei count, bool usesPointSize)
{
switch (mode)
{
case GL_POINTS:
mPrimitiveType = D3DPT_POINTLIST;
mPrimitiveCount = count;
break;
case GL_LINES:
mPrimitiveType = D3DPT_LINELIST;
mPrimitiveCount = count / 2;
break;
case GL_LINE_LOOP:
mPrimitiveType = D3DPT_LINESTRIP;
mPrimitiveCount = count - 1; // D3D doesn't support line loops, so we draw the last line separately
break;
case GL_LINE_STRIP:
mPrimitiveType = D3DPT_LINESTRIP;
mPrimitiveCount = count - 1;
break;
case GL_TRIANGLES:
mPrimitiveType = D3DPT_TRIANGLELIST;
mPrimitiveCount = count / 3;
break;
case GL_TRIANGLE_STRIP:
mPrimitiveType = D3DPT_TRIANGLESTRIP;
mPrimitiveCount = count - 2;
break;
case GL_TRIANGLE_FAN:
mPrimitiveType = D3DPT_TRIANGLEFAN;
mPrimitiveCount = count - 2;
break;
default:
UNREACHABLE();
return false;
}
return mPrimitiveCount > 0;
}
gl::Error Renderer9::getNullColorbuffer(const gl::FramebufferAttachment *depthbuffer, const gl::FramebufferAttachment **outColorBuffer)
{
ASSERT(depthbuffer);
GLsizei width = depthbuffer->getWidth();
GLsizei height = depthbuffer->getHeight();
// search cached nullcolorbuffers
for (int i = 0; i < NUM_NULL_COLORBUFFER_CACHE_ENTRIES; i++)
{
if (mNullColorbufferCache[i].buffer != NULL &&
mNullColorbufferCache[i].width == width &&
mNullColorbufferCache[i].height == height)
{
mNullColorbufferCache[i].lruCount = ++mMaxNullColorbufferLRU;
*outColorBuffer = mNullColorbufferCache[i].buffer;
return gl::Error(GL_NO_ERROR);
}
}
gl::Renderbuffer *nullRenderbuffer = new gl::Renderbuffer(createRenderbuffer(), 0);
gl::Error error = nullRenderbuffer->setStorage(GL_NONE, width, height);
if (error.isError())
{
SafeDelete(nullRenderbuffer);
return error;
}
gl::FramebufferAttachment *nullbuffer = new gl::FramebufferAttachment(GL_RENDERBUFFER, GL_NONE, gl::ImageIndex::MakeInvalid(), nullRenderbuffer);
// add nullbuffer to the cache
NullColorbufferCacheEntry *oldest = &mNullColorbufferCache[0];
for (int i = 1; i < NUM_NULL_COLORBUFFER_CACHE_ENTRIES; i++)
{
if (mNullColorbufferCache[i].lruCount < oldest->lruCount)
{
oldest = &mNullColorbufferCache[i];
}
}
delete oldest->buffer;
oldest->buffer = nullbuffer;
oldest->lruCount = ++mMaxNullColorbufferLRU;
oldest->width = width;
oldest->height = height;
*outColorBuffer = nullbuffer;
return gl::Error(GL_NO_ERROR);
}
gl::Error Renderer9::applyRenderTarget(const gl::FramebufferAttachment *colorAttachment,
const gl::FramebufferAttachment *depthStencilAttachment)
{
const gl::FramebufferAttachment *renderAttachment = colorAttachment;
// if there is no color attachment we must synthesize a NULL colorattachment
// to keep the D3D runtime happy. This should only be possible if depth texturing.
if (renderAttachment == nullptr)
{
gl::Error error = getNullColorbuffer(depthStencilAttachment, &renderAttachment);
if (error.isError())
{
return error;
}
}
ASSERT(renderAttachment != nullptr);
size_t renderTargetWidth = 0;
size_t renderTargetHeight = 0;
D3DFORMAT renderTargetFormat = D3DFMT_UNKNOWN;
bool renderTargetChanged = false;
unsigned int renderTargetSerial = GetAttachmentSerial(renderAttachment);
if (renderTargetSerial != mAppliedRenderTargetSerial)
{
// Apply the render target on the device
RenderTarget9 *renderTarget = nullptr;
gl::Error error = renderAttachment->getRenderTarget(&renderTarget);
if (error.isError())
{
return error;
}
ASSERT(renderTarget);
IDirect3DSurface9 *renderTargetSurface = renderTarget->getSurface();
ASSERT(renderTargetSurface);
mDevice->SetRenderTarget(0, renderTargetSurface);
SafeRelease(renderTargetSurface);
renderTargetWidth = renderTarget->getWidth();
renderTargetHeight = renderTarget->getHeight();
renderTargetFormat = renderTarget->getD3DFormat();
mAppliedRenderTargetSerial = renderTargetSerial;
renderTargetChanged = true;
}
unsigned int depthStencilSerial = (depthStencilAttachment != nullptr) ?
GetAttachmentSerial(depthStencilAttachment) : 0;
if (depthStencilSerial != mAppliedDepthStencilSerial || !mDepthStencilInitialized)
{
unsigned int depthSize = 0;
unsigned int stencilSize = 0;
// Apply the depth stencil on the device
if (depthStencilAttachment)
{
RenderTarget9 *depthStencilRenderTarget = nullptr;
gl::Error error = depthStencilAttachment->getRenderTarget(&depthStencilRenderTarget);
if (error.isError())
{
return error;
}
ASSERT(depthStencilRenderTarget);
IDirect3DSurface9 *depthStencilSurface = depthStencilRenderTarget->getSurface();
ASSERT(depthStencilSurface);
mDevice->SetDepthStencilSurface(depthStencilSurface);
SafeRelease(depthStencilSurface);
depthSize = depthStencilAttachment->getDepthSize();
stencilSize = depthStencilAttachment->getStencilSize();
}
else
{
mDevice->SetDepthStencilSurface(NULL);
}
if (!mDepthStencilInitialized || depthSize != mCurDepthSize)
{
mCurDepthSize = depthSize;
mForceSetRasterState = true;
}
if (!mDepthStencilInitialized || stencilSize != mCurStencilSize)
{
mCurStencilSize = stencilSize;
mForceSetDepthStencilState = true;
}
mAppliedDepthStencilSerial = depthStencilSerial;
mDepthStencilInitialized = true;
}
if (renderTargetChanged || !mRenderTargetDescInitialized)
{
mForceSetScissor = true;
mForceSetViewport = true;
mForceSetBlendState = true;
mRenderTargetDesc.width = renderTargetWidth;
mRenderTargetDesc.height = renderTargetHeight;
mRenderTargetDesc.format = renderTargetFormat;
mRenderTargetDescInitialized = true;
}
return gl::Error(GL_NO_ERROR);
}
gl::Error Renderer9::applyRenderTarget(const gl::Framebuffer *framebuffer)
{
return applyRenderTarget(framebuffer->getColorbuffer(0), framebuffer->getDepthOrStencilbuffer());
}
gl::Error Renderer9::applyVertexBuffer(const gl::State &state, GLenum mode, GLint first, GLsizei count, GLsizei instances, SourceIndexData * /*sourceInfo*/)
{
gl::Error error = mVertexDataManager->prepareVertexData(state, first, count, &mTranslatedAttribCache, instances);
if (error.isError())
{
return error;
}
return mVertexDeclarationCache.applyDeclaration(mDevice, mTranslatedAttribCache, state.getProgram(), instances, &mRepeatDraw);
}
// Applies the indices and element array bindings to the Direct3D 9 device
gl::Error Renderer9::applyIndexBuffer(const GLvoid *indices, gl::Buffer *elementArrayBuffer, GLsizei count, GLenum mode, GLenum type, TranslatedIndexData *indexInfo, SourceIndexData *sourceIndexInfo)
{
gl::Error error = mIndexDataManager->prepareIndexData(type, count, elementArrayBuffer, indices, indexInfo, sourceIndexInfo);
if (error.isError())
{
return error;
}
// Directly binding the storage buffer is not supported for d3d9
ASSERT(indexInfo->storage == NULL);
if (indexInfo->serial != mAppliedIBSerial)
{
IndexBuffer9* indexBuffer = GetAs<IndexBuffer9>(indexInfo->indexBuffer);
mDevice->SetIndices(indexBuffer->getBuffer());
mAppliedIBSerial = indexInfo->serial;
}
return gl::Error(GL_NO_ERROR);
}
void Renderer9::applyTransformFeedbackBuffers(const gl::State& state)
{
ASSERT(!state.isTransformFeedbackActiveUnpaused());
}
gl::Error Renderer9::drawArrays(const gl::Data &data, GLenum mode, GLsizei count, GLsizei instances, bool usesPointSize)
{
ASSERT(!data.state->isTransformFeedbackActiveUnpaused());
startScene();
if (mode == GL_LINE_LOOP)
{
return drawLineLoop(count, GL_NONE, NULL, 0, NULL);
}
else if (instances > 0)
{
StaticIndexBufferInterface *countingIB = NULL;
gl::Error error = getCountingIB(count, &countingIB);
if (error.isError())
{
return error;
}
if (mAppliedIBSerial != countingIB->getSerial())
{
IndexBuffer9 *indexBuffer = GetAs<IndexBuffer9>(countingIB->getIndexBuffer());
mDevice->SetIndices(indexBuffer->getBuffer());
mAppliedIBSerial = countingIB->getSerial();
}
for (int i = 0; i < mRepeatDraw; i++)
{
mDevice->DrawIndexedPrimitive(mPrimitiveType, 0, 0, count, 0, mPrimitiveCount);
}
return gl::Error(GL_NO_ERROR);
}
else // Regular case
{
mDevice->DrawPrimitive(mPrimitiveType, 0, mPrimitiveCount);
return gl::Error(GL_NO_ERROR);
}
}
gl::Error Renderer9::drawElements(GLenum mode, GLsizei count, GLenum type, const GLvoid *indices,
gl::Buffer *elementArrayBuffer, const TranslatedIndexData &indexInfo, GLsizei /*instances*/,
bool /*usesPointSize*/)
{
startScene();
int minIndex = static_cast<int>(indexInfo.indexRange.start);
if (mode == GL_POINTS)
{
return drawIndexedPoints(count, type, indices, minIndex, elementArrayBuffer);
}
else if (mode == GL_LINE_LOOP)
{
return drawLineLoop(count, type, indices, minIndex, elementArrayBuffer);
}
else
{
for (int i = 0; i < mRepeatDraw; i++)
{
GLsizei vertexCount = static_cast<int>(indexInfo.indexRange.length()) + 1;
mDevice->DrawIndexedPrimitive(mPrimitiveType, -minIndex, minIndex, vertexCount, indexInfo.startIndex, mPrimitiveCount);
}
return gl::Error(GL_NO_ERROR);
}
}
gl::Error Renderer9::drawLineLoop(GLsizei count, GLenum type, const GLvoid *indices, int minIndex, gl::Buffer *elementArrayBuffer)
{
// Get the raw indices for an indexed draw
if (type != GL_NONE && elementArrayBuffer)
{
BufferD3D *storage = GetImplAs<BufferD3D>(elementArrayBuffer);
intptr_t offset = reinterpret_cast<intptr_t>(indices);
const uint8_t *bufferData = NULL;
gl::Error error = storage->getData(&bufferData);
if (error.isError())
{
return error;
}
indices = bufferData + offset;
}
unsigned int startIndex = 0;
if (getRendererExtensions().elementIndexUint)
{
if (!mLineLoopIB)
{
mLineLoopIB = new StreamingIndexBufferInterface(this);
gl::Error error = mLineLoopIB->reserveBufferSpace(INITIAL_INDEX_BUFFER_SIZE, GL_UNSIGNED_INT);
if (error.isError())
{
SafeDelete(mLineLoopIB);
return error;
}
}
// Checked by Renderer9::applyPrimitiveType
ASSERT(count >= 0);
if (static_cast<unsigned int>(count) + 1 > (std::numeric_limits<unsigned int>::max() / sizeof(unsigned int)))
{
return gl::Error(GL_OUT_OF_MEMORY, "Failed to create a 32-bit looping index buffer for GL_LINE_LOOP, too many indices required.");
}
const unsigned int spaceNeeded = (static_cast<unsigned int>(count)+1) * sizeof(unsigned int);
gl::Error error = mLineLoopIB->reserveBufferSpace(spaceNeeded, GL_UNSIGNED_INT);
if (error.isError())
{
return error;
}
void* mappedMemory = NULL;
unsigned int offset = 0;
error = mLineLoopIB->mapBuffer(spaceNeeded, &mappedMemory, &offset);
if (error.isError())
{
return error;
}
startIndex = static_cast<unsigned int>(offset) / 4;
unsigned int *data = reinterpret_cast<unsigned int*>(mappedMemory);
switch (type)
{
case GL_NONE: // Non-indexed draw
for (int i = 0; i < count; i++)
{
data[i] = i;
}
data[count] = 0;
break;
case GL_UNSIGNED_BYTE:
for (int i = 0; i < count; i++)
{
data[i] = static_cast<const GLubyte*>(indices)[i];
}
data[count] = static_cast<const GLubyte*>(indices)[0];
break;
case GL_UNSIGNED_SHORT:
for (int i = 0; i < count; i++)
{
data[i] = static_cast<const GLushort*>(indices)[i];
}
data[count] = static_cast<const GLushort*>(indices)[0];
break;
case GL_UNSIGNED_INT:
for (int i = 0; i < count; i++)
{
data[i] = static_cast<const GLuint*>(indices)[i];
}
data[count] = static_cast<const GLuint*>(indices)[0];
break;
default: UNREACHABLE();
}
error = mLineLoopIB->unmapBuffer();
if (error.isError())
{
return error;
}
}
else
{
if (!mLineLoopIB)
{
mLineLoopIB = new StreamingIndexBufferInterface(this);
gl::Error error = mLineLoopIB->reserveBufferSpace(INITIAL_INDEX_BUFFER_SIZE, GL_UNSIGNED_SHORT);
if (error.isError())
{
SafeDelete(mLineLoopIB);
return error;
}
}
// Checked by Renderer9::applyPrimitiveType
ASSERT(count >= 0);
if (static_cast<unsigned int>(count) + 1 > (std::numeric_limits<unsigned short>::max() / sizeof(unsigned short)))
{
return gl::Error(GL_OUT_OF_MEMORY, "Failed to create a 16-bit looping index buffer for GL_LINE_LOOP, too many indices required.");
}
const unsigned int spaceNeeded = (static_cast<unsigned int>(count) + 1) * sizeof(unsigned short);
gl::Error error = mLineLoopIB->reserveBufferSpace(spaceNeeded, GL_UNSIGNED_SHORT);
if (error.isError())
{
return error;
}
void* mappedMemory = NULL;
unsigned int offset;
error = mLineLoopIB->mapBuffer(spaceNeeded, &mappedMemory, &offset);
if (error.isError())
{
return error;
}
startIndex = static_cast<unsigned int>(offset) / 2;
unsigned short *data = reinterpret_cast<unsigned short*>(mappedMemory);
switch (type)
{
case GL_NONE: // Non-indexed draw
for (int i = 0; i < count; i++)
{
data[i] = static_cast<unsigned short>(i);
}
data[count] = 0;
break;
case GL_UNSIGNED_BYTE:
for (int i = 0; i < count; i++)
{
data[i] = static_cast<const GLubyte*>(indices)[i];
}
data[count] = static_cast<const GLubyte*>(indices)[0];
break;
case GL_UNSIGNED_SHORT:
for (int i = 0; i < count; i++)
{
data[i] = static_cast<const GLushort*>(indices)[i];
}
data[count] = static_cast<const GLushort*>(indices)[0];
break;
case GL_UNSIGNED_INT:
for (int i = 0; i < count; i++)
{
data[i] = static_cast<unsigned short>(static_cast<const GLuint*>(indices)[i]);
}
data[count] = static_cast<unsigned short>(static_cast<const GLuint*>(indices)[0]);
break;
default: UNREACHABLE();
}
error = mLineLoopIB->unmapBuffer();
if (error.isError())
{
return error;
}
}
if (mAppliedIBSerial != mLineLoopIB->getSerial())
{
IndexBuffer9 *indexBuffer = GetAs<IndexBuffer9>(mLineLoopIB->getIndexBuffer());
mDevice->SetIndices(indexBuffer->getBuffer());
mAppliedIBSerial = mLineLoopIB->getSerial();
}
mDevice->DrawIndexedPrimitive(D3DPT_LINESTRIP, -minIndex, minIndex, count, startIndex, count);
return gl::Error(GL_NO_ERROR);
}
template <typename T>
static gl::Error drawPoints(IDirect3DDevice9* device, GLsizei count, const GLvoid *indices, int minIndex)
{
for (int i = 0; i < count; i++)
{
unsigned int indexValue = static_cast<unsigned int>(static_cast<const T*>(indices)[i]) - minIndex;
device->DrawPrimitive(D3DPT_POINTLIST, indexValue, 1);
}
return gl::Error(GL_NO_ERROR);
}
gl::Error Renderer9::drawIndexedPoints(GLsizei count, GLenum type, const GLvoid *indices, int minIndex, gl::Buffer *elementArrayBuffer)
{
// Drawing index point lists is unsupported in d3d9, fall back to a regular DrawPrimitive call
// for each individual point. This call is not expected to happen often.
if (elementArrayBuffer)
{
BufferD3D *storage = GetImplAs<BufferD3D>(elementArrayBuffer);
intptr_t offset = reinterpret_cast<intptr_t>(indices);
const uint8_t *bufferData = NULL;
gl::Error error = storage->getData(&bufferData);
if (error.isError())
{
return error;
}
indices = bufferData + offset;
}
switch (type)
{
case GL_UNSIGNED_BYTE: return drawPoints<GLubyte>(mDevice, count, indices, minIndex);
case GL_UNSIGNED_SHORT: return drawPoints<GLushort>(mDevice, count, indices, minIndex);
case GL_UNSIGNED_INT: return drawPoints<GLuint>(mDevice, count, indices, minIndex);
default: UNREACHABLE(); return gl::Error(GL_INVALID_OPERATION);
}
}
gl::Error Renderer9::getCountingIB(size_t count, StaticIndexBufferInterface **outIB)
{
// Update the counting index buffer if it is not large enough or has not been created yet.
if (count <= 65536) // 16-bit indices
{
const unsigned int spaceNeeded = count * sizeof(unsigned short);
if (!mCountingIB || mCountingIB->getBufferSize() < spaceNeeded)
{
SafeDelete(mCountingIB);
mCountingIB = new StaticIndexBufferInterface(this);
mCountingIB->reserveBufferSpace(spaceNeeded, GL_UNSIGNED_SHORT);
void *mappedMemory = NULL;
gl::Error error = mCountingIB->mapBuffer(spaceNeeded, &mappedMemory, NULL);
if (error.isError())
{
return error;
}
unsigned short *data = reinterpret_cast<unsigned short*>(mappedMemory);
for (size_t i = 0; i < count; i++)
{
data[i] = static_cast<unsigned short>(i);
}
error = mCountingIB->unmapBuffer();
if (error.isError())
{
return error;
}
}
}
else if (getRendererExtensions().elementIndexUint)
{
const unsigned int spaceNeeded = count * sizeof(unsigned int);
if (!mCountingIB || mCountingIB->getBufferSize() < spaceNeeded)
{
SafeDelete(mCountingIB);
mCountingIB = new StaticIndexBufferInterface(this);
mCountingIB->reserveBufferSpace(spaceNeeded, GL_UNSIGNED_INT);
void *mappedMemory = NULL;
gl::Error error = mCountingIB->mapBuffer(spaceNeeded, &mappedMemory, NULL);
if (error.isError())
{
return error;
}
unsigned int *data = reinterpret_cast<unsigned int*>(mappedMemory);
for (size_t i = 0; i < count; i++)
{
data[i] = i;
}
error = mCountingIB->unmapBuffer();
if (error.isError())
{
return error;
}
}
}
else
{
return gl::Error(GL_OUT_OF_MEMORY, "Could not create a counting index buffer for glDrawArraysInstanced.");
}
*outIB = mCountingIB;
return gl::Error(GL_NO_ERROR);
}
gl::Error Renderer9::applyShaders(gl::Program *program,
const gl::Framebuffer *framebuffer,
bool rasterizerDiscard,
bool transformFeedbackActive)
{
ASSERT(!transformFeedbackActive);
ASSERT(!rasterizerDiscard);
ProgramD3D *programD3D = GetImplAs<ProgramD3D>(program);
const auto &inputLayout = programD3D->getCachedInputLayout();
ShaderExecutableD3D *vertexExe = NULL;
gl::Error error = programD3D->getVertexExecutableForInputLayout(inputLayout, &vertexExe, nullptr);
if (error.isError())
{
return error;
}
ShaderExecutableD3D *pixelExe = NULL;
error = programD3D->getPixelExecutableForFramebuffer(framebuffer, &pixelExe);
if (error.isError())
{
return error;
}
IDirect3DVertexShader9 *vertexShader = (vertexExe ? GetAs<ShaderExecutable9>(vertexExe)->getVertexShader() : nullptr);
IDirect3DPixelShader9 *pixelShader = (pixelExe ? GetAs<ShaderExecutable9>(pixelExe)->getPixelShader() : nullptr);
if (vertexShader != mAppliedVertexShader)
{
mDevice->SetVertexShader(vertexShader);
mAppliedVertexShader = vertexShader;
}
if (pixelShader != mAppliedPixelShader)
{
mDevice->SetPixelShader(pixelShader);
mAppliedPixelShader = pixelShader;
}
// D3D9 has a quirk where creating multiple shaders with the same content
// can return the same shader pointer. Because GL programs store different data
// per-program, checking the program serial guarantees we upload fresh
// uniform data even if our shader pointers are the same.
// https://code.google.com/p/angleproject/issues/detail?id=661
unsigned int programSerial = programD3D->getSerial();
if (programSerial != mAppliedProgramSerial)
{
programD3D->dirtyAllUniforms();
mDxUniformsDirty = true;
mAppliedProgramSerial = programSerial;
}
return gl::Error(GL_NO_ERROR);
}
gl::Error Renderer9::applyUniforms(const ProgramImpl &program, const std::vector<gl::LinkedUniform*> &uniformArray)
{
for (size_t uniformIndex = 0; uniformIndex < uniformArray.size(); uniformIndex++)
{
gl::LinkedUniform *targetUniform = uniformArray[uniformIndex];
if (targetUniform->dirty)
{
GLfloat *f = (GLfloat*)targetUniform->data;
GLint *i = (GLint*)targetUniform->data;
switch (targetUniform->type)
{
case GL_SAMPLER_2D:
case GL_SAMPLER_CUBE:
break;
case GL_BOOL:
case GL_BOOL_VEC2:
case GL_BOOL_VEC3:
case GL_BOOL_VEC4:
applyUniformnbv(targetUniform, i);
break;
case GL_FLOAT:
case GL_FLOAT_VEC2:
case GL_FLOAT_VEC3:
case GL_FLOAT_VEC4:
case GL_FLOAT_MAT2:
case GL_FLOAT_MAT3:
case GL_FLOAT_MAT4:
applyUniformnfv(targetUniform, f);
break;
case GL_INT:
case GL_INT_VEC2:
case GL_INT_VEC3:
case GL_INT_VEC4:
applyUniformniv(targetUniform, i);
break;
default:
UNREACHABLE();
}
}
}
// Driver uniforms
if (mDxUniformsDirty)
{
mDevice->SetVertexShaderConstantF(0, (float*)&mVertexConstants, sizeof(dx_VertexConstants) / sizeof(float[4]));
mDevice->SetPixelShaderConstantF(0, (float*)&mPixelConstants, sizeof(dx_PixelConstants) / sizeof(float[4]));
mDxUniformsDirty = false;
}
return gl::Error(GL_NO_ERROR);
}
void Renderer9::applyUniformnfv(gl::LinkedUniform *targetUniform, const GLfloat *v)
{
if (targetUniform->isReferencedByFragmentShader())
{
mDevice->SetPixelShaderConstantF(targetUniform->psRegisterIndex, v, targetUniform->registerCount);
}
if (targetUniform->isReferencedByVertexShader())
{
mDevice->SetVertexShaderConstantF(targetUniform->vsRegisterIndex, v, targetUniform->registerCount);
}
}
void Renderer9::applyUniformniv(gl::LinkedUniform *targetUniform, const GLint *v)
{
ASSERT(targetUniform->registerCount <= MAX_VERTEX_CONSTANT_VECTORS_D3D9);
GLfloat vector[MAX_VERTEX_CONSTANT_VECTORS_D3D9][4];
for (unsigned int i = 0; i < targetUniform->registerCount; i++)
{
vector[i][0] = (GLfloat)v[4 * i + 0];
vector[i][1] = (GLfloat)v[4 * i + 1];
vector[i][2] = (GLfloat)v[4 * i + 2];
vector[i][3] = (GLfloat)v[4 * i + 3];
}
applyUniformnfv(targetUniform, (GLfloat*)vector);
}
void Renderer9::applyUniformnbv(gl::LinkedUniform *targetUniform, const GLint *v)
{
ASSERT(targetUniform->registerCount <= MAX_VERTEX_CONSTANT_VECTORS_D3D9);
GLfloat vector[MAX_VERTEX_CONSTANT_VECTORS_D3D9][4];
for (unsigned int i = 0; i < targetUniform->registerCount; i++)
{
vector[i][0] = (v[4 * i + 0] == GL_FALSE) ? 0.0f : 1.0f;
vector[i][1] = (v[4 * i + 1] == GL_FALSE) ? 0.0f : 1.0f;
vector[i][2] = (v[4 * i + 2] == GL_FALSE) ? 0.0f : 1.0f;
vector[i][3] = (v[4 * i + 3] == GL_FALSE) ? 0.0f : 1.0f;
}
applyUniformnfv(targetUniform, (GLfloat*)vector);
}
gl::Error Renderer9::clear(const ClearParameters &clearParams,
const gl::FramebufferAttachment *colorBuffer,
const gl::FramebufferAttachment *depthStencilBuffer)
{
if (clearParams.colorClearType != GL_FLOAT)
{
// Clearing buffers with non-float values is not supported by Renderer9 and ES 2.0
UNREACHABLE();
return gl::Error(GL_INVALID_OPERATION);
}
bool clearColor = clearParams.clearColor[0];
for (unsigned int i = 0; i < ArraySize(clearParams.clearColor); i++)
{
if (clearParams.clearColor[i] != clearColor)
{
// Clearing individual buffers other than buffer zero is not supported by Renderer9 and ES 2.0
UNREACHABLE();
return gl::Error(GL_INVALID_OPERATION);
}
}
float depth = gl::clamp01(clearParams.depthClearValue);
DWORD stencil = clearParams.stencilClearValue & 0x000000FF;
unsigned int stencilUnmasked = 0x0;
if (clearParams.clearStencil && depthStencilBuffer->getStencilSize() > 0)
{
ASSERT(depthStencilBuffer != nullptr);
RenderTargetD3D *stencilRenderTarget = nullptr;
gl::Error error = depthStencilBuffer->getRenderTarget(&stencilRenderTarget);
if (error.isError())
{
return error;
}
RenderTarget9 *stencilRenderTarget9 = GetAs<RenderTarget9>(stencilRenderTarget);
ASSERT(stencilRenderTarget9);
const d3d9::D3DFormat &d3dFormatInfo = d3d9::GetD3DFormatInfo(stencilRenderTarget9->getD3DFormat());
stencilUnmasked = (0x1 << d3dFormatInfo.stencilBits) - 1;
}
const bool needMaskedStencilClear = clearParams.clearStencil &&
(clearParams.stencilWriteMask & stencilUnmasked) != stencilUnmasked;
bool needMaskedColorClear = false;
D3DCOLOR color = D3DCOLOR_ARGB(255, 0, 0, 0);
if (clearColor)
{
ASSERT(colorBuffer != nullptr);
RenderTargetD3D *colorRenderTarget = NULL;
gl::Error error = colorBuffer->getRenderTarget(&colorRenderTarget);
if (error.isError())
{
return error;
}
RenderTarget9 *colorRenderTarget9 = GetAs<RenderTarget9>(colorRenderTarget);
ASSERT(colorRenderTarget9);
const gl::InternalFormat &formatInfo = gl::GetInternalFormatInfo(colorBuffer->getInternalFormat());
const d3d9::D3DFormat &d3dFormatInfo = d3d9::GetD3DFormatInfo(colorRenderTarget9->getD3DFormat());
color = D3DCOLOR_ARGB(gl::unorm<8>((formatInfo.alphaBits == 0 && d3dFormatInfo.alphaBits > 0) ? 1.0f : clearParams.colorFClearValue.alpha),
gl::unorm<8>((formatInfo.redBits == 0 && d3dFormatInfo.redBits > 0) ? 0.0f : clearParams.colorFClearValue.red),
gl::unorm<8>((formatInfo.greenBits == 0 && d3dFormatInfo.greenBits > 0) ? 0.0f : clearParams.colorFClearValue.green),
gl::unorm<8>((formatInfo.blueBits == 0 && d3dFormatInfo.blueBits > 0) ? 0.0f : clearParams.colorFClearValue.blue));
if ((formatInfo.redBits > 0 && !clearParams.colorMaskRed) ||
(formatInfo.greenBits > 0 && !clearParams.colorMaskGreen) ||
(formatInfo.blueBits > 0 && !clearParams.colorMaskBlue) ||
(formatInfo.alphaBits > 0 && !clearParams.colorMaskAlpha))
{
needMaskedColorClear = true;
}
}
if (needMaskedColorClear || needMaskedStencilClear)
{
// State which is altered in all paths from this point to the clear call is saved.
// State which is altered in only some paths will be flagged dirty in the case that
// that path is taken.
HRESULT hr;
if (mMaskedClearSavedState == NULL)
{
hr = mDevice->BeginStateBlock();
ASSERT(SUCCEEDED(hr) || hr == D3DERR_OUTOFVIDEOMEMORY || hr == E_OUTOFMEMORY);
mDevice->SetRenderState(D3DRS_ZWRITEENABLE, FALSE);
mDevice->SetRenderState(D3DRS_ZFUNC, D3DCMP_ALWAYS);
mDevice->SetRenderState(D3DRS_ZENABLE, FALSE);
mDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_NONE);
mDevice->SetRenderState(D3DRS_FILLMODE, D3DFILL_SOLID);
mDevice->SetRenderState(D3DRS_ALPHATESTENABLE, FALSE);
mDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);
mDevice->SetRenderState(D3DRS_CLIPPLANEENABLE, 0);
mDevice->SetRenderState(D3DRS_COLORWRITEENABLE, 0);
mDevice->SetRenderState(D3DRS_STENCILENABLE, FALSE);
mDevice->SetPixelShader(NULL);
mDevice->SetVertexShader(NULL);
mDevice->SetFVF(D3DFVF_XYZRHW | D3DFVF_DIFFUSE);
mDevice->SetStreamSource(0, NULL, 0, 0);
mDevice->SetRenderState(D3DRS_SEPARATEALPHABLENDENABLE, TRUE);
mDevice->SetTextureStageState(0, D3DTSS_COLOROP, D3DTOP_SELECTARG1);
mDevice->SetTextureStageState(0, D3DTSS_COLORARG1, D3DTA_TFACTOR);
mDevice->SetTextureStageState(0, D3DTSS_ALPHAOP, D3DTOP_SELECTARG1);
mDevice->SetTextureStageState(0, D3DTSS_ALPHAARG1, D3DTA_TFACTOR);
mDevice->SetRenderState(D3DRS_TEXTUREFACTOR, color);
mDevice->SetRenderState(D3DRS_MULTISAMPLEMASK, 0xFFFFFFFF);
for(int i = 0; i < gl::MAX_VERTEX_ATTRIBS; i++)
{
mDevice->SetStreamSourceFreq(i, 1);
}
hr = mDevice->EndStateBlock(&mMaskedClearSavedState);
ASSERT(SUCCEEDED(hr) || hr == D3DERR_OUTOFVIDEOMEMORY || hr == E_OUTOFMEMORY);
}
ASSERT(mMaskedClearSavedState != NULL);
if (mMaskedClearSavedState != NULL)
{
hr = mMaskedClearSavedState->Capture();
ASSERT(SUCCEEDED(hr));
}
mDevice->SetRenderState(D3DRS_ZWRITEENABLE, FALSE);
mDevice->SetRenderState(D3DRS_ZFUNC, D3DCMP_ALWAYS);
mDevice->SetRenderState(D3DRS_ZENABLE, FALSE);
mDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_NONE);
mDevice->SetRenderState(D3DRS_FILLMODE, D3DFILL_SOLID);
mDevice->SetRenderState(D3DRS_ALPHATESTENABLE, FALSE);
mDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);
mDevice->SetRenderState(D3DRS_CLIPPLANEENABLE, 0);
if (clearColor)
{
mDevice->SetRenderState(D3DRS_COLORWRITEENABLE,
gl_d3d9::ConvertColorMask(clearParams.colorMaskRed,
clearParams.colorMaskGreen,
clearParams.colorMaskBlue,
clearParams.colorMaskAlpha));
}
else
{
mDevice->SetRenderState(D3DRS_COLORWRITEENABLE, 0);
}
if (stencilUnmasked != 0x0 && clearParams.clearStencil)
{
mDevice->SetRenderState(D3DRS_STENCILENABLE, TRUE);
mDevice->SetRenderState(D3DRS_TWOSIDEDSTENCILMODE, FALSE);
mDevice->SetRenderState(D3DRS_STENCILFUNC, D3DCMP_ALWAYS);
mDevice->SetRenderState(D3DRS_STENCILREF, stencil);
mDevice->SetRenderState(D3DRS_STENCILWRITEMASK, clearParams.stencilWriteMask);
mDevice->SetRenderState(D3DRS_STENCILFAIL, D3DSTENCILOP_REPLACE);
mDevice->SetRenderState(D3DRS_STENCILZFAIL, D3DSTENCILOP_REPLACE);
mDevice->SetRenderState(D3DRS_STENCILPASS, D3DSTENCILOP_REPLACE);
}
else
{
mDevice->SetRenderState(D3DRS_STENCILENABLE, FALSE);
}
mDevice->SetPixelShader(NULL);
mDevice->SetVertexShader(NULL);
mDevice->SetFVF(D3DFVF_XYZRHW);
mDevice->SetRenderState(D3DRS_SEPARATEALPHABLENDENABLE, TRUE);
mDevice->SetTextureStageState(0, D3DTSS_COLOROP, D3DTOP_SELECTARG1);
mDevice->SetTextureStageState(0, D3DTSS_COLORARG1, D3DTA_TFACTOR);
mDevice->SetTextureStageState(0, D3DTSS_ALPHAOP, D3DTOP_SELECTARG1);
mDevice->SetTextureStageState(0, D3DTSS_ALPHAARG1, D3DTA_TFACTOR);
mDevice->SetRenderState(D3DRS_TEXTUREFACTOR, color);
mDevice->SetRenderState(D3DRS_MULTISAMPLEMASK, 0xFFFFFFFF);
for(int i = 0; i < gl::MAX_VERTEX_ATTRIBS; i++)
{
mDevice->SetStreamSourceFreq(i, 1);
}
float quad[4][4]; // A quadrilateral covering the target, aligned to match the edges
quad[0][0] = -0.5f;
quad[0][1] = mRenderTargetDesc.height - 0.5f;
quad[0][2] = 0.0f;
quad[0][3] = 1.0f;
quad[1][0] = mRenderTargetDesc.width - 0.5f;
quad[1][1] = mRenderTargetDesc.height - 0.5f;
quad[1][2] = 0.0f;
quad[1][3] = 1.0f;
quad[2][0] = -0.5f;
quad[2][1] = -0.5f;
quad[2][2] = 0.0f;
quad[2][3] = 1.0f;
quad[3][0] = mRenderTargetDesc.width - 0.5f;
quad[3][1] = -0.5f;
quad[3][2] = 0.0f;
quad[3][3] = 1.0f;
startScene();
mDevice->DrawPrimitiveUP(D3DPT_TRIANGLESTRIP, 2, quad, sizeof(float[4]));
if (clearParams.clearDepth)
{
mDevice->SetRenderState(D3DRS_ZENABLE, TRUE);
mDevice->SetRenderState(D3DRS_ZWRITEENABLE, TRUE);
mDevice->Clear(0, NULL, D3DCLEAR_ZBUFFER, color, depth, stencil);
}
if (mMaskedClearSavedState != NULL)
{
mMaskedClearSavedState->Apply();
}
}
else if (clearColor || clearParams.clearDepth || clearParams.clearStencil)
{
DWORD dxClearFlags = 0;
if (clearColor)
{
dxClearFlags |= D3DCLEAR_TARGET;
}
if (clearParams.clearDepth)
{
dxClearFlags |= D3DCLEAR_ZBUFFER;
}
if (clearParams.clearStencil)
{
dxClearFlags |= D3DCLEAR_STENCIL;
}
mDevice->Clear(0, NULL, dxClearFlags, color, depth, stencil);
}
return gl::Error(GL_NO_ERROR);
}
void Renderer9::markAllStateDirty()
{
mAppliedRenderTargetSerial = 0;
mAppliedDepthStencilSerial = 0;
mDepthStencilInitialized = false;
mRenderTargetDescInitialized = false;
mForceSetDepthStencilState = true;
mForceSetRasterState = true;
mForceSetScissor = true;
mForceSetViewport = true;
mForceSetBlendState = true;
ASSERT(mForceSetVertexSamplerStates.size() == mCurVertexTextures.size());
for (unsigned int i = 0; i < mForceSetVertexSamplerStates.size(); i++)
{
mForceSetVertexSamplerStates[i] = true;
mCurVertexTextures[i] = DirtyPointer;
}
ASSERT(mForceSetPixelSamplerStates.size() == mCurPixelTextures.size());
for (unsigned int i = 0; i < mForceSetPixelSamplerStates.size(); i++)
{
mForceSetPixelSamplerStates[i] = true;
mCurPixelTextures[i] = DirtyPointer;
}
mAppliedIBSerial = 0;
mAppliedVertexShader = NULL;
mAppliedPixelShader = NULL;
mAppliedProgramSerial = 0;
mDxUniformsDirty = true;
mVertexDeclarationCache.markStateDirty();
}
void Renderer9::releaseDeviceResources()
{
for (size_t i = 0; i < mEventQueryPool.size(); i++)
{
SafeRelease(mEventQueryPool[i]);
}
mEventQueryPool.clear();
SafeRelease(mMaskedClearSavedState);
mVertexShaderCache.clear();
mPixelShaderCache.clear();
SafeDelete(mBlit);
SafeDelete(mVertexDataManager);
SafeDelete(mIndexDataManager);
SafeDelete(mLineLoopIB);
SafeDelete(mCountingIB);
for (int i = 0; i < NUM_NULL_COLORBUFFER_CACHE_ENTRIES; i++)
{
SafeDelete(mNullColorbufferCache[i].buffer);
}
}
// set notify to true to broadcast a message to all contexts of the device loss
bool Renderer9::testDeviceLost()
{
HRESULT status = getDeviceStatusCode();
bool isLost = FAILED(status);
if (isLost)
{
// ensure we note the device loss --
// we'll probably get this done again by notifyDeviceLost
// but best to remember it!
// Note that we don't want to clear the device loss status here
// -- this needs to be done by resetDevice
mDeviceLost = true;
}
return isLost;
}
HRESULT Renderer9::getDeviceStatusCode()
{
HRESULT status = D3D_OK;
if (mDeviceEx)
{
status = mDeviceEx->CheckDeviceState(NULL);
}
else if (mDevice)
{
status = mDevice->TestCooperativeLevel();
}
return status;
}
bool Renderer9::testDeviceResettable()
{
// On D3D9Ex, DEVICELOST represents a hung device that needs to be restarted
// DEVICEREMOVED indicates the device has been stopped and must be recreated
switch (getDeviceStatusCode())
{
case D3DERR_DEVICENOTRESET:
case D3DERR_DEVICEHUNG:
return true;
case D3DERR_DEVICELOST:
return (mDeviceEx != NULL);
case D3DERR_DEVICEREMOVED:
ASSERT(mDeviceEx != NULL);
return isRemovedDeviceResettable();
default:
return false;
}
}
bool Renderer9::resetDevice()
{
releaseDeviceResources();
D3DPRESENT_PARAMETERS presentParameters = getDefaultPresentParameters();
HRESULT result = D3D_OK;
bool lost = testDeviceLost();
bool removedDevice = (getDeviceStatusCode() == D3DERR_DEVICEREMOVED);
// Device Removed is a feature which is only present with D3D9Ex
ASSERT(mDeviceEx != NULL || !removedDevice);
for (int attempts = 3; lost && attempts > 0; attempts--)
{
if (removedDevice)
{
// Device removed, which may trigger on driver reinstallation,
// may cause a longer wait other reset attempts before the
// system is ready to handle creating a new device.
Sleep(800);
lost = !resetRemovedDevice();
}
else if (mDeviceEx)
{
Sleep(500); // Give the graphics driver some CPU time
result = mDeviceEx->ResetEx(&presentParameters, NULL);
lost = testDeviceLost();
}
else
{
result = mDevice->TestCooperativeLevel();
while (result == D3DERR_DEVICELOST)
{
Sleep(100); // Give the graphics driver some CPU time
result = mDevice->TestCooperativeLevel();
}
if (result == D3DERR_DEVICENOTRESET)
{
result = mDevice->Reset(&presentParameters);
}
lost = testDeviceLost();
}
}
if (FAILED(result))
{
ERR("Reset/ResetEx failed multiple times: 0x%08X", result);
return false;
}
if (removedDevice && lost)
{
ERR("Device lost reset failed multiple times");
return false;
}
// If the device was removed, we already finished re-initialization in resetRemovedDevice
if (!removedDevice)
{
// reset device defaults
initializeDevice();
}
mDeviceLost = false;
return true;
}
bool Renderer9::isRemovedDeviceResettable() const
{
bool success = false;
#if ANGLE_D3D9EX == ANGLE_ENABLED
IDirect3D9Ex *d3d9Ex = NULL;
typedef HRESULT (WINAPI *Direct3DCreate9ExFunc)(UINT, IDirect3D9Ex**);
Direct3DCreate9ExFunc Direct3DCreate9ExPtr = reinterpret_cast<Direct3DCreate9ExFunc>(GetProcAddress(mD3d9Module, "Direct3DCreate9Ex"));
if (Direct3DCreate9ExPtr && SUCCEEDED(Direct3DCreate9ExPtr(D3D_SDK_VERSION, &d3d9Ex)))
{
D3DCAPS9 deviceCaps;
HRESULT result = d3d9Ex->GetDeviceCaps(mAdapter, mDeviceType, &deviceCaps);
success = SUCCEEDED(result);
}
SafeRelease(d3d9Ex);
#else
ASSERT(UNREACHABLE());
#endif
return success;
}
bool Renderer9::resetRemovedDevice()
{
// From http://msdn.microsoft.com/en-us/library/windows/desktop/bb172554(v=vs.85).aspx:
// The hardware adapter has been removed. Application must destroy the device, do enumeration of
// adapters and create another Direct3D device. If application continues rendering without
// calling Reset, the rendering calls will succeed. Applies to Direct3D 9Ex only.
release();
return !initialize().isError();
}
VendorID Renderer9::getVendorId() const
{
return static_cast<VendorID>(mAdapterIdentifier.VendorId);
}
std::string Renderer9::getRendererDescription() const
{
std::ostringstream rendererString;
rendererString << mAdapterIdentifier.Description;
if (getShareHandleSupport())
{
rendererString << " Direct3D9Ex";
}
else
{
rendererString << " Direct3D9";
}
rendererString << " vs_" << D3DSHADER_VERSION_MAJOR(mDeviceCaps.VertexShaderVersion) << "_" << D3DSHADER_VERSION_MINOR(mDeviceCaps.VertexShaderVersion);
rendererString << " ps_" << D3DSHADER_VERSION_MAJOR(mDeviceCaps.PixelShaderVersion) << "_" << D3DSHADER_VERSION_MINOR(mDeviceCaps.PixelShaderVersion);
return rendererString.str();
}
DeviceIdentifier Renderer9::getAdapterIdentifier() const
{
DeviceIdentifier deviceIdentifier = { 0 };
deviceIdentifier.VendorId = static_cast<UINT>(mAdapterIdentifier.VendorId);
deviceIdentifier.DeviceId = static_cast<UINT>(mAdapterIdentifier.DeviceId);
deviceIdentifier.SubSysId = static_cast<UINT>(mAdapterIdentifier.SubSysId);
deviceIdentifier.Revision = static_cast<UINT>(mAdapterIdentifier.Revision);
deviceIdentifier.FeatureLevel = 0;
return deviceIdentifier;
}
unsigned int Renderer9::getReservedVertexUniformVectors() const
{
return 2; // dx_ViewAdjust and dx_DepthRange.
}
unsigned int Renderer9::getReservedFragmentUniformVectors() const
{
return 3; // dx_ViewCoords, dx_DepthFront and dx_DepthRange.
}
unsigned int Renderer9::getReservedVertexUniformBuffers() const
{
return 0;
}
unsigned int Renderer9::getReservedFragmentUniformBuffers() const
{
return 0;
}
bool Renderer9::getShareHandleSupport() const
{
// PIX doesn't seem to support using share handles, so disable them.
return (mD3d9Ex != NULL) && !gl::DebugAnnotationsActive();
}
bool Renderer9::getPostSubBufferSupport() const
{
return true;
}
int Renderer9::getMajorShaderModel() const
{
return D3DSHADER_VERSION_MAJOR(mDeviceCaps.PixelShaderVersion);
}
int Renderer9::getMinorShaderModel() const
{
return D3DSHADER_VERSION_MINOR(mDeviceCaps.PixelShaderVersion);
}
std::string Renderer9::getShaderModelSuffix() const
{
return "";
}
DWORD Renderer9::getCapsDeclTypes() const
{
return mDeviceCaps.DeclTypes;
}
D3DPOOL Renderer9::getBufferPool(DWORD usage) const
{
if (mD3d9Ex != NULL)
{
return D3DPOOL_DEFAULT;
}
else
{
if (!(usage & D3DUSAGE_DYNAMIC))
{
return D3DPOOL_MANAGED;
}
}
return D3DPOOL_DEFAULT;
}
gl::Error Renderer9::copyImage2D(const gl::Framebuffer *framebuffer, const gl::Rectangle &sourceRect, GLenum destFormat,
const gl::Offset &destOffset, TextureStorage *storage, GLint level)
{
RECT rect;
rect.left = sourceRect.x;
rect.top = sourceRect.y;
rect.right = sourceRect.x + sourceRect.width;
rect.bottom = sourceRect.y + sourceRect.height;
return mBlit->copy2D(framebuffer, rect, destFormat, destOffset, storage, level);
}
gl::Error Renderer9::copyImageCube(const gl::Framebuffer *framebuffer, const gl::Rectangle &sourceRect, GLenum destFormat,
const gl::Offset &destOffset, TextureStorage *storage, GLenum target, GLint level)
{
RECT rect;
rect.left = sourceRect.x;
rect.top = sourceRect.y;
rect.right = sourceRect.x + sourceRect.width;
rect.bottom = sourceRect.y + sourceRect.height;
return mBlit->copyCube(framebuffer, rect, destFormat, destOffset, storage, target, level);
}
gl::Error Renderer9::copyImage3D(const gl::Framebuffer *framebuffer, const gl::Rectangle &sourceRect, GLenum destFormat,
const gl::Offset &destOffset, TextureStorage *storage, GLint level)
{
// 3D textures are not available in the D3D9 backend.
UNREACHABLE();
return gl::Error(GL_INVALID_OPERATION);
}
gl::Error Renderer9::copyImage2DArray(const gl::Framebuffer *framebuffer, const gl::Rectangle &sourceRect, GLenum destFormat,
const gl::Offset &destOffset, TextureStorage *storage, GLint level)
{
// 2D array textures are not available in the D3D9 backend.
UNREACHABLE();
return gl::Error(GL_INVALID_OPERATION);
}
gl::Error Renderer9::createRenderTarget(int width, int height, GLenum format, GLsizei samples, RenderTargetD3D **outRT)
{
const d3d9::TextureFormat &d3d9FormatInfo = d3d9::GetTextureFormatInfo(format);
const gl::TextureCaps &textureCaps = getRendererTextureCaps().get(format);
GLuint supportedSamples = textureCaps.getNearestSamples(samples);
IDirect3DSurface9 *renderTarget = NULL;
if (width > 0 && height > 0)
{
bool requiresInitialization = false;
HRESULT result = D3DERR_INVALIDCALL;
const gl::InternalFormat &formatInfo = gl::GetInternalFormatInfo(format);
if (formatInfo.depthBits > 0 || formatInfo.stencilBits > 0)
{
result = mDevice->CreateDepthStencilSurface(width, height, d3d9FormatInfo.renderFormat,
gl_d3d9::GetMultisampleType(supportedSamples),
0, FALSE, &renderTarget, NULL);
}
else
{
requiresInitialization = (d3d9FormatInfo.dataInitializerFunction != NULL);
result = mDevice->CreateRenderTarget(width, height, d3d9FormatInfo.renderFormat,
gl_d3d9::GetMultisampleType(supportedSamples),
0, FALSE, &renderTarget, NULL);
}
if (FAILED(result))
{
ASSERT(result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY);
return gl::Error(GL_OUT_OF_MEMORY, "Failed to create render target, result: 0x%X.", result);
}
if (requiresInitialization)
{
// This format requires that the data be initialized before the render target can be used
// Unfortunately this requires a Get call on the d3d device but it is far better than having
// to mark the render target as lockable and copy data to the gpu.
IDirect3DSurface9 *prevRenderTarget = NULL;
mDevice->GetRenderTarget(0, &prevRenderTarget);
mDevice->SetRenderTarget(0, renderTarget);
mDevice->Clear(0, NULL, D3DCLEAR_TARGET, D3DCOLOR_RGBA(0, 0, 0, 255), 0.0f, 0);
mDevice->SetRenderTarget(0, prevRenderTarget);
}
}
*outRT = new TextureRenderTarget9(renderTarget, format, width, height, 1, supportedSamples);
return gl::Error(GL_NO_ERROR);
}
FramebufferImpl *Renderer9::createDefaultFramebuffer(const gl::Framebuffer::Data &data)
{
return createFramebuffer(data);
}
FramebufferImpl *Renderer9::createFramebuffer(const gl::Framebuffer::Data &data)
{
return new Framebuffer9(data, this);
}
CompilerImpl *Renderer9::createCompiler(const gl::Data &data)
{
return new CompilerD3D(data, SH_HLSL9_OUTPUT);
}
ShaderImpl *Renderer9::createShader(GLenum type)
{
return new ShaderD3D(type);
}
ProgramImpl *Renderer9::createProgram()
{
return new ProgramD3D(this);
}
gl::Error Renderer9::loadExecutable(const void *function, size_t length, ShaderType type,
const std::vector<gl::LinkedVarying> &transformFeedbackVaryings,
bool separatedOutputBuffers, ShaderExecutableD3D **outExecutable)
{
// Transform feedback is not supported in ES2 or D3D9
ASSERT(transformFeedbackVaryings.size() == 0);
switch (type)
{
case SHADER_VERTEX:
{
IDirect3DVertexShader9 *vshader = NULL;
gl::Error error = createVertexShader((DWORD*)function, length, &vshader);
if (error.isError())
{
return error;
}
*outExecutable = new ShaderExecutable9(function, length, vshader);
}
break;
case SHADER_PIXEL:
{
IDirect3DPixelShader9 *pshader = NULL;
gl::Error error = createPixelShader((DWORD*)function, length, &pshader);
if (error.isError())
{
return error;
}
*outExecutable = new ShaderExecutable9(function, length, pshader);
}
break;
default:
UNREACHABLE();
return gl::Error(GL_INVALID_OPERATION);
}
return gl::Error(GL_NO_ERROR);
}
gl::Error Renderer9::compileToExecutable(gl::InfoLog &infoLog, const std::string &shaderHLSL, ShaderType type,
const std::vector<gl::LinkedVarying> &transformFeedbackVaryings,
bool separatedOutputBuffers, const D3DCompilerWorkarounds &workarounds,
ShaderExecutableD3D **outExectuable)
{
// Transform feedback is not supported in ES2 or D3D9
ASSERT(transformFeedbackVaryings.size() == 0);
const char *profileType = NULL;
switch (type)
{
case SHADER_VERTEX:
profileType = "vs";
break;
case SHADER_PIXEL:
profileType = "ps";
break;
default:
UNREACHABLE();
return gl::Error(GL_INVALID_OPERATION);
}
unsigned int profileMajorVersion = (getMajorShaderModel() >= 3) ? 3 : 2;
unsigned int profileMinorVersion = 0;
std::string profile = FormatString("%s_%u_%u", profileType, profileMajorVersion, profileMinorVersion);
UINT flags = ANGLE_COMPILE_OPTIMIZATION_LEVEL;
if (workarounds.skipOptimization)
{
flags = D3DCOMPILE_SKIP_OPTIMIZATION;
}
else if (workarounds.useMaxOptimization)
{
flags = D3DCOMPILE_OPTIMIZATION_LEVEL3;
}
if (gl::DebugAnnotationsActive())
{
#ifndef NDEBUG
flags = D3DCOMPILE_SKIP_OPTIMIZATION;
#endif
flags |= D3DCOMPILE_DEBUG;
}
// Sometimes D3DCompile will fail with the default compilation flags for complicated shaders when it would otherwise pass with alternative options.
// Try the default flags first and if compilation fails, try some alternatives.
std::vector<CompileConfig> configs;
configs.push_back(CompileConfig(flags, "default" ));
configs.push_back(CompileConfig(flags | D3DCOMPILE_AVOID_FLOW_CONTROL, "avoid flow control" ));
configs.push_back(CompileConfig(flags | D3DCOMPILE_PREFER_FLOW_CONTROL, "prefer flow control"));
ID3DBlob *binary = NULL;
std::string debugInfo;
gl::Error error = mCompiler.compileToBinary(infoLog, shaderHLSL, profile, configs, NULL, &binary, &debugInfo);
if (error.isError())
{
return error;
}
// It's possible that binary is NULL if the compiler failed in all configurations. Set the executable to NULL
// and return GL_NO_ERROR to signify that there was a link error but the internal state is still OK.
if (!binary)
{
*outExectuable = NULL;
return gl::Error(GL_NO_ERROR);
}
error = loadExecutable(binary->GetBufferPointer(), binary->GetBufferSize(), type,
transformFeedbackVaryings, separatedOutputBuffers, outExectuable);
SafeRelease(binary);
if (error.isError())
{
return error;
}
if (!debugInfo.empty())
{
(*outExectuable)->appendDebugInfo(debugInfo);
}
return gl::Error(GL_NO_ERROR);
}
UniformStorageD3D *Renderer9::createUniformStorage(size_t storageSize)
{
return new UniformStorageD3D(storageSize);
}
gl::Error Renderer9::boxFilter(IDirect3DSurface9 *source, IDirect3DSurface9 *dest)
{
return mBlit->boxFilter(source, dest);
}
D3DPOOL Renderer9::getTexturePool(DWORD usage) const
{
if (mD3d9Ex != NULL)
{
return D3DPOOL_DEFAULT;
}
else
{
if (!(usage & (D3DUSAGE_DEPTHSTENCIL | D3DUSAGE_RENDERTARGET)))
{
return D3DPOOL_MANAGED;
}
}
return D3DPOOL_DEFAULT;
}
gl::Error Renderer9::copyToRenderTarget(IDirect3DSurface9 *dest, IDirect3DSurface9 *source, bool fromManaged)
{
ASSERT(source && dest);
HRESULT result = D3DERR_OUTOFVIDEOMEMORY;
if (fromManaged)
{
D3DSURFACE_DESC desc;
source->GetDesc(&desc);
IDirect3DSurface9 *surf = 0;
result = mDevice->CreateOffscreenPlainSurface(desc.Width, desc.Height, desc.Format, D3DPOOL_SYSTEMMEM, &surf, NULL);
if (SUCCEEDED(result))
{
Image9::copyLockableSurfaces(surf, source);
result = mDevice->UpdateSurface(surf, NULL, dest, NULL);
SafeRelease(surf);
}
}
else
{
endScene();
result = mDevice->StretchRect(source, NULL, dest, NULL, D3DTEXF_NONE);
}
if (FAILED(result))
{
ASSERT(result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY);
return gl::Error(GL_OUT_OF_MEMORY, "Failed to blit internal texture, result: 0x%X.", result);
}
return gl::Error(GL_NO_ERROR);
}
ImageD3D *Renderer9::createImage()
{
return new Image9(this);
}
gl::Error Renderer9::generateMipmap(ImageD3D *dest, ImageD3D *src)
{
Image9 *src9 = GetAs<Image9>(src);
Image9 *dst9 = GetAs<Image9>(dest);
return Image9::generateMipmap(dst9, src9);
}
gl::Error Renderer9::generateMipmapsUsingD3D(TextureStorage *storage, const gl::SamplerState &samplerState)
{
UNREACHABLE();
return gl::Error(GL_NO_ERROR);
}
TextureStorage *Renderer9::createTextureStorage2D(SwapChainD3D *swapChain)
{
SwapChain9 *swapChain9 = GetAs<SwapChain9>(swapChain);
return new TextureStorage9_2D(this, swapChain9);
}
TextureStorage *Renderer9::createTextureStorage2D(GLenum internalformat, bool renderTarget, GLsizei width, GLsizei height, int levels, bool hintLevelZeroOnly)
{
return new TextureStorage9_2D(this, internalformat, renderTarget, width, height, levels);
}
TextureStorage *Renderer9::createTextureStorageCube(GLenum internalformat, bool renderTarget, int size, int levels, bool hintLevelZeroOnly)
{
return new TextureStorage9_Cube(this, internalformat, renderTarget, size, levels, hintLevelZeroOnly);
}
TextureStorage *Renderer9::createTextureStorage3D(GLenum internalformat, bool renderTarget, GLsizei width, GLsizei height, GLsizei depth, int levels)
{
// 3D textures are not supported by the D3D9 backend.
UNREACHABLE();
return NULL;
}
TextureStorage *Renderer9::createTextureStorage2DArray(GLenum internalformat, bool renderTarget, GLsizei width, GLsizei height, GLsizei depth, int levels)
{
// 2D array textures are not supported by the D3D9 backend.
UNREACHABLE();
return NULL;
}
TextureImpl *Renderer9::createTexture(GLenum target)
{
switch(target)
{
case GL_TEXTURE_2D: return new TextureD3D_2D(this);
case GL_TEXTURE_CUBE_MAP: return new TextureD3D_Cube(this);
default: UNREACHABLE();
}
return NULL;
}
RenderbufferImpl *Renderer9::createRenderbuffer()
{
RenderbufferD3D *renderbuffer = new RenderbufferD3D(this);
return renderbuffer;
}
bool Renderer9::getLUID(LUID *adapterLuid) const
{
adapterLuid->HighPart = 0;
adapterLuid->LowPart = 0;
if (mD3d9Ex)
{
mD3d9Ex->GetAdapterLUID(mAdapter, adapterLuid);
return true;
}
return false;
}
VertexConversionType Renderer9::getVertexConversionType(gl::VertexFormatType vertexFormatType) const
{
return d3d9::GetVertexFormatInfo(getCapsDeclTypes(), vertexFormatType).conversionType;
}
GLenum Renderer9::getVertexComponentType(gl::VertexFormatType vertexFormatType) const
{
return d3d9::GetVertexFormatInfo(getCapsDeclTypes(), vertexFormatType).componentType;
}
void Renderer9::generateCaps(gl::Caps *outCaps, gl::TextureCapsMap *outTextureCaps,
gl::Extensions *outExtensions,
gl::Limitations * /*outLimitations */) const
{
d3d9_gl::GenerateCaps(mD3d9, mDevice, mDeviceType, mAdapter, outCaps,
outTextureCaps, outExtensions);
}
Workarounds Renderer9::generateWorkarounds() const
{
return d3d9::GenerateWorkarounds();
}
void Renderer9::createAnnotator()
{
mAnnotator = new DebugAnnotator9();
}
gl::Error Renderer9::clearTextures(gl::SamplerType samplerType, size_t rangeStart, size_t rangeEnd)
{
// TODO(jmadill): faster way?
for (size_t samplerIndex = rangeStart; samplerIndex < rangeEnd; samplerIndex++)
{
gl::Error error = setTexture(samplerType, samplerIndex, nullptr);
if (error.isError())
{
return error;
}
}
return gl::Error(GL_NO_ERROR);
}
}