blob: 0cb1a950cdc4dc54cae4df9af21d1a70af3033d1 [file] [log] [blame]
//
// Copyright (c) 2002-2010 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
#include "compiler/translator/IntermNode.h"
#include "compiler/translator/InfoSink.h"
#include "compiler/translator/SymbolTable.h"
void TIntermSymbol::traverse(TIntermTraverser *it)
{
it->traverseSymbol(this);
}
void TIntermRaw::traverse(TIntermTraverser *it)
{
it->traverseRaw(this);
}
void TIntermConstantUnion::traverse(TIntermTraverser *it)
{
it->traverseConstantUnion(this);
}
void TIntermBinary::traverse(TIntermTraverser *it)
{
it->traverseBinary(this);
}
void TIntermUnary::traverse(TIntermTraverser *it)
{
it->traverseUnary(this);
}
void TIntermSelection::traverse(TIntermTraverser *it)
{
it->traverseSelection(this);
}
void TIntermSwitch::traverse(TIntermTraverser *it)
{
it->traverseSwitch(this);
}
void TIntermCase::traverse(TIntermTraverser *it)
{
it->traverseCase(this);
}
void TIntermAggregate::traverse(TIntermTraverser *it)
{
it->traverseAggregate(this);
}
void TIntermLoop::traverse(TIntermTraverser *it)
{
it->traverseLoop(this);
}
void TIntermBranch::traverse(TIntermTraverser *it)
{
it->traverseBranch(this);
}
void TIntermTraverser::pushParentBlock(TIntermAggregate *node)
{
mParentBlockStack.push_back(ParentBlock(node, 0));
}
void TIntermTraverser::incrementParentBlockPos()
{
++mParentBlockStack.back().pos;
}
void TIntermTraverser::popParentBlock()
{
ASSERT(!mParentBlockStack.empty());
mParentBlockStack.pop_back();
}
void TIntermTraverser::insertStatementsInParentBlock(const TIntermSequence &insertions)
{
ASSERT(!mParentBlockStack.empty());
NodeInsertMultipleEntry insert(mParentBlockStack.back().node, mParentBlockStack.back().pos, insertions);
mInsertions.push_back(insert);
}
TIntermSymbol *TIntermTraverser::createTempSymbol(const TType &type, TQualifier qualifier)
{
// Each traversal uses at most one temporary variable, so the index stays the same within a single traversal.
TInfoSinkBase symbolNameOut;
ASSERT(mTemporaryIndex != nullptr);
symbolNameOut << "s" << (*mTemporaryIndex);
TString symbolName = symbolNameOut.c_str();
TIntermSymbol *node = new TIntermSymbol(0, symbolName, type);
node->setInternal(true);
node->getTypePointer()->setQualifier(qualifier);
return node;
}
TIntermSymbol *TIntermTraverser::createTempSymbol(const TType &type)
{
return createTempSymbol(type, EvqTemporary);
}
TIntermAggregate *TIntermTraverser::createTempDeclaration(const TType &type)
{
TIntermAggregate *tempDeclaration = new TIntermAggregate(EOpDeclaration);
tempDeclaration->getSequence()->push_back(createTempSymbol(type));
return tempDeclaration;
}
TIntermAggregate *TIntermTraverser::createTempInitDeclaration(TIntermTyped *initializer, TQualifier qualifier)
{
ASSERT(initializer != nullptr);
TIntermSymbol *tempSymbol = createTempSymbol(initializer->getType(), qualifier);
TIntermAggregate *tempDeclaration = new TIntermAggregate(EOpDeclaration);
TIntermBinary *tempInit = new TIntermBinary(EOpInitialize);
tempInit->setLeft(tempSymbol);
tempInit->setRight(initializer);
tempInit->setType(tempSymbol->getType());
tempDeclaration->getSequence()->push_back(tempInit);
return tempDeclaration;
}
TIntermAggregate *TIntermTraverser::createTempInitDeclaration(TIntermTyped *initializer)
{
return createTempInitDeclaration(initializer, EvqTemporary);
}
TIntermBinary *TIntermTraverser::createTempAssignment(TIntermTyped *rightNode)
{
ASSERT(rightNode != nullptr);
TIntermSymbol *tempSymbol = createTempSymbol(rightNode->getType());
TIntermBinary *assignment = new TIntermBinary(EOpAssign);
assignment->setLeft(tempSymbol);
assignment->setRight(rightNode);
assignment->setType(tempSymbol->getType());
return assignment;
}
void TIntermTraverser::useTemporaryIndex(unsigned int *temporaryIndex)
{
mTemporaryIndex = temporaryIndex;
}
void TIntermTraverser::nextTemporaryIndex()
{
ASSERT(mTemporaryIndex != nullptr);
++(*mTemporaryIndex);
}
void TLValueTrackingTraverser::addToFunctionMap(const TName &name, TIntermSequence *paramSequence)
{
mFunctionMap[name] = paramSequence;
}
bool TLValueTrackingTraverser::isInFunctionMap(const TIntermAggregate *callNode) const
{
ASSERT(callNode->getOp() == EOpFunctionCall);
return (mFunctionMap.find(callNode->getNameObj()) != mFunctionMap.end());
}
TIntermSequence *TLValueTrackingTraverser::getFunctionParameters(const TIntermAggregate *callNode)
{
ASSERT(isInFunctionMap(callNode));
return mFunctionMap[callNode->getNameObj()];
}
void TLValueTrackingTraverser::setInFunctionCallOutParameter(bool inOutParameter)
{
mInFunctionCallOutParameter = inOutParameter;
}
bool TLValueTrackingTraverser::isInFunctionCallOutParameter() const
{
return mInFunctionCallOutParameter;
}
//
// Traverse the intermediate representation tree, and
// call a node type specific function for each node.
// Done recursively through the member function Traverse().
// Node types can be skipped if their function to call is 0,
// but their subtree will still be traversed.
// Nodes with children can have their whole subtree skipped
// if preVisit is turned on and the type specific function
// returns false.
//
//
// Traversal functions for terminals are straighforward....
//
void TIntermTraverser::traverseSymbol(TIntermSymbol *node)
{
visitSymbol(node);
}
void TIntermTraverser::traverseConstantUnion(TIntermConstantUnion *node)
{
visitConstantUnion(node);
}
//
// Traverse a binary node.
//
void TIntermTraverser::traverseBinary(TIntermBinary *node)
{
bool visit = true;
//
// visit the node before children if pre-visiting.
//
if (preVisit)
visit = visitBinary(PreVisit, node);
//
// Visit the children, in the right order.
//
if (visit)
{
incrementDepth(node);
if (node->getLeft())
node->getLeft()->traverse(this);
if (inVisit)
visit = visitBinary(InVisit, node);
if (visit && node->getRight())
node->getRight()->traverse(this);
decrementDepth();
}
//
// Visit the node after the children, if requested and the traversal
// hasn't been cancelled yet.
//
if (visit && postVisit)
visitBinary(PostVisit, node);
}
void TLValueTrackingTraverser::traverseBinary(TIntermBinary *node)
{
bool visit = true;
//
// visit the node before children if pre-visiting.
//
if (preVisit)
visit = visitBinary(PreVisit, node);
//
// Visit the children, in the right order.
//
if (visit)
{
incrementDepth(node);
// Some binary operations like indexing can be inside an expression which must be an
// l-value.
bool parentOperatorRequiresLValue = operatorRequiresLValue();
bool parentInFunctionCallOutParameter = isInFunctionCallOutParameter();
if (node->isAssignment())
{
ASSERT(!isLValueRequiredHere());
setOperatorRequiresLValue(true);
}
if (node->getLeft())
node->getLeft()->traverse(this);
if (inVisit)
visit = visitBinary(InVisit, node);
if (node->isAssignment())
setOperatorRequiresLValue(false);
// Index is not required to be an l-value even when the surrounding expression is required
// to be an l-value.
TOperator op = node->getOp();
if (op == EOpIndexDirect || op == EOpIndexDirectInterfaceBlock ||
op == EOpIndexDirectStruct || op == EOpIndexIndirect)
{
setOperatorRequiresLValue(false);
setInFunctionCallOutParameter(false);
}
if (visit && node->getRight())
node->getRight()->traverse(this);
setOperatorRequiresLValue(parentOperatorRequiresLValue);
setInFunctionCallOutParameter(parentInFunctionCallOutParameter);
decrementDepth();
}
//
// Visit the node after the children, if requested and the traversal
// hasn't been cancelled yet.
//
if (visit && postVisit)
visitBinary(PostVisit, node);
}
//
// Traverse a unary node. Same comments in binary node apply here.
//
void TIntermTraverser::traverseUnary(TIntermUnary *node)
{
bool visit = true;
if (preVisit)
visit = visitUnary(PreVisit, node);
if (visit)
{
incrementDepth(node);
node->getOperand()->traverse(this);
decrementDepth();
}
if (visit && postVisit)
visitUnary(PostVisit, node);
}
void TLValueTrackingTraverser::traverseUnary(TIntermUnary *node)
{
bool visit = true;
if (preVisit)
visit = visitUnary(PreVisit, node);
if (visit)
{
incrementDepth(node);
ASSERT(!operatorRequiresLValue());
switch (node->getOp())
{
case EOpPostIncrement:
case EOpPostDecrement:
case EOpPreIncrement:
case EOpPreDecrement:
setOperatorRequiresLValue(true);
break;
default:
break;
}
node->getOperand()->traverse(this);
setOperatorRequiresLValue(false);
decrementDepth();
}
if (visit && postVisit)
visitUnary(PostVisit, node);
}
//
// Traverse an aggregate node. Same comments in binary node apply here.
//
void TIntermTraverser::traverseAggregate(TIntermAggregate *node)
{
bool visit = true;
TIntermSequence *sequence = node->getSequence();
if (preVisit)
visit = visitAggregate(PreVisit, node);
if (visit)
{
incrementDepth(node);
if (node->getOp() == EOpSequence)
pushParentBlock(node);
for (auto *child : *sequence)
{
child->traverse(this);
if (visit && inVisit)
{
if (child != sequence->back())
visit = visitAggregate(InVisit, node);
}
if (node->getOp() == EOpSequence)
incrementParentBlockPos();
}
if (node->getOp() == EOpSequence)
popParentBlock();
decrementDepth();
}
if (visit && postVisit)
visitAggregate(PostVisit, node);
}
void TLValueTrackingTraverser::traverseAggregate(TIntermAggregate *node)
{
bool visit = true;
TIntermSequence *sequence = node->getSequence();
switch (node->getOp())
{
case EOpFunction:
{
TIntermAggregate *params = sequence->front()->getAsAggregate();
ASSERT(params != nullptr);
ASSERT(params->getOp() == EOpParameters);
addToFunctionMap(node->getNameObj(), params->getSequence());
break;
}
case EOpPrototype:
addToFunctionMap(node->getNameObj(), sequence);
break;
default:
break;
}
if (preVisit)
visit = visitAggregate(PreVisit, node);
if (visit)
{
bool inFunctionMap = false;
if (node->getOp() == EOpFunctionCall)
{
inFunctionMap = isInFunctionMap(node);
if (!inFunctionMap)
{
// The function is not user-defined - it is likely built-in texture function.
// Assume that those do not have out parameters.
setInFunctionCallOutParameter(false);
}
}
incrementDepth(node);
if (inFunctionMap)
{
TIntermSequence *params = getFunctionParameters(node);
TIntermSequence::iterator paramIter = params->begin();
for (auto *child : *sequence)
{
ASSERT(paramIter != params->end());
TQualifier qualifier = (*paramIter)->getAsTyped()->getQualifier();
setInFunctionCallOutParameter(qualifier == EvqOut || qualifier == EvqInOut);
child->traverse(this);
if (visit && inVisit)
{
if (child != sequence->back())
visit = visitAggregate(InVisit, node);
}
++paramIter;
}
setInFunctionCallOutParameter(false);
}
else
{
if (node->getOp() == EOpSequence)
pushParentBlock(node);
// Find the built-in function corresponding to this op so that we can determine the
// in/out qualifiers of its parameters.
TFunction *builtInFunc = nullptr;
TString opString = GetOperatorString(node->getOp());
if (!node->isConstructor() && !opString.empty())
{
// The return type doesn't affect the mangled name of the function, which is used
// to look it up from the symbol table.
TType dummyReturnType;
TFunction call(&opString, &dummyReturnType, node->getOp());
for (auto *child : *sequence)
{
TType *paramType = child->getAsTyped()->getTypePointer();
TConstParameter p(paramType);
call.addParameter(p);
}
TSymbol *sym = mSymbolTable.findBuiltIn(call.getMangledName(), mShaderVersion);
if (sym != nullptr && sym->isFunction())
{
builtInFunc = static_cast<TFunction *>(sym);
ASSERT(builtInFunc->getParamCount() == sequence->size());
}
}
size_t paramIndex = 0;
for (auto *child : *sequence)
{
TQualifier qualifier = EvqIn;
if (builtInFunc != nullptr)
qualifier = builtInFunc->getParam(paramIndex).type->getQualifier();
setInFunctionCallOutParameter(qualifier == EvqOut || qualifier == EvqInOut);
child->traverse(this);
if (visit && inVisit)
{
if (child != sequence->back())
visit = visitAggregate(InVisit, node);
}
if (node->getOp() == EOpSequence)
incrementParentBlockPos();
++paramIndex;
}
setInFunctionCallOutParameter(false);
if (node->getOp() == EOpSequence)
popParentBlock();
}
decrementDepth();
}
if (visit && postVisit)
visitAggregate(PostVisit, node);
}
//
// Traverse a selection node. Same comments in binary node apply here.
//
void TIntermTraverser::traverseSelection(TIntermSelection *node)
{
bool visit = true;
if (preVisit)
visit = visitSelection(PreVisit, node);
if (visit)
{
incrementDepth(node);
node->getCondition()->traverse(this);
if (node->getTrueBlock())
node->getTrueBlock()->traverse(this);
if (node->getFalseBlock())
node->getFalseBlock()->traverse(this);
decrementDepth();
}
if (visit && postVisit)
visitSelection(PostVisit, node);
}
//
// Traverse a switch node. Same comments in binary node apply here.
//
void TIntermTraverser::traverseSwitch(TIntermSwitch *node)
{
bool visit = true;
if (preVisit)
visit = visitSwitch(PreVisit, node);
if (visit)
{
incrementDepth(node);
node->getInit()->traverse(this);
if (inVisit)
visit = visitSwitch(InVisit, node);
if (visit && node->getStatementList())
node->getStatementList()->traverse(this);
decrementDepth();
}
if (visit && postVisit)
visitSwitch(PostVisit, node);
}
//
// Traverse a case node. Same comments in binary node apply here.
//
void TIntermTraverser::traverseCase(TIntermCase *node)
{
bool visit = true;
if (preVisit)
visit = visitCase(PreVisit, node);
if (visit && node->getCondition())
node->getCondition()->traverse(this);
if (visit && postVisit)
visitCase(PostVisit, node);
}
//
// Traverse a loop node. Same comments in binary node apply here.
//
void TIntermTraverser::traverseLoop(TIntermLoop *node)
{
bool visit = true;
if (preVisit)
visit = visitLoop(PreVisit, node);
if (visit)
{
incrementDepth(node);
if (node->getInit())
node->getInit()->traverse(this);
if (node->getCondition())
node->getCondition()->traverse(this);
if (node->getBody())
node->getBody()->traverse(this);
if (node->getExpression())
node->getExpression()->traverse(this);
decrementDepth();
}
if (visit && postVisit)
visitLoop(PostVisit, node);
}
//
// Traverse a branch node. Same comments in binary node apply here.
//
void TIntermTraverser::traverseBranch(TIntermBranch *node)
{
bool visit = true;
if (preVisit)
visit = visitBranch(PreVisit, node);
if (visit && node->getExpression())
{
incrementDepth(node);
node->getExpression()->traverse(this);
decrementDepth();
}
if (visit && postVisit)
visitBranch(PostVisit, node);
}
void TIntermTraverser::traverseRaw(TIntermRaw *node)
{
visitRaw(node);
}