blob: 03ada063fe66e0fc02b46b26426eec24dbaddd3d [file] [log] [blame]
//
// Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
#include "compiler/translator/Cache.h"
#include "compiler/translator/Compiler.h"
#include "compiler/translator/CallDAG.h"
#include "compiler/translator/ForLoopUnroll.h"
#include "compiler/translator/Initialize.h"
#include "compiler/translator/InitializeParseContext.h"
#include "compiler/translator/InitializeVariables.h"
#include "compiler/translator/ParseContext.h"
#include "compiler/translator/PruneEmptyDeclarations.h"
#include "compiler/translator/RegenerateStructNames.h"
#include "compiler/translator/RemovePow.h"
#include "compiler/translator/RenameFunction.h"
#include "compiler/translator/RewriteDoWhile.h"
#include "compiler/translator/ScalarizeVecAndMatConstructorArgs.h"
#include "compiler/translator/UnfoldShortCircuitAST.h"
#include "compiler/translator/ValidateLimitations.h"
#include "compiler/translator/ValidateOutputs.h"
#include "compiler/translator/VariablePacker.h"
#include "compiler/translator/depgraph/DependencyGraph.h"
#include "compiler/translator/depgraph/DependencyGraphOutput.h"
#include "compiler/translator/timing/RestrictFragmentShaderTiming.h"
#include "compiler/translator/timing/RestrictVertexShaderTiming.h"
#include "third_party/compiler/ArrayBoundsClamper.h"
#include "angle_gl.h"
#include "common/utilities.h"
bool IsWebGLBasedSpec(ShShaderSpec spec)
{
return (spec == SH_WEBGL_SPEC ||
spec == SH_CSS_SHADERS_SPEC ||
spec == SH_WEBGL2_SPEC);
}
bool IsGLSL130OrNewer(ShShaderOutput output)
{
return (output == SH_GLSL_130_OUTPUT ||
output == SH_GLSL_140_OUTPUT ||
output == SH_GLSL_150_CORE_OUTPUT ||
output == SH_GLSL_330_CORE_OUTPUT ||
output == SH_GLSL_400_CORE_OUTPUT ||
output == SH_GLSL_410_CORE_OUTPUT ||
output == SH_GLSL_420_CORE_OUTPUT ||
output == SH_GLSL_430_CORE_OUTPUT ||
output == SH_GLSL_440_CORE_OUTPUT ||
output == SH_GLSL_450_CORE_OUTPUT);
}
size_t GetGlobalMaxTokenSize(ShShaderSpec spec)
{
// WebGL defines a max token legnth of 256, while ES2 leaves max token
// size undefined. ES3 defines a max size of 1024 characters.
switch (spec)
{
case SH_WEBGL_SPEC:
case SH_CSS_SHADERS_SPEC:
return 256;
default:
return 1024;
}
}
namespace {
class TScopedPoolAllocator
{
public:
TScopedPoolAllocator(TPoolAllocator* allocator) : mAllocator(allocator)
{
mAllocator->push();
SetGlobalPoolAllocator(mAllocator);
}
~TScopedPoolAllocator()
{
SetGlobalPoolAllocator(NULL);
mAllocator->pop();
}
private:
TPoolAllocator* mAllocator;
};
class TScopedSymbolTableLevel
{
public:
TScopedSymbolTableLevel(TSymbolTable* table) : mTable(table)
{
ASSERT(mTable->atBuiltInLevel());
mTable->push();
}
~TScopedSymbolTableLevel()
{
while (!mTable->atBuiltInLevel())
mTable->pop();
}
private:
TSymbolTable* mTable;
};
int MapSpecToShaderVersion(ShShaderSpec spec)
{
switch (spec)
{
case SH_GLES2_SPEC:
case SH_WEBGL_SPEC:
case SH_CSS_SHADERS_SPEC:
return 100;
case SH_GLES3_SPEC:
case SH_WEBGL2_SPEC:
return 300;
default:
UNREACHABLE();
return 0;
}
}
} // namespace
TShHandleBase::TShHandleBase()
{
allocator.push();
SetGlobalPoolAllocator(&allocator);
}
TShHandleBase::~TShHandleBase()
{
SetGlobalPoolAllocator(NULL);
allocator.popAll();
}
TCompiler::TCompiler(sh::GLenum type, ShShaderSpec spec, ShShaderOutput output)
: shaderType(type),
shaderSpec(spec),
outputType(output),
maxUniformVectors(0),
maxExpressionComplexity(0),
maxCallStackDepth(0),
fragmentPrecisionHigh(false),
clampingStrategy(SH_CLAMP_WITH_CLAMP_INTRINSIC),
builtInFunctionEmulator(),
mSourcePath(NULL),
mTemporaryIndex(0)
{
}
TCompiler::~TCompiler()
{
}
bool TCompiler::Init(const ShBuiltInResources& resources)
{
shaderVersion = 100;
maxUniformVectors = (shaderType == GL_VERTEX_SHADER) ?
resources.MaxVertexUniformVectors :
resources.MaxFragmentUniformVectors;
maxExpressionComplexity = resources.MaxExpressionComplexity;
maxCallStackDepth = resources.MaxCallStackDepth;
SetGlobalPoolAllocator(&allocator);
// Generate built-in symbol table.
if (!InitBuiltInSymbolTable(resources))
return false;
InitExtensionBehavior(resources, extensionBehavior);
fragmentPrecisionHigh = resources.FragmentPrecisionHigh == 1;
arrayBoundsClamper.SetClampingStrategy(resources.ArrayIndexClampingStrategy);
clampingStrategy = resources.ArrayIndexClampingStrategy;
hashFunction = resources.HashFunction;
return true;
}
TIntermNode *TCompiler::compileTreeForTesting(const char* const shaderStrings[],
size_t numStrings, int compileOptions)
{
return compileTreeImpl(shaderStrings, numStrings, compileOptions);
}
TIntermNode *TCompiler::compileTreeImpl(const char *const shaderStrings[],
size_t numStrings,
const int compileOptions)
{
clearResults();
ASSERT(numStrings > 0);
ASSERT(GetGlobalPoolAllocator());
// Reset the extension behavior for each compilation unit.
ResetExtensionBehavior(extensionBehavior);
// First string is path of source file if flag is set. The actual source follows.
size_t firstSource = 0;
if (compileOptions & SH_SOURCE_PATH)
{
mSourcePath = shaderStrings[0];
++firstSource;
}
bool debugShaderPrecision = getResources().WEBGL_debug_shader_precision == 1;
TIntermediate intermediate(infoSink);
TParseContext parseContext(symbolTable, extensionBehavior, intermediate,
shaderType, shaderSpec, compileOptions, true,
infoSink, debugShaderPrecision);
parseContext.setFragmentPrecisionHighOnESSL1(fragmentPrecisionHigh);
SetGlobalParseContext(&parseContext);
// We preserve symbols at the built-in level from compile-to-compile.
// Start pushing the user-defined symbols at global level.
TScopedSymbolTableLevel scopedSymbolLevel(&symbolTable);
// Parse shader.
bool success =
(PaParseStrings(numStrings - firstSource, &shaderStrings[firstSource], nullptr, &parseContext) == 0) &&
(parseContext.getTreeRoot() != nullptr);
shaderVersion = parseContext.getShaderVersion();
if (success && MapSpecToShaderVersion(shaderSpec) < shaderVersion)
{
infoSink.info.prefix(EPrefixError);
infoSink.info << "unsupported shader version";
success = false;
}
// If compiling an ESSL 1.00 shader for WebGL, or if its been requested through the API,
// validate loop and indexing as well (to verify that the shader only uses minimal functionality
// of ESSL 1.00 as in Appendix A of the spec).
bool validateLoopAndIndexing = (IsWebGLBasedSpec(shaderSpec) && shaderVersion == 100) ||
(compileOptions & SH_VALIDATE_LOOP_INDEXING);
TIntermNode *root = nullptr;
if (success)
{
mPragma = parseContext.pragma();
if (mPragma.stdgl.invariantAll)
{
symbolTable.setGlobalInvariant();
}
root = parseContext.getTreeRoot();
root = intermediate.postProcess(root);
// Highp might have been auto-enabled based on shader version
fragmentPrecisionHigh = parseContext.getFragmentPrecisionHigh();
// Disallow expressions deemed too complex.
if (success && (compileOptions & SH_LIMIT_EXPRESSION_COMPLEXITY))
success = limitExpressionComplexity(root);
// Create the function DAG and check there is no recursion
if (success)
success = initCallDag(root);
if (success && (compileOptions & SH_LIMIT_CALL_STACK_DEPTH))
success = checkCallDepth();
// Checks which functions are used and if "main" exists
if (success)
{
functionMetadata.clear();
functionMetadata.resize(mCallDag.size());
success = tagUsedFunctions();
}
if (success && !(compileOptions & SH_DONT_PRUNE_UNUSED_FUNCTIONS))
success = pruneUnusedFunctions(root);
// Prune empty declarations to work around driver bugs and to keep declaration output simple.
if (success)
PruneEmptyDeclarations(root);
if (success && shaderVersion == 300 && shaderType == GL_FRAGMENT_SHADER)
success = validateOutputs(root);
if (success && validateLoopAndIndexing)
success = validateLimitations(root);
if (success && (compileOptions & SH_TIMING_RESTRICTIONS))
success = enforceTimingRestrictions(root, (compileOptions & SH_DEPENDENCY_GRAPH) != 0);
if (success && shaderSpec == SH_CSS_SHADERS_SPEC)
rewriteCSSShader(root);
// Unroll for-loop markup needs to happen after validateLimitations pass.
if (success && (compileOptions & SH_UNROLL_FOR_LOOP_WITH_INTEGER_INDEX))
{
ForLoopUnrollMarker marker(ForLoopUnrollMarker::kIntegerIndex);
root->traverse(&marker);
}
if (success && (compileOptions & SH_UNROLL_FOR_LOOP_WITH_SAMPLER_ARRAY_INDEX))
{
ForLoopUnrollMarker marker(ForLoopUnrollMarker::kSamplerArrayIndex);
root->traverse(&marker);
if (marker.samplerArrayIndexIsFloatLoopIndex())
{
infoSink.info.prefix(EPrefixError);
infoSink.info << "sampler array index is float loop index";
success = false;
}
}
// Built-in function emulation needs to happen after validateLimitations pass.
if (success)
{
initBuiltInFunctionEmulator(&builtInFunctionEmulator, compileOptions);
builtInFunctionEmulator.MarkBuiltInFunctionsForEmulation(root);
}
// Clamping uniform array bounds needs to happen after validateLimitations pass.
if (success && (compileOptions & SH_CLAMP_INDIRECT_ARRAY_BOUNDS))
arrayBoundsClamper.MarkIndirectArrayBoundsForClamping(root);
if (success && shaderType == GL_VERTEX_SHADER && (compileOptions & SH_INIT_GL_POSITION))
initializeGLPosition(root);
// This pass might emit short circuits so keep it before the short circuit unfolding
if (success && (compileOptions & SH_REWRITE_DO_WHILE_LOOPS))
RewriteDoWhile(root, getTemporaryIndex());
if (success && (compileOptions & SH_UNFOLD_SHORT_CIRCUIT))
{
UnfoldShortCircuitAST unfoldShortCircuit;
root->traverse(&unfoldShortCircuit);
unfoldShortCircuit.updateTree();
}
if (success && (compileOptions & SH_REMOVE_POW_WITH_CONSTANT_EXPONENT))
{
RemovePow(root);
}
if (success && shouldCollectVariables(compileOptions))
{
collectVariables(root);
if (compileOptions & SH_ENFORCE_PACKING_RESTRICTIONS)
{
success = enforcePackingRestrictions();
if (!success)
{
infoSink.info.prefix(EPrefixError);
infoSink.info << "too many uniforms";
}
}
if (success && shaderType == GL_VERTEX_SHADER &&
(compileOptions & SH_INIT_VARYINGS_WITHOUT_STATIC_USE))
initializeVaryingsWithoutStaticUse(root);
}
if (success && (compileOptions & SH_SCALARIZE_VEC_AND_MAT_CONSTRUCTOR_ARGS))
{
ScalarizeVecAndMatConstructorArgs scalarizer(
shaderType, fragmentPrecisionHigh);
root->traverse(&scalarizer);
}
if (success && (compileOptions & SH_REGENERATE_STRUCT_NAMES))
{
RegenerateStructNames gen(symbolTable, shaderVersion);
root->traverse(&gen);
}
}
SetGlobalParseContext(NULL);
if (success)
return root;
return NULL;
}
bool TCompiler::compile(const char* const shaderStrings[],
size_t numStrings, int compileOptions)
{
if (numStrings == 0)
return true;
TScopedPoolAllocator scopedAlloc(&allocator);
TIntermNode *root = compileTreeImpl(shaderStrings, numStrings, compileOptions);
if (root)
{
if (compileOptions & SH_INTERMEDIATE_TREE)
TIntermediate::outputTree(root, infoSink.info);
if (compileOptions & SH_OBJECT_CODE)
translate(root, compileOptions);
// The IntermNode tree doesn't need to be deleted here, since the
// memory will be freed in a big chunk by the PoolAllocator.
return true;
}
return false;
}
bool TCompiler::InitBuiltInSymbolTable(const ShBuiltInResources &resources)
{
compileResources = resources;
setResourceString();
assert(symbolTable.isEmpty());
symbolTable.push(); // COMMON_BUILTINS
symbolTable.push(); // ESSL1_BUILTINS
symbolTable.push(); // ESSL3_BUILTINS
TPublicType integer;
integer.type = EbtInt;
integer.primarySize = 1;
integer.secondarySize = 1;
integer.array = false;
TPublicType floatingPoint;
floatingPoint.type = EbtFloat;
floatingPoint.primarySize = 1;
floatingPoint.secondarySize = 1;
floatingPoint.array = false;
TPublicType sampler;
sampler.primarySize = 1;
sampler.secondarySize = 1;
sampler.array = false;
switch(shaderType)
{
case GL_FRAGMENT_SHADER:
symbolTable.setDefaultPrecision(integer, EbpMedium);
break;
case GL_VERTEX_SHADER:
symbolTable.setDefaultPrecision(integer, EbpHigh);
symbolTable.setDefaultPrecision(floatingPoint, EbpHigh);
break;
default:
assert(false && "Language not supported");
}
// We set defaults for all the sampler types, even those that are
// only available if an extension exists.
for (int samplerType = EbtGuardSamplerBegin + 1;
samplerType < EbtGuardSamplerEnd; ++samplerType)
{
sampler.type = static_cast<TBasicType>(samplerType);
symbolTable.setDefaultPrecision(sampler, EbpLow);
}
InsertBuiltInFunctions(shaderType, shaderSpec, resources, symbolTable);
IdentifyBuiltIns(shaderType, shaderSpec, resources, symbolTable);
return true;
}
void TCompiler::setResourceString()
{
std::ostringstream strstream;
strstream << ":MaxVertexAttribs:" << compileResources.MaxVertexAttribs
<< ":MaxVertexUniformVectors:" << compileResources.MaxVertexUniformVectors
<< ":MaxVaryingVectors:" << compileResources.MaxVaryingVectors
<< ":MaxVertexTextureImageUnits:" << compileResources.MaxVertexTextureImageUnits
<< ":MaxCombinedTextureImageUnits:" << compileResources.MaxCombinedTextureImageUnits
<< ":MaxTextureImageUnits:" << compileResources.MaxTextureImageUnits
<< ":MaxFragmentUniformVectors:" << compileResources.MaxFragmentUniformVectors
<< ":MaxDrawBuffers:" << compileResources.MaxDrawBuffers
<< ":OES_standard_derivatives:" << compileResources.OES_standard_derivatives
<< ":OES_EGL_image_external:" << compileResources.OES_EGL_image_external
<< ":ARB_texture_rectangle:" << compileResources.ARB_texture_rectangle
<< ":EXT_draw_buffers:" << compileResources.EXT_draw_buffers
<< ":FragmentPrecisionHigh:" << compileResources.FragmentPrecisionHigh
<< ":MaxExpressionComplexity:" << compileResources.MaxExpressionComplexity
<< ":MaxCallStackDepth:" << compileResources.MaxCallStackDepth
<< ":EXT_blend_func_extended:" << compileResources.EXT_blend_func_extended
<< ":EXT_frag_depth:" << compileResources.EXT_frag_depth
<< ":EXT_shader_texture_lod:" << compileResources.EXT_shader_texture_lod
<< ":EXT_shader_framebuffer_fetch:" << compileResources.EXT_shader_framebuffer_fetch
<< ":NV_shader_framebuffer_fetch:" << compileResources.NV_shader_framebuffer_fetch
<< ":ARM_shader_framebuffer_fetch:" << compileResources.ARM_shader_framebuffer_fetch
<< ":MaxVertexOutputVectors:" << compileResources.MaxVertexOutputVectors
<< ":MaxFragmentInputVectors:" << compileResources.MaxFragmentInputVectors
<< ":MinProgramTexelOffset:" << compileResources.MinProgramTexelOffset
<< ":MaxProgramTexelOffset:" << compileResources.MaxProgramTexelOffset
<< ":MaxDualSourceDrawBuffers:" << compileResources.MaxDualSourceDrawBuffers
<< ":NV_draw_buffers:" << compileResources.NV_draw_buffers
<< ":WEBGL_debug_shader_precision:" << compileResources.WEBGL_debug_shader_precision;
builtInResourcesString = strstream.str();
}
void TCompiler::clearResults()
{
arrayBoundsClamper.Cleanup();
infoSink.info.erase();
infoSink.obj.erase();
infoSink.debug.erase();
attributes.clear();
outputVariables.clear();
uniforms.clear();
expandedUniforms.clear();
varyings.clear();
interfaceBlocks.clear();
builtInFunctionEmulator.Cleanup();
nameMap.clear();
mSourcePath = NULL;
mTemporaryIndex = 0;
}
bool TCompiler::initCallDag(TIntermNode *root)
{
mCallDag.clear();
switch (mCallDag.init(root, &infoSink.info))
{
case CallDAG::INITDAG_SUCCESS:
return true;
case CallDAG::INITDAG_RECURSION:
infoSink.info.prefix(EPrefixError);
infoSink.info << "Function recursion detected";
return false;
case CallDAG::INITDAG_UNDEFINED:
infoSink.info.prefix(EPrefixError);
infoSink.info << "Unimplemented function detected";
return false;
}
UNREACHABLE();
return true;
}
bool TCompiler::checkCallDepth()
{
std::vector<int> depths(mCallDag.size());
for (size_t i = 0; i < mCallDag.size(); i++)
{
int depth = 0;
auto &record = mCallDag.getRecordFromIndex(i);
for (auto &calleeIndex : record.callees)
{
depth = std::max(depth, depths[calleeIndex] + 1);
}
depths[i] = depth;
if (depth >= maxCallStackDepth)
{
// Trace back the function chain to have a meaningful info log.
infoSink.info.prefix(EPrefixError);
infoSink.info << "Call stack too deep (larger than " << maxCallStackDepth
<< ") with the following call chain: " << record.name;
int currentFunction = static_cast<int>(i);
int currentDepth = depth;
while (currentFunction != -1)
{
infoSink.info << " -> " << mCallDag.getRecordFromIndex(currentFunction).name;
int nextFunction = -1;
for (auto& calleeIndex : mCallDag.getRecordFromIndex(currentFunction).callees)
{
if (depths[calleeIndex] == currentDepth - 1)
{
currentDepth--;
nextFunction = calleeIndex;
}
}
currentFunction = nextFunction;
}
return false;
}
}
return true;
}
bool TCompiler::tagUsedFunctions()
{
// Search from main, starting from the end of the DAG as it usually is the root.
for (size_t i = mCallDag.size(); i-- > 0;)
{
if (mCallDag.getRecordFromIndex(i).name == "main(")
{
internalTagUsedFunction(i);
return true;
}
}
infoSink.info.prefix(EPrefixError);
infoSink.info << "Missing main()";
return false;
}
void TCompiler::internalTagUsedFunction(size_t index)
{
if (functionMetadata[index].used)
{
return;
}
functionMetadata[index].used = true;
for (int calleeIndex : mCallDag.getRecordFromIndex(index).callees)
{
internalTagUsedFunction(calleeIndex);
}
}
// A predicate for the stl that returns if a top-level node is unused
class TCompiler::UnusedPredicate
{
public:
UnusedPredicate(const CallDAG *callDag, const std::vector<FunctionMetadata> *metadatas)
: mCallDag(callDag),
mMetadatas(metadatas)
{
}
bool operator ()(TIntermNode *node)
{
const TIntermAggregate *asAggregate = node->getAsAggregate();
if (asAggregate == nullptr)
{
return false;
}
if (!(asAggregate->getOp() == EOpFunction || asAggregate->getOp() == EOpPrototype))
{
return false;
}
size_t callDagIndex = mCallDag->findIndex(asAggregate);
if (callDagIndex == CallDAG::InvalidIndex)
{
// This happens only for unimplemented prototypes which are thus unused
ASSERT(asAggregate->getOp() == EOpPrototype);
return true;
}
ASSERT(callDagIndex < mMetadatas->size());
return !(*mMetadatas)[callDagIndex].used;
}
private:
const CallDAG *mCallDag;
const std::vector<FunctionMetadata> *mMetadatas;
};
bool TCompiler::pruneUnusedFunctions(TIntermNode *root)
{
TIntermAggregate *rootNode = root->getAsAggregate();
ASSERT(rootNode != nullptr);
UnusedPredicate isUnused(&mCallDag, &functionMetadata);
TIntermSequence *sequence = rootNode->getSequence();
if (!sequence->empty())
{
sequence->erase(std::remove_if(sequence->begin(), sequence->end(), isUnused), sequence->end());
}
return true;
}
bool TCompiler::validateOutputs(TIntermNode* root)
{
ValidateOutputs validateOutputs(getExtensionBehavior(), compileResources.MaxDrawBuffers);
root->traverse(&validateOutputs);
return (validateOutputs.validateAndCountErrors(infoSink.info) == 0);
}
void TCompiler::rewriteCSSShader(TIntermNode* root)
{
RenameFunction renamer("main(", "css_main(");
root->traverse(&renamer);
}
bool TCompiler::validateLimitations(TIntermNode* root)
{
ValidateLimitations validate(shaderType, infoSink.info);
root->traverse(&validate);
return validate.numErrors() == 0;
}
bool TCompiler::enforceTimingRestrictions(TIntermNode* root, bool outputGraph)
{
if (shaderSpec != SH_WEBGL_SPEC)
{
infoSink.info << "Timing restrictions must be enforced under the WebGL spec.";
return false;
}
if (shaderType == GL_FRAGMENT_SHADER)
{
TDependencyGraph graph(root);
// Output any errors first.
bool success = enforceFragmentShaderTimingRestrictions(graph);
// Then, output the dependency graph.
if (outputGraph)
{
TDependencyGraphOutput output(infoSink.info);
output.outputAllSpanningTrees(graph);
}
return success;
}
else
{
return enforceVertexShaderTimingRestrictions(root);
}
}
bool TCompiler::limitExpressionComplexity(TIntermNode* root)
{
TMaxDepthTraverser traverser(maxExpressionComplexity+1);
root->traverse(&traverser);
if (traverser.getMaxDepth() > maxExpressionComplexity)
{
infoSink.info << "Expression too complex.";
return false;
}
TDependencyGraph graph(root);
for (TFunctionCallVector::const_iterator iter = graph.beginUserDefinedFunctionCalls();
iter != graph.endUserDefinedFunctionCalls();
++iter)
{
TGraphFunctionCall* samplerSymbol = *iter;
TDependencyGraphTraverser graphTraverser;
samplerSymbol->traverse(&graphTraverser);
}
return true;
}
bool TCompiler::enforceFragmentShaderTimingRestrictions(const TDependencyGraph& graph)
{
RestrictFragmentShaderTiming restrictor(infoSink.info);
restrictor.enforceRestrictions(graph);
return restrictor.numErrors() == 0;
}
bool TCompiler::enforceVertexShaderTimingRestrictions(TIntermNode* root)
{
RestrictVertexShaderTiming restrictor(infoSink.info);
restrictor.enforceRestrictions(root);
return restrictor.numErrors() == 0;
}
void TCompiler::collectVariables(TIntermNode* root)
{
sh::CollectVariables collect(&attributes,
&outputVariables,
&uniforms,
&varyings,
&interfaceBlocks,
hashFunction,
symbolTable);
root->traverse(&collect);
// This is for enforcePackingRestriction().
sh::ExpandUniforms(uniforms, &expandedUniforms);
}
bool TCompiler::enforcePackingRestrictions()
{
VariablePacker packer;
return packer.CheckVariablesWithinPackingLimits(maxUniformVectors, expandedUniforms);
}
void TCompiler::initializeGLPosition(TIntermNode* root)
{
InitializeVariables::InitVariableInfoList variables;
InitializeVariables::InitVariableInfo var(
"gl_Position", TType(EbtFloat, EbpUndefined, EvqPosition, 4));
variables.push_back(var);
InitializeVariables initializer(variables);
root->traverse(&initializer);
}
void TCompiler::initializeVaryingsWithoutStaticUse(TIntermNode* root)
{
InitializeVariables::InitVariableInfoList variables;
for (size_t ii = 0; ii < varyings.size(); ++ii)
{
const sh::Varying& varying = varyings[ii];
if (varying.staticUse)
continue;
unsigned char primarySize = static_cast<unsigned char>(gl::VariableColumnCount(varying.type));
unsigned char secondarySize = static_cast<unsigned char>(gl::VariableRowCount(varying.type));
TType type(EbtFloat, EbpUndefined, EvqVaryingOut, primarySize, secondarySize, varying.isArray());
TString name = varying.name.c_str();
if (varying.isArray())
{
type.setArraySize(varying.arraySize);
name = name.substr(0, name.find_first_of('['));
}
InitializeVariables::InitVariableInfo var(name, type);
variables.push_back(var);
}
InitializeVariables initializer(variables);
root->traverse(&initializer);
}
const TExtensionBehavior& TCompiler::getExtensionBehavior() const
{
return extensionBehavior;
}
const char *TCompiler::getSourcePath() const
{
return mSourcePath;
}
const ShBuiltInResources& TCompiler::getResources() const
{
return compileResources;
}
const ArrayBoundsClamper& TCompiler::getArrayBoundsClamper() const
{
return arrayBoundsClamper;
}
ShArrayIndexClampingStrategy TCompiler::getArrayIndexClampingStrategy() const
{
return clampingStrategy;
}
const BuiltInFunctionEmulator& TCompiler::getBuiltInFunctionEmulator() const
{
return builtInFunctionEmulator;
}
void TCompiler::writePragma()
{
TInfoSinkBase &sink = infoSink.obj;
if (mPragma.stdgl.invariantAll)
sink << "#pragma STDGL invariant(all)\n";
}