blob: e077de1f8f8c87336e3d53eab22d426c08038e69 [file] [log] [blame]
//
// Copyright 2016 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// RendererVk.cpp:
// Implements the class methods for RendererVk.
//
#include "libANGLE/renderer/vulkan/RendererVk.h"
// Placing this first seems to solve an intellisense bug.
#include "libANGLE/renderer/vulkan/vk_utils.h"
#include <EGL/eglext.h>
#include "common/debug.h"
#include "common/system_utils.h"
#include "libANGLE/renderer/driver_utils.h"
#include "libANGLE/renderer/vulkan/CommandGraph.h"
#include "libANGLE/renderer/vulkan/CompilerVk.h"
#include "libANGLE/renderer/vulkan/FramebufferVk.h"
#include "libANGLE/renderer/vulkan/GlslangWrapper.h"
#include "libANGLE/renderer/vulkan/ProgramVk.h"
#include "libANGLE/renderer/vulkan/VertexArrayVk.h"
#include "libANGLE/renderer/vulkan/vk_caps_utils.h"
#include "libANGLE/renderer/vulkan/vk_format_utils.h"
#include "platform/Platform.h"
// Consts
namespace
{
const uint32_t kMockVendorID = 0xba5eba11;
const uint32_t kMockDeviceID = 0xf005ba11;
constexpr char kMockDeviceName[] = "Vulkan Mock Device";
} // anonymous namespace
namespace rx
{
namespace
{
// We currently only allocate 2 uniform buffer per descriptor set, one for the fragment shader and
// one for the vertex shader.
constexpr size_t kUniformBufferDescriptorsPerDescriptorSet = 2;
VkResult VerifyExtensionsPresent(const std::vector<VkExtensionProperties> &extensionProps,
const std::vector<const char *> &enabledExtensionNames)
{
// Compile the extensions names into a set.
std::set<std::string> extensionNames;
for (const auto &extensionProp : extensionProps)
{
extensionNames.insert(extensionProp.extensionName);
}
for (const char *extensionName : enabledExtensionNames)
{
if (extensionNames.count(extensionName) == 0)
{
return VK_ERROR_EXTENSION_NOT_PRESENT;
}
}
return VK_SUCCESS;
}
VKAPI_ATTR VkBool32 VKAPI_CALL DebugReportCallback(VkDebugReportFlagsEXT flags,
VkDebugReportObjectTypeEXT objectType,
uint64_t object,
size_t location,
int32_t messageCode,
const char *layerPrefix,
const char *message,
void *userData)
{
if ((flags & VK_DEBUG_REPORT_ERROR_BIT_EXT) != 0)
{
ERR() << message;
#if !defined(NDEBUG)
// Abort the call in Debug builds.
return VK_TRUE;
#endif
}
else if ((flags & VK_DEBUG_REPORT_WARNING_BIT_EXT) != 0)
{
WARN() << message;
}
else
{
// Uncomment this if you want Vulkan spam.
// WARN() << message;
}
return VK_FALSE;
}
// If we're loading the validation layers, we could be running from any random directory.
// Change to the executable directory so we can find the layers, then change back to the
// previous directory to be safe we don't disrupt the application.
class ScopedVkLoaderEnvironment : angle::NonCopyable
{
public:
explicit ScopedVkLoaderEnvironment(bool enableValidationLayers)
: mEnableValidationLayers(enableValidationLayers), mChangedCWD(false)
{
// Changing CWD and setting environment variables makes no sense on Android,
// since this code is a part of Java application there.
// Android Vulkan loader doesn't need this either.
#if !defined(ANGLE_PLATFORM_ANDROID)
if (mEnableValidationLayers)
{
const auto &cwd = angle::GetCWD();
if (!cwd.valid())
{
ERR() << "Error getting CWD for Vulkan layers init.";
mEnableValidationLayers = false;
}
else
{
mPreviousCWD = cwd.value();
const char *exeDir = angle::GetExecutableDirectory();
mChangedCWD = angle::SetCWD(exeDir);
if (!mChangedCWD)
{
ERR() << "Error setting CWD for Vulkan layers init.";
mEnableValidationLayers = false;
}
}
}
// Override environment variable to use the ANGLE layers.
if (mEnableValidationLayers)
{
if (!angle::PrependPathToEnvironmentVar(g_VkLoaderLayersPathEnv, ANGLE_VK_DATA_DIR))
{
ERR() << "Error setting environment for Vulkan layers init.";
mEnableValidationLayers = false;
}
}
#endif // !defined(ANGLE_PLATFORM_ANDROID)
}
~ScopedVkLoaderEnvironment()
{
if (mChangedCWD)
{
#if !defined(ANGLE_PLATFORM_ANDROID)
ASSERT(mPreviousCWD.valid());
angle::SetCWD(mPreviousCWD.value().c_str());
#endif // !defined(ANGLE_PLATFORM_ANDROID)
}
}
bool canEnableValidationLayers() const { return mEnableValidationLayers; }
private:
bool mEnableValidationLayers;
bool mChangedCWD;
Optional<std::string> mPreviousCWD;
};
} // anonymous namespace
// CommandBatch implementation.
RendererVk::CommandBatch::CommandBatch() = default;
RendererVk::CommandBatch::~CommandBatch() = default;
RendererVk::CommandBatch::CommandBatch(CommandBatch &&other)
: commandPool(std::move(other.commandPool)), fence(std::move(other.fence)), serial(other.serial)
{
}
RendererVk::CommandBatch &RendererVk::CommandBatch::operator=(CommandBatch &&other)
{
std::swap(commandPool, other.commandPool);
std::swap(fence, other.fence);
std::swap(serial, other.serial);
return *this;
}
// RendererVk implementation.
RendererVk::RendererVk()
: mCapsInitialized(false),
mInstance(VK_NULL_HANDLE),
mEnableValidationLayers(false),
mDebugReportCallback(VK_NULL_HANDLE),
mPhysicalDevice(VK_NULL_HANDLE),
mQueue(VK_NULL_HANDLE),
mCurrentQueueFamilyIndex(std::numeric_limits<uint32_t>::max()),
mDevice(VK_NULL_HANDLE),
mGlslangWrapper(nullptr),
mLastCompletedQueueSerial(mQueueSerialFactory.generate()),
mCurrentQueueSerial(mQueueSerialFactory.generate())
{
}
RendererVk::~RendererVk()
{
if (!mInFlightCommands.empty() || !mGarbage.empty())
{
// TODO(jmadill): Not nice to pass nullptr here, but shouldn't be a problem.
vk::Error error = finish(nullptr);
if (error.isError())
{
ERR() << "Error during VK shutdown: " << error;
}
}
mPipelineLayoutCache.destroy(mDevice);
mDescriptorSetLayoutCache.destroy(mDevice);
mRenderPassCache.destroy(mDevice);
mPipelineCache.destroy(mDevice);
mShaderLibrary.destroy(mDevice);
if (mGlslangWrapper)
{
GlslangWrapper::ReleaseReference();
mGlslangWrapper = nullptr;
}
if (mCommandPool.valid())
{
mCommandPool.destroy(mDevice);
}
if (mDevice)
{
vkDestroyDevice(mDevice, nullptr);
mDevice = VK_NULL_HANDLE;
}
if (mDebugReportCallback)
{
ASSERT(mInstance);
auto destroyDebugReportCallback = reinterpret_cast<PFN_vkDestroyDebugReportCallbackEXT>(
vkGetInstanceProcAddr(mInstance, "vkDestroyDebugReportCallbackEXT"));
ASSERT(destroyDebugReportCallback);
destroyDebugReportCallback(mInstance, mDebugReportCallback, nullptr);
}
if (mInstance)
{
vkDestroyInstance(mInstance, nullptr);
mInstance = VK_NULL_HANDLE;
}
mPhysicalDevice = VK_NULL_HANDLE;
}
void ChoosePhysicalDevice(const std::vector<VkPhysicalDevice> &physicalDevices,
bool preferMockICD,
VkPhysicalDevice *physicalDeviceOut,
VkPhysicalDeviceProperties *physicalDevicePropertiesOut)
{
ASSERT(!physicalDevices.empty());
if (preferMockICD)
{
for (const VkPhysicalDevice &physicalDevice : physicalDevices)
{
vkGetPhysicalDeviceProperties(physicalDevice, physicalDevicePropertiesOut);
if ((kMockVendorID == physicalDevicePropertiesOut->vendorID) &&
(kMockDeviceID == physicalDevicePropertiesOut->deviceID) &&
(strcmp(kMockDeviceName, physicalDevicePropertiesOut->deviceName) == 0))
{
*physicalDeviceOut = physicalDevice;
return;
}
}
WARN() << "Vulkan Mock Driver was requested but Mock Device was not found. Using default "
"physicalDevice instead.";
}
// Fall back to first device.
*physicalDeviceOut = physicalDevices[0];
vkGetPhysicalDeviceProperties(*physicalDeviceOut, physicalDevicePropertiesOut);
}
vk::Error RendererVk::initialize(const egl::AttributeMap &attribs, const char *wsiName)
{
ScopedVkLoaderEnvironment scopedEnvironment(ShouldUseDebugLayers(attribs));
mEnableValidationLayers = scopedEnvironment.canEnableValidationLayers();
#if !defined(ANGLE_PLATFORM_ANDROID)
// Mock ICD does not currently run on Android
bool enableNullDriver = (attribs.get(EGL_PLATFORM_ANGLE_DEVICE_TYPE_ANGLE,
EGL_PLATFORM_ANGLE_DEVICE_TYPE_HARDWARE_ANGLE) ==
EGL_PLATFORM_ANGLE_DEVICE_TYPE_NULL_ANGLE);
if (enableNullDriver)
{
// Override environment variable to use built Mock ICD
// ANGLE_VK_ICD_JSON gets set to the built mock ICD in BUILD.gn
ANGLE_VK_CHECK(angle::SetEnvironmentVar(g_VkICDPathEnv, ANGLE_VK_ICD_JSON),
VK_ERROR_INITIALIZATION_FAILED);
}
#else
constexpr bool enableNullDriver = false;
#endif // !defined(ANGLE_PLATFORM_ANDROID)
// Gather global layer properties.
uint32_t instanceLayerCount = 0;
ANGLE_VK_TRY(vkEnumerateInstanceLayerProperties(&instanceLayerCount, nullptr));
std::vector<VkLayerProperties> instanceLayerProps(instanceLayerCount);
if (instanceLayerCount > 0)
{
ANGLE_VK_TRY(
vkEnumerateInstanceLayerProperties(&instanceLayerCount, instanceLayerProps.data()));
}
uint32_t instanceExtensionCount = 0;
ANGLE_VK_TRY(vkEnumerateInstanceExtensionProperties(nullptr, &instanceExtensionCount, nullptr));
std::vector<VkExtensionProperties> instanceExtensionProps(instanceExtensionCount);
if (instanceExtensionCount > 0)
{
ANGLE_VK_TRY(vkEnumerateInstanceExtensionProperties(nullptr, &instanceExtensionCount,
instanceExtensionProps.data()));
}
const char *const *enabledLayerNames = nullptr;
uint32_t enabledLayerCount = 0;
if (mEnableValidationLayers)
{
bool layersRequested =
(attribs.get(EGL_PLATFORM_ANGLE_DEBUG_LAYERS_ENABLED_ANGLE, EGL_DONT_CARE) == EGL_TRUE);
mEnableValidationLayers = GetAvailableValidationLayers(
instanceLayerProps, layersRequested, &enabledLayerNames, &enabledLayerCount);
}
std::vector<const char *> enabledInstanceExtensions;
enabledInstanceExtensions.push_back(VK_KHR_SURFACE_EXTENSION_NAME);
enabledInstanceExtensions.push_back(wsiName);
// TODO(jmadill): Should be able to continue initialization if debug report ext missing.
if (mEnableValidationLayers)
{
enabledInstanceExtensions.push_back(VK_EXT_DEBUG_REPORT_EXTENSION_NAME);
}
// Verify the required extensions are in the extension names set. Fail if not.
ANGLE_VK_TRY(VerifyExtensionsPresent(instanceExtensionProps, enabledInstanceExtensions));
VkApplicationInfo applicationInfo;
applicationInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
applicationInfo.pNext = nullptr;
applicationInfo.pApplicationName = "ANGLE";
applicationInfo.applicationVersion = 1;
applicationInfo.pEngineName = "ANGLE";
applicationInfo.engineVersion = 1;
applicationInfo.apiVersion = VK_API_VERSION_1_0;
VkInstanceCreateInfo instanceInfo;
instanceInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
instanceInfo.pNext = nullptr;
instanceInfo.flags = 0;
instanceInfo.pApplicationInfo = &applicationInfo;
// Enable requested layers and extensions.
instanceInfo.enabledExtensionCount = static_cast<uint32_t>(enabledInstanceExtensions.size());
instanceInfo.ppEnabledExtensionNames =
enabledInstanceExtensions.empty() ? nullptr : enabledInstanceExtensions.data();
instanceInfo.enabledLayerCount = enabledLayerCount;
instanceInfo.ppEnabledLayerNames = enabledLayerNames;
ANGLE_VK_TRY(vkCreateInstance(&instanceInfo, nullptr, &mInstance));
if (mEnableValidationLayers)
{
VkDebugReportCallbackCreateInfoEXT debugReportInfo;
debugReportInfo.sType = VK_STRUCTURE_TYPE_DEBUG_REPORT_CREATE_INFO_EXT;
debugReportInfo.pNext = nullptr;
debugReportInfo.flags = VK_DEBUG_REPORT_ERROR_BIT_EXT | VK_DEBUG_REPORT_WARNING_BIT_EXT |
VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT |
VK_DEBUG_REPORT_INFORMATION_BIT_EXT | VK_DEBUG_REPORT_DEBUG_BIT_EXT;
debugReportInfo.pfnCallback = &DebugReportCallback;
debugReportInfo.pUserData = this;
auto createDebugReportCallback = reinterpret_cast<PFN_vkCreateDebugReportCallbackEXT>(
vkGetInstanceProcAddr(mInstance, "vkCreateDebugReportCallbackEXT"));
ASSERT(createDebugReportCallback);
ANGLE_VK_TRY(
createDebugReportCallback(mInstance, &debugReportInfo, nullptr, &mDebugReportCallback));
}
uint32_t physicalDeviceCount = 0;
ANGLE_VK_TRY(vkEnumeratePhysicalDevices(mInstance, &physicalDeviceCount, nullptr));
ANGLE_VK_CHECK(physicalDeviceCount > 0, VK_ERROR_INITIALIZATION_FAILED);
// TODO(jmadill): Handle multiple physical devices. For now, use the first device.
std::vector<VkPhysicalDevice> physicalDevices(physicalDeviceCount);
ANGLE_VK_TRY(
vkEnumeratePhysicalDevices(mInstance, &physicalDeviceCount, physicalDevices.data()));
ChoosePhysicalDevice(physicalDevices, enableNullDriver, &mPhysicalDevice,
&mPhysicalDeviceProperties);
// Ensure we can find a graphics queue family.
uint32_t queueCount = 0;
vkGetPhysicalDeviceQueueFamilyProperties(mPhysicalDevice, &queueCount, nullptr);
ANGLE_VK_CHECK(queueCount > 0, VK_ERROR_INITIALIZATION_FAILED);
mQueueFamilyProperties.resize(queueCount);
vkGetPhysicalDeviceQueueFamilyProperties(mPhysicalDevice, &queueCount,
mQueueFamilyProperties.data());
size_t graphicsQueueFamilyCount = false;
uint32_t firstGraphicsQueueFamily = 0;
for (uint32_t familyIndex = 0; familyIndex < queueCount; ++familyIndex)
{
const auto &queueInfo = mQueueFamilyProperties[familyIndex];
if ((queueInfo.queueFlags & VK_QUEUE_GRAPHICS_BIT) != 0)
{
ASSERT(queueInfo.queueCount > 0);
graphicsQueueFamilyCount++;
if (firstGraphicsQueueFamily == 0)
{
firstGraphicsQueueFamily = familyIndex;
}
break;
}
}
ANGLE_VK_CHECK(graphicsQueueFamilyCount > 0, VK_ERROR_INITIALIZATION_FAILED);
// If only one queue family, go ahead and initialize the device. If there is more than one
// queue, we'll have to wait until we see a WindowSurface to know which supports present.
if (graphicsQueueFamilyCount == 1)
{
ANGLE_TRY(initializeDevice(firstGraphicsQueueFamily));
}
// Store the physical device memory properties so we can find the right memory pools.
mMemoryProperties.init(mPhysicalDevice);
mGlslangWrapper = GlslangWrapper::GetReference();
// Initialize the format table.
mFormatTable.initialize(mPhysicalDevice, &mNativeTextureCaps,
&mNativeCaps.compressedTextureFormats);
return vk::NoError();
}
vk::Error RendererVk::initializeDevice(uint32_t queueFamilyIndex)
{
uint32_t deviceLayerCount = 0;
ANGLE_VK_TRY(vkEnumerateDeviceLayerProperties(mPhysicalDevice, &deviceLayerCount, nullptr));
std::vector<VkLayerProperties> deviceLayerProps(deviceLayerCount);
if (deviceLayerCount > 0)
{
ANGLE_VK_TRY(vkEnumerateDeviceLayerProperties(mPhysicalDevice, &deviceLayerCount,
deviceLayerProps.data()));
}
uint32_t deviceExtensionCount = 0;
ANGLE_VK_TRY(vkEnumerateDeviceExtensionProperties(mPhysicalDevice, nullptr,
&deviceExtensionCount, nullptr));
std::vector<VkExtensionProperties> deviceExtensionProps(deviceExtensionCount);
if (deviceExtensionCount > 0)
{
ANGLE_VK_TRY(vkEnumerateDeviceExtensionProperties(
mPhysicalDevice, nullptr, &deviceExtensionCount, deviceExtensionProps.data()));
}
const char *const *enabledLayerNames = nullptr;
uint32_t enabledLayerCount = 0;
if (mEnableValidationLayers)
{
mEnableValidationLayers = GetAvailableValidationLayers(
deviceLayerProps, false, &enabledLayerNames, &enabledLayerCount);
}
std::vector<const char *> enabledDeviceExtensions;
enabledDeviceExtensions.push_back(VK_KHR_SWAPCHAIN_EXTENSION_NAME);
ANGLE_VK_TRY(VerifyExtensionsPresent(deviceExtensionProps, enabledDeviceExtensions));
VkDeviceQueueCreateInfo queueCreateInfo;
float zeroPriority = 0.0f;
queueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queueCreateInfo.pNext = nullptr;
queueCreateInfo.flags = 0;
queueCreateInfo.queueFamilyIndex = queueFamilyIndex;
queueCreateInfo.queueCount = 1;
queueCreateInfo.pQueuePriorities = &zeroPriority;
// Initialize the device
VkDeviceCreateInfo createInfo;
createInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
createInfo.pNext = nullptr;
createInfo.flags = 0;
createInfo.queueCreateInfoCount = 1;
createInfo.pQueueCreateInfos = &queueCreateInfo;
createInfo.enabledLayerCount = enabledLayerCount;
createInfo.ppEnabledLayerNames = enabledLayerNames;
createInfo.enabledExtensionCount = static_cast<uint32_t>(enabledDeviceExtensions.size());
createInfo.ppEnabledExtensionNames =
enabledDeviceExtensions.empty() ? nullptr : enabledDeviceExtensions.data();
createInfo.pEnabledFeatures = nullptr; // TODO(jmadill): features
ANGLE_VK_TRY(vkCreateDevice(mPhysicalDevice, &createInfo, nullptr, &mDevice));
mCurrentQueueFamilyIndex = queueFamilyIndex;
vkGetDeviceQueue(mDevice, mCurrentQueueFamilyIndex, 0, &mQueue);
// Initialize the command pool now that we know the queue family index.
VkCommandPoolCreateInfo commandPoolInfo;
commandPoolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
commandPoolInfo.pNext = nullptr;
commandPoolInfo.flags = VK_COMMAND_POOL_CREATE_TRANSIENT_BIT;
commandPoolInfo.queueFamilyIndex = mCurrentQueueFamilyIndex;
ANGLE_TRY(mCommandPool.init(mDevice, commandPoolInfo));
return vk::NoError();
}
vk::ErrorOrResult<uint32_t> RendererVk::selectPresentQueueForSurface(VkSurfaceKHR surface)
{
// We've already initialized a device, and can't re-create it unless it's never been used.
// TODO(jmadill): Handle the re-creation case if necessary.
if (mDevice != VK_NULL_HANDLE)
{
ASSERT(mCurrentQueueFamilyIndex != std::numeric_limits<uint32_t>::max());
// Check if the current device supports present on this surface.
VkBool32 supportsPresent = VK_FALSE;
ANGLE_VK_TRY(vkGetPhysicalDeviceSurfaceSupportKHR(mPhysicalDevice, mCurrentQueueFamilyIndex,
surface, &supportsPresent));
return (supportsPresent == VK_TRUE);
}
// Find a graphics and present queue.
Optional<uint32_t> newPresentQueue;
uint32_t queueCount = static_cast<uint32_t>(mQueueFamilyProperties.size());
for (uint32_t queueIndex = 0; queueIndex < queueCount; ++queueIndex)
{
const auto &queueInfo = mQueueFamilyProperties[queueIndex];
if ((queueInfo.queueFlags & VK_QUEUE_GRAPHICS_BIT) != 0)
{
VkBool32 supportsPresent = VK_FALSE;
ANGLE_VK_TRY(vkGetPhysicalDeviceSurfaceSupportKHR(mPhysicalDevice, queueIndex, surface,
&supportsPresent));
if (supportsPresent == VK_TRUE)
{
newPresentQueue = queueIndex;
break;
}
}
}
ANGLE_VK_CHECK(newPresentQueue.valid(), VK_ERROR_INITIALIZATION_FAILED);
ANGLE_TRY(initializeDevice(newPresentQueue.value()));
return newPresentQueue.value();
}
std::string RendererVk::getVendorString() const
{
return GetVendorString(mPhysicalDeviceProperties.vendorID);
}
std::string RendererVk::getRendererDescription() const
{
std::stringstream strstr;
uint32_t apiVersion = mPhysicalDeviceProperties.apiVersion;
strstr << "Vulkan ";
strstr << VK_VERSION_MAJOR(apiVersion) << ".";
strstr << VK_VERSION_MINOR(apiVersion) << ".";
strstr << VK_VERSION_PATCH(apiVersion);
strstr << "(";
// In the case of NVIDIA, deviceName does not necessarily contain "NVIDIA". Add "NVIDIA" so that
// Vulkan end2end tests can be selectively disabled on NVIDIA. TODO(jmadill): should not be
// needed after http://anglebug.com/1874 is fixed and end2end_tests use more sophisticated
// driver detection.
if (mPhysicalDeviceProperties.vendorID == VENDOR_ID_NVIDIA)
{
strstr << GetVendorString(mPhysicalDeviceProperties.vendorID) << " ";
}
strstr << mPhysicalDeviceProperties.deviceName << ")";
return strstr.str();
}
void RendererVk::ensureCapsInitialized() const
{
if (!mCapsInitialized)
{
vk::GenerateCaps(mPhysicalDeviceProperties, mNativeTextureCaps, &mNativeCaps,
&mNativeExtensions, &mNativeLimitations);
mCapsInitialized = true;
}
}
const gl::Caps &RendererVk::getNativeCaps() const
{
ensureCapsInitialized();
return mNativeCaps;
}
const gl::TextureCapsMap &RendererVk::getNativeTextureCaps() const
{
ensureCapsInitialized();
return mNativeTextureCaps;
}
const gl::Extensions &RendererVk::getNativeExtensions() const
{
ensureCapsInitialized();
return mNativeExtensions;
}
const gl::Limitations &RendererVk::getNativeLimitations() const
{
ensureCapsInitialized();
return mNativeLimitations;
}
uint32_t RendererVk::getMaxActiveTextures()
{
// TODO(lucferron): expose this limitation to GL in Context Caps
return std::min<uint32_t>(mPhysicalDeviceProperties.limits.maxPerStageDescriptorSamplers,
gl::IMPLEMENTATION_MAX_ACTIVE_TEXTURES);
}
const vk::CommandPool &RendererVk::getCommandPool() const
{
return mCommandPool;
}
vk::Error RendererVk::finish(const gl::Context *context)
{
if (!mCommandGraph.empty())
{
vk::CommandBuffer commandBatch;
ANGLE_TRY(flushCommandGraph(context, &commandBatch));
VkSubmitInfo submitInfo;
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.pNext = nullptr;
submitInfo.waitSemaphoreCount = 0;
submitInfo.pWaitSemaphores = nullptr;
submitInfo.pWaitDstStageMask = nullptr;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = commandBatch.ptr();
submitInfo.signalSemaphoreCount = 0;
submitInfo.pSignalSemaphores = nullptr;
ANGLE_TRY(submitFrame(submitInfo, std::move(commandBatch)));
}
ASSERT(mQueue != VK_NULL_HANDLE);
ANGLE_VK_TRY(vkQueueWaitIdle(mQueue));
freeAllInFlightResources();
return vk::NoError();
}
void RendererVk::freeAllInFlightResources()
{
for (CommandBatch &batch : mInFlightCommands)
{
batch.fence.destroy(mDevice);
batch.commandPool.destroy(mDevice);
}
mInFlightCommands.clear();
for (auto &garbage : mGarbage)
{
garbage.destroy(mDevice);
}
mGarbage.clear();
}
vk::Error RendererVk::checkInFlightCommands()
{
int finishedCount = 0;
for (CommandBatch &batch : mInFlightCommands)
{
VkResult result = batch.fence.getStatus(mDevice);
if (result == VK_NOT_READY)
break;
ANGLE_VK_TRY(result);
ASSERT(batch.serial > mLastCompletedQueueSerial);
mLastCompletedQueueSerial = batch.serial;
batch.fence.destroy(mDevice);
batch.commandPool.destroy(mDevice);
++finishedCount;
}
mInFlightCommands.erase(mInFlightCommands.begin(), mInFlightCommands.begin() + finishedCount);
size_t freeIndex = 0;
for (; freeIndex < mGarbage.size(); ++freeIndex)
{
if (!mGarbage[freeIndex].destroyIfComplete(mDevice, mLastCompletedQueueSerial))
break;
}
// Remove the entries from the garbage list - they should be ready to go.
if (freeIndex > 0)
{
mGarbage.erase(mGarbage.begin(), mGarbage.begin() + freeIndex);
}
return vk::NoError();
}
vk::Error RendererVk::submitFrame(const VkSubmitInfo &submitInfo, vk::CommandBuffer &&commandBuffer)
{
VkFenceCreateInfo fenceInfo;
fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
fenceInfo.pNext = nullptr;
fenceInfo.flags = 0;
CommandBatch batch;
ANGLE_TRY(batch.fence.init(mDevice, fenceInfo));
ANGLE_VK_TRY(vkQueueSubmit(mQueue, 1, &submitInfo, batch.fence.getHandle()));
// Store this command buffer in the in-flight list.
batch.commandPool = std::move(mCommandPool);
batch.serial = mCurrentQueueSerial;
mInFlightCommands.emplace_back(std::move(batch));
// Sanity check.
ASSERT(mInFlightCommands.size() < 1000u);
// Increment the queue serial. If this fails, we should restart ANGLE.
// TODO(jmadill): Overflow check.
mCurrentQueueSerial = mQueueSerialFactory.generate();
ANGLE_TRY(checkInFlightCommands());
// Simply null out the command buffer here - it was allocated using the command pool.
commandBuffer.releaseHandle();
// Reallocate the command pool for next frame.
// TODO(jmadill): Consider reusing command pools.
VkCommandPoolCreateInfo poolInfo;
poolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
poolInfo.pNext = nullptr;
poolInfo.flags = 0;
poolInfo.queueFamilyIndex = mCurrentQueueFamilyIndex;
mCommandPool.init(mDevice, poolInfo);
return vk::NoError();
}
GlslangWrapper *RendererVk::getGlslangWrapper() const
{
return mGlslangWrapper;
}
Serial RendererVk::getCurrentQueueSerial() const
{
return mCurrentQueueSerial;
}
bool RendererVk::isSerialInUse(Serial serial) const
{
return serial > mLastCompletedQueueSerial;
}
vk::Error RendererVk::getCompatibleRenderPass(const vk::RenderPassDesc &desc,
vk::RenderPass **renderPassOut)
{
return mRenderPassCache.getCompatibleRenderPass(mDevice, mCurrentQueueSerial, desc,
renderPassOut);
}
vk::Error RendererVk::getRenderPassWithOps(const vk::RenderPassDesc &desc,
const vk::AttachmentOpsArray &ops,
vk::RenderPass **renderPassOut)
{
return mRenderPassCache.getRenderPassWithOps(mDevice, mCurrentQueueSerial, desc, ops,
renderPassOut);
}
vk::CommandGraph *RendererVk::getCommandGraph()
{
return &mCommandGraph;
}
vk::Error RendererVk::flushCommandGraph(const gl::Context *context, vk::CommandBuffer *commandBatch)
{
return mCommandGraph.submitCommands(mDevice, mCurrentQueueSerial, &mRenderPassCache,
&mCommandPool, commandBatch);
}
vk::Error RendererVk::flush(const gl::Context *context,
const vk::Semaphore &waitSemaphore,
const vk::Semaphore &signalSemaphore)
{
vk::CommandBuffer commandBatch;
ANGLE_TRY(flushCommandGraph(context, &commandBatch));
VkPipelineStageFlags waitStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
VkSubmitInfo submitInfo;
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.pNext = nullptr;
submitInfo.waitSemaphoreCount = 1;
submitInfo.pWaitSemaphores = waitSemaphore.ptr();
submitInfo.pWaitDstStageMask = &waitStageMask;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = commandBatch.ptr();
submitInfo.signalSemaphoreCount = 1;
submitInfo.pSignalSemaphores = signalSemaphore.ptr();
ANGLE_TRY(submitFrame(submitInfo, std::move(commandBatch)));
return vk::NoError();
}
Serial RendererVk::issueShaderSerial()
{
return mShaderSerialFactory.generate();
}
vk::Error RendererVk::getAppPipeline(const ProgramVk *programVk,
const vk::PipelineDesc &desc,
const gl::AttributesMask &activeAttribLocationsMask,
vk::PipelineAndSerial **pipelineOut)
{
ASSERT(programVk->getVertexModuleSerial() ==
desc.getShaderStageInfo()[vk::ShaderType::VertexShader].moduleSerial);
ASSERT(programVk->getFragmentModuleSerial() ==
desc.getShaderStageInfo()[vk::ShaderType::FragmentShader].moduleSerial);
// Pull in a compatible RenderPass.
vk::RenderPass *compatibleRenderPass = nullptr;
ANGLE_TRY(getCompatibleRenderPass(desc.getRenderPassDesc(), &compatibleRenderPass));
const vk::PipelineLayout &pipelineLayout = programVk->getPipelineLayout();
return mPipelineCache.getPipeline(mDevice, *compatibleRenderPass, pipelineLayout,
activeAttribLocationsMask, programVk->getLinkedVertexModule(),
programVk->getLinkedFragmentModule(), desc, pipelineOut);
}
vk::Error RendererVk::getInternalPipeline(const vk::ShaderAndSerial &vertexShader,
const vk::ShaderAndSerial &fragmentShader,
const vk::PipelineLayout &pipelineLayout,
const vk::PipelineDesc &pipelineDesc,
const gl::AttributesMask &activeAttribLocationsMask,
vk::PipelineAndSerial **pipelineOut)
{
ASSERT(vertexShader.queueSerial() ==
pipelineDesc.getShaderStageInfo()[vk::ShaderType::VertexShader].moduleSerial);
ASSERT(fragmentShader.queueSerial() ==
pipelineDesc.getShaderStageInfo()[vk::ShaderType::FragmentShader].moduleSerial);
// Pull in a compatible RenderPass.
vk::RenderPass *compatibleRenderPass = nullptr;
ANGLE_TRY(getCompatibleRenderPass(pipelineDesc.getRenderPassDesc(), &compatibleRenderPass));
return mPipelineCache.getPipeline(mDevice, *compatibleRenderPass, pipelineLayout,
activeAttribLocationsMask, vertexShader.get(),
fragmentShader.get(), pipelineDesc, pipelineOut);
}
vk::Error RendererVk::getDescriptorSetLayout(
const vk::DescriptorSetLayoutDesc &desc,
vk::BindingPointer<vk::DescriptorSetLayout> *descriptorSetLayoutOut)
{
return mDescriptorSetLayoutCache.getDescriptorSetLayout(mDevice, desc, descriptorSetLayoutOut);
}
vk::Error RendererVk::getPipelineLayout(
const vk::PipelineLayoutDesc &desc,
const vk::DescriptorSetLayoutPointerArray &descriptorSetLayouts,
vk::BindingPointer<vk::PipelineLayout> *pipelineLayoutOut)
{
return mPipelineLayoutCache.getPipelineLayout(mDevice, desc, descriptorSetLayouts,
pipelineLayoutOut);
}
vk::ShaderLibrary *RendererVk::getShaderLibrary()
{
return &mShaderLibrary;
}
uint32_t GetUniformBufferDescriptorCount()
{
return kUniformBufferDescriptorsPerDescriptorSet;
}
} // namespace rx