blob: 1964001aa5e934341dda4d3e0abe6eca67ec0f75 [file] [log] [blame]
//
// Copyright 2016 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// ContextVk.cpp:
// Implements the class methods for ContextVk.
//
#include "libANGLE/renderer/vulkan/ContextVk.h"
#include "common/bitset_utils.h"
#include "common/debug.h"
#include "common/utilities.h"
#include "libANGLE/Context.h"
#include "libANGLE/Display.h"
#include "libANGLE/Program.h"
#include "libANGLE/Semaphore.h"
#include "libANGLE/Surface.h"
#include "libANGLE/angletypes.h"
#include "libANGLE/renderer/renderer_utils.h"
#include "libANGLE/renderer/vulkan/BufferVk.h"
#include "libANGLE/renderer/vulkan/CompilerVk.h"
#include "libANGLE/renderer/vulkan/DisplayVk.h"
#include "libANGLE/renderer/vulkan/FenceNVVk.h"
#include "libANGLE/renderer/vulkan/FramebufferVk.h"
#include "libANGLE/renderer/vulkan/MemoryObjectVk.h"
#include "libANGLE/renderer/vulkan/OverlayVk.h"
#include "libANGLE/renderer/vulkan/ProgramPipelineVk.h"
#include "libANGLE/renderer/vulkan/ProgramVk.h"
#include "libANGLE/renderer/vulkan/QueryVk.h"
#include "libANGLE/renderer/vulkan/RenderbufferVk.h"
#include "libANGLE/renderer/vulkan/RendererVk.h"
#include "libANGLE/renderer/vulkan/SamplerVk.h"
#include "libANGLE/renderer/vulkan/SemaphoreVk.h"
#include "libANGLE/renderer/vulkan/ShaderVk.h"
#include "libANGLE/renderer/vulkan/SurfaceVk.h"
#include "libANGLE/renderer/vulkan/SyncVk.h"
#include "libANGLE/renderer/vulkan/TextureVk.h"
#include "libANGLE/renderer/vulkan/TransformFeedbackVk.h"
#include "libANGLE/renderer/vulkan/VertexArrayVk.h"
#include "libANGLE/trace.h"
#include <iostream>
namespace rx
{
namespace
{
// For DesciptorSetUpdates
constexpr size_t kDescriptorBufferInfosInitialSize = 8;
constexpr size_t kDescriptorImageInfosInitialSize = 4;
constexpr size_t kDescriptorWriteInfosInitialSize =
kDescriptorBufferInfosInitialSize + kDescriptorImageInfosInitialSize;
// For shader uniforms such as gl_DepthRange and the viewport size.
struct GraphicsDriverUniforms
{
std::array<float, 4> viewport;
// 32 bits for 32 clip planes
uint32_t enabledClipPlanes;
uint32_t unused; // Gap usable for future
int32_t xfbVerticesPerInstance;
// Used to replace gl_NumSamples. Because gl_NumSamples cannot be recognized in SPIR-V.
int32_t numSamples;
std::array<int32_t, 4> xfbBufferOffsets;
// .xy contain packed 8-bit values for atomic counter buffer offsets. These offsets are
// within Vulkan's minStorageBufferOffsetAlignment limit and are used to support unaligned
// offsets allowed in GL.
//
// .zw are unused.
std::array<uint32_t, 4> acbBufferOffsets;
// We'll use x, y, z for near / far / diff respectively.
std::array<float, 4> depthRange;
};
static_assert(sizeof(GraphicsDriverUniforms) % (sizeof(uint32_t) * 4) == 0,
"GraphicsDriverUniforms should 16bytes aligned");
// TODO: http://issuetracker.google.com/173636783 Once the bug is fixed, we should remove this.
struct GraphicsDriverUniformsExtended
{
GraphicsDriverUniforms common;
// Used to flip gl_FragCoord (both .xy for Android pre-rotation; only .y for desktop)
std::array<float, 2> halfRenderArea;
std::array<float, 2> flipXY;
std::array<float, 2> negFlipXY;
std::array<int32_t, 2> padding;
// Used to pre-rotate gl_FragCoord for swapchain images on Android (a mat2, which is padded to
// the size of two vec4's).
std::array<float, 8> fragRotation;
};
struct ComputeDriverUniforms
{
// Atomic counter buffer offsets with the same layout as in GraphicsDriverUniforms.
std::array<uint32_t, 4> acbBufferOffsets;
};
GLenum DefaultGLErrorCode(VkResult result)
{
switch (result)
{
case VK_ERROR_OUT_OF_HOST_MEMORY:
case VK_ERROR_OUT_OF_DEVICE_MEMORY:
case VK_ERROR_TOO_MANY_OBJECTS:
return GL_OUT_OF_MEMORY;
default:
return GL_INVALID_OPERATION;
}
}
constexpr gl::ShaderMap<vk::ImageLayout> kShaderReadOnlyImageLayouts = {
{gl::ShaderType::Vertex, vk::ImageLayout::VertexShaderReadOnly},
{gl::ShaderType::TessControl, vk::ImageLayout::PreFragmentShadersReadOnly},
{gl::ShaderType::TessEvaluation, vk::ImageLayout::PreFragmentShadersReadOnly},
{gl::ShaderType::Geometry, vk::ImageLayout::PreFragmentShadersReadOnly},
{gl::ShaderType::Fragment, vk::ImageLayout::FragmentShaderReadOnly},
{gl::ShaderType::Compute, vk::ImageLayout::ComputeShaderReadOnly}};
constexpr gl::ShaderMap<vk::ImageLayout> kShaderWriteImageLayouts = {
{gl::ShaderType::Vertex, vk::ImageLayout::VertexShaderWrite},
{gl::ShaderType::TessControl, vk::ImageLayout::PreFragmentShadersWrite},
{gl::ShaderType::TessEvaluation, vk::ImageLayout::PreFragmentShadersWrite},
{gl::ShaderType::Geometry, vk::ImageLayout::PreFragmentShadersWrite},
{gl::ShaderType::Fragment, vk::ImageLayout::FragmentShaderWrite},
{gl::ShaderType::Compute, vk::ImageLayout::ComputeShaderWrite}};
constexpr VkBufferUsageFlags kVertexBufferUsage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT;
constexpr size_t kDefaultValueSize = sizeof(gl::VertexAttribCurrentValueData::Values);
constexpr size_t kDefaultBufferSize = kDefaultValueSize * 16;
constexpr size_t kDriverUniformsAllocatorPageSize = 4 * 1024;
bool CanMultiDrawIndirectUseCmd(ContextVk *contextVk,
VertexArrayVk *vertexArray,
gl::PrimitiveMode mode,
GLsizei drawcount,
GLsizei stride)
{
// Use the generic implementation if multiDrawIndirect is disabled, if line loop is being used
// for multiDraw, if drawcount is greater than maxDrawIndirectCount, or if there are streaming
// vertex attributes.
ASSERT(drawcount > 1);
const bool supportsMultiDrawIndirect =
contextVk->getFeatures().supportsMultiDrawIndirect.enabled;
const bool isMultiDrawLineLoop = (mode == gl::PrimitiveMode::LineLoop);
const bool isDrawCountBeyondLimit =
(static_cast<uint32_t>(drawcount) >
contextVk->getRenderer()->getPhysicalDeviceProperties().limits.maxDrawIndirectCount);
const bool isMultiDrawWithStreamingAttribs = vertexArray->getStreamingVertexAttribsMask().any();
const bool canMultiDrawIndirectUseCmd = supportsMultiDrawIndirect && !isMultiDrawLineLoop &&
!isDrawCountBeyondLimit &&
!isMultiDrawWithStreamingAttribs;
return canMultiDrawIndirectUseCmd;
}
uint32_t GetCoverageSampleCount(const gl::State &glState, FramebufferVk *drawFramebuffer)
{
if (!glState.isSampleCoverageEnabled())
{
return 0;
}
// Get a fraction of the samples based on the coverage parameters.
// There are multiple ways to obtain an integer value from a float -
// truncation, ceil and round
//
// round() provides a more even distribution of values but doesn't seem to play well
// with all vendors (AMD). A way to work around this is to increase the comparison threshold
// of deqp tests. Though this takes care of deqp tests other apps would still have issues.
//
// Truncation provides an uneven distribution near the edges of the interval but seems to
// play well with all vendors.
//
// We are going with truncation for expediency.
return static_cast<uint32_t>(glState.getSampleCoverageValue() * drawFramebuffer->getSamples());
}
void ApplySampleCoverage(const gl::State &glState,
uint32_t coverageSampleCount,
uint32_t maskNumber,
uint32_t *maskOut)
{
if (!glState.isSampleCoverageEnabled())
{
return;
}
uint32_t maskBitOffset = maskNumber * 32;
uint32_t coverageMask = coverageSampleCount >= (maskBitOffset + 32)
? std::numeric_limits<uint32_t>::max()
: (1u << (coverageSampleCount - maskBitOffset)) - 1;
if (glState.getSampleCoverageInvert())
{
coverageMask = ~coverageMask;
}
*maskOut &= coverageMask;
}
bool IsRenderPassStartedAndUsesImage(const vk::RenderPassCommandBufferHelper &renderPassCommands,
const vk::ImageHelper &image)
{
return renderPassCommands.started() && renderPassCommands.usesImage(image);
}
// When an Android surface is rotated differently than the device's native orientation, ANGLE must
// rotate gl_Position in the last pre-rasterization shader and gl_FragCoord in the fragment shader.
// Rotation of gl_Position is done in SPIR-V. The following are the rotation matrices for the
// fragment shader.
//
// Note: these are mat2's that are appropriately padded (4 floats per row).
using PreRotationMatrixValues = std::array<float, 8>;
constexpr angle::PackedEnumMap<rx::SurfaceRotation, PreRotationMatrixValues> kFragRotationMatrices =
{{{SurfaceRotation::Identity, {{1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f}}},
{SurfaceRotation::Rotated90Degrees, {{0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f}}},
{SurfaceRotation::Rotated180Degrees, {{1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f}}},
{SurfaceRotation::Rotated270Degrees, {{0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f}}},
{SurfaceRotation::FlippedIdentity, {{1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f}}},
{SurfaceRotation::FlippedRotated90Degrees,
{{0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f}}},
{SurfaceRotation::FlippedRotated180Degrees,
{{1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f}}},
{SurfaceRotation::FlippedRotated270Degrees,
{{0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f}}}}};
bool IsRotatedAspectRatio(SurfaceRotation rotation)
{
return ((rotation == SurfaceRotation::Rotated90Degrees) ||
(rotation == SurfaceRotation::Rotated270Degrees) ||
(rotation == SurfaceRotation::FlippedRotated90Degrees) ||
(rotation == SurfaceRotation::FlippedRotated270Degrees));
}
SurfaceRotation DetermineSurfaceRotation(gl::Framebuffer *framebuffer,
WindowSurfaceVk *windowSurface)
{
if (windowSurface && framebuffer->isDefault())
{
switch (windowSurface->getPreTransform())
{
case VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR:
// Do not rotate gl_Position (surface matches the device's orientation):
return SurfaceRotation::Identity;
case VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR:
// Rotate gl_Position 90 degrees:
return SurfaceRotation::Rotated90Degrees;
case VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR:
// Rotate gl_Position 180 degrees:
return SurfaceRotation::Rotated180Degrees;
case VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR:
// Rotate gl_Position 270 degrees:
return SurfaceRotation::Rotated270Degrees;
default:
UNREACHABLE();
return SurfaceRotation::Identity;
}
}
else
{
// Do not rotate gl_Position (offscreen framebuffer):
return SurfaceRotation::Identity;
}
}
// Should not generate a copy with modern C++.
EventName GetTraceEventName(const char *title, uint32_t counter)
{
EventName buf;
snprintf(buf.data(), kMaxGpuEventNameLen - 1, "%s %u", title, counter);
return buf;
}
vk::ResourceAccess GetDepthAccess(const gl::DepthStencilState &dsState)
{
if (!dsState.depthTest)
{
return vk::ResourceAccess::Unused;
}
return dsState.isDepthMaskedOut() ? vk::ResourceAccess::ReadOnly : vk::ResourceAccess::Write;
}
vk::ResourceAccess GetStencilAccess(const gl::DepthStencilState &dsState)
{
if (!dsState.stencilTest)
{
return vk::ResourceAccess::Unused;
}
return dsState.isStencilNoOp() && dsState.isStencilBackNoOp() ? vk::ResourceAccess::ReadOnly
: vk::ResourceAccess::Write;
}
egl::ContextPriority GetContextPriority(const gl::State &state)
{
return egl::FromEGLenum<egl::ContextPriority>(state.getContextPriority());
}
template <typename MaskT>
void AppendBufferVectorToDesc(vk::ShaderBuffersDescriptorDesc *desc,
const gl::BufferVector &buffers,
const MaskT &buffersMask,
bool isDynamicDescriptor,
bool appendOffset)
{
if (buffersMask.any())
{
typename MaskT::param_type lastBufferIndex = buffersMask.last();
for (typename MaskT::param_type bufferIndex = 0; bufferIndex <= lastBufferIndex;
++bufferIndex)
{
const gl::OffsetBindingPointer<gl::Buffer> &binding = buffers[bufferIndex];
const gl::Buffer *bufferGL = binding.get();
if (!bufferGL)
{
desc->append32BitValue(0);
continue;
}
BufferVk *bufferVk = vk::GetImpl(bufferGL);
if (!bufferVk->isBufferValid())
{
desc->append32BitValue(0);
continue;
}
const vk::BufferHelper &bufferHelper = bufferVk->getBuffer();
// If this is sub-allocated, we always use the buffer block's serial to increase the
// cache hit rate.
const vk::BufferBlock *bufferBlock = bufferHelper.getBufferBlock();
vk::BufferSerial bufferSerial = bufferBlock == nullptr ? bufferHelper.getBufferSerial()
: bufferBlock->getBufferSerial();
desc->appendBufferSerial(bufferSerial);
ASSERT(static_cast<uint64_t>(binding.getSize()) <=
static_cast<uint64_t>(std::numeric_limits<uint32_t>::max()));
// binding's size could be 0 if it is bound by glBindBufferBase call. In this case, the
// spec says we should use the actual buffer size at the time buffer is been referenced.
GLint64 size = binding.getSize() == 0 ? bufferGL->getSize() : binding.getSize();
desc->append32BitValue(static_cast<uint32_t>(size));
if (appendOffset)
{
ASSERT(static_cast<uint64_t>(binding.getOffset()) <
static_cast<uint64_t>(std::numeric_limits<uint32_t>::max()));
VkDeviceSize bufferOffset = bufferHelper.getOffset();
desc->append32BitValue(static_cast<uint32_t>(bufferOffset + binding.getOffset()));
}
}
}
desc->append32BitValue(std::numeric_limits<uint32_t>::max());
}
vk::ImageLayout GetImageReadLayout(TextureVk *textureVk,
const gl::ProgramExecutable *executable,
size_t textureUnit,
PipelineType pipelineType)
{
vk::ImageHelper &image = textureVk->getImage();
if (textureVk->hasBeenBoundAsImage())
{
return pipelineType == PipelineType::Compute ? vk::ImageLayout::ComputeShaderWrite
: vk::ImageLayout::AllGraphicsShadersWrite;
}
gl::ShaderBitSet remainingShaderBits =
executable->getSamplerShaderBitsForTextureUnitIndex(textureUnit);
ASSERT(remainingShaderBits.any());
gl::ShaderType firstShader = remainingShaderBits.first();
gl::ShaderType lastShader = remainingShaderBits.last();
remainingShaderBits.reset(firstShader);
remainingShaderBits.reset(lastShader);
if (image.hasRenderPassUsageFlag(vk::RenderPassUsage::RenderTargetAttachment))
{
// Right now we set this flag only when RenderTargetAttachment is set since we do
// not track all textures in the renderpass.
image.setRenderPassUsageFlag(vk::RenderPassUsage::TextureSampler);
if (image.isDepthOrStencil())
{
if (image.hasRenderPassUsageFlag(vk::RenderPassUsage::ReadOnlyAttachment))
{
if (firstShader == gl::ShaderType::Fragment)
{
ASSERT(remainingShaderBits.none() && lastShader == firstShader);
return vk::ImageLayout::DSAttachmentReadAndFragmentShaderRead;
}
return vk::ImageLayout::DSAttachmentReadAndAllShadersRead;
}
return firstShader == gl::ShaderType::Fragment
? vk::ImageLayout::DSAttachmentWriteAndFragmentShaderRead
: vk::ImageLayout::DSAttachmentWriteAndAllShadersRead;
}
return firstShader == gl::ShaderType::Fragment
? vk::ImageLayout::ColorAttachmentAndFragmentShaderRead
: vk::ImageLayout::ColorAttachmentAndAllShadersRead;
}
if (image.isDepthOrStencil())
{
// We always use a depth-stencil read-only layout for any depth Textures to simplify
// our implementation's handling of depth-stencil read-only mode. We don't have to
// split a RenderPass to transition a depth texture from shader-read to read-only.
// This improves performance in Manhattan. Future optimizations are likely possible
// here including using specialized barriers without breaking the RenderPass.
if (firstShader == gl::ShaderType::Fragment)
{
ASSERT(remainingShaderBits.none() && lastShader == firstShader);
return vk::ImageLayout::DSAttachmentReadAndFragmentShaderRead;
}
return vk::ImageLayout::DSAttachmentReadAndAllShadersRead;
}
// We barrier against either:
// - Vertex only
// - Fragment only
// - Pre-fragment only (vertex, geometry and tessellation together)
if (remainingShaderBits.any() || firstShader != lastShader)
{
return lastShader == gl::ShaderType::Fragment ? vk::ImageLayout::AllGraphicsShadersReadOnly
: vk::ImageLayout::PreFragmentShadersReadOnly;
}
return kShaderReadOnlyImageLayouts[firstShader];
}
vk::ImageLayout GetImageWriteLayoutAndSubresource(const gl::ImageUnit &imageUnit,
vk::ImageHelper &image,
gl::ShaderBitSet shaderStages,
gl::LevelIndex *levelOut,
uint32_t *layerStartOut,
uint32_t *layerCountOut)
{
*levelOut = gl::LevelIndex(static_cast<uint32_t>(imageUnit.level));
*layerStartOut = 0;
*layerCountOut = image.getLayerCount();
if (imageUnit.layered)
{
*layerStartOut = imageUnit.layered;
*layerCountOut = 1;
}
gl::ShaderType firstShader = shaderStages.first();
gl::ShaderType lastShader = shaderStages.last();
shaderStages.reset(firstShader);
shaderStages.reset(lastShader);
// We barrier against either:
// - Vertex only
// - Fragment only
// - Pre-fragment only (vertex, geometry and tessellation together)
if (shaderStages.any() || firstShader != lastShader)
{
return lastShader == gl::ShaderType::Fragment ? vk::ImageLayout::AllGraphicsShadersWrite
: vk::ImageLayout::PreFragmentShadersWrite;
}
return kShaderWriteImageLayouts[firstShader];
}
void OnTextureBufferRead(ContextVk *contextVk,
BufferVk *bufferVk,
gl::ShaderBitSet stages,
vk::CommandBufferHelperCommon *commandBufferHelper)
{
vk::BufferHelper &buffer = bufferVk->getBuffer();
ASSERT(stages.any());
// TODO: accept multiple stages in bufferRead. http://anglebug.com/3573
for (gl::ShaderType stage : stages)
{
// Note: if another range of the same buffer is simultaneously used for storage,
// such as for transform feedback output, or SSBO, unnecessary barriers can be
// generated.
commandBufferHelper->bufferRead(contextVk, VK_ACCESS_SHADER_READ_BIT,
vk::GetPipelineStage(stage), &buffer);
}
}
void OnImageBufferWrite(ContextVk *contextVk,
BufferVk *bufferVk,
gl::ShaderBitSet stages,
vk::CommandBufferHelperCommon *commandBufferHelper)
{
vk::BufferHelper &buffer = bufferVk->getBuffer();
// TODO: accept multiple stages in bufferWrite. http://anglebug.com/3573
for (gl::ShaderType stage : stages)
{
commandBufferHelper->bufferWrite(
contextVk, VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT,
vk::GetPipelineStage(stage), vk::AliasingMode::Disallowed, &buffer);
}
}
constexpr angle::PackedEnumMap<RenderPassClosureReason, const char *> kRenderPassClosureReason = {{
{RenderPassClosureReason::AlreadySpecifiedElsewhere, nullptr},
{RenderPassClosureReason::ContextDestruction, "Render pass closed due to context destruction"},
{RenderPassClosureReason::ContextChange, "Render pass closed due to context change"},
{RenderPassClosureReason::GLFlush, "Render pass closed due to glFlush()"},
{RenderPassClosureReason::GLFinish, "Render pass closed due to glFinish()"},
{RenderPassClosureReason::EGLSwapBuffers, "Render pass closed due to eglSwapBuffers()"},
{RenderPassClosureReason::EGLWaitClient, "Render pass closed due to eglWaitClient()"},
{RenderPassClosureReason::FramebufferBindingChange,
"Render pass closed due to framebuffer binding change"},
{RenderPassClosureReason::FramebufferChange, "Render pass closed due to framebuffer change"},
{RenderPassClosureReason::NewRenderPass,
"Render pass closed due to starting a new render pass"},
{RenderPassClosureReason::BufferUseThenXfbWrite,
"Render pass closed due to buffer use as transform feedback output after prior use in render "
"pass"},
{RenderPassClosureReason::XfbWriteThenVertexIndexBuffer,
"Render pass closed due to transform feedback buffer use as vertex/index input"},
{RenderPassClosureReason::XfbWriteThenIndirectDrawBuffer,
"Render pass closed due to indirect draw buffer previously used as transform feedback output "
"in render pass"},
{RenderPassClosureReason::XfbResumeAfterDrawBasedClear,
"Render pass closed due to transform feedback resume after clear through draw"},
{RenderPassClosureReason::DepthStencilUseInFeedbackLoop,
"Render pass closed due to depth/stencil attachment use under feedback loop"},
{RenderPassClosureReason::DepthStencilWriteAfterFeedbackLoop,
"Render pass closed due to depth/stencil attachment write after feedback loop"},
{RenderPassClosureReason::PipelineBindWhileXfbActive,
"Render pass closed due to graphics pipeline change while transform feedback is active"},
{RenderPassClosureReason::BufferWriteThenMap,
"Render pass closed due to mapping buffer being written to by said render pass"},
{RenderPassClosureReason::BufferUseThenOutOfRPRead,
"Render pass closed due to non-render-pass read of buffer that was written to in render pass"},
{RenderPassClosureReason::BufferUseThenOutOfRPWrite,
"Render pass closed due to non-render-pass write of buffer that was used in render pass"},
{RenderPassClosureReason::ImageUseThenOutOfRPRead,
"Render pass closed due to non-render-pass read of image that was used in render pass"},
{RenderPassClosureReason::ImageUseThenOutOfRPWrite,
"Render pass closed due to non-render-pass write of image that was used in render pass"},
{RenderPassClosureReason::XfbWriteThenComputeRead,
"Render pass closed due to compute read of buffer previously used as transform feedback "
"output in render pass"},
{RenderPassClosureReason::XfbWriteThenIndirectDispatchBuffer,
"Render pass closed due to indirect dispatch buffer previously used as transform feedback "
"output in render pass"},
{RenderPassClosureReason::ImageAttachmentThenComputeRead,
"Render pass closed due to compute read of image previously used as framebuffer attachment in "
"render pass"},
{RenderPassClosureReason::GetQueryResult, "Render pass closed due to getting query result"},
{RenderPassClosureReason::BeginNonRenderPassQuery,
"Render pass closed due to non-render-pass query begin"},
{RenderPassClosureReason::EndNonRenderPassQuery,
"Render pass closed due to non-render-pass query end"},
{RenderPassClosureReason::TimestampQuery, "Render pass closed due to timestamp query"},
{RenderPassClosureReason::GLReadPixels, "Render pass closed due to glReadPixels()"},
{RenderPassClosureReason::BufferUseThenReleaseToExternal,
"Render pass closed due to buffer (used by render pass) release to external"},
{RenderPassClosureReason::ImageUseThenReleaseToExternal,
"Render pass closed due to image (used by render pass) release to external"},
{RenderPassClosureReason::BufferInUseWhenSynchronizedMap,
"Render pass closed due to mapping buffer in use by GPU without GL_MAP_UNSYNCHRONIZED_BIT"},
{RenderPassClosureReason::ImageOrphan, "Render pass closed due to EGL image being orphaned"},
{RenderPassClosureReason::GLMemoryBarrierThenStorageResource,
"Render pass closed due to glMemoryBarrier before storage output in render pass"},
{RenderPassClosureReason::StorageResourceUseThenGLMemoryBarrier,
"Render pass closed due to glMemoryBarrier after storage output in render pass"},
{RenderPassClosureReason::ExternalSemaphoreSignal,
"Render pass closed due to external semaphore signal"},
{RenderPassClosureReason::SyncObjectInit, "Render pass closed due to sync object insertion"},
{RenderPassClosureReason::SyncObjectWithFdInit,
"Render pass closed due to sync object with fd insertion"},
{RenderPassClosureReason::SyncObjectClientWait,
"Render pass closed due to sync object client wait"},
{RenderPassClosureReason::SyncObjectServerWait,
"Render pass closed due to sync object server wait"},
{RenderPassClosureReason::XfbPause, "Render pass closed due to transform feedback pause"},
{RenderPassClosureReason::FramebufferFetchEmulation,
"Render pass closed due to framebuffer fetch emulation"},
{RenderPassClosureReason::ColorBufferInvalidate,
"Render pass closed due to glInvalidateFramebuffer() on a color buffer"},
{RenderPassClosureReason::GenerateMipmapOnCPU,
"Render pass closed due to fallback to CPU when generating mipmaps"},
{RenderPassClosureReason::CopyTextureOnCPU,
"Render pass closed due to fallback to CPU when copying texture"},
{RenderPassClosureReason::TextureReformatToRenderable,
"Render pass closed due to reformatting texture to a renderable fallback"},
{RenderPassClosureReason::DeviceLocalBufferMap,
"Render pass closed due to mapping device local buffer"},
{RenderPassClosureReason::PrepareForBlit, "Render pass closed prior to draw-based blit"},
{RenderPassClosureReason::PrepareForImageCopy,
"Render pass closed prior to draw-based image copy"},
{RenderPassClosureReason::TemporaryForImageClear,
"Temporary render pass used for image clear closed"},
{RenderPassClosureReason::TemporaryForImageCopy,
"Temporary render pass used for image copy closed"},
{RenderPassClosureReason::OverlayFontCreation,
"Render pass closed due to creating Overlay font"},
}};
} // anonymous namespace
// Not necessary once upgraded to C++17.
constexpr ContextVk::DirtyBits ContextVk::kIndexAndVertexDirtyBits;
constexpr ContextVk::DirtyBits ContextVk::kPipelineDescAndBindingDirtyBits;
constexpr ContextVk::DirtyBits ContextVk::kTexturesAndDescSetDirtyBits;
constexpr ContextVk::DirtyBits ContextVk::kResourcesAndDescSetDirtyBits;
constexpr ContextVk::DirtyBits ContextVk::kXfbBuffersAndDescSetDirtyBits;
constexpr ContextVk::DirtyBits ContextVk::kDriverUniformsAndBindingDirtyBits;
void ContextVk::flushDescriptorSetUpdates()
{
if (mWriteDescriptorSets.empty())
{
ASSERT(mDescriptorBufferInfos.empty());
ASSERT(mDescriptorImageInfos.empty());
return;
}
vkUpdateDescriptorSets(getDevice(), static_cast<uint32_t>(mWriteDescriptorSets.size()),
mWriteDescriptorSets.data(), 0, nullptr);
mWriteDescriptorSets.clear();
mDescriptorBufferInfos.clear();
mDescriptorImageInfos.clear();
}
ANGLE_INLINE void ContextVk::onRenderPassFinished(RenderPassClosureReason reason)
{
pauseRenderPassQueriesIfActive();
if (mRenderPassCommandBuffer != nullptr)
{
// If reason is specified, add it to the command buffer right before ending the render pass,
// so it will show up in GPU debuggers.
const char *reasonText = kRenderPassClosureReason[reason];
if (reasonText)
{
insertEventMarkerImpl(GL_DEBUG_SOURCE_API, reasonText);
}
}
mRenderPassCommandBuffer = nullptr;
mGraphicsDirtyBits.set(DIRTY_BIT_RENDER_PASS);
}
ContextVk::DriverUniformsDescriptorSet::DriverUniformsDescriptorSet()
: descriptorSet(VK_NULL_HANDLE), dynamicOffset(0)
{}
ContextVk::DriverUniformsDescriptorSet::~DriverUniformsDescriptorSet() = default;
void ContextVk::DriverUniformsDescriptorSet::init(RendererVk *rendererVk)
{
size_t minAlignment = static_cast<size_t>(
rendererVk->getPhysicalDeviceProperties().limits.minUniformBufferOffsetAlignment);
dynamicBuffer.init(rendererVk, VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, minAlignment,
kDriverUniformsAllocatorPageSize, true,
vk::DynamicBufferPolicy::FrequentSmallAllocations);
descriptorSetCache.clear();
}
void ContextVk::DriverUniformsDescriptorSet::destroy(RendererVk *renderer)
{
descriptorSetLayout.reset();
descriptorPoolBinding.reset();
dynamicBuffer.destroy(renderer);
descriptorSetCache.clear();
descriptorSetCache.destroy(renderer);
}
// ContextVk implementation.
ContextVk::ContextVk(const gl::State &state, gl::ErrorSet *errorSet, RendererVk *renderer)
: ContextImpl(state, errorSet),
vk::Context(renderer),
mGraphicsDirtyBitHandlers{},
mComputeDirtyBitHandlers{},
mRenderPassCommandBuffer(nullptr),
mCurrentGraphicsPipeline(nullptr),
mCurrentComputePipeline(nullptr),
mCurrentDrawMode(gl::PrimitiveMode::InvalidEnum),
mCurrentWindowSurface(nullptr),
mCurrentRotationDrawFramebuffer(SurfaceRotation::Identity),
mCurrentRotationReadFramebuffer(SurfaceRotation::Identity),
mActiveRenderPassQueries{},
mVertexArray(nullptr),
mDrawFramebuffer(nullptr),
mProgram(nullptr),
mExecutable(nullptr),
mLastIndexBufferOffset(nullptr),
mCurrentIndexBufferOffset(0),
mCurrentDrawElementsType(gl::DrawElementsType::InvalidEnum),
mXfbBaseVertex(0),
mXfbVertexCountPerInstance(0),
mClearColorValue{},
mClearDepthStencilValue{},
mClearColorMasks(0),
mFlipYForCurrentSurface(false),
mFlipViewportForDrawFramebuffer(false),
mFlipViewportForReadFramebuffer(false),
mIsAnyHostVisibleBufferWritten(false),
mEmulateSeamfulCubeMapSampling(false),
mOutsideRenderPassCommands(nullptr),
mRenderPassCommands(nullptr),
mQueryEventType(GraphicsEventCmdBuf::NotInQueryCmd),
mGpuEventsEnabled(false),
mHasDeferredFlush(false),
mLastProgramUsesFramebufferFetch(false),
mGpuClockSync{std::numeric_limits<double>::max(), std::numeric_limits<double>::max()},
mGpuEventTimestampOrigin(0),
mPerfCounters{},
mContextPerfCounters{},
mCumulativeContextPerfCounters{},
mContextPriority(renderer->getDriverPriority(GetContextPriority(state))),
mShareGroupVk(vk::GetImpl(state.getShareGroup()))
{
ANGLE_TRACE_EVENT0("gpu.angle", "ContextVk::ContextVk");
memset(&mClearColorValue, 0, sizeof(mClearColorValue));
memset(&mClearDepthStencilValue, 0, sizeof(mClearDepthStencilValue));
memset(&mViewport, 0, sizeof(mViewport));
memset(&mScissor, 0, sizeof(mScissor));
// Ensure viewport is within Vulkan requirements
vk::ClampViewport(&mViewport);
mNonIndexedDirtyBitsMask.set();
mNonIndexedDirtyBitsMask.reset(DIRTY_BIT_INDEX_BUFFER);
mIndexedDirtyBitsMask.set();
// Once a command buffer is ended, all bindings (through |vkCmdBind*| calls) are lost per Vulkan
// spec. Once a new command buffer is allocated, we must make sure every previously bound
// resource is bound again.
//
// Note that currently these dirty bits are set every time a new render pass command buffer is
// begun. However, using ANGLE's SecondaryCommandBuffer, the Vulkan command buffer (which is
// the primary command buffer) is not ended, so technically we don't need to rebind these.
mNewGraphicsCommandBufferDirtyBits =
DirtyBits{DIRTY_BIT_RENDER_PASS, DIRTY_BIT_PIPELINE_BINDING,
DIRTY_BIT_TEXTURES, DIRTY_BIT_VERTEX_BUFFERS,
DIRTY_BIT_INDEX_BUFFER, DIRTY_BIT_SHADER_RESOURCES,
DIRTY_BIT_DESCRIPTOR_SETS, DIRTY_BIT_DRIVER_UNIFORMS_BINDING,
DIRTY_BIT_VIEWPORT, DIRTY_BIT_SCISSOR};
if (getFeatures().supportsTransformFeedbackExtension.enabled)
{
mNewGraphicsCommandBufferDirtyBits.set(DIRTY_BIT_TRANSFORM_FEEDBACK_BUFFERS);
}
mNewComputeCommandBufferDirtyBits =
DirtyBits{DIRTY_BIT_PIPELINE_BINDING, DIRTY_BIT_TEXTURES, DIRTY_BIT_SHADER_RESOURCES,
DIRTY_BIT_DESCRIPTOR_SETS, DIRTY_BIT_DRIVER_UNIFORMS_BINDING};
mGraphicsDirtyBitHandlers[DIRTY_BIT_MEMORY_BARRIER] =
&ContextVk::handleDirtyGraphicsMemoryBarrier;
mGraphicsDirtyBitHandlers[DIRTY_BIT_EVENT_LOG] = &ContextVk::handleDirtyGraphicsEventLog;
mGraphicsDirtyBitHandlers[DIRTY_BIT_DEFAULT_ATTRIBS] =
&ContextVk::handleDirtyGraphicsDefaultAttribs;
mGraphicsDirtyBitHandlers[DIRTY_BIT_PIPELINE_DESC] =
&ContextVk::handleDirtyGraphicsPipelineDesc;
mGraphicsDirtyBitHandlers[DIRTY_BIT_RENDER_PASS] = &ContextVk::handleDirtyGraphicsRenderPass;
mGraphicsDirtyBitHandlers[DIRTY_BIT_PIPELINE_BINDING] =
&ContextVk::handleDirtyGraphicsPipelineBinding;
mGraphicsDirtyBitHandlers[DIRTY_BIT_TEXTURES] = &ContextVk::handleDirtyGraphicsTextures;
mGraphicsDirtyBitHandlers[DIRTY_BIT_VERTEX_BUFFERS] =
&ContextVk::handleDirtyGraphicsVertexBuffers;
mGraphicsDirtyBitHandlers[DIRTY_BIT_INDEX_BUFFER] = &ContextVk::handleDirtyGraphicsIndexBuffer;
mGraphicsDirtyBitHandlers[DIRTY_BIT_DRIVER_UNIFORMS] =
&ContextVk::handleDirtyGraphicsDriverUniforms;
mGraphicsDirtyBitHandlers[DIRTY_BIT_DRIVER_UNIFORMS_BINDING] =
&ContextVk::handleDirtyGraphicsDriverUniformsBinding;
mGraphicsDirtyBitHandlers[DIRTY_BIT_SHADER_RESOURCES] =
&ContextVk::handleDirtyGraphicsShaderResources;
mGraphicsDirtyBitHandlers[DIRTY_BIT_FRAMEBUFFER_FETCH_BARRIER] =
&ContextVk::handleDirtyGraphicsFramebufferFetchBarrier;
if (getFeatures().supportsTransformFeedbackExtension.enabled)
{
mGraphicsDirtyBitHandlers[DIRTY_BIT_TRANSFORM_FEEDBACK_BUFFERS] =
&ContextVk::handleDirtyGraphicsTransformFeedbackBuffersExtension;
mGraphicsDirtyBitHandlers[DIRTY_BIT_TRANSFORM_FEEDBACK_RESUME] =
&ContextVk::handleDirtyGraphicsTransformFeedbackResume;
}
else if (getFeatures().emulateTransformFeedback.enabled)
{
mGraphicsDirtyBitHandlers[DIRTY_BIT_TRANSFORM_FEEDBACK_BUFFERS] =
&ContextVk::handleDirtyGraphicsTransformFeedbackBuffersEmulation;
}
mGraphicsDirtyBitHandlers[DIRTY_BIT_DESCRIPTOR_SETS] =
&ContextVk::handleDirtyGraphicsDescriptorSets;
mGraphicsDirtyBitHandlers[DIRTY_BIT_VIEWPORT] = &ContextVk::handleDirtyGraphicsViewport;
mGraphicsDirtyBitHandlers[DIRTY_BIT_SCISSOR] = &ContextVk::handleDirtyGraphicsScissor;
mComputeDirtyBitHandlers[DIRTY_BIT_MEMORY_BARRIER] =
&ContextVk::handleDirtyComputeMemoryBarrier;
mComputeDirtyBitHandlers[DIRTY_BIT_EVENT_LOG] = &ContextVk::handleDirtyComputeEventLog;
mComputeDirtyBitHandlers[DIRTY_BIT_PIPELINE_DESC] = &ContextVk::handleDirtyComputePipelineDesc;
mComputeDirtyBitHandlers[DIRTY_BIT_PIPELINE_BINDING] =
&ContextVk::handleDirtyComputePipelineBinding;
mComputeDirtyBitHandlers[DIRTY_BIT_TEXTURES] = &ContextVk::handleDirtyComputeTextures;
mComputeDirtyBitHandlers[DIRTY_BIT_DRIVER_UNIFORMS] =
&ContextVk::handleDirtyComputeDriverUniforms;
mComputeDirtyBitHandlers[DIRTY_BIT_DRIVER_UNIFORMS_BINDING] =
&ContextVk::handleDirtyComputeDriverUniformsBinding;
mComputeDirtyBitHandlers[DIRTY_BIT_SHADER_RESOURCES] =
&ContextVk::handleDirtyComputeShaderResources;
mComputeDirtyBitHandlers[DIRTY_BIT_DESCRIPTOR_SETS] =
&ContextVk::handleDirtyComputeDescriptorSets;
mGraphicsDirtyBits = mNewGraphicsCommandBufferDirtyBits;
mComputeDirtyBits = mNewComputeCommandBufferDirtyBits;
mActiveTextures.fill({nullptr, nullptr, true});
mActiveImages.fill(nullptr);
// The following dirty bits don't affect the program pipeline:
//
// - READ_FRAMEBUFFER_BINDING only affects operations that read from said framebuffer,
// - CLEAR_* only affect following clear calls,
// - PACK/UNPACK_STATE only affect texture data upload/download,
// - *_BINDING only affect descriptor sets.
//
mPipelineDirtyBitsMask.set();
mPipelineDirtyBitsMask.reset(gl::State::DIRTY_BIT_READ_FRAMEBUFFER_BINDING);
mPipelineDirtyBitsMask.reset(gl::State::DIRTY_BIT_CLEAR_COLOR);
mPipelineDirtyBitsMask.reset(gl::State::DIRTY_BIT_CLEAR_DEPTH);
mPipelineDirtyBitsMask.reset(gl::State::DIRTY_BIT_CLEAR_STENCIL);
mPipelineDirtyBitsMask.reset(gl::State::DIRTY_BIT_UNPACK_STATE);
mPipelineDirtyBitsMask.reset(gl::State::DIRTY_BIT_UNPACK_BUFFER_BINDING);
mPipelineDirtyBitsMask.reset(gl::State::DIRTY_BIT_PACK_STATE);
mPipelineDirtyBitsMask.reset(gl::State::DIRTY_BIT_PACK_BUFFER_BINDING);
mPipelineDirtyBitsMask.reset(gl::State::DIRTY_BIT_RENDERBUFFER_BINDING);
mPipelineDirtyBitsMask.reset(gl::State::DIRTY_BIT_DRAW_INDIRECT_BUFFER_BINDING);
mPipelineDirtyBitsMask.reset(gl::State::DIRTY_BIT_DISPATCH_INDIRECT_BUFFER_BINDING);
mPipelineDirtyBitsMask.reset(gl::State::DIRTY_BIT_SAMPLER_BINDINGS);
mPipelineDirtyBitsMask.reset(gl::State::DIRTY_BIT_TEXTURE_BINDINGS);
mPipelineDirtyBitsMask.reset(gl::State::DIRTY_BIT_IMAGE_BINDINGS);
mPipelineDirtyBitsMask.reset(gl::State::DIRTY_BIT_TRANSFORM_FEEDBACK_BINDING);
mPipelineDirtyBitsMask.reset(gl::State::DIRTY_BIT_UNIFORM_BUFFER_BINDINGS);
mPipelineDirtyBitsMask.reset(gl::State::DIRTY_BIT_SHADER_STORAGE_BUFFER_BINDING);
mPipelineDirtyBitsMask.reset(gl::State::DIRTY_BIT_ATOMIC_COUNTER_BUFFER_BINDING);
// Reserve reasonable amount of spaces so that for majority of apps we don't need to grow at all
mDescriptorBufferInfos.reserve(kDescriptorBufferInfosInitialSize);
mDescriptorImageInfos.reserve(kDescriptorImageInfosInitialSize);
mWriteDescriptorSets.reserve(kDescriptorWriteInfosInitialSize);
}
ContextVk::~ContextVk() = default;
void ContextVk::onDestroy(const gl::Context *context)
{
outputCumulativePerfCounters();
// Remove context from the share group
mShareGroupVk->getContexts()->erase(this);
// This will not destroy any resources. It will release them to be collected after finish.
mIncompleteTextures.onDestroy(context);
// Flush and complete current outstanding work before destruction.
(void)finishImpl(RenderPassClosureReason::ContextDestruction);
VkDevice device = getDevice();
for (DriverUniformsDescriptorSet &driverUniforms : mDriverUniforms)
{
driverUniforms.destroy(mRenderer);
}
for (vk::DynamicDescriptorPool &dynamicDescriptorPool : mDriverUniformsDescriptorPools)
{
dynamicDescriptorPool.destroy(device);
}
mDefaultUniformStorage.release(mRenderer);
mEmptyBuffer.release(mRenderer);
for (vk::DynamicBuffer &defaultBuffer : mDefaultAttribBuffers)
{
defaultBuffer.destroy(mRenderer);
}
for (vk::DynamicQueryPool &queryPool : mQueryPools)
{
queryPool.destroy(device);
}
// Recycle current commands buffers.
mRenderer->recycleOutsideRenderPassCommandBufferHelper(device, &mOutsideRenderPassCommands);
mRenderer->recycleRenderPassCommandBufferHelper(device, &mRenderPassCommands);
mRenderer->releaseSharedResources(&mResourceUseList);
mUtils.destroy(mRenderer);
mRenderPassCache.destroy(mRenderer);
mShaderLibrary.destroy(device);
mGpuEventQueryPool.destroy(device);
mCommandPools.outsideRenderPassPool.destroy(device);
mCommandPools.renderPassPool.destroy(device);
ASSERT(mCurrentGarbage.empty());
ASSERT(mResourceUseList.empty());
}
angle::Result ContextVk::getIncompleteTexture(const gl::Context *context,
gl::TextureType type,
gl::SamplerFormat format,
gl::Texture **textureOut)
{
return mIncompleteTextures.getIncompleteTexture(context, type, format, this, textureOut);
}
angle::Result ContextVk::initialize()
{
ANGLE_TRACE_EVENT0("gpu.angle", "ContextVk::initialize");
ANGLE_TRY(mQueryPools[gl::QueryType::AnySamples].init(this, VK_QUERY_TYPE_OCCLUSION,
vk::kDefaultOcclusionQueryPoolSize));
ANGLE_TRY(mQueryPools[gl::QueryType::AnySamplesConservative].init(
this, VK_QUERY_TYPE_OCCLUSION, vk::kDefaultOcclusionQueryPoolSize));
// Only initialize the timestamp query pools if the extension is available.
if (mRenderer->getQueueFamilyProperties().timestampValidBits > 0)
{
ANGLE_TRY(mQueryPools[gl::QueryType::Timestamp].init(this, VK_QUERY_TYPE_TIMESTAMP,
vk::kDefaultTimestampQueryPoolSize));
ANGLE_TRY(mQueryPools[gl::QueryType::TimeElapsed].init(this, VK_QUERY_TYPE_TIMESTAMP,
vk::kDefaultTimestampQueryPoolSize));
}
if (getFeatures().supportsTransformFeedbackExtension.enabled)
{
ANGLE_TRY(mQueryPools[gl::QueryType::TransformFeedbackPrimitivesWritten].init(
this, VK_QUERY_TYPE_TRANSFORM_FEEDBACK_STREAM_EXT,
vk::kDefaultTransformFeedbackQueryPoolSize));
}
// The primitives generated query is provided through the Vulkan pipeline statistics query if
// supported. TODO: If VK_EXT_primitives_generated_query is supported, use that instead.
// http://anglebug.com/5430
if (getFeatures().supportsPipelineStatisticsQuery.enabled)
{
ANGLE_TRY(mQueryPools[gl::QueryType::PrimitivesGenerated].init(
this, VK_QUERY_TYPE_PIPELINE_STATISTICS, vk::kDefaultPrimitivesGeneratedQueryPoolSize));
}
// Init GLES to Vulkan index type map.
initIndexTypeMap();
// Init driver uniforms and get the descriptor set layouts.
for (PipelineType pipeline : angle::AllEnums<PipelineType>())
{
mDriverUniforms[pipeline].init(mRenderer);
vk::DescriptorSetLayoutDesc desc = getDriverUniformsDescriptorSetDesc();
ANGLE_TRY(getDescriptorSetLayoutCache().getDescriptorSetLayout(
this, desc, &mDriverUniforms[pipeline].descriptorSetLayout));
vk::DescriptorSetLayoutBindingVector bindingVector;
std::vector<VkSampler> immutableSamplers;
desc.unpackBindings(&bindingVector, &immutableSamplers);
std::vector<VkDescriptorPoolSize> descriptorPoolSizes;
for (const VkDescriptorSetLayoutBinding &binding : bindingVector)
{
if (binding.descriptorCount > 0)
{
VkDescriptorPoolSize poolSize = {};
poolSize.type = binding.descriptorType;
poolSize.descriptorCount = binding.descriptorCount;
descriptorPoolSizes.emplace_back(poolSize);
}
}
if (!descriptorPoolSizes.empty())
{
ANGLE_TRY(mDriverUniformsDescriptorPools[pipeline].init(
this, descriptorPoolSizes.data(), descriptorPoolSizes.size(),
mDriverUniforms[pipeline].descriptorSetLayout.get().getHandle()));
}
}
mGraphicsPipelineDesc.reset(new vk::GraphicsPipelineDesc());
mGraphicsPipelineDesc->initDefaults(this);
// Initialize current value/default attribute buffers.
for (vk::DynamicBuffer &buffer : mDefaultAttribBuffers)
{
buffer.init(mRenderer, kVertexBufferUsage, 1, kDefaultBufferSize, true,
vk::DynamicBufferPolicy::FrequentSmallAllocations);
}
#if ANGLE_ENABLE_VULKAN_GPU_TRACE_EVENTS
angle::PlatformMethods *platform = ANGLEPlatformCurrent();
ASSERT(platform);
// GPU tracing workaround for anglebug.com/2927. The renderer should not emit gpu events
// during platform discovery.
const unsigned char *gpuEventsEnabled =
platform->getTraceCategoryEnabledFlag(platform, "gpu.angle.gpu");
mGpuEventsEnabled = gpuEventsEnabled && *gpuEventsEnabled;
#endif
mEmulateSeamfulCubeMapSampling = shouldEmulateSeamfulCubeMapSampling();
// Assign initial command buffers from queue
ANGLE_TRY(vk::OutsideRenderPassCommandBuffer::InitializeCommandPool(
this, &mCommandPools.outsideRenderPassPool, mRenderer->getDeviceQueueIndex(),
hasProtectedContent()));
ANGLE_TRY(vk::RenderPassCommandBuffer::InitializeCommandPool(
this, &mCommandPools.renderPassPool, mRenderer->getDeviceQueueIndex(),
hasProtectedContent()));
ANGLE_TRY(mRenderer->getOutsideRenderPassCommandBufferHelper(
this, &mCommandPools.outsideRenderPassPool, &mOutsideRenderPassCommands));
ANGLE_TRY(mRenderer->getRenderPassCommandBufferHelper(this, &mCommandPools.renderPassPool,
&mRenderPassCommands));
if (mGpuEventsEnabled)
{
// GPU events should only be available if timestamp queries are available.
ASSERT(mRenderer->getQueueFamilyProperties().timestampValidBits > 0);
// Calculate the difference between CPU and GPU clocks for GPU event reporting.
ANGLE_TRY(mGpuEventQueryPool.init(this, VK_QUERY_TYPE_TIMESTAMP,
vk::kDefaultTimestampQueryPoolSize));
ANGLE_TRY(synchronizeCpuGpuTime());
mPerfCounters.primaryBuffers++;
EventName eventName = GetTraceEventName("Primary", mPerfCounters.primaryBuffers);
ANGLE_TRY(traceGpuEvent(&mOutsideRenderPassCommands->getCommandBuffer(),
TRACE_EVENT_PHASE_BEGIN, eventName));
}
size_t minAlignment = static_cast<size_t>(
mRenderer->getPhysicalDeviceProperties().limits.minUniformBufferOffsetAlignment);
mDefaultUniformStorage.init(mRenderer, VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, minAlignment,
mRenderer->getDefaultUniformBufferSize(), true,
vk::DynamicBufferPolicy::FrequentSmallAllocations);
// Initialize an "empty" buffer for use with default uniform blocks where there are no uniforms,
// or atomic counter buffer array indices that are unused.
constexpr VkBufferUsageFlags kEmptyBufferUsage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT |
VK_BUFFER_USAGE_STORAGE_BUFFER_BIT |
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT;
VkBufferCreateInfo emptyBufferInfo = {};
emptyBufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
emptyBufferInfo.flags = 0;
emptyBufferInfo.size = 16;
emptyBufferInfo.usage = kEmptyBufferUsage;
emptyBufferInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
emptyBufferInfo.queueFamilyIndexCount = 0;
emptyBufferInfo.pQueueFamilyIndices = nullptr;
constexpr VkMemoryPropertyFlags kMemoryType = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
ANGLE_TRY(mEmptyBuffer.init(this, emptyBufferInfo, kMemoryType));
// Add context into the share group
mShareGroupVk->getContexts()->insert(this);
return angle::Result::Continue;
}
angle::Result ContextVk::flush(const gl::Context *context)
{
const bool isSingleBuffer =
(mCurrentWindowSurface != nullptr) && mCurrentWindowSurface->isSharedPresentMode();
// Don't defer flushes in single-buffer mode. In this mode, the application is not required to
// call eglSwapBuffers(), and glFlush() is expected to ensure that work is submitted.
if (mRenderer->getFeatures().deferFlushUntilEndRenderPass.enabled && hasStartedRenderPass() &&
!isSingleBuffer)
{
mHasDeferredFlush = true;
return angle::Result::Continue;
}
return flushImpl(nullptr, RenderPassClosureReason::GLFlush);
}
angle::Result ContextVk::finish(const gl::Context *context)
{
return finishImpl(RenderPassClosureReason::GLFinish);
}
angle::Result ContextVk::setupDraw(const gl::Context *context,
gl::PrimitiveMode mode,
GLint firstVertexOrInvalid,
GLsizei vertexOrIndexCount,
GLsizei instanceCount,
gl::DrawElementsType indexTypeOrInvalid,
const void *indices,
DirtyBits dirtyBitMask)
{
// Set any dirty bits that depend on draw call parameters or other objects.
if (mode != mCurrentDrawMode)
{
invalidateCurrentGraphicsPipeline();
mCurrentDrawMode = mode;
mGraphicsPipelineDesc->updateTopology(&mGraphicsPipelineTransition, mCurrentDrawMode);
}
// Must be called before the command buffer is started. Can call finish.
if (mVertexArray->getStreamingVertexAttribsMask().any())
{
// All client attribs & any emulated buffered attribs will be updated
ANGLE_TRY(mVertexArray->updateStreamedAttribs(context, firstVertexOrInvalid,
vertexOrIndexCount, instanceCount,
indexTypeOrInvalid, indices));
mGraphicsDirtyBits.set(DIRTY_BIT_VERTEX_BUFFERS);
}
if (mProgram && mProgram->hasDirtyUniforms())
{
ANGLE_TRY(mProgram->updateUniforms(this));
mGraphicsDirtyBits.set(DIRTY_BIT_DESCRIPTOR_SETS);
}
else if (mProgramPipeline && mProgramPipeline->hasDirtyUniforms())
{
ANGLE_TRY(mProgramPipeline->updateUniforms(this));
mGraphicsDirtyBits.set(DIRTY_BIT_DESCRIPTOR_SETS);
}
// Update transform feedback offsets on every draw call when emulating transform feedback. This
// relies on the fact that no geometry/tessellation, indirect or indexed calls are supported in
// ES3.1 (and emulation is not done for ES3.2).
if (getFeatures().emulateTransformFeedback.enabled &&
mState.isTransformFeedbackActiveUnpaused())
{
ASSERT(firstVertexOrInvalid != -1);
mXfbBaseVertex = firstVertexOrInvalid;
mXfbVertexCountPerInstance = vertexOrIndexCount;
invalidateGraphicsDriverUniforms();
}
DirtyBits dirtyBits = mGraphicsDirtyBits & dirtyBitMask;
if (dirtyBits.none())
{
ASSERT(mRenderPassCommandBuffer);
return angle::Result::Continue;
}
// Flush any relevant dirty bits.
for (DirtyBits::Iterator dirtyBitIter = dirtyBits.begin(); dirtyBitIter != dirtyBits.end();
++dirtyBitIter)
{
ASSERT(mGraphicsDirtyBitHandlers[*dirtyBitIter]);
ANGLE_TRY((this->*mGraphicsDirtyBitHandlers[*dirtyBitIter])(&dirtyBitIter, dirtyBitMask));
}
mGraphicsDirtyBits &= ~dirtyBitMask;
// Render pass must be always available at this point.
ASSERT(mRenderPassCommandBuffer);
return angle::Result::Continue;
}
angle::Result ContextVk::setupIndexedDraw(const gl::Context *context,
gl::PrimitiveMode mode,
GLsizei indexCount,
GLsizei instanceCount,
gl::DrawElementsType indexType,
const void *indices)
{
ASSERT(mode != gl::PrimitiveMode::LineLoop);
if (indexType != mCurrentDrawElementsType)
{
mCurrentDrawElementsType = indexType;
ANGLE_TRY(onIndexBufferChange(nullptr));
}
const gl::Buffer *elementArrayBuffer = mVertexArray->getState().getElementArrayBuffer();
if (!elementArrayBuffer)
{
mGraphicsDirtyBits.set(DIRTY_BIT_INDEX_BUFFER);
ANGLE_TRY(mVertexArray->convertIndexBufferCPU(this, indexType, indexCount, indices));
mCurrentIndexBufferOffset = 0;
}
else
{
mCurrentIndexBufferOffset = reinterpret_cast<VkDeviceSize>(indices);
if (indices != mLastIndexBufferOffset)
{
mGraphicsDirtyBits.set(DIRTY_BIT_INDEX_BUFFER);
mLastIndexBufferOffset = indices;
}
if (shouldConvertUint8VkIndexType(indexType) && mGraphicsDirtyBits[DIRTY_BIT_INDEX_BUFFER])
{
ANGLE_VK_PERF_WARNING(this, GL_DEBUG_SEVERITY_LOW,
"Potential inefficiency emulating uint8 vertex attributes due to "
"lack of hardware support");
BufferVk *bufferVk = vk::GetImpl(elementArrayBuffer);
vk::BufferHelper &bufferHelper = bufferVk->getBuffer();
if (bufferHelper.isHostVisible() &&
!bufferHelper.isCurrentlyInUse(getLastCompletedQueueSerial()))
{
uint8_t *src = nullptr;
ANGLE_TRY(
bufferVk->mapImpl(this, GL_MAP_READ_BIT, reinterpret_cast<void **>(&src)));
// Note: bufferOffset is not added here because mapImpl already adds it.
src += reinterpret_cast<uintptr_t>(indices);
const size_t byteCount = static_cast<size_t>(elementArrayBuffer->getSize()) -
reinterpret_cast<uintptr_t>(indices);
ANGLE_TRY(mVertexArray->convertIndexBufferCPU(this, indexType, byteCount, src));
ANGLE_TRY(bufferVk->unmapImpl(this));
}
else
{
ANGLE_TRY(mVertexArray->convertIndexBufferGPU(this, bufferVk, indices));
}
mCurrentIndexBufferOffset = 0;
}
}
return setupDraw(context, mode, 0, indexCount, instanceCount, indexType, indices,
mIndexedDirtyBitsMask);
}
angle::Result ContextVk::setupIndirectDraw(const gl::Context *context,
gl::PrimitiveMode mode,
DirtyBits dirtyBitMask,
vk::BufferHelper *indirectBuffer)
{
GLint firstVertex = -1;
GLsizei vertexCount = 0;
GLsizei instanceCount = 1;
// Break the render pass if the indirect buffer was previously used as the output from transform
// feedback.
if (mCurrentTransformFeedbackBuffers.contains(indirectBuffer))
{
ANGLE_TRY(
flushCommandsAndEndRenderPass(RenderPassClosureReason::XfbWriteThenIndirectDrawBuffer));
}
ANGLE_TRY(setupDraw(context, mode, firstVertex, vertexCount, instanceCount,
gl::DrawElementsType::InvalidEnum, nullptr, dirtyBitMask));
// Process indirect buffer after render pass has started.
mRenderPassCommands->bufferRead(this, VK_ACCESS_INDIRECT_COMMAND_READ_BIT,
vk::PipelineStage::DrawIndirect, indirectBuffer);
return angle::Result::Continue;
}
angle::Result ContextVk::setupIndexedIndirectDraw(const gl::Context *context,
gl::PrimitiveMode mode,
gl::DrawElementsType indexType,
vk::BufferHelper *indirectBuffer)
{
ASSERT(mode != gl::PrimitiveMode::LineLoop);
if (indexType != mCurrentDrawElementsType)
{
mCurrentDrawElementsType = indexType;
ANGLE_TRY(onIndexBufferChange(nullptr));
}
return setupIndirectDraw(context, mode, mIndexedDirtyBitsMask, indirectBuffer);
}
angle::Result ContextVk::setupLineLoopIndexedIndirectDraw(const gl::Context *context,
gl::PrimitiveMode mode,
gl::DrawElementsType indexType,
vk::BufferHelper *srcIndirectBuf,
VkDeviceSize indirectBufferOffset,
vk::BufferHelper **indirectBufferOut)
{
ASSERT(mode == gl::PrimitiveMode::LineLoop);
vk::BufferHelper *dstIndirectBuf = nullptr;
ANGLE_TRY(mVertexArray->handleLineLoopIndexIndirect(this, indexType, srcIndirectBuf,
indirectBufferOffset, &dstIndirectBuf));
*indirectBufferOut = dstIndirectBuf;
if (indexType != mCurrentDrawElementsType)
{
mCurrentDrawElementsType = indexType;
ANGLE_TRY(onIndexBufferChange(nullptr));
}
return setupIndirectDraw(context, mode, mIndexedDirtyBitsMask, dstIndirectBuf);
}
angle::Result ContextVk::setupLineLoopIndirectDraw(const gl::Context *context,
gl::PrimitiveMode mode,
vk::BufferHelper *indirectBuffer,
VkDeviceSize indirectBufferOffset,
vk::BufferHelper **indirectBufferOut)
{
ASSERT(mode == gl::PrimitiveMode::LineLoop);
vk::BufferHelper *indirectBufferHelperOut = nullptr;
ANGLE_TRY(mVertexArray->handleLineLoopIndirectDraw(
context, indirectBuffer, indirectBufferOffset, &indirectBufferHelperOut));
*indirectBufferOut = indirectBufferHelperOut;
if (gl::DrawElementsType::UnsignedInt != mCurrentDrawElementsType)
{
mCurrentDrawElementsType = gl::DrawElementsType::UnsignedInt;
ANGLE_TRY(onIndexBufferChange(nullptr));
}
return setupIndirectDraw(context, mode, mIndexedDirtyBitsMask, indirectBufferHelperOut);
}
angle::Result ContextVk::setupLineLoopDraw(const gl::Context *context,
gl::PrimitiveMode mode,
GLint firstVertex,
GLsizei vertexOrIndexCount,
gl::DrawElementsType indexTypeOrInvalid,
const void *indices,
uint32_t *numIndicesOut)
{
mCurrentIndexBufferOffset = 0;
ANGLE_TRY(mVertexArray->handleLineLoop(this, firstVertex, vertexOrIndexCount,
indexTypeOrInvalid, indices, numIndicesOut));
ANGLE_TRY(onIndexBufferChange(nullptr));
mCurrentDrawElementsType = indexTypeOrInvalid != gl::DrawElementsType::InvalidEnum
? indexTypeOrInvalid
: gl::DrawElementsType::UnsignedInt;
return setupDraw(context, mode, firstVertex, vertexOrIndexCount, 1, indexTypeOrInvalid, indices,
mIndexedDirtyBitsMask);
}
angle::Result ContextVk::setupDispatch(const gl::Context *context)
{
// Note: numerous tests miss a glMemoryBarrier call between the initial texture data upload and
// the dispatch call. Flush the outside render pass command buffer as a workaround.
// TODO: Remove this and fix tests. http://anglebug.com/5070
ANGLE_TRY(flushOutsideRenderPassCommands());
if (mProgram && mProgram->hasDirtyUniforms())
{
ANGLE_TRY(mProgram->updateUniforms(this));
mComputeDirtyBits.set(DIRTY_BIT_DESCRIPTOR_SETS);
}
else if (mProgramPipeline && mProgramPipeline->hasDirtyUniforms())
{
ANGLE_TRY(mProgramPipeline->updateUniforms(this));
mComputeDirtyBits.set(DIRTY_BIT_DESCRIPTOR_SETS);
}
DirtyBits dirtyBits = mComputeDirtyBits;
// Flush any relevant dirty bits.
for (size_t dirtyBit : dirtyBits)
{
ASSERT(mComputeDirtyBitHandlers[dirtyBit]);
ANGLE_TRY((this->*mComputeDirtyBitHandlers[dirtyBit])());
}
mComputeDirtyBits.reset();
return angle::Result::Continue;
}
angle::Result ContextVk::handleDirtyGraphicsMemoryBarrier(DirtyBits::Iterator *dirtyBitsIterator,
DirtyBits dirtyBitMask)
{
return handleDirtyMemoryBarrierImpl(dirtyBitsIterator, dirtyBitMask);
}
angle::Result ContextVk::handleDirtyComputeMemoryBarrier()
{
return handleDirtyMemoryBarrierImpl(nullptr, {});
}
bool ContextVk::renderPassUsesStorageResources() const
{
const gl::ProgramExecutable *executable = mState.getProgramExecutable();
ASSERT(executable);
// Storage images:
for (size_t imageUnitIndex : executable->getActiveImagesMask())
{
const gl::Texture *texture = mState.getImageUnit(imageUnitIndex).texture.get();
if (texture == nullptr)
{
continue;
}
TextureVk *textureVk = vk::GetImpl(texture);
if (texture->getType() == gl::TextureType::Buffer)
{
vk::BufferHelper &buffer = vk::GetImpl(textureVk->getBuffer().get())->getBuffer();
if (mRenderPassCommands->usesBuffer(buffer))
{
return true;
}
}
else
{
vk::ImageHelper &image = textureVk->getImage();
// Images only need to close the render pass if they need a layout transition. Outside
// render pass command buffer doesn't need closing as the layout transition barriers are
// recorded in sequence with the rest of the commands.
if (IsRenderPassStartedAndUsesImage(*mRenderPassCommands, image))
{
return true;
}
}
}
gl::ShaderMap<const gl::ProgramState *> programStates;
mExecutable->fillProgramStateMap(this, &programStates);
for (const gl::ShaderType shaderType : executable->getLinkedShaderStages())
{
const gl::ProgramState *programState = programStates[shaderType];
ASSERT(programState);
// Storage buffers:
const std::vector<gl::InterfaceBlock> &blocks = programState->getShaderStorageBlocks();
for (uint32_t bufferIndex = 0; bufferIndex < blocks.size(); ++bufferIndex)
{
const gl::InterfaceBlock &block = blocks[bufferIndex];
const gl::OffsetBindingPointer<gl::Buffer> &bufferBinding =
mState.getIndexedShaderStorageBuffer(block.binding);
if (!block.isActive(shaderType) || bufferBinding.get() == nullptr)
{
continue;
}
vk::BufferHelper &buffer = vk::GetImpl(bufferBinding.get())->getBuffer();
if (mRenderPassCommands->usesBuffer(buffer))
{
return true;
}
}
// Atomic counters:
const std::vector<gl::AtomicCounterBuffer> &atomicCounterBuffers =
programState->getAtomicCounterBuffers();
for (uint32_t bufferIndex = 0; bufferIndex < atomicCounterBuffers.size(); ++bufferIndex)
{
uint32_t binding = atomicCounterBuffers[bufferIndex].binding;
const gl::OffsetBindingPointer<gl::Buffer> &bufferBinding =
mState.getIndexedAtomicCounterBuffer(binding);
if (bufferBinding.get() == nullptr)
{
continue;
}
vk::BufferHelper &buffer = vk::GetImpl(bufferBinding.get())->getBuffer();
if (mRenderPassCommands->usesBuffer(buffer))
{
return true;
}
}
}
return false;
}
angle::Result ContextVk::handleDirtyMemoryBarrierImpl(DirtyBits::Iterator *dirtyBitsIterator,
DirtyBits dirtyBitMask)
{
const gl::ProgramExecutable *executable = mState.getProgramExecutable();
ASSERT(executable);
const bool hasImages = executable->hasImages();
const bool hasStorageBuffers = executable->hasStorageBuffers();
const bool hasAtomicCounters = executable->hasAtomicCounterBuffers();
if (!hasImages && !hasStorageBuffers && !hasAtomicCounters)
{
return angle::Result::Continue;
}
// Break the render pass if necessary. This is only needed for write-after-read situations, and
// is done by checking whether current storage buffers and images are used in the render pass.
if (renderPassUsesStorageResources())
{
// Either set later bits (if called during handling of graphics dirty bits), or set the
// dirty bits directly (if called during handling of compute dirty bits).
if (dirtyBitsIterator)
{
return flushDirtyGraphicsRenderPass(
dirtyBitsIterator, dirtyBitMask,
RenderPassClosureReason::GLMemoryBarrierThenStorageResource);
}
else
{
return flushCommandsAndEndRenderPass(
RenderPassClosureReason::GLMemoryBarrierThenStorageResource);
}
}
// Flushing outside render pass commands is cheap. If a memory barrier has been issued in its
// life time, just flush it instead of wasting time trying to figure out if it's necessary.
if (mOutsideRenderPassCommands->hasGLMemoryBarrierIssued())
{
ANGLE_TRY(flushOutsideRenderPassCommands());
}
return angle::Result::Continue;
}
angle::Result ContextVk::handleDirtyGraphicsEventLog(DirtyBits::Iterator *dirtyBitsIterator,
DirtyBits dirtyBitMask)
{
return handleDirtyEventLogImpl(mRenderPassCommandBuffer);
}
angle::Result ContextVk::handleDirtyComputeEventLog()
{
return handleDirtyEventLogImpl(&mOutsideRenderPassCommands->getCommandBuffer());
}
template <typename CommandBufferT>
angle::Result ContextVk::handleDirtyEventLogImpl(CommandBufferT *commandBuffer)
{
// This method is called when a draw or dispatch command is being processed. It's purpose is
// to call the vkCmd*DebugUtilsLabelEXT functions in order to communicate to debuggers
// (e.g. AGI) the OpenGL ES commands that the application uses.
// Exit early if no OpenGL ES commands have been logged, or if no command buffer (for a no-op
// draw), or if calling the vkCmd*DebugUtilsLabelEXT functions is not enabled.
if (mEventLog.empty() || commandBuffer == nullptr || !mRenderer->angleDebuggerMode())
{
return angle::Result::Continue;
}
// Insert OpenGL ES commands into debug label. We create a 3-level cascade here for
// OpenGL-ES-first debugging in AGI. Here's the general outline of commands:
// -glDrawCommand
// --vkCmdBeginDebugUtilsLabelEXT() #1 for "glDrawCommand"
// --OpenGL ES Commands
// ---vkCmdBeginDebugUtilsLabelEXT() #2 for "OpenGL ES Commands"
// ---Individual OpenGL ES Commands leading up to glDrawCommand
// ----vkCmdBeginDebugUtilsLabelEXT() #3 for each individual OpenGL ES Command
// ----vkCmdEndDebugUtilsLabelEXT() #3 for each individual OpenGL ES Command
// ----...More Individual OGL Commands...
// ----Final Individual OGL command will be the same glDrawCommand shown in #1 above
// ---vkCmdEndDebugUtilsLabelEXT() #2 for "OpenGL ES Commands"
// --VK SetupDraw & Draw-related commands will be embedded here under glDraw #1
// --vkCmdEndDebugUtilsLabelEXT() #1 is called after each vkDraw* or vkDispatch* call
// AGI desires no parameters on the top-level of the hierarchy.
std::string topLevelCommand = mEventLog.back();
size_t startOfParameters = topLevelCommand.find("(");
if (startOfParameters != std::string::npos)
{
topLevelCommand = topLevelCommand.substr(0, startOfParameters);
}
VkDebugUtilsLabelEXT label = {VK_STRUCTURE_TYPE_DEBUG_UTILS_LABEL_EXT,
nullptr,
topLevelCommand.c_str(),
{0.0f, 0.0f, 0.0f, 0.0f}};
// This is #1 from comment above
commandBuffer->beginDebugUtilsLabelEXT(label);
std::string oglCmds = "OpenGL ES Commands";
label.pLabelName = oglCmds.c_str();
// This is #2 from comment above
commandBuffer->beginDebugUtilsLabelEXT(label);
for (uint32_t i = 0; i < mEventLog.size(); ++i)
{
label.pLabelName = mEventLog[i].c_str();
// NOTE: We have to use a begin/end pair here because AGI does not promote the
// pLabelName from an insertDebugUtilsLabelEXT() call to the Commands panel.
// Internal bug b/169243237 is tracking this and once the insert* call shows the
// pLabelName similar to begin* call, we can switch these to insert* calls instead.
// This is #3 from comment above.
commandBuffer->beginDebugUtilsLabelEXT(label);
commandBuffer->endDebugUtilsLabelEXT();
}
commandBuffer->endDebugUtilsLabelEXT();
// The final end* call for #1 above is made in the ContextVk::draw* or
// ContextVk::dispatch* function calls.
mEventLog.clear();
return angle::Result::Continue;
}
angle::Result ContextVk::handleDirtyGraphicsDefaultAttribs(DirtyBits::Iterator *dirtyBitsIterator,
DirtyBits dirtyBitMask)
{
ASSERT(mDirtyDefaultAttribsMask.any());
for (size_t attribIndex : mDirtyDefaultAttribsMask)
{
ANGLE_TRY(updateDefaultAttribute(attribIndex));
}
mDirtyDefaultAttribsMask.reset();
return angle::Result::Continue;
}
angle::Result ContextVk::handleDirtyGraphicsPipelineDesc(DirtyBits::Iterator *dirtyBitsIterator,
DirtyBits dirtyBitMask)
{
const VkPipeline previousPipeline = mCurrentGraphicsPipeline
? mCurrentGraphicsPipeline->getPipeline().getHandle()
: VK_NULL_HANDLE;
ASSERT(mExecutable);
if (!mCurrentGraphicsPipeline)
{
const vk::GraphicsPipelineDesc *descPtr;
// The desc's specialization constant depends on program's
// specConstUsageBits. We need to update it if program has changed.
SpecConstUsageBits usageBits = getCurrentProgramSpecConstUsageBits();
updateGraphicsPipelineDescWithSpecConstUsageBits(usageBits);
// Draw call shader patching, shader compilation, and pipeline cache query.
ANGLE_TRY(mExecutable->getGraphicsPipeline(this, mCurrentDrawMode, *mGraphicsPipelineDesc,
&descPtr, &mCurrentGraphicsPipeline));
mGraphicsPipelineTransition.reset();
}
else if (mGraphicsPipelineTransition.any())
{
ASSERT(mCurrentGraphicsPipeline->valid());
if (!mCurrentGraphicsPipeline->findTransition(
mGraphicsPipelineTransition, *mGraphicsPipelineDesc, &mCurrentGraphicsPipeline))
{
vk::PipelineHelper *oldPipeline = mCurrentGraphicsPipeline;
const vk::GraphicsPipelineDesc *descPtr;
ANGLE_TRY(mExecutable->getGraphicsPipeline(this, mCurrentDrawMode,
*mGraphicsPipelineDesc, &descPtr,
&mCurrentGraphicsPipeline));
oldPipeline->addTransition(mGraphicsPipelineTransition, descPtr,
mCurrentGraphicsPipeline);
}
mGraphicsPipelineTransition.reset();
}
// Update the queue serial for the pipeline object.
ASSERT(mCurrentGraphicsPipeline && mCurrentGraphicsPipeline->valid());
mCurrentGraphicsPipeline->retain(&mResourceUseList);
const VkPipeline newPipeline = mCurrentGraphicsPipeline->getPipeline().getHandle();
// If there's no change in pipeline, avoid rebinding it later. If the rebind is due to a new
// command buffer or UtilsVk, it will happen anyway with DIRTY_BIT_PIPELINE_BINDING.
if (newPipeline == previousPipeline)
{
return angle::Result::Continue;
}
// VK_EXT_transform_feedback disallows binding pipelines while transform feedback is active.
// If a new pipeline needs to be bound, the render pass should necessarily be broken (which
// implicitly pauses transform feedback), as resuming requires a barrier on the transform
// feedback counter buffer.
if (mRenderPassCommands->started() && mRenderPassCommands->isTransformFeedbackActiveUnpaused())
{
ANGLE_TRY(flushDirtyGraphicsRenderPass(
dirtyBitsIterator, dirtyBitMask, RenderPassClosureReason::PipelineBindWhileXfbActive));
dirtyBitsIterator->setLaterBit(DIRTY_BIT_TRANSFORM_FEEDBACK_RESUME);
}
// The pipeline needs to rebind because it's changed.
dirtyBitsIterator->setLaterBit(DIRTY_BIT_PIPELINE_BINDING);
return angle::Result::Continue;
}
angle::Result ContextVk::handleDirtyGraphicsRenderPass(DirtyBits::Iterator *dirtyBitsIterator,
DirtyBits dirtyBitMask)
{
// If the render pass needs to be recreated, close it using the special mid-dirty-bit-handling
// function, so later dirty bits can be set.
if (mRenderPassCommands->started())
{
ANGLE_TRY(flushDirtyGraphicsRenderPass(dirtyBitsIterator,
dirtyBitMask & ~DirtyBits{DIRTY_BIT_RENDER_PASS},
RenderPassClosureReason::AlreadySpecifiedElsewhere));
}
gl::Rectangle scissoredRenderArea = mDrawFramebuffer->getRotatedScissoredRenderArea(this);
bool renderPassDescChanged = false;
ANGLE_TRY(startRenderPass(scissoredRenderArea, nullptr, &renderPassDescChanged));
// The render pass desc can change when starting the render pass, for example due to
// multisampled-render-to-texture needs based on loadOps. In that case, recreate the graphics
// pipeline.
if (renderPassDescChanged)
{
ANGLE_TRY(handleDirtyGraphicsPipelineDesc(dirtyBitsIterator, dirtyBitMask));
}
return angle::Result::Continue;
}
angle::Result ContextVk::handleDirtyGraphicsPipelineBinding(DirtyBits::Iterator *dirtyBitsIterator,
DirtyBits dirtyBitMask)
{
ASSERT(mCurrentGraphicsPipeline);
mRenderPassCommandBuffer->bindGraphicsPipeline(mCurrentGraphicsPipeline->getPipeline());
return angle::Result::Continue;
}
angle::Result ContextVk::handleDirtyComputePipelineDesc()
{
if (!mCurrentComputePipeline)
{
ASSERT(mExecutable);
ANGLE_TRY(mExecutable->getComputePipeline(this, &mCurrentComputePipeline));
}
ASSERT(mComputeDirtyBits.test(DIRTY_BIT_PIPELINE_BINDING));
return angle::Result::Continue;
}
angle::Result ContextVk::handleDirtyComputePipelineBinding()
{
ASSERT(mCurrentComputePipeline);
mOutsideRenderPassCommands->getCommandBuffer().bindComputePipeline(
mCurrentComputePipeline->getPipeline());
mCurrentComputePipeline->retain(&mResourceUseList);
return angle::Result::Continue;
}
template <typename CommandBufferHelperT>
ANGLE_INLINE angle::Result ContextVk::handleDirtyTexturesImpl(
CommandBufferHelperT *commandBufferHelper,
PipelineType pipelineType)
{
const gl::ProgramExecutable *executable = mState.getProgramExecutable();
ASSERT(executable);
const gl::ActiveTextureMask &activeTextures = executable->getActiveSamplersMask();
for (size_t textureUnit : activeTextures)
{
const vk::TextureUnit &unit = mActiveTextures[textureUnit];
TextureVk *textureVk = unit.texture;
// If it's a texture buffer, get the attached buffer.
if (textureVk->getBuffer().get() != nullptr)
{
BufferVk *bufferVk = vk::GetImpl(textureVk->getBuffer().get());
const gl::ShaderBitSet stages =
executable->getSamplerShaderBitsForTextureUnitIndex(textureUnit);
OnTextureBufferRead(this, bufferVk, stages, commandBufferHelper);
textureVk->retainBufferViews(&mResourceUseList);
continue;
}
// The image should be flushed and ready to use at this point. There may still be
// lingering staged updates in its staging buffer for unused texture mip levels or
// layers. Therefore we can't verify it has no staged updates right here.
vk::ImageHelper &image = textureVk->getImage();
// Select the appropriate vk::ImageLayout depending on whether the texture is also bound as
// a GL image, and whether the program is a compute or graphics shader.
const vk::ImageLayout imageLayout =
GetImageReadLayout(textureVk, executable, textureUnit, pipelineType);
// Ensure the image is in the desired layout
commandBufferHelper->imageRead(this, image.getAspectFlags(), imageLayout, &image);
textureVk->retainImageViews(&mResourceUseList);
}
if (executable->hasTextures())
{
ANGLE_TRY(mExecutable->updateTexturesDescriptorSet(this, mActiveTexturesDesc));
}
return angle::Result::Continue;
}
angle::Result ContextVk::handleDirtyGraphicsTextures(DirtyBits::Iterator *dirtyBitsIterator,
DirtyBits dirtyBitMask)
{
return handleDirtyTexturesImpl(mRenderPassCommands, PipelineType::Graphics);
}
angle::Result ContextVk::handleDirtyComputeTextures()
{
return handleDirtyTexturesImpl(mOutsideRenderPassCommands, PipelineType::Compute);
}
angle::Result ContextVk::handleDirtyGraphicsVertexBuffers(DirtyBits::Iterator *dirtyBitsIterator,
DirtyBits dirtyBitMask)
{
uint32_t maxAttrib = mState.getProgramExecutable()->getMaxActiveAttribLocation();
const gl::AttribArray<VkBuffer> &bufferHandles = mVertexArray->getCurrentArrayBufferHandles();
const gl::AttribArray<VkDeviceSize> &bufferOffsets =
mVertexArray->getCurrentArrayBufferOffsets();
mRenderPassCommandBuffer->bindVertexBuffers(0, maxAttrib, bufferHandles.data(),
bufferOffsets.data());
const gl::AttribArray<vk::BufferHelper *> &arrayBufferResources =
mVertexArray->getCurrentArrayBuffers();
// Mark all active vertex buffers as accessed.
const gl::ProgramExecutable *executable = mState.getProgramExecutable();
gl::AttributesMask attribsMask = executable->getActiveAttribLocationsMask();
for (size_t attribIndex : attribsMask)
{
vk::BufferHelper *arrayBuffer = arrayBufferResources[attribIndex];
if (arrayBuffer)
{
mRenderPassCommands->bufferRead(this, VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT,
vk::PipelineStage::VertexInput, arrayBuffer);
}
}
return angle::Result::Continue;
}
angle::Result ContextVk::handleDirtyGraphicsIndexBuffer(DirtyBits::Iterator *dirtyBitsIterator,
DirtyBits dirtyBitMask)
{
vk::BufferHelper *elementArrayBuffer = mVertexArray->getCurrentElementArrayBuffer();
ASSERT(elementArrayBuffer != nullptr);
mRenderPassCommandBuffer->bindIndexBuffer(
elementArrayBuffer->getBuffer(),
elementArrayBuffer->getOffset() + mCurrentIndexBufferOffset,
getVkIndexType(mCurrentDrawElementsType));
mRenderPassCommands->bufferRead(this, VK_ACCESS_INDEX_READ_BIT, vk::PipelineStage::VertexInput,
elementArrayBuffer);
return angle::Result::Continue;
}
angle::Result ContextVk::handleDirtyGraphicsFramebufferFetchBarrier(
DirtyBits::Iterator *dirtyBitsIterator,
DirtyBits dirtyBitMask)
{
VkMemoryBarrier memoryBarrier = {};
memoryBarrier.sType = VK_STRUCTURE_TYPE_MEMORY_BARRIER;
memoryBarrier.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
memoryBarrier.dstAccessMask = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT;
mRenderPassCommandBuffer->pipelineBarrier(
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
VK_DEPENDENCY_BY_REGION_BIT, 1, &memoryBarrier, 0, nullptr, 0, nullptr);
return angle::Result::Continue;
}
template <typename CommandBufferHelperT>
angle::Result ContextVk::handleDirtyShaderResourcesImpl(CommandBufferHelperT *commandBufferHelper)
{
const gl::ProgramExecutable *executable = mState.getProgramExecutable();
ASSERT(executable);
const bool hasImages = executable->hasImages();
const bool hasStorageBuffers =
executable->hasStorageBuffers() || executable->hasAtomicCounterBuffers();
const bool hasUniformBuffers = executable->hasUniformBuffers();
if (!hasUniformBuffers && !hasStorageBuffers && !hasImages &&
!executable->usesFramebufferFetch())
{
return angle::Result::Continue;
}
if (hasImages)
{
ANGLE_TRY(updateActiveImages(commandBufferHelper));
}
handleDirtyShaderBufferResourcesImpl(commandBufferHelper);
ANGLE_TRY(mExecutable->updateShaderResourcesDescriptorSet(this, mDrawFramebuffer,
mShaderBuffersDescriptorDesc));
// Record usage of storage buffers and images in the command buffer to aid handling of
// glMemoryBarrier.
if (hasImages || hasStorageBuffers)
{
commandBufferHelper->setHasShaderStorageOutput();
}
return angle::Result::Continue;
}
void ContextVk::handleDirtyShaderBufferResourcesImpl(
vk::CommandBufferHelperCommon *commandBufferHelper)
{
const gl::ProgramExecutable *executable = mState.getProgramExecutable();
ASSERT(executable);
// Process buffer barriers.
gl::ShaderMap<const gl::ProgramState *> programStates;
mExecutable->fillProgramStateMap(this, &programStates);
for (const gl::ShaderType shaderType : executable->getLinkedShaderStages())
{
const gl::ProgramState &programState = *programStates[shaderType];
const std::vector<gl::InterfaceBlock> &ubos = programState.getUniformBlocks();
for (const gl::InterfaceBlock &ubo : ubos)
{
const gl::OffsetBindingPointer<gl::Buffer> &bufferBinding =
mState.getIndexedUniformBuffer(ubo.binding);
if (!ubo.isActive(shaderType))
{
continue;
}
if (bufferBinding.get() == nullptr)
{
continue;
}
BufferVk *bufferVk = vk::GetImpl(bufferBinding.get());
vk::BufferHelper &bufferHelper = bufferVk->getBuffer();
commandBufferHelper->bufferRead(this, VK_ACCESS_UNIFORM_READ_BIT,
vk::GetPipelineStage(shaderType), &bufferHelper);
}
const std::vector<gl::InterfaceBlock> &ssbos = programState.getShaderStorageBlocks();
for (const gl::InterfaceBlock &ssbo : ssbos)
{
const gl::OffsetBindingPointer<gl::Buffer> &bufferBinding =
mState.getIndexedShaderStorageBuffer(ssbo.binding);
if (!ssbo.isActive(shaderType))
{
continue;
}
if (bufferBinding.get() == nullptr)
{
continue;
}
BufferVk *bufferVk = vk::GetImpl(bufferBinding.get());
vk::BufferHelper &bufferHelper = bufferVk->getBuffer();
// We set the SHADER_READ_BIT to be conservative.
VkAccessFlags accessFlags = VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT;
commandBufferHelper->bufferWrite(this, accessFlags, vk::GetPipelineStage(shaderType),
vk::AliasingMode::Allowed, &bufferHelper);
}
const std::vector<gl::AtomicCounterBuffer> &acbs = programState.getAtomicCounterBuffers();
for (const gl::AtomicCounterBuffer &atomicCounterBuffer : acbs)
{
uint32_t binding = atomicCounterBuffer.binding;
const gl::OffsetBindingPointer<gl::Buffer> &bufferBinding =
mState.getIndexedAtomicCounterBuffer(binding);
if (bufferBinding.get() == nullptr)
{
continue;
}
BufferVk *bufferVk = vk::GetImpl(bufferBinding.get());
vk::BufferHelper &bufferHelper = bufferVk->getBuffer();
// We set SHADER_READ_BIT to be conservative.
commandBufferHelper->bufferWrite(
this, VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT,
vk::GetPipelineStage(shaderType), vk::AliasingMode::Allowed, &bufferHelper);
}
}
}
angle::Result ContextVk::handleDirtyGraphicsShaderResources(DirtyBits::Iterator *dirtyBitsIterator,
DirtyBits dirtyBitMask)
{
return handleDirtyShaderResourcesImpl(mRenderPassCommands);
}
angle::Result ContextVk::handleDirtyComputeShaderResources()
{
return handleDirtyShaderResourcesImpl(mOutsideRenderPassCommands);
}
angle::Result ContextVk::handleDirtyGraphicsTransformFeedbackBuffersEmulation(
DirtyBits::Iterator *dirtyBitsIterator,
DirtyBits dirtyBitMask)
{
const gl::ProgramExecutable *executable = mState.getProgramExecutable();
ASSERT(executable);
if (!executable->hasTransformFeedbackOutput())
{
return angle::Result::Continue;
}
TransformFeedbackVk *transformFeedbackVk = vk::GetImpl(mState.getCurrentTransformFeedback());
if (mState.isTransformFeedbackActiveUnpaused())
{
size_t bufferCount = executable->getTransformFeedbackBufferCount();
const gl::TransformFeedbackBuffersArray<vk::BufferHelper *> &bufferHelpers =
transformFeedbackVk->getBufferHelpers();
for (size_t bufferIndex = 0; bufferIndex < bufferCount; ++bufferIndex)
{
vk::BufferHelper *bufferHelper = bufferHelpers[bufferIndex];
ASSERT(bufferHelper);
mRenderPassCommands->bufferWrite(this, VK_ACCESS_SHADER_WRITE_BIT,
vk::PipelineStage::VertexShader,
vk::AliasingMode::Disallowed, bufferHelper);
}
}
// TODO(http://anglebug.com/3570): Need to update to handle Program Pipelines
vk::BufferHelper *uniformBuffer = mDefaultUniformStorage.getCurrentBuffer();
vk::UniformsAndXfbDescriptorDesc xfbBufferDesc =
transformFeedbackVk->getTransformFeedbackDesc();
xfbBufferDesc.updateDefaultUniformBuffer(uniformBuffer ? uniformBuffer->getBufferSerial()
: vk::kInvalidBufferSerial);
return mProgram->getExecutable().updateTransformFeedbackDescriptorSet(
mProgram->getState(), mProgram->getDefaultUniformBlocks(), uniformBuffer, this,
xfbBufferDesc);
}
angle::Result ContextVk::handleDirtyGraphicsTransformFeedbackBuffersExtension(
DirtyBits::Iterator *dirtyBitsIterator,
DirtyBits dirtyBitMask)
{
const gl::ProgramExecutable *executable = mState.getProgramExecutable();
ASSERT(executable);
if (!executable->hasTransformFeedbackOutput() || !mState.isTransformFeedbackActive())
{
return angle::Result::Continue;
}
TransformFeedbackVk *transformFeedbackVk = vk::GetImpl(mState.getCurrentTransformFeedback());
size_t bufferCount = executable->getTransformFeedbackBufferCount();
const gl::TransformFeedbackBuffersArray<vk::BufferHelper *> &buffers =
transformFeedbackVk->getBufferHelpers();
gl::TransformFeedbackBuffersArray<vk::BufferHelper> &counterBuffers =
transformFeedbackVk->getCounterBufferHelpers();
// Issue necessary barriers for the transform feedback buffers.
for (size_t bufferIndex = 0; bufferIndex < bufferCount; ++bufferIndex)
{
vk::BufferHelper *bufferHelper = buffers[bufferIndex];
ASSERT(bufferHelper);
mRenderPassCommands->bufferWrite(this, VK_ACCESS_TRANSFORM_FEEDBACK_WRITE_BIT_EXT,
vk::PipelineStage::TransformFeedback,
vk::AliasingMode::Disallowed, bufferHelper);
}
// Issue necessary barriers for the transform feedback counter buffer. Note that the barrier is
// issued only on the first buffer (which uses a global memory barrier), as all the counter
// buffers of the transform feedback object are used together. The rest of the buffers are
// simply retained so they don't get deleted too early.
ASSERT(counterBuffers[0].valid());
mRenderPassCommands->bufferWrite(this,
VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_WRITE_BIT_EXT |
VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT,
vk::PipelineStage::TransformFeedback,
vk::AliasingMode::Disallowed, &counterBuffers[0]);
for (size_t bufferIndex = 1; bufferIndex < bufferCount; ++bufferIndex)
{
counterBuffers[bufferIndex].retainReadWrite(&getResourceUseList());
}
const gl::TransformFeedbackBuffersArray<VkBuffer> &bufferHandles =
transformFeedbackVk->getBufferHandles();
const gl::TransformFeedbackBuffersArray<VkDeviceSize> &bufferOffsets =
transformFeedbackVk->getBufferOffsets();
const gl::TransformFeedbackBuffersArray<VkDeviceSize> &bufferSizes =
transformFeedbackVk->getBufferSizes();
mRenderPassCommandBuffer->bindTransformFeedbackBuffers(
0, static_cast<uint32_t>(bufferCount), bufferHandles.data(), bufferOffsets.data(),
bufferSizes.data());
if (!mState.isTransformFeedbackActiveUnpaused())
{
return angle::Result::Continue;
}
// We should have same number of counter buffers as xfb buffers have
const gl::TransformFeedbackBuffersArray<VkBuffer> &counterBufferHandles =
transformFeedbackVk->getCounterBufferHandles();
bool rebindBuffers = transformFeedbackVk->getAndResetBufferRebindState();
mRenderPassCommands->beginTransformFeedback(bufferCount, counterBufferHandles.data(),
rebindBuffers);
return angle::Result::Continue;
}
angle::Result ContextVk::handleDirtyGraphicsTransformFeedbackResume(
DirtyBits::Iterator *dirtyBitsIterator,
DirtyBits dirtyBitMask)
{
if (mRenderPassCommands->isTransformFeedbackStarted())
{
mRenderPassCommands->resumeTransformFeedback();
}
ANGLE_TRY(resumeXfbRenderPassQueriesIfActive());
return angle::Result::Continue;
}
angle::Result ContextVk::handleDirtyGraphicsDescriptorSets(DirtyBits::Iterator *dirtyBitsIterator,
DirtyBits dirtyBitMask)
{
return handleDirtyDescriptorSetsImpl(mRenderPassCommandBuffer, PipelineType::Graphics);
}
angle::Result ContextVk::handleDirtyGraphicsViewport(DirtyBits::Iterator *dirtyBitsIterator,
DirtyBits dirtyBitMask)
{
mRenderPassCommandBuffer->setViewport(0, 1, &mViewport);
return angle::Result::Continue;
}
angle::Result ContextVk::handleDirtyGraphicsScissor(DirtyBits::Iterator *dirtyBitsIterator,
DirtyBits dirtyBitMask)
{
handleDirtyGraphicsScissorImpl(mState.isQueryActive(gl::QueryType::PrimitivesGenerated));
return angle::Result::Continue;
}
void ContextVk::handleDirtyGraphicsScissorImpl(bool isPrimitivesGeneratedQueryActive)
{
// If primitives generated query and rasterizer discard are both active, but the Vulkan
// implementation of the query does not support rasterizer discard, use an empty scissor to
// emulate it.
if (isEmulatingRasterizerDiscardDuringPrimitivesGeneratedQuery(
isPrimitivesGeneratedQueryActive))
{
VkRect2D emptyScissor = {};
mRenderPassCommandBuffer->setScissor(0, 1, &emptyScissor);
}
else
{
mRenderPassCommandBuffer->setScissor(0, 1, &mScissor);
}
}
angle::Result ContextVk::handleDirtyComputeDescriptorSets()
{
return handleDirtyDescriptorSetsImpl(&mOutsideRenderPassCommands->getCommandBuffer(),
PipelineType::Compute);
}
template <typename CommandBufferT>
angle::Result ContextVk::handleDirtyDescriptorSetsImpl(CommandBufferT *commandBuffer,
PipelineType pipelineType)
{
// When using Vulkan secondary command buffers, the descriptor sets need to be updated before
// they are bound.
if (!CommandBufferT::ExecutesInline())
{
flushDescriptorSetUpdates();
}
return mExecutable->updateDescriptorSets(this, commandBuffer, pipelineType);
}
void ContextVk::syncObjectPerfCounters()
{
mPerfCounters.descriptorSetAllocations = 0;
mPerfCounters.shaderBuffersDescriptorSetCacheHits = 0;
mPerfCounters.shaderBuffersDescriptorSetCacheMisses = 0;
// ContextVk's descriptor set allocations
ContextVkPerfCounters contextCounters = getAndResetObjectPerfCounters();
for (uint32_t count : contextCounters.descriptorSetsAllocated)
{
mPerfCounters.descriptorSetAllocations += count;
}
// UtilsVk's descriptor set allocations
mPerfCounters.descriptorSetAllocations +=
mUtils.getAndResetObjectPerfCounters().descriptorSetsAllocated;
// ProgramExecutableVk's descriptor set allocations
const gl::State &state = getState();
const gl::ShaderProgramManager &shadersAndPrograms = state.getShaderProgramManagerForCapture();
const gl::ResourceMap<gl::Program, gl::ShaderProgramID> &programs =
shadersAndPrograms.getProgramsForCaptureAndPerf();
for (const std::pair<GLuint, gl::Program *> &resource : programs)
{
gl::Program *program = resource.second;
if (program->hasLinkingState())
{
continue;
}
ProgramVk *programVk = vk::GetImpl(resource.second);
ProgramExecutablePerfCounters progPerfCounters =
programVk->getExecutable().getAndResetObjectPerfCounters();
for (uint32_t count : progPerfCounters.descriptorSetAllocations)
{
mPerfCounters.descriptorSetAllocations += count;
}
mPerfCounters.shaderBuffersDescriptorSetCacheHits +=
progPerfCounters.descriptorSetCacheHits[DescriptorSetIndex::ShaderResource];
mPerfCounters.shaderBuffersDescriptorSetCacheMisses +=
progPerfCounters.descriptorSetCacheMisses[DescriptorSetIndex::ShaderResource];
}
}
void ContextVk::updateOverlayOnPresent()
{
const gl::OverlayType *overlay = mState.getOverlay();
ASSERT(overlay->isEnabled());
syncObjectPerfCounters();
// Update overlay if active.
{
gl::RunningGraphWidget *renderPassCount =
overlay->getRunningGraphWidget(gl::WidgetId::VulkanRenderPassCount);
renderPassCount->add(mRenderPassCommands->getAndResetCounter());
renderPassCount->next();
}
{
gl::RunningGraphWidget *writeDescriptorSetCount =
overlay->getRunningGraphWidget(gl::WidgetId::VulkanWriteDescriptorSetCount);
writeDescriptorSetCount->add(mPerfCounters.writeDescriptorSets);
writeDescriptorSetCount->next();
mPerfCounters.writeDescriptorSets = 0;
}
{
gl::RunningGraphWidget *descriptorSetAllocationCount =
overlay->getRunningGraphWidget(gl::WidgetId::VulkanDescriptorSetAllocations);
descriptorSetAllocationCount->add(mPerfCounters.descriptorSetAllocations);
descriptorSetAllocationCount->next();
}
{
gl::RunningGraphWidget *shaderBufferHitRate =
overlay->getRunningGraphWidget(gl::WidgetId::VulkanShaderBufferDSHitRate);
size_t numCacheAccesses = mPerfCounters.shaderBuffersDescriptorSetCacheHits +
mPerfCounters.shaderBuffersDescriptorSetCacheMisses;
if (numCacheAccesses > 0)
{
float hitRateFloat =
static_cast<float>(mPerfCounters.shaderBuffersDescriptorSetCacheHits) /
static_cast<float>(numCacheAccesses);
size_t hitRate = static_cast<size_t>(hitRateFloat * 100.0f);
shaderBufferHitRate->add(hitRate);
shaderBufferHitRate->next();
}
}
{
gl::RunningGraphWidget *dynamicBufferAllocations =
overlay->getRunningGraphWidget(gl::WidgetId::VulkanDynamicBufferAllocations);
dynamicBufferAllocations->next();
}
}
void ContextVk::addOverlayUsedBuffersCount(vk::CommandBufferHelperCommon *commandBuffer)
{
const gl::OverlayType *overlay = mState.getOverlay();
if (!overlay->isEnabled())
{
return;
}
gl::RunningHistogramWidget *widget =
overlay->getRunningHistogramWidget(gl::WidgetId::VulkanRenderPassBufferCount);
size_t buffersCount = commandBuffer->getUsedBuffersCount();
if (buffersCount > 0)
{
widget->add(buffersCount);
widget->next();
}
}
angle::Result ContextVk::submitFrame(const vk::Semaphore *signalSemaphore, Serial *submitSerialOut)
{
if (mCurrentWindowSurface)
{
const vk::Semaphore *waitSemaphore =
mCurrentWindowSurface->getAndResetAcquireImageSemaphore();
if (waitSemaphore != nullptr)
{
addWaitSemaphore(waitSemaphore->getHandle(),
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT);
}
}
if (vk::CommandBufferHelperCommon::kEnableCommandStreamDiagnostics)
{
dumpCommandStreamDiagnostics();
}
getShareGroupVk()->acquireResourceUseList(std::move(mResourceUseList));
ANGLE_TRY(mRenderer->submitFrame(this, hasProtectedContent(), mContextPriority,
std::move(mWaitSemaphores),
std::move(mWaitSemaphoreStageMasks), signalSemaphore,
getShareGroupVk()->releaseResourceUseLists(),
std::move(mCurrentGarbage), &mCommandPools, submitSerialOut));
onRenderPassFinished(RenderPassClosureReason::AlreadySpecifiedElsewhere);
mComputeDirtyBits |= mNewComputeCommandBufferDirtyBits;
if (mGpuEventsEnabled)
{
ANGLE_TRY(checkCompletedGpuEvents());
}
return angle::Result::Continue;
}
angle::Result ContextVk::synchronizeCpuGpuTime()
{
ASSERT(mGpuEventsEnabled);
angle::PlatformMethods *platform = ANGLEPlatformCurrent();
ASSERT(platform);
// To synchronize CPU and GPU times, we need to get the CPU timestamp as close as possible
// to the GPU timestamp. The process of getting the GPU timestamp is as follows:
//
// CPU GPU
//
// Record command buffer
// with timestamp query
//
// Submit command buffer
//
// Post-submission work Begin execution
//
// ???? Write timestamp Tgpu
//
// ???? End execution
//
// ???? Return query results
//
// ????
//
// Get query results
//
// The areas of unknown work (????) on the CPU indicate that the CPU may or may not have
// finished post-submission work while the GPU is executing in parallel. With no further
// work, querying CPU timestamps before submission and after getting query results give the
// bounds to Tgpu, which could be quite large.
//
// Using VkEvents, the GPU can be made to wait for the CPU and vice versa, in an effort to
// reduce this range. This function implements the following procedure:
//
// CPU GPU
//
// Record command buffer
// with timestamp query
//
// Submit command buffer
//
// Post-submission work Begin execution
//
// ???? Set Event GPUReady
//
// Wait on Event GPUReady Wait on Event CPUReady
//
// Get CPU Time Ts Wait on Event CPUReady
//
// Set Event CPUReady Wait on Event CPUReady
//
// Get CPU Time Tcpu Get GPU Time Tgpu
//
// Wait on Event GPUDone Set Event GPUDone
//
// Get CPU Time Te End Execution
//
// Idle Return query results
//
// Get query results
//
// If Te-Ts > epsilon, a GPU or CPU interruption can be assumed and the operation can be
// retried. Once Te-Ts < epsilon, Tcpu can be taken to presumably match Tgpu. Finding an
// epsilon that's valid for all devices may be difficult, so the loop can be performed only
// a limited number of times and the Tcpu,Tgpu pair corresponding to smallest Te-Ts used for
// calibration.
//
// Note: Once VK_EXT_calibrated_timestamps is ubiquitous, this should be redone.
ANGLE_TRACE_EVENT0("gpu.angle", "ContextVk::synchronizeCpuGpuTime");
// Create a query used to receive the GPU timestamp
vk::QueryHelper timestampQuery;
ANGLE_TRY(mGpuEventQueryPool.allocateQuery(this, &timestampQuery, 1));
// Create the three events
VkEventCreateInfo eventCreateInfo = {};
eventCreateInfo.sType = VK_STRUCTURE_TYPE_EVENT_CREATE_INFO;
eventCreateInfo.flags = 0;
VkDevice device = getDevice();
vk::DeviceScoped<vk::Event> cpuReady(device), gpuReady(device), gpuDone(device);
ANGLE_VK_TRY(this, cpuReady.get().init(device, eventCreateInfo));
ANGLE_VK_TRY(this, gpuReady.get().init(device, eventCreateInfo));
ANGLE_VK_TRY(this, gpuDone.get().init(device, eventCreateInfo));
constexpr uint32_t kRetries = 10;
// Time suffixes used are S for seconds and Cycles for cycles
double tightestRangeS = 1e6f;
double TcpuS = 0;
uint64_t TgpuCycles = 0;
for (uint32_t i = 0; i < kRetries; ++i)
{
// Reset the events
ANGLE_VK_TRY(this, cpuReady.get().reset(device));
ANGLE_VK_TRY(this, gpuReady.get().reset(device));
ANGLE_VK_TRY(this, gpuDone.get().reset(device));
// Record the command buffer
vk::DeviceScoped<vk::PrimaryCommandBuffer> commandBatch(device);
vk::PrimaryCommandBuffer &commandBuffer = commandBatch.get();
vk::ResourceUseList scratchResourceUseList;
ANGLE_TRY(mRenderer->getCommandBufferOneOff(this, hasProtectedContent(), &commandBuffer));
commandBuffer.setEvent(gpuReady.get().getHandle(), VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT);
commandBuffer.waitEvents(1, cpuReady.get().ptr(), VK_PIPELINE_STAGE_HOST_BIT,
VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, 0, nullptr, 0, nullptr, 0,
nullptr);
timestampQuery.writeTimestampToPrimary(this, &commandBuffer);
timestampQuery.retain(&scratchResourceUseList);
commandBuffer.setEvent(gpuDone.get().getHandle(), VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT);
ANGLE_VK_TRY(this, commandBuffer.end());
Serial submitSerial;
// vkEvent's are externally synchronized, therefore need work to be submitted before calling
// vkGetEventStatus
ANGLE_TRY(mRenderer->queueSubmitOneOff(
this, std::move(commandBuffer), hasProtectedContent(), mContextPriority, nullptr, 0,
nullptr, vk::SubmitPolicy::EnsureSubmitted, &submitSerial));
scratchResourceUseList.releaseResourceUsesAndUpdateSerials(submitSerial);
// Wait for GPU to be ready. This is a short busy wait.
VkResult result = VK_EVENT_RESET;
do
{
result = gpuReady.get().getStatus(device);
if (result != VK_EVENT_SET && result != VK_EVENT_RESET)
{
ANGLE_VK_TRY(this, result);
}
} while (result == VK_EVENT_RESET);
double TsS = platform->monotonicallyIncreasingTime(platform);
// Tell the GPU to go ahead with the timestamp query.
ANGLE_VK_TRY(this, cpuReady.get().set(device));
double cpuTimestampS = platform->monotonicallyIncreasingTime(platform);
// Wait for GPU to be done. Another short busy wait.
do
{
result = gpuDone.get().getStatus(device);
if (result != VK_EVENT_SET && result != VK_EVENT_RESET)
{
ANGLE_VK_TRY(this, result);
}
} while (result == VK_EVENT_RESET);
double TeS = platform->monotonicallyIncreasingTime(platform);
// Get the query results
ANGLE_TRY(finishToSerial(submitSerial));
vk::QueryResult gpuTimestampCycles(1);
ANGLE_TRY(timestampQuery.getUint64Result(this, &gpuTimestampCycles));
// Use the first timestamp queried as origin.
if (mGpuEventTimestampOrigin == 0)
{
mGpuEventTimestampOrigin =
gpuTimestampCycles.getResult(vk::QueryResult::kDefaultResultIndex);
}
// Take these CPU and GPU timestamps if there is better confidence.
double confidenceRangeS = TeS - TsS;
if (confidenceRangeS < tightestRangeS)
{
tightestRangeS = confidenceRangeS;
TcpuS = cpuTimestampS;
TgpuCycles = gpuTimestampCycles.getResult(vk::QueryResult::kDefaultResultIndex);
}
}
mGpuEventQueryPool.freeQuery(this, &timestampQuery);
// timestampPeriod gives nanoseconds/cycle.
double TgpuS =
(TgpuCycles - mGpuEventTimestampOrigin) *
static_cast<double>(getRenderer()->getPhysicalDeviceProperties().limits.timestampPeriod) /
1'000'000'000.0;
flushGpuEvents(TgpuS, TcpuS);
mGpuClockSync.gpuTimestampS = TgpuS;
mGpuClockSync.cpuTimestampS = TcpuS;
return angle::Result::Continue;
}
angle::Result ContextVk::traceGpuEventImpl(vk::OutsideRenderPassCommandBuffer *commandBuffer,
char phase,
const EventName &name)
{
ASSERT(mGpuEventsEnabled);
GpuEventQuery gpuEvent;
gpuEvent.name = name;
gpuEvent.phase = phase;
ANGLE_TRY(mGpuEventQueryPool.allocateQuery(this, &gpuEvent.queryHelper, 1));
gpuEvent.queryHelper.writeTimestamp(this, commandBuffer);
mInFlightGpuEventQueries.push_back(std::move(gpuEvent));
return angle::Result::Continue;
}
angle::Result ContextVk::checkCompletedGpuEvents()
{
ASSERT(mGpuEventsEnabled);
angle::PlatformMethods *platform = ANGLEPlatformCurrent();
ASSERT(platform);
int finishedCount = 0;
Serial lastCompletedSerial = getLastCompletedQueueSerial();
for (GpuEventQuery &eventQuery : mInFlightGpuEventQueries)
{
// Only check the timestamp query if the submission has finished.
if (eventQuery.queryHelper.usedInRunningCommands(lastCompletedSerial))
{
break;
}
// See if the results are available.
vk::QueryResult gpuTimestampCycles(1);
bool available = false;
ANGLE_TRY(eventQuery.queryHelper.getUint64ResultNonBlocking(this, &gpuTimestampCycles,
&available));
if (!available)
{
break;
}
mGpuEventQueryPool.freeQuery(this, &eventQuery.queryHelper);
GpuEvent gpuEvent;
gpuEvent.gpuTimestampCycles =
gpuTimestampCycles.getResult(vk::QueryResult::kDefaultResultIndex);
gpuEvent.name = eventQuery.name;
gpuEvent.phase = eventQuery.phase;
mGpuEvents.emplace_back(gpuEvent);
++finishedCount;
}
mInFlightGpuEventQueries.erase(mInFlightGpuEventQueries.begin(),
mInFlightGpuEventQueries.begin() + finishedCount);
return angle::Result::Continue;
}
void ContextVk::flushGpuEvents(double nextSyncGpuTimestampS, double nextSyncCpuTimestampS)
{
if (mGpuEvents.empty())
{
return;
}
angle::PlatformMethods *platform = ANGLEPlatformCurrent();
ASSERT(platform);
// Find the slope of the clock drift for adjustment
double lastGpuSyncTimeS = mGpuClockSync.gpuTimestampS;
double lastGpuSyncDiffS = mGpuClockSync.cpuTimestampS - mGpuClockSync.gpuTimestampS;
double gpuSyncDriftSlope = 0;
double nextGpuSyncTimeS = nextSyncGpuTimestampS;
double nextGpuSyncDiffS = nextSyncCpuTimestampS - nextSyncGpuTimestampS;
// No gpu trace events should have been generated before the clock sync, so if there is no
// "previous" clock sync, there should be no gpu events (i.e. the function early-outs
// above).
ASSERT(mGpuClockSync.gpuTimestampS != std::numeric_limits<double>::max() &&
mGpuClockSync.cpuTimestampS != std::numeric_limits<double>::max());
gpuSyncDriftSlope =
(nextGpuSyncDiffS - lastGpuSyncDiffS) / (nextGpuSyncTimeS - lastGpuSyncTimeS);
for (const GpuEvent &gpuEvent : mGpuEvents)
{
double gpuTimestampS =
(gpuEvent.gpuTimestampCycles - mGpuEventTimestampOrigin) *
static_cast<double>(
getRenderer()->getPhysicalDeviceProperties().limits.timestampPeriod) *
1e-9;
// Account for clock drift.
gpuTimestampS += lastGpuSyncDiffS + gpuSyncDriftSlope * (gpuTimestampS - lastGpuSyncTimeS);
// Generate the trace now that the GPU timestamp is available and clock drifts are
// accounted for.
static long long eventId = 1;
static const unsigned char *categoryEnabled =
TRACE_EVENT_API_GET_CATEGORY_ENABLED(platform, "gpu.angle.gpu");
platform->addTraceEvent(platform, gpuEvent.phase, categoryEnabled, gpuEvent.name.data(),
eventId++, gpuTimestampS, 0, nullptr, nullptr, nullptr,
TRACE_EVENT_FLAG_NONE);
}
mGpuEvents.clear();
}
void ContextVk::clearAllGarbage()
{
ANGLE_TRACE_EVENT0("gpu.angle", "ContextVk::clearAllGarbage");
// The VMA virtual allocator code has assertion to ensure all sub-ranges are freed before
// virtual block gets freed. We need to ensure all completed garbage objects are actually freed
// to avoid hitting that assertion.
mRenderer->cleanupCompletedCommandsGarbage();
for (vk::GarbageObject &garbage : mCurrentGarbage)
{
garbage.destroy(mRenderer);
}
mCurrentGarbage.clear();
}
void ContextVk::handleDeviceLost()
{
(void)mOutsideRenderPassCommands->reset(this);
(void)mRenderPassCommands->reset(this);
mRenderer->handleDeviceLost();
clearAllGarbage();
mRenderer->notifyDeviceLost();
}
angle::Result ContextVk::drawArrays(const gl::Context *context,
gl::PrimitiveMode mode,
GLint first,
GLsizei count)
{
uint32_t clampedVertexCount = gl::GetClampedVertexCount<uint32_t>(count);
if (mode == gl::PrimitiveMode::LineLoop)
{
uint32_t numIndices;
ANGLE_TRY(setupLineLoopDraw(context, mode, first, count, gl::DrawElementsType::InvalidEnum,
nullptr, &numIndices));
vk::LineLoopHelper::Draw(numIndices, 0, mRenderPassCommandBuffer);
}
else
{
ANGLE_TRY(setupDraw(context, mode, first, count, 1, gl::DrawElementsType::InvalidEnum,
nullptr, mNonIndexedDirtyBitsMask));
mRenderPassCommandBuffer->draw(clampedVertexCount, first);
}
return angle::Result::Continue;
}
angle::Result ContextVk::drawArraysInstanced(const gl::Context *context,
gl::PrimitiveMode mode,
GLint first,
GLsizei count,
GLsizei instances)
{
if (mode == gl::PrimitiveMode::LineLoop)
{
uint32_t clampedVertexCount = gl::GetClampedVertexCount<uint32_t>(count);
uint32_t numIndices;
ANGLE_TRY(setupLineLoopDraw(context, mode, first, clampedVertexCount,
gl::DrawElementsType::InvalidEnum, nullptr, &numIndices));
mRenderPassCommandBuffer->drawIndexedInstanced(numIndices, instances);
return angle::Result::Continue;
}
ANGLE_TRY(setupDraw(context, mode, first, count, instances, gl::DrawElementsType::InvalidEnum,
nullptr, mNonIndexedDirtyBitsMask));
mRenderPassCommandBuffer->drawInstanced(gl::GetClampedVertexCount<uint32_t>(count), instances,
first);
return angle::Result::Continue;
}
angle::Result ContextVk::drawArraysInstancedBaseInstance(const gl::Context *context,
gl::PrimitiveMode mode,
GLint first,
GLsizei count,
GLsizei instances,
GLuint baseInstance)
{
if (mode == gl::PrimitiveMode::LineLoop)
{
uint32_t clampedVertexCount = gl::GetClampedVertexCount<uint32_t>(count);
uint32_t numIndices;
ANGLE_TRY(setupLineLoopDraw(context, mode, first, clampedVertexCount,
gl::DrawElementsType::InvalidEnum, nullptr, &numIndices));
mRenderPassCommandBuffer->drawIndexedInstancedBaseVertexBaseInstance(numIndices, instances,
0, 0, baseInstance);
return angle::Result::Continue;
}
ANGLE_TRY(setupDraw(context, mode, first, count, instances, gl::DrawElementsType::InvalidEnum,
nullptr, mNonIndexedDirtyBitsMask));
mRenderPassCommandBuffer->drawInstancedBaseInstance(gl::GetClampedVertexCount<uint32_t>(count),
instances, first, baseInstance);
return angle::Result::Continue;
}
angle::Result ContextVk::drawElements(const gl::Context *context,
gl::PrimitiveMode mode,
GLsizei count,
gl::DrawElementsType type,
const void *indices)
{
if (mode == gl::PrimitiveMode::LineLoop)
{
uint32_t indexCount;
ANGLE_TRY(setupLineLoopDraw(context, mode, 0, count, type, indices, &indexCount));
vk::LineLoopHelper::Draw(indexCount, 0, mRenderPassCommandBuffer);
}
else
{
ANGLE_TRY(setupIndexedDraw(context, mode, count, 1, type, indices));
mRenderPassCommandBuffer->drawIndexed(count);
}
return angle::Result::Continue;
}
angle::Result ContextVk::drawElementsBaseVertex(const gl::Context *context,
gl::PrimitiveMode mode,
GLsizei count,
gl::DrawElementsType type,
const void *indices,
GLint baseVertex)
{
if (mode == gl::PrimitiveMode::LineLoop)
{
uint32_t indexCount;
ANGLE_TRY(setupLineLoopDraw(context, mode, 0, count, type, indices, &indexCount));
vk::LineLoopHelper::Draw(indexCount, baseVertex, mRenderPassCommandBuffer);
}
else
{
ANGLE_TRY(setupIndexedDraw(context, mode, count, 1, type, indices));
mRenderPassCommandBuffer->drawIndexedBaseVertex(count, baseVertex);
}
return angle::Result::Continue;
}
angle::Result ContextVk::drawElementsInstanced(const gl::Context *context,
gl::PrimitiveMode mode,
GLsizei count,
gl::DrawElementsType type,
const void *indices,
GLsizei instances)
{
if (mode == gl::PrimitiveMode::LineLoop)
{
uint32_t indexCount;
ANGLE_TRY(setupLineLoopDraw(context, mode, 0, count, type, indices, &indexCount));
count = indexCount;
}
else
{
ANGLE_TRY(setupIndexedDraw(context, mode, count, instances, type, indices));
}
mRenderPassCommandBuffer->drawIndexedInstanced(count, instances);
return angle::Result::Continue;
}
angle::Result ContextVk::drawElementsInstancedBaseVertex(const gl::Context *context,
gl::PrimitiveMode mode,
GLsizei count,
gl::DrawElementsType type,
const void *indices,
GLsizei instances,
GLint baseVertex)
{
if (mode == gl::PrimitiveMode::LineLoop)
{
uint32_t indexCount;
ANGLE_TRY(setupLineLoopDraw(context, mode, 0, count, type, indices, &indexCount));
count = indexCount;
}
else
{
ANGLE_TRY(setupIndexedDraw(context, mode, count, instances, type, indices));
}
mRenderPassCommandBuffer->drawIndexedInstancedBaseVertex(count, instances, baseVertex);
return angle::Result::Continue;
}
angle::Result ContextVk::drawElementsInstancedBaseVertexBaseInstance(const gl::Context *context,
gl::PrimitiveMode mode,
GLsizei count,
gl::DrawElementsType type,
const void *indices,
GLsizei instances,
GLint baseVertex,
GLuint baseInstance)
{
if (mode == gl::PrimitiveMode::LineLoop)
{
uint32_t indexCount;
ANGLE_TRY(setupLineLoopDraw(context, mode, 0, count, type, indices, &indexCount));
mRenderPassCommandBuffer->drawIndexedInstancedBaseVertexBaseInstance(
indexCount, instances, 0, baseVertex, baseInstance);
return angle::Result::Continue;
}
ANGLE_TRY(setupIndexedDraw(context, mode, count, instances, type, indices));
mRenderPassCommandBuffer->drawIndexedInstancedBaseVertexBaseInstance(count, instances, 0,
baseVertex, baseInstance);
return angle::Result::Continue;
}
angle::Result ContextVk::drawRangeElements(const gl::Context *context,
gl::PrimitiveMode mode,
GLuint start,
GLuint end,
GLsizei count,
gl::DrawElementsType type,
const void *indices)
{
return drawElements(context, mode, count, type, indices);
}
angle::Result ContextVk::drawRangeElementsBaseVertex(const gl::Context *context,
gl::PrimitiveMode mode,
GLuint start,
GLuint end,
GLsizei count,
gl::DrawElementsType type,
const void *indices,
GLint baseVertex)
{
return drawElementsBaseVertex(context, mode, count, type, indices, baseVertex);
}
VkDevice ContextVk::getDevice() const
{
return mRenderer->getDevice();
}
angle::Result ContextVk::drawArraysIndirect(const gl::Context *context,
gl::PrimitiveMode mode,
const void *indirect)
{
return multiDrawArraysIndirectHelper(context, mode, indirect, 1, 0);
}
angle::Result ContextVk::drawElementsIndirect(const gl::Context *context,
gl::PrimitiveMode mode,
gl::DrawElementsType type,
const void *indirect)
{
return multiDrawElementsIndirectHelper(context, mode, type, indirect, 1, 0);
}
angle::Result ContextVk::multiDrawArrays(const gl::Context *context,
gl::PrimitiveMode mode,
const GLint *firsts,
const GLsizei *counts,
GLsizei drawcount)
{
return rx::MultiDrawArraysGeneral(this, context, mode, firsts, counts, drawcount);
}
angle::Result ContextVk::multiDrawArraysInstanced(const gl::Context *context,
gl::PrimitiveMode mode,
const GLint *firsts,
const GLsizei *counts,
const GLsizei *instanceCounts,
GLsizei drawcount)
{
return rx::MultiDrawArraysInstancedGeneral(this, context, mode, firsts, counts, instanceCounts,
drawcount);
}
angle::Result ContextVk::multiDrawArraysIndirect(const gl::Context *context,
gl::PrimitiveMode mode,
const void *indirect,
GLsizei drawcount,
GLsizei stride)
{
return multiDrawArraysIndirectHelper(context, mode, indirect, drawcount, stride);
}
angle::Result ContextVk::multiDrawArraysIndirectHelper(const gl::Context *context,
gl::PrimitiveMode mode,
const void *indirect,
GLsizei drawcount,
GLsizei stride)
{
if (drawcount > 1 && !CanMultiDrawIndirectUseCmd(this, mVertexArray, mode, drawcount, stride))
{
return rx::MultiDrawArraysIndirectGeneral(this, context, mode, indirect, drawcount, stride);
}
// Stride must be a multiple of the size of VkDrawIndirectCommand (stride = 0 is invalid when
// drawcount > 1).
uint32_t vkStride = (stride == 0 && drawcount > 1) ? sizeof(VkDrawIndirectCommand) : stride;
gl::Buffer *indirectBuffer = mState.getTargetBuffer(gl::BufferBinding::DrawIndirect);
vk::BufferHelper *currentIndirectBuf = &vk::GetImpl(indirectBuffer)->getBuffer();
VkDeviceSize currentIndirectBufOffset = reinterpret_cast<VkDeviceSize>(indirect);
if (mVertexArray->getStreamingVertexAttribsMask().any())
{
// Handling instanced vertex attributes is not covered for drawcount > 1.
ASSERT(drawcount <= 1);
// We have instanced vertex attributes that need to be emulated for Vulkan.
// invalidate any cache and map the buffer so that we can read the indirect data.
// Mapping the buffer will cause a flush.
ANGLE_TRY(currentIndirectBuf->invalidate(mRenderer, 0, sizeof(VkDrawIndirectCommand)));
uint8_t *buffPtr;
ANGLE_TRY(currentIndirectBuf->map(this, &buffPtr));
const VkDrawIndirectCommand *indirectData =
reinterpret_cast<VkDrawIndirectCommand *>(buffPtr + currentIndirectBufOffset);
ANGLE_TRY(drawArraysInstanced(context, mode, indirectData->firstVertex,
indirectData->vertexCount, indirectData->instanceCount));
currentIndirectBuf->unmap(mRenderer);
return angle::Result::Continue;
}
if (mode == gl::PrimitiveMode::LineLoop)
{
// Line loop only supports handling at most one indirect parameter.
ASSERT(drawcount <= 1);
ASSERT(indirectBuffer);
vk::BufferHelper *dstIndirectBuf = nullptr;
ANGLE_TRY(setupLineLoopIndirectDraw(context, mode, currentIndirectBuf,
currentIndirectBufOffset, &dstIndirectBuf));
mRenderPassCommandBuffer->drawIndexedIndirect(
dstIndirectBuf->getBuffer(), dstIndirectBuf->getOffset(), drawcount, vkStride);
return angle::Result::Continue;
}
ANGLE_TRY(setupIndirectDraw(context, mode, mNonIndexedDirtyBitsMask, currentIndirectBuf));
mRenderPassCommandBuffer->drawIndirect(
currentIndirectBuf->getBuffer(), currentIndirectBuf->getOffset() + currentIndirectBufOffset,
drawcount, vkStride);
return angle::Result::Continue;
}
angle::Result ContextVk::multiDrawElements(const gl::Context *context,
gl::PrimitiveMode mode,
const GLsizei *counts,
gl::DrawElementsType type,
const GLvoid *const *indices,
GLsizei drawcount)
{
return rx::MultiDrawElementsGeneral(this, context, mode, counts, type, indices, drawcount);
}
angle::Result ContextVk::multiDrawElementsInstanced(const gl::Context *context,
gl::PrimitiveMode mode,
const GLsizei *counts,
gl::DrawElementsType type,
const GLvoid *const *indices,
const GLsizei *instanceCounts,
GLsizei drawcount)
{
return rx::MultiDrawElementsInstancedGeneral(this, context, mode, counts, type, indices,
instanceCounts, drawcount);
}
angle::Result ContextVk::multiDrawElementsIndirect(const gl::Context *context,
gl::PrimitiveMode mode,
gl::DrawElementsType type,
const void *indirect,
GLsizei drawcount,
GLsizei stride)
{
return multiDrawElementsIndirectHelper(context, mode, type, indirect, drawcount, stride);
}
angle::Result ContextVk::multiDrawElementsIndirectHelper(const gl::Context *context,
gl::PrimitiveMode mode,
gl::DrawElementsType type,
const void *indirect,
GLsizei drawcount,
GLsizei stride)
{
if (drawcount > 1 && !CanMultiDrawIndirectUseCmd(this, mVertexArray, mode, drawcount, stride))
{
return rx::MultiDrawElementsIndirectGeneral(this, context, mode, type, indirect, drawcount,
stride);
}
// Stride must be a multiple of the size of VkDrawIndexedIndirectCommand (stride = 0 is invalid
// when drawcount > 1).
uint32_t vkStride =
(stride == 0 && drawcount > 1) ? sizeof(VkDrawIndexedIndirectCommand) : stride;
gl::Buffer *indirectBuffer = mState.getTargetBuffer(gl::BufferBinding::DrawIndirect);
ASSERT(indirectBuffer);
vk::BufferHelper *currentIndirectBuf = &vk::GetImpl(indirectBuffer)->getBuffer();
VkDeviceSize currentIndirectBufOffset = reinterpret_cast<VkDeviceSize>(indirect);
// Reset the index buffer offset
mGraphicsDirtyBits.set(DIRTY_BIT_INDEX_BUFFER);
mCurrentIndexBufferOffset = 0;
if (mVertexArray->getStreamingVertexAttribsMask().any())
{
// Handling instanced vertex attributes is not covered for drawcount > 1.
ASSERT(drawcount <= 1);
// We have instanced vertex attributes that need to be emulated for Vulkan.
// invalidate any cache and map the buffer so that we can read the indirect data.
// Mapping the buffer will cause a flush.
ANGLE_TRY(
currentIndirectBuf->invalidate(mRenderer, 0, sizeof(VkDrawIndexedIndirectCommand)));
uint8_t *buffPtr;
ANGLE_TRY(currentIndirectBuf->map(this, &buffPtr));
const VkDrawIndexedIndirectCommand *indirectData =
reinterpret_cast<VkDrawIndexedIndirectCommand *>(buffPtr + currentIndirectBufOffset);
ANGLE_TRY(drawElementsInstanced(context, mode, indirectData->indexCount, type, nullptr,
indirectData->instanceCount));
currentIndirectBuf->unmap(mRenderer);
return angle::Result::Continue;
}
if (shouldConvertUint8VkIndexType(type) && mGraphicsDirtyBits[DIRTY_BIT_INDEX_BUFFER])
{
ANGLE_VK_PERF_WARNING(
this, GL_DEBUG_SEVERITY_LOW,
"Potential inefficiency emulating uint8 vertex attributes due to lack "
"of hardware support");
vk::BufferHelper *dstIndirectBuf;
ANGLE_TRY(mVertexArray->convertIndexBufferIndirectGPU(
this, currentIndirectBuf, currentIndirectBufOffset, &dstIndirectBuf));
currentIndirectBuf = dstIndirectBuf;
currentIndirectBufOffset = 0;
}
if (mode == gl::PrimitiveMode::LineLoop)
{
// Line loop only supports handling at most one indirect parameter.
ASSERT(drawcount <= 1);
vk::BufferHelper *dstIndirectBuf;
ANGLE_TRY(setupLineLoopIndexedIndirectDraw(context, mode, type, currentIndirectBuf,
currentIndirectBufOffset, &dstIndirectBuf));
currentIndirectBuf = dstIndirectBuf;
currentIndirectBufOffset = 0;
}
else
{
ANGLE_TRY(setupIndexedIndirectDraw(context, mode, type, currentIndirectBuf));
}
mRenderPassCommandBuffer->drawIndexedIndirect(
currentIndirectBuf->getBuffer(), currentIndirectBuf->getOffset() + currentIndirectBufOffset,
drawcount, vkStride);
return angle::Result::Continue;
}
angle::Result ContextVk::multiDrawArraysInstancedBaseInstance(const gl::Context *context,
gl::PrimitiveMode mode,
const GLint *firsts,
const GLsizei *counts,
const GLsizei *instanceCounts,
const GLuint *baseInstances,
GLsizei drawcount)
{
return rx::MultiDrawArraysInstancedBaseInstanceGeneral(
this, context, mode, firsts, counts, instanceCounts, baseInstances, drawcount);
}
angle::Result ContextVk::multiDrawElementsInstancedBaseVertexBaseInstance(
const gl::Context *context,
gl::PrimitiveMode mode,
const GLsizei *counts,
gl::DrawElementsType type,
const GLvoid *const *indices,
const GLsizei *instanceCounts,
const GLint *baseVertices,
const GLuint *baseInstances,
GLsizei drawcount)
{
return rx::MultiDrawElementsInstancedBaseVertexBaseInstanceGeneral(
this, context, mode, counts, type, indices, instanceCounts, baseVertices, baseInstances,
drawcount);
}
void ContextVk::optimizeRenderPassForPresent(VkFramebuffer framebufferHandle)
{
if (!mRenderPassCommands->started())
{
return;
}
if (framebufferHandle != mRenderPassCommands->getFramebufferHandle())
{
return;
}
RenderTargetVk *color0RenderTarget = mDrawFramebuffer->getColorDrawRenderTarget(0);
if (!color0RenderTarget)
{
return;
}
// EGL1.5 spec: The contents of ancillary buffers are always undefined after calling
// eglSwapBuffers
RenderTargetVk *depthStencilRenderTarget = mDrawFramebuffer->getDepthStencilRenderTarget();
if (depthStencilRenderTarget)
{
// Change depth/stencil attachment storeOp to DONT_CARE
const gl::DepthStencilState &dsState = mState.getDepthStencilState();
mRenderPassCommands->invalidateRenderPassStencilAttachment(
dsState, mRenderPassCommands->getRenderArea());
mRenderPassCommands->invalidateRenderPassDepthAttachment(
dsState, mRenderPassCommands->getRenderArea());
// Mark content as invalid so that we will not load them in next renderpass
depthStencilRenderTarget->invalidateEntireContent(this);
depthStencilRenderTarget->invalidateEntireStencilContent(this);
}
// Use finalLayout instead of extra barrier for layout change to present
vk::ImageHelper &image = color0RenderTarget->getImageForWrite();
mRenderPassCommands->setImageOptimizeForPresent(&image);
}
gl::GraphicsResetStatus ContextVk::getResetStatus()
{
if (mRenderer->isDeviceLost())
{
// TODO(geofflang): It may be possible to track which context caused the device lost and
// return either GL_GUILTY_CONTEXT_RESET or GL_INNOCENT_CONTEXT_RESET.
// http://anglebug.com/2787
return gl::GraphicsResetStatus::UnknownContextReset;
}
return gl::GraphicsResetStatus::NoError;
}
angle::Result ContextVk::insertEventMarker(GLsizei length, const char *marker)
{
insertEventMarkerImpl(GL_DEBUG_SOURCE_APPLICATION, marker);
return angle::Result::Continue;
}
void ContextVk::insertEventMarkerImpl(GLenum source, const char *marker)
{
if (!mRenderer->enableDebugUtils() && !mRenderer->angleDebuggerMode())
{
return;
}
VkDebugUtilsLabelEXT label;
vk::MakeDebugUtilsLabel(source, marker, &label);
if (hasStartedRenderPass())
{
mRenderPassCommandBuffer->insertDebugUtilsLabelEXT(label);
}
else
{
mOutsideRenderPassCommands->getCommandBuffer().insertDebugUtilsLabelEXT(label);
}
}
angle::Result ContextVk::pushGroupMarker(GLsizei length, const char *marker)
{
return pushDebugGroupImpl(GL_DEBUG_SOURCE_APPLICATION, 0, marker);
}
angle::Result ContextVk::popGroupMarker()
{
return popDebugGroupImpl();
}
angle::Result ContextVk::pushDebugGroup(const gl::Context *context,
GLenum source,
GLuint id,
const std::string &message)
{
return pushDebugGroupImpl(source, id, message.c_str());
}
angle::Result ContextVk::popDebugGroup(const gl::Context *context)
{
return popDebugGroupImpl();
}
angle::Result ContextVk::pushDebugGroupImpl(GLenum source, GLuint id, const char *message)
{
if (!mRenderer->enableDebugUtils() && !mRenderer->angleDebuggerMode())
{
return angle::Result::Continue;
}
VkDebugUtilsLabelEXT label;
vk::MakeDebugUtilsLabel(source, message, &label);
if (hasStartedRenderPass())
{
mRenderPassCommandBuffer->beginDebugUtilsLabelEXT(label);
}
else
{
mOutsideRenderPassCommands->getCommandBuffer().beginDebugUtilsLabelEXT(label);
}
return angle::Result::Continue;
}
angle::Result ContextVk::popDebugGroupImpl()
{
if (!mRenderer->enableDebugUtils() && !mRenderer->angleDebuggerMode())
{
return angle::Result::Continue;
}
if (hasStartedRenderPass())
{
mRenderPassCommandBuffer->endDebugUtilsLabelEXT();
}
else
{
mOutsideRenderPassCommands->getCommandBuffer().endDebugUtilsLabelEXT();
}
return angle::Result::Continue;
}
void ContextVk::logEvent(const char *eventString)
{
if (!mRenderer->angleDebuggerMode())
{
return;
}
// Save this event (about an OpenGL ES command being called).
mEventLog.push_back(eventString);
// Set a dirty bit in order to stay off the "hot path" for when not logging.
mGraphicsDirtyBits.set(DIRTY_BIT_EVENT_LOG);
mComputeDirtyBits.set(DIRTY_BIT_EVENT_LOG);
}
void ContextVk::endEventLog(angle::EntryPoint entryPoint, PipelineType pipelineType)
{
if (!mRenderer->angleDebuggerMode())
{
return;
}
if (pipelineType == PipelineType::Graphics)
{
ASSERT(mRenderPassCommands);
mRenderPassCommands->getCommandBuffer().endDebugUtilsLabelEXT();
}
else
{
ASSERT(pipelineType == PipelineType::Compute);
ASSERT(mOutsideRenderPassCommands);
mOutsideRenderPassCommands->getCommandBuffer().endDebugUtilsLabelEXT();
}
}
void ContextVk::endEventLogForClearOrQuery()
{
if (!mRenderer->angleDebuggerMode())
{
return;
}
switch (mQueryEventType)
{
case GraphicsEventCmdBuf::InOutsideCmdBufQueryCmd:
ASSERT(mOutsideRenderPassCommands);
mOutsideRenderPassCommands->getCommandBuffer().endDebugUtilsLabelEXT();
break;
case GraphicsEventCmdBuf::InRenderPassCmdBufQueryCmd:
ASSERT(mRenderPassCommands);
mRenderPassCommands->getCommandBuffer().endDebugUtilsLabelEXT();
break;
case GraphicsEventCmdBuf::NotInQueryCmd:
// The glClear* or gl*Query* command was noop'd or otherwise ended early. We could
// call handleDirtyEventLogImpl() to start the hierarchy, but it isn't clear which (if
// any) command buffer to use. We'll just skip processing this command (other than to
// let it stay queued for the next time handleDirtyEventLogImpl() is called.
return;
default:
UNREACHABLE();
}
mQueryEventType = GraphicsEventCmdBuf::NotInQueryCmd;
}
angle::Result ContextVk::handleNoopDrawEvent()
{
// Even though this draw call is being no-op'd, we still must handle the dirty event log
return handleDirtyEventLogImpl(mRenderPassCommandBuffer);
}
angle::Result ContextVk::handleGraphicsEventLog(GraphicsEventCmdBuf queryEventType)
{
ASSERT(mQueryEventType == GraphicsEventCmdBuf::NotInQueryCmd || mEventLog.empty());
if (!mRenderer->angleDebuggerMode())
{
return angle::Result::Continue;
}
mQueryEventType = queryEventType;
switch (mQueryEventType)
{
case GraphicsEventCmdBuf::InOutsideCmdBufQueryCmd:
ASSERT(mOutsideRenderPassCommands);
return handleDirtyEventLogImpl(&mOutsideRenderPassCommands->getCommandBuffer());
case GraphicsEventCmdBuf::InRenderPassCmdBufQueryCmd:
ASSERT(mRenderPassCommands);
return handleDirtyEventLogImpl(&mRenderPassCommands->getCommandBuffer());
default:
UNREACHABLE();
return angle::Result::Stop;
}
}
bool ContextVk::isViewportFlipEnabledForDrawFBO() const
{
return mFlipViewportForDrawFramebuffer && mFlipYForCurrentSurface;
}
bool ContextVk::isViewportFlipEnabledForReadFBO() const
{
return mFlipViewportForReadFramebuffer;
}
bool ContextVk::isRotatedAspectRatioForDrawFBO() const
{
return IsRotatedAspectRatio(mCurrentRotationDrawFramebuffer);
}
bool ContextVk::isRotatedAspectRatioForReadFBO() const
{
return IsRotatedAspectRatio(mCurrentRotationReadFramebuffer);
}
SurfaceRotation ContextVk::getRotationDrawFramebuffer() const
{
return mCurrentRotationDrawFramebuffer;
}
SurfaceRotation ContextVk::getRotationReadFramebuffer() const
{
return mCurrentRotationReadFramebuffer;
}
void ContextVk::updateColorMasks()
{
const gl::BlendStateExt &blendStateExt = mState.getBlendStateExt();
mClearColorMasks = blendStateExt.mColorMask;
FramebufferVk *framebufferVk = vk::GetImpl(mState.getDrawFramebuffer());
mGraphicsPipelineDesc->updateColorWriteMasks(&mGraphicsPipelineTransition, mClearColorMasks,
framebufferVk->getEmulatedAlphaAttachmentMask(),
framebufferVk->getState().getEnabledDrawBuffers());
}
void ContextVk::updateBlendFuncsAndEquations()
{
const gl::BlendStateExt &blendStateExt = mState.getBlendStateExt();
FramebufferVk *framebufferVk = vk::GetImpl(mState.getDrawFramebuffer());
mCachedDrawFramebufferColorAttachmentMask = framebufferVk->getState().getEnabledDrawBuffers();
mGraphicsPipelineDesc->updateBlendFuncs(&mGraphicsPipelineTransition, blendStateExt,
mCachedDrawFramebufferColorAttachmentMask);
mGraphicsPipelineDesc->updateBlendEquations(&mGraphicsPipelineTransition, blendStateExt,
mCachedDrawFramebufferColorAttachmentMask);
}
void ContextVk::updateSampleMaskWithRasterizationSamples(const uint32_t rasterizationSamples)
{
// FramebufferVk::syncState could have been the origin for this call, at which point the
// draw FBO may have changed, retrieve the latest draw FBO.
FramebufferVk *drawFramebuffer = vk::GetImpl(mState.getDrawFramebuffer());
// If sample coverage is enabled, emulate it by generating and applying a mask on top of the
// sample mask.
uint32_t coverageSampleCount = GetCoverageSampleCount(mState, drawFramebuffer);
static_assert(sizeof(uint32_t) == sizeof(GLbitfield), "Vulkan assumes 32-bit sample masks");
for (uint32_t maskNumber = 0; maskNumber < mState.getMaxSampleMaskWords(); ++maskNumber)
{
uint32_t mask = mState.isSampleMaskEnabled() && rasterizationSamples > 1
? mState.getSampleMaskWord(maskNumber)
: std::numeric_limits<uint32_t>::max();
ApplySampleCoverage(mState, coverageSampleCount, maskNumber, &mask);
mGraphicsPipelineDesc->updateSampleMask(&mGraphicsPipelineTransition, maskNumber, mask);
}
}
gl::Rectangle ContextVk::getCorrectedViewport(const gl::Rectangle &viewport) const
{
const gl::Caps &caps = getCaps();
const VkPhysicalDeviceLimits &limitsVk = mRenderer->getPhysicalDeviceProperties().limits;
const int viewportBoundsRangeLow = static_cast<int>(limitsVk.viewportBoundsRange[0]);
const int viewportBoundsRangeHigh = static_cast<int>(limitsVk.viewportBoundsRange[1]);
// Clamp the viewport values to what Vulkan specifies
// width must be greater than 0.0 and less than or equal to
// VkPhysicalDeviceLimits::maxViewportDimensions[0]
int correctedWidth = std::min<int>(viewport.width, caps.maxViewportWidth);
correctedWidth = std::max<int>(correctedWidth, 0);
// height must be greater than 0.0 and less than or equal to
// VkPhysicalDeviceLimits::maxViewportDimensions[1]
int correctedHeight = std::min<int>(viewport.height, caps.maxViewportHeight);
correctedHeight = std::max<int>(correctedHeight, 0);
// x and y must each be between viewportBoundsRange[0] and viewportBoundsRange[1], inclusive.
// Viewport size cannot be 0 so ensure there is always size for a 1x1 viewport
int correctedX = std::min<int>(viewport.x, viewportBoundsRangeHigh - 1);
correctedX = std::max<int>(correctedX, viewportBoundsRangeLow);
int correctedY = std::min<int>(viewport.y, viewportBoundsRangeHigh - 1);
correctedY = std::max<int>(correctedY, viewportBoundsRangeLow);
// x + width must be less than or equal to viewportBoundsRange[1]
if ((correctedX + correctedWidth) > viewportBoundsRangeHigh)
{
correctedWidth = viewportBoundsRangeHigh - correctedX;
}
// y + height must be less than or equal to viewportBoundsRange[1]
if ((correctedY + correctedHeight) > viewportBoundsRangeHigh)
{
correctedHeight = viewportBoundsRangeHigh - correctedY;
}
return gl::Rectangle(correctedX, correctedY, correctedWidth, correctedHeight);
}
void ContextVk::updateViewport(FramebufferVk *framebufferVk,
const gl::Rectangle &viewport,
float nearPlane,
float farPlane)
{
gl::Box fbDimensions = framebufferVk->getState().getDimensions();
gl::Rectangle correctedRect = getCorrectedViewport(viewport);
gl::Rectangle rotatedRect;
RotateRectangle(getRotationDrawFramebuffer(), false, fbDimensions.width, fbDimensions.height,
correctedRect, &rotatedRect);
bool invertViewport =
isViewportFlipEnabledForDrawFBO() && getFeatures().supportsNegativeViewport.enabled;
gl_vk::GetViewport(
rotatedRect, nearPlane, farPlane, invertViewport,
// If clip space origin is upper left, viewport origin's y value will be offset by the
// height of the viewport when clip space is mapped into screen space.
mState.getClipSpaceOrigin() == gl::ClipSpaceOrigin::UpperLeft,
// If the surface is rotated 90/270 degrees, use the framebuffer's width instead of the
// height for calculating the final viewport.
isRotatedAspectRatioForDrawFBO() ? fbDimensions.width : fbDimensions.height, &mViewport);
// Ensure viewport is within Vulkan requirements
vk::ClampViewport(&mViewport);
invalidateGraphicsDriverUniforms();
mGraphicsDirtyBits.set(DIRTY_BIT_VIEWPORT);
}
void ContextVk::updateDepthRange(float nearPlane, float farPlane)
{
// GLES2.0 Section 2.12.1: Each of n and f are clamped to lie within [0, 1], as are all
// arguments of type clampf.
ASSERT(nearPlane >= 0.0f && nearPlane <= 1.0f);
ASSERT(farPlane >= 0.0f && farPlane <= 1.0f);
mViewport.minDepth = nearPlane;
mViewport.maxDepth = farPlane;
invalidateGraphicsDriverUniforms();
mGraphicsDirtyBits.set(DIRTY_BIT_VIEWPORT);
}
void ContextVk::updateScissor(const gl::State &glState)
{
FramebufferVk *framebufferVk = vk::GetImpl(glState.getDrawFramebuffer());
gl::Rectangle renderArea = framebufferVk->getNonRotatedCompleteRenderArea();
// Clip the render area to the viewport.
gl::Rectangle viewportClippedRenderArea;
if (!gl::ClipRectangle(renderArea, getCorrectedViewport(glState.getViewport()),
&viewportClippedRenderArea))
{
viewportClippedRenderArea = gl::Rectangle();
}
gl::Rectangle scissoredArea = ClipRectToScissor(getState(), viewportClippedRenderArea, false);
gl::Rectangle rotatedScissoredArea;
RotateRectangle(getRotationDrawFramebuffer(), isViewportFlipEnabledForDrawFBO(),
renderArea.width, renderArea.height, scissoredArea, &rotatedScissoredArea);
mScissor = gl_vk::GetRect(rotatedScissoredArea);
mGraphicsDirtyBits.set(DIRTY_BIT_SCISSOR);
// If the scissor has grown beyond the previous scissoredRenderArea, grow the render pass render
// area. The only undesirable effect this may have is that if the render area does not cover a
// previously invalidated area, that invalidate will have to be discarded.
if (mRenderPassCommandBuffer &&
!mRenderPassCommands->getRenderArea().encloses(rotatedScissoredArea))
{
ASSERT(mRenderPassCommands->started());
mRenderPassCommands->growRenderArea(this, rotatedScissoredArea);
}
}
void ContextVk::updateDepthStencil(const gl::State &glState)
{
const gl::DepthStencilState depthStencilState = glState.getDepthStencilState();
gl::Framebuffer *drawFramebuffer = mState.getDrawFramebuffer();
mGraphicsPipelineDesc->updateDepthTestEnabled(&mGraphicsPipelineTransition, depthStencilState,
drawFramebuffer);
mGraphicsPipelineDesc->updateDepthWriteEnabled(&mGraphicsPipelineTransition, depthStencilState,
drawFramebuffer);
mGraphicsPipelineDesc->updateStencilTestEnabled(&mGraphicsPipelineTransition, depthStencilState,
drawFramebuffer);
mGraphicsPipelineDesc->updateStencilFrontWriteMask(&mGraphicsPipelineTransition,
depthStencilState, drawFramebuffer);
mGraphicsPipelineDesc->updateStencilBackWriteMask(&mGraphicsPipelineTransition,
depthStencilState, drawFramebuffer);
}
// If the target is a single-sampled target, sampleShading should be disabled, to use Bresenham line
// rasterization feature.
void ContextVk::updateSampleShadingWithRasterizationSamples(const uint32_t rasterizationSamples)
{
bool sampleShadingEnable =
(rasterizationSamples <= 1 ? false : mState.isSampleShadingEnabled());
mGraphicsPipelineDesc->updateSampleShading(&mGraphicsPipelineTransition, sampleShadingEnable,
mState.getMinSampleShading());
}
// If the target is switched between a single-sampled and multisample, the dependency related to the
// rasterization sample should be updated.
void ContextVk::updateRasterizationSamples(const uint32_t rasterizationSamples)
{
mGraphicsPipelineDesc->updateRasterizationSamples(&mGraphicsPipelineTransition,
rasterizationSamples);
updateSampleShadingWithRasterizationSamples(rasterizationSamples);
updateSampleMaskWithRasterizationSamples(rasterizationSamples);
}
void ContextVk::updateRasterizerDiscardEnabled(bool isPrimitivesGeneratedQueryActive)
{
// On some devices, when rasterizerDiscardEnable is enabled, the
// VK_EXT_primitives_generated_query as well as the pipeline statistics query used to emulate it
// are non-functional. For VK_EXT_primitives_generated_query there's a feature bit but not for
// pipeline statistics query. If the primitives generated query is active (and rasterizer
// discard is not supported), rasterizerDiscardEnable is set to false and the functionality
// is otherwise emulated (by using an empty scissor).
// If the primitives generated query implementation supports rasterizer discard, just set
// rasterizer discard as requested. Otherwise disable it.
bool isRasterizerDiscardEnabled = mState.isRasterizerDiscardEnabled();
bool isEmulatingRasterizerDiscard = isEmulatingRasterizerDiscardDuringPrimitivesGeneratedQuery(
isPrimitivesGeneratedQueryActive);
mGraphicsPipelineDesc->updateRasterizerDiscardEnabled(
&mGraphicsPipelineTransition, isRasterizerDiscardEnabled && !isEmulatingRasterizerDiscard);
invalidateCurrentGraphicsPipeline();
if (!isEmulatingRasterizerDiscard)
{
return;
}
// If we are emulating rasterizer discard, update the scissor if in render pass. If not in
// render pass, DIRTY_BIT_SCISSOR will be set when the render pass next starts.
if (hasStartedRenderPass())
{
handleDirtyGraphicsScissorImpl(isPrimitivesGeneratedQueryActive);
}
}
void ContextVk::invalidateProgramBindingHelper(const gl::State &glState)
{
mProgram = nullptr;
mProgramPipeline = nullptr;
mExecutable = nullptr;
if (glState.getProgram())
{
mProgram = vk::GetImpl(glState.getProgram());
mExecutable = &mProgram->getExecutable();
}
if (glState.getProgramPipeline())
{
mProgramPipeline = vk::GetImpl(glState.getProgramPipeline());
if (!mExecutable)
{
// A bound program always overrides a program pipeline
mExecutable = &mProgramPipeline->getExecutable();
}
}
if (mProgram)
{
mProgram->onProgramBind();
}
else if (mProgramPipeline)
{
mProgramPipeline->onProgramBind();
}
}
angle::Result ContextVk::invalidateProgramExecutableHelper(const gl::Context *context)
{
const gl::State &glState = context->getState();
const gl::ProgramExecutable *executable = glState.getProgramExecutable();
if (executable->hasLinkedShaderStage(gl::ShaderType::Compute))
{
invalidateCurrentComputePipeline();
}
if (executable->hasLinkedShaderStage(gl::ShaderType::Vertex))
{
invalidateCurrentGraphicsPipeline();
// No additional work is needed here. We will update the pipeline desc
// later.
invalidateDefaultAttributes(context->getStateCache().getActiveDefaultAttribsMask());
invalidateVertexAndIndexBuffers();
bool useVertexBuffer = (executable->getMaxActiveAttribLocation() > 0);
mNonIndexedDirtyBitsMask.set(DIRTY_BIT_VERTEX_BUFFERS, useVertexBuffer);
mIndexedDirtyBitsMask.set(DIRTY_BIT_VERTEX_BUFFERS, useVertexBuffer);
mCurrentGraphicsPipeline = nullptr;
mGraphicsPipelineTransition.reset();
ASSERT(mExecutable);
mExecutable->updateEarlyFragmentTestsOptimization(this);
if (mLastProgramUsesFramebufferFetch != executable->usesFramebufferFetch())
{
mLastProgramUsesFramebufferFetch = executable->usesFramebufferFetch();
ANGLE_TRY(
flushCommandsAndEndRenderPass(RenderPassClosureReason::FramebufferFetchEmulation));
ASSERT(mDrawFramebuffer);
mDrawFramebuffer->onSwitchProgramFramebufferFetch(this,
executable->usesFramebufferFetch());
}
}
return angle::Result::Continue;
}
angle::Result ContextVk::syncState(const gl::Context *context,
const gl::State::DirtyBits &dirtyBits,
const gl::State::DirtyBits &bitMask,
gl::Command command)
{
const gl::State &glState = context->getState();
const gl::ProgramExecutable *programExecutable = glState.getProgramExecutable();
if ((dirtyBits & mPipelineDirtyBitsMask).any() &&
(programExecutable == nullptr || command != gl::Command::Dispatch))
{
invalidateCurrentGraphicsPipeline();
}
for (auto iter = dirtyBits.begin(), endIter = dirtyBits.end(); iter != endIter; ++iter)
{
size_t dirtyBit = *iter;
switch (dirtyBit)
{
case gl::State::DIRTY_BIT_SCISSOR_TEST_ENABLED:
case gl::State::DIRTY_BIT_SCISSOR:
updateScissor(glState);
break;
case gl::State::DIRTY_BIT_VIEWPORT:
{
FramebufferVk *framebufferVk = vk::GetImpl(glState.getDrawFramebuffer());
updateViewport(framebufferVk, glState.getViewport(), glState.getNearPlane(),
glState.getFarPlane());
// Update the scissor, which will be constrained to the viewport
updateScissor(glState);
break;
}
case gl::State::DIRTY_BIT_DEPTH_RANGE:
updateDepthRange(glState.getNearPlane(), glState.getFarPlane());
break;
case gl::State::DIRTY_BIT_BLEND_ENABLED:
mGraphicsPipelineDesc->updateBlendEnabled(&mGraphicsPipelineTransition,
glState.getBlendStateExt().mEnabledMask);
break;
case gl::State::DIRTY_BIT_BLEND_COLOR:
mGraphicsPipelineDesc->updateBlendColor(&mGraphicsPipelineTransition,
glState.getBlendColor());
break;
case gl::State::DIRTY_BIT_BLEND_FUNCS:
mGraphicsPipelineDesc->updateBlendFuncs(
&mGraphicsPipelineTransition, glState.getBlendStateExt(),
mDrawFramebuffer->getState().getColorAttachmentsMask());
break;
case gl::State::DIRTY_BIT_BLEND_EQUATIONS:
mGraphicsPipelineDesc->updateBlendEquations(
&mGraphicsPipelineTransition, glState.getBlendStateExt(),
mDrawFramebuffer->getState().getColorAttachmentsMask());
break;
case gl::State::DIRTY_BIT_COLOR_MASK:
updateColorMasks();
break;
case gl::State::DIRTY_BIT_SAMPLE_ALPHA_TO_COVERAGE_ENABLED:
mGraphicsPipelineDesc->updateAlphaToCoverageEnable(
&mGraphicsPipelineTransition, glState.isSampleAlphaToCoverageEnabled());
static_assert(gl::State::DIRTY_BIT_PROGRAM_EXECUTABLE >
gl::State::DIRTY_BIT_SAMPLE_ALPHA_TO_COVERAGE_ENABLED,
"Dirty bit order");
iter.setLaterBit(gl::State::DIRTY_BIT_PROGRAM_EXECUTABLE);
break;
case gl::State::DIRTY_BIT_SAMPLE_COVERAGE_ENABLED:
updateSampleMaskWithRasterizationSamples(mDrawFramebuffer->getSamples());
break;
case gl::State::DIRTY_BIT_SAMPLE_COVERAGE:
updateSampleMaskWithRasterizationSamples(mDrawFramebuffer->getSamples());
break;
case gl::State::DIRTY_BIT_SAMPLE_MASK_ENABLED:
updateSampleMaskWithRasterizationSamples(mDrawFramebuffer->getSamples());
break;
case gl::State::DIRTY_BIT_SAMPLE_MASK:
updateSampleMaskWithRasterizationSamples(mDrawFramebuffer->getSamples());
break;
case gl::State::DIRTY_BIT_DEPTH_TEST_ENABLED:
{
mGraphicsPipelineDesc->updateDepthTestEnabled(&mGraphicsPipelineTransition,
glState.getDepthStencilState(),
glState.getDrawFramebuffer());
iter.setLaterBit(gl::State::DIRTY_BIT_DEPTH_MASK);
break;
}
case gl::State::DIRTY_BIT_DEPTH_FUNC:
mGraphicsPipelineDesc->updateDepthFunc(&mGraphicsPipelineTransition,
glState.getDepthStencilState());
break;
case gl::State::DIRTY_BIT_DEPTH_MASK:
{
mGraphicsPipelineDesc->updateDepthWriteEnabled(&mGraphicsPipelineTransition,
glState.getDepthStencilState(),
glState.getDrawFramebuffer());
ANGLE_TRY(updateRenderPassDepthStencilAccess());
break;
}
case gl::State::DIRTY_BIT_STENCIL_TEST_ENABLED:
{
mGraphicsPipelineDesc->updateStencilTestEnabled(&mGraphicsPipelineTransition,
glState.getDepthStencilState(),
glState.getDrawFramebuffer());
ANGLE_TRY(updateRenderPassDepthStencilAccess());
break;
}
case gl::State::DIRTY_BIT_STENCIL_FUNCS_FRONT:
mGraphicsPipelineDesc->updateStencilFrontFuncs(&mGraphicsPipelineTransition,
glState.getStencilRef(),
glState.getDepthStencilState());
break;
case gl::State::DIRTY_BIT_STENCIL_FUNCS_BACK:
mGraphicsPipelineDesc->updateStencilBackFuncs(&mGraphicsPipelineTransition,
glState.getStencilBackRef(),
glState.getDepthStencilState());
break;
case gl::State::DIRTY_BIT_STENCIL_OPS_FRONT:
mGraphicsPipelineDesc->updateStencilFrontOps(&mGraphicsPipelineTransition,
glState.getDepthStencilState());
break;
case gl::State::DIRTY_BIT_STENCIL_OPS_BACK:
mGraphicsPipelineDesc->updateStencilBackOps(&mGraphicsPipelineTransition,
glState.getDepthStencilState());
break;
case gl::State::DIRTY_BIT_STENCIL_WRITEMASK_FRONT:
mGraphicsPipelineDesc->updateStencilFrontWriteMask(&mGraphicsPipelineTransition,
glState.getDepthStencilState(),
glState.getDrawFramebuffer());
break;
case gl::State::DIRTY_BIT_STENCIL_WRITEMASK_BACK:
mGraphicsPipelineDesc->updateStencilBackWriteMask(&mGraphicsPipelineTransition,
glState.getDepthStencilState(),
glState.getDrawFramebuffer());
break;
case gl::State::DIRTY_BIT_CULL_FACE_ENABLED:
case gl::State::DIRTY_BIT_CULL_FACE:
mGraphicsPipelineDesc->updateCullMode(&mGraphicsPipelineTransition,
glState.getRasterizerState());
break;
case gl::State::DIRTY_BIT_FRONT_FACE:
mGraphicsPipelineDesc->updateFrontFace(&mGraphicsPipelineTransition,
glState.getRasterizerState(),
isYFlipEnabledForDrawFBO());
break;
case gl::State::DIRTY_BIT_POLYGON_OFFSET_FILL_ENABLED:
mGraphicsPipelineDesc->updatePolygonOffsetFillEnabled(
&mGraphicsPipelineTransition, glState.isPolygonOffsetFillEnabled());
break;
case gl::State::DIRTY_BIT_POLYGON_OFFSET:
mGraphicsPipelineDesc->updatePolygonOffset(&mGraphicsPipelineTransition,
glState.getRasterizerState());
break;
case gl::State::DIRTY_BIT_RASTERIZER_DISCARD_ENABLED:
updateRasterizerDiscardEnabled(
mState.isQueryActive(gl::QueryType::PrimitivesGenerated));
break;
case gl::State::DIRTY_BIT_LINE_WIDTH:
mGraphicsPipelineDesc->updateLineWidth(&mGraphicsPipelineTransition,
glState.getLineWidth());
break;
case gl::State::DIRTY_BIT_PRIMITIVE_RESTART_ENABLED:
mGraphicsPipelineDesc->updatePrimitiveRestartEnabled(
&mGraphicsPipelineTransition, glState.isPrimitiveRestartEnabled());
break;
case gl::State::DIRTY_BIT_CLEAR_COLOR:
mClearColorValue.color.float32[0] = glState.getColorClearValue().red;
mClearColorValue.color.float32[1] = glState.getColorClearValue().green;
mClearColorValue.color.float32[2] = glState.getColorClearValue().blue;
mClearColorValue.color.float32[3] = glState.getColorClearValue().alpha;
break;
case gl::State::DIRTY_BIT_CLEAR_DEPTH:
mClearDepthStencilValue.depthStencil.depth = glState.getDepthClearValue();
break;
case gl::State::DIRTY_BIT_CLEAR_STENCIL:
mClearDepthStencilValue.depthStencil.stencil =
static_cast<uint32_t>(glState.getStencilClearValue());
break;
case gl::State::DIRTY_BIT_UNPACK_STATE:
// This is a no-op, it's only important to use the right unpack state when we do
// setImage or setSubImage in TextureVk, which is plumbed through the frontend
// call
break;
case gl::State::DIRTY_BIT_UNPACK_BUFFER_BINDING:
break;
case gl::State::DIRTY_BIT_PACK_STATE:
// This is a no-op, its only important to use the right pack state when we do
// call readPixels later on.
break;
case gl::State::DIRTY_BIT_PACK_BUFFER_BINDING:
break;
case gl::State::DIRTY_BIT_DITHER_ENABLED:
break;
case gl::State::DIRTY_BIT_READ_FRAMEBUFFER_BINDING:
updateFlipViewportReadFramebuffer(context->getState());
updateSurfaceRotationReadFramebuffer(glState);
break;
case gl::State::DIRTY_BIT_DRAW_FRAMEBUFFER_BINDING:
{
// FramebufferVk::syncState signals that we should start a new command buffer.
// But changing the binding can skip FramebufferVk::syncState if the Framebuffer
// has no dirty bits. Thus we need to explicitly clear the current command
// buffer to ensure we start a new one. We don't actually close the render pass here
// as some optimizations in non-draw commands require the render pass to remain
// open, such as invalidate or blit. Note that we always start a new command buffer
// because we currently can only support one open RenderPass at a time.
onRenderPassFinished(RenderPassClosureReason::FramebufferBindingChange);
if (mRenderer->getFeatures().preferSubmitAtFBOBoundary.enabled)
{
// This will behave as if user called glFlush, but the actual flush will be
// triggered at endRenderPass time.
mHasDeferredFlush = true;
}
gl::Framebuffer *drawFramebuffer = glState.getDrawFramebuffer();
mDrawFramebuffer = vk::GetImpl(drawFramebuffer);
mDrawFramebuffer->setReadOnlyDepthFeedbackLoopMode(false);
updateFlipViewportDrawFramebuffer(glState);
updateSurfaceRotationDrawFramebuffer(glState);
SpecConstUsageBits usageBits = getCurrentProgramSpecConstUsageBits();
updateGraphicsPipelineDescWithSpecConstUsageBits(usageBits);
updateViewport(mDrawFramebuffer, glState.getViewport(), glState.getNearPlane(),
glState.getFarPlane());
updateColorMasks();
updateRasterizationSamples(mDrawFramebuffer->getSamples());
updateRasterizerDiscardEnabled(
mState.isQueryActive(gl::QueryType::PrimitivesGenerated));
mGraphicsPipelineDesc->updateFrontFace(&mGraphicsPipelineTransition,
glState.getRasterizerState(),
isYFlipEnabledForDrawFBO());
updateScissor(glState);
updateDepthStencil(glState);
// Clear the blend funcs/equations for color attachment indices that no longer
// exist.
gl::DrawBufferMask newColorAttachmentMask =
mDrawFramebuffer->getState().getColorAttachmentsMask();
mGraphicsPipelineDesc->resetBlendFuncsAndEquations(
&mGraphicsPipelineTransition, glState.getBlendStateExt(),
mCachedDrawFramebufferColorAttachmentMask, newColorAttachmentMask);
mCachedDrawFramebufferColorAttachmentMask = newColorAttachmentMask;
mGraphicsPipelineDesc->resetSubpass(&mGraphicsPipelineTransition);
onDrawFramebufferRenderPassDescChange(mDrawFramebuffer, nullptr);
break;
}
case gl::State::DIRTY_BIT_RENDERBUFFER_BINDING:
break;
case gl::State::DIRTY_BIT_VERTEX_ARRAY_BINDING:
{
mVertexArray = vk::GetImpl(glState.getVertexArray());
invalidateDefaultAttributes(context->getStateCache().getActiveDefaultAttribsMask());
ANGLE_TRY(mVertexArray->updateActiveAttribInfo(this));
ANGLE_TRY(onIndexBufferChange(mVertexArray->getCurrentElementArrayBuffer()));
break;
}
case gl::State::DIRTY_BIT_DRAW_INDIRECT_BUFFER_BINDING:
break;
case gl::State::DIRTY_BIT_DISPATCH_INDIRECT_BUFFER_BINDING:
break;
case gl::State::DIRTY_BIT_PROGRAM_BINDING:
invalidateProgramBindingHelper(glState);
static_assert(
gl::State::DIRTY_BIT_PROGRAM_EXECUTABLE > gl::State::DIRTY_BIT_PROGRAM_BINDING,
"Dirty bit order");
iter.setLaterBit(gl::State::DIRTY_BIT_PROGRAM_EXECUTABLE);
break;
case gl::State::DIRTY_BIT_PROGRAM_EXECUTABLE:
{
ASSERT(programExecutable);
invalidateCurrentDefaultUniforms();
static_assert(
gl::State::DIRTY_BIT_TEXTURE_BINDINGS > gl::State::DIRTY_BIT_PROGRAM_EXECUTABLE,
"Dirty bit order");
iter.setLaterBit(gl::State::DIRTY_BIT_TEXTURE_BINDINGS);
static_assert(gl::State::DIRTY_BIT_ATOMIC_COUNTER_BUFFER_BINDING >
gl::State::DIRTY_BIT_PROGRAM_EXECUTABLE,
"Dirty bit order");
iter.setLaterBit(gl::State::DIRTY_BIT_ATOMIC_COUNTER_BUFFER_BINDING);
ANGLE_TRY(invalidateProgramExecutableHelper(context));
break;
}
case gl::State::DIRTY_BIT_SAMPLER_BINDINGS:
{
static_assert(
gl::State::DIRTY_BIT_TEXTURE_BINDINGS > gl::State::DIRTY_BIT_SAMPLER_BINDINGS,
"Dirty bit order");
iter.setLaterBit(gl::State::DIRTY_BIT_TEXTURE_BINDINGS);
break;
}
case gl::State::DIRTY_BIT_TEXTURE_BINDINGS:
ANGLE_TRY(invalidateCurrentTextures(context, command));
break;
case gl::State::DIRTY_BIT_TRANSFORM_FEEDBACK_BINDING:
// Nothing to do.
break;
case gl::State::DIRTY_BIT_IMAGE_BINDINGS:
static_assert(gl::State::DIRTY_BIT_ATOMIC_COUNTER_BUFFER_BINDING >
gl::State::DIRTY_BIT_IMAGE_BINDINGS,
"Dirty bit order");
iter.setLaterBit(gl::State::DIRTY_BIT_ATOMIC_COUNTER_BUFFER_BINDING);
break;
case gl::State::DIRTY_BIT_SHADER_STORAGE_BUFFER_BINDING:
static_assert(gl::State::DIRTY_BIT_ATOMIC_COUNTER_BUFFER_BINDING >
gl::State::DIRTY_BIT_SHADER_STORAGE_BUFFER_BINDING,
"Dirty bit order");
iter.setLaterBit(gl::State::DIRTY_BIT_ATOMIC_COUNTER_BUFFER_BINDING);
break;
case gl::State::DIRTY_BIT_UNIFORM_BUFFER_BINDINGS:
static_assert(gl::State::DIRTY_BIT_ATOMIC_COUNTER_BUFFER_BINDING >
gl::State::DIRTY_BIT_UNIFORM_BUFFER_BINDINGS,
"Dirty bit order");
iter.setLaterBit(gl::State::DIRTY_BIT_ATOMIC_COUNTER_BUFFER_BINDING);
break;
case gl::State::DIRTY_BIT_ATOMIC_COUNTER_BUFFER_BINDING:
ANGLE_TRY(invalidateCurrentShaderResources(command));
invalidateDriverUniforms();
break;
case gl::State::DIRTY_BIT_MULTISAMPLING:
// TODO(syoussefi): this should configure the pipeline to render as if
// single-sampled, and write the results to all samples of a pixel regardless of
// coverage. See EXT_multisample_compatibility. http://anglebug.com/3204
break;
case gl::State::DIRTY_BIT_SAMPLE_ALPHA_TO_ONE:
// TODO(syoussefi): this is part of EXT_multisample_compatibility. The
// alphaToOne Vulkan feature should be enabled to support this extension.
// http://anglebug.com/3204
mGraphicsPipelineDesc->updateAlphaToOneEnable(&mGraphicsPipelineTransition,
glState.isSampleAlphaToOneEnabled());
break;
case gl::State::DIRTY_BIT_SAMPLE_SHADING:
updateSampleShadingWithRasterizationSamples(mDrawFramebuffer->getSamples());
break;
case gl::State::DIRTY_BIT_COVERAGE_MODULATION:
break;
case gl::State::DIRTY_BIT_FRAMEBUFFER_SRGB_WRITE_CONTROL_MODE:
break;
case gl::State::DIRTY_BIT_CURRENT_VALUES:
{
invalidateDefaultAttributes(glState.getAndResetDirtyCurrentValues());
break;
}
case gl::State::DIRTY_BIT_PROVOKING_VERTEX:
break;
case gl::State::DIRTY_BIT_EXTENDED:
{
gl::State::ExtendedDirtyBits extendedDirtyBits =
glState.getAndResetExtendedDirtyBits();
for (size_t extendedDirtyBit : extendedDirtyBits)
{
switch (extendedDirtyBit)
{
case gl::State::ExtendedDirtyBitType::EXTENDED_DIRTY_BIT_CLIP_CONTROL:
updateViewport(vk::GetImpl(glState.getDrawFramebuffer()),
glState.getViewport(), glState.getNearPlane(),
glState.getFarPlane());
// Since we are flipping the y coordinate, update front face state
mGraphicsPipelineDesc->updateFrontFace(&mGraphicsPipelineTransition,
glState.getRasterizerState(),
isYFlipEnabledForDrawFBO());
updateScissor(glState);
// Nothing is needed for depth correction for EXT_clip_control.
// glState will be used to toggle control path of depth correction code
// in SPIR-V tranform options.
break;
case gl::State::ExtendedDirtyBitType::EXTENDED_DIRTY_BIT_CLIP_DISTANCES:
invalidateGraphicsDriverUniforms();
break;
case gl::State::ExtendedDirtyBitType::
EXTENDED_DIRTY_BIT_MIPMAP_GENERATION_HINT:
break;
case gl::State::ExtendedDirtyBitType::
EXTENDED_DIRTY_BIT_SHADER_DERIVATIVE_HINT:
break;
default:
UNREACHABLE();
}
}
break;
}
case gl::State::DIRTY_BIT_PATCH_VERTICES:
mGraphicsPipelineDesc->updatePatchVertices(&mGraphicsPipelineTransition,
glState.getPatchVertices());
break;
default:
UNREACHABLE();
break;
}
}
return angle::Result::Continue;
}
GLint ContextVk::getGPUDisjoint()
{
// No extension seems to be available to query this information.
return 0;
}
GLint64 ContextVk::getTimestamp()
{
// This function should only be called if timestamp queries are available.
ASSERT(mRenderer->getQueueFamilyProperties().timestampValidBits > 0);
uint64_t timestamp = 0;
(void)getTimestamp(&timestamp);
return static_cast<GLint64>(timestamp);
}
angle::Result ContextVk::onMakeCurrent(const gl::Context *context)
{
mRenderer->reloadVolkIfNeeded();
// Flip viewports if the user did not request that the surface is flipped.
egl::Surface *drawSurface = context->getCurrentDrawSurface();
mFlipYForCurrentSurface =
drawSurface != nullptr &&
!IsMaskFlagSet(drawSurface->getOrientation(), EGL_SURFACE_ORIENTATION_INVERT_Y_ANGLE);
if (drawSurface && drawSurface->getType() == EGL_WINDOW_BIT)
{
mCurrentWindowSurface = GetImplAs<WindowSurfaceVk>(drawSurface);
}
else
{
mCurrentWindowSurface = nullptr;
}
const gl::State &glState = context->getState();
updateFlipViewportDrawFramebuffer(glState);
updateFlipViewportReadFramebuffer(glState);
updateSurfaceRotationDrawFramebuffer(glState);
updateSurfaceRotationReadFramebuffer(glState);
if (getFeatures().forceDriverUniformOverSpecConst.enabled)
{
invalidateDriverUniforms();
}
else
{
// Force update mGraphicsPipelineDesc
mCurrentGraphicsPipeline = nullptr;
invalidateCurrentGraphicsPipeline();
}
const gl::ProgramExecutable *executable = mState.getProgramExecutable();
if (executable && executable->hasTransformFeedbackOutput() &&
mState.isTransformFeedbackActive())
{
onTransformFeedbackStateChanged();
if (getFeatures().supportsTransformFeedbackExtension.enabled)
{
mGraphicsDirtyBits.set(DIRTY_BIT_TRANSFORM_FEEDBACK_RESUME);
}
}
return angle::Result::Continue;
}
angle::Result ContextVk::onUnMakeCurrent(const gl::Context *context)
{
ANGLE_TRY(flushImpl(nullptr, RenderPassClosureReason::ContextChange));
mCurrentWindowSurface = nullptr;
return angle::Result::Continue;
}
void ContextVk::updateFlipViewportDrawFramebuffer(const gl::State &glState)
{
// The default framebuffer (originating from the swapchain) is rendered upside-down due to the
// difference in the coordinate systems of Vulkan and GLES. Rendering upside-down has the
// effect that rendering is done the same way as OpenGL. The KHR_MAINTENANCE_1 extension is
// subsequently enabled to allow negative viewports. We inverse rendering to the backbuffer by
// reversing the height of the viewport and increasing Y by the height. So if the viewport was
// (0, 0, width, height), it becomes (0, height, width, -height). Unfortunately, when we start
// doing this, we also need to adjust a number of places since the rendering now happens
// upside-down. Affected places so far:
//
// - readPixels
// - copyTexImage
// - framebuffer blit
// - generating mipmaps
// - Point sprites tests
// - texStorage
gl::Framebuffer *drawFramebuffer = glState.getDrawFramebuffer();
mFlipViewportForDrawFramebuffer = drawFramebuffer->isDefault();
}
void ContextVk::updateFlipViewportReadFramebuffer(const gl::State &glState)
{
gl::Framebuffer *readFramebuffer = glState.getReadFramebuffer();
mFlipViewportForReadFramebuffer = readFramebuffer->isDefault();
}
SpecConstUsageBits ContextVk::getCurrentProgramSpecConstUsageBits() const
{
SpecConstUsageBits usageBits;
if (mState.getProgram())
{
usageBits = mState.getProgram()->getState().getSpecConstUsageBits();
}
else if (mState.getProgramPipeline())
{
usageBits = mState.getProgramPipeline()->getState().getSpecConstUsageBits();
}
return usageBits;
}
void ContextVk::updateGraphicsPipelineDescWithSpecConstUsageBits(SpecConstUsageBits usageBits)
{
SurfaceRotation rotationAndFlip = mCurrentRotationDrawFramebuffer;
ASSERT(ToUnderlying(rotationAndFlip) < ToUnderlying(SurfaceRotation::FlippedIdentity));
bool yFlipped =
isViewportFlipEnabledForDrawFBO() && (usageBits.test(sh::vk::SpecConstUsage::YFlip) ||
!getFeatures().supportsNegativeViewport.enabled);
// usageBits are only set when specialization constants are used. With gl_Position pre-rotation
// handled by the SPIR-V transformer, we need to have this information even when the driver
// uniform path is taken to pre-rotate everything else.
const bool programUsesRotation = usageBits.test(sh::vk::SpecConstUsage::Rotation) ||
getFeatures().forceDriverUniformOverSpecConst.enabled;
// If program is not using rotation at all, we force it to use the Identity or FlippedIdentity
// slot to improve the program cache hit rate
if (!programUsesRotation)
{
rotationAndFlip = yFlipped ? SurfaceRotation::FlippedIdentity : SurfaceRotation::Identity;
}
else if (yFlipped)
{
// DetermineSurfaceRotation() does not encode yflip information. Shader code uses
// SurfaceRotation specialization constant to determine yflip as well. We add yflip
// information to the SurfaceRotation here so the shader does yflip properly.
rotationAndFlip = static_cast<SurfaceRotation>(
ToUnderlying(SurfaceRotation::FlippedIdentity) + ToUnderlying(rotationAndFlip));
}
else
{
// If program is not using yflip, then we just use the non-flipped slot to increase the
// chance of pipeline program cache hit even if drawable is yflipped.
}
if (rotationAndFlip != mGraphicsPipelineDesc->getSurfaceRotation())
{
// surface rotation are specialization constants, which affects program compilation. When
// rotation changes, we need to update GraphicsPipelineDesc so that the correct pipeline
// program object will be retrieved.
mGraphicsPipelineDesc->updateSurfaceRotation(&mGraphicsPipelineTransition, rotationAndFlip);
}
if (usageBits.test(sh::vk::SpecConstUsage::DrawableSize))
{
const gl::Box &dimensions = getState().getDrawFramebuffer()->getDimensions();
mGraphicsPipelineDesc->updateDrawableSize(&mGraphicsPipelineTransition, dimensions.width,
dimensions.height);
}
else
{
// Always set specialization constant to 1x1 if it is not used so that pipeline program with
// only drawable size difference will be able to be reused.
mGraphicsPipelineDesc->updateDrawableSize(&mGraphicsPipelineTransition, 1, 1);
}
}
void ContextVk::updateSurfaceRotationDrawFramebuffer(const gl::State &glState)
{
gl::Framebuffer *drawFramebuffer = glState.getDrawFramebuffer();
mCurrentRotationDrawFramebuffer =
DetermineSurfaceRotation(drawFramebuffer, mCurrentWindowSurface);
}
void ContextVk::updateSurfaceRotationReadFramebuffer(const gl::State &glState)
{
gl::Framebuffer *readFramebuffer = glState.getReadFramebuffer();
mCurrentRotationReadFramebuffer =
DetermineSurfaceRotation(readFramebuffer, mCurrentWindowSurface);
}
gl::Caps ContextVk::getNativeCaps() const
{
return mRenderer->getNativeCaps();
}
const gl::TextureCapsMap &ContextVk::getNativeTextureCaps() const
{
return mRenderer->getNativeTextureCaps();
}
const gl::Extensions &ContextVk::getNativeExtensions() const
{
return mRenderer->getNativeExtensions();
}
const gl::Limitations &ContextVk::getNativeLimitations() const
{
return mRenderer->getNativeLimitations();
}
CompilerImpl *ContextVk::createCompiler()
{
return new CompilerVk();
}
ShaderImpl *ContextVk::createShader(const gl::ShaderState &state)
{
return new ShaderVk(state);
}
ProgramImpl *ContextVk::createProgram(const gl::ProgramState &state)
{
return new ProgramVk(state);
}
FramebufferImpl *ContextVk::createFramebuffer(const gl::FramebufferState &state)
{
return FramebufferVk::CreateUserFBO(mRenderer, state);
}
TextureImpl *ContextVk::createTexture(const gl::TextureState &state)
{
return new TextureVk(state, mRenderer);
}
RenderbufferImpl *ContextVk::createRenderbuffer(const gl::RenderbufferState &state)
{
return new RenderbufferVk(state);
}
BufferImpl *ContextVk::createBuffer(const gl::BufferState &state)
{
return new BufferVk(state);
}
VertexArrayImpl *ContextVk::createVertexArray(const gl::VertexArrayState &state)
{
return new VertexArrayVk(this, state);
}
QueryImpl *ContextVk::createQuery(gl::QueryType type)
{
return new QueryVk(type);
}
FenceNVImpl *ContextVk::createFenceNV()
{
return new FenceNVVk();
}
SyncImpl *ContextVk::createSync()
{
return new SyncVk();
}
TransformFeedbackImpl *ContextVk::createTransformFeedback(const gl::TransformFeedbackState &state)
{
return new TransformFeedbackVk(state);
}
SamplerImpl *ContextVk::createSampler(const gl::SamplerState &state)
{
return new SamplerVk(state);
}
ProgramPipelineImpl *ContextVk::createProgramPipeline(const gl::ProgramPipelineState &state)
{
return new ProgramPipelineVk(state);
}
MemoryObjectImpl *ContextVk::createMemoryObject()
{
return new MemoryObjectVk();
}
SemaphoreImpl *ContextVk::createSemaphore()
{
return new SemaphoreVk();
}
OverlayImpl *ContextVk::createOverlay(const gl::OverlayState &state)
{
return new OverlayVk(state);
}
void ContextVk::invalidateCurrentDefaultUniforms()
{
const gl::ProgramExecutable *executable = mState.getProgramExecutable();
ASSERT(executable);
if (executable->hasDefaultUniforms())
{
mGraphicsDirtyBits.set(DIRTY_BIT_DESCRIPTOR_SETS);
mComputeDirtyBits.set(DIRTY_BIT_DESCRIPTOR_SETS);
}
}
angle::Result ContextVk::invalidateCurrentTextures(const gl::Context *context, gl::Command command)
{
const gl::ProgramExecutable *executable = mState.getProgramExecutable();
ASSERT(executable);
if (executable->hasTextures())
{
mGraphicsDirtyBits |= kTexturesAndDescSetDirtyBits;
mComputeDirtyBits |= kTexturesAndDescSetDirtyBits;
ANGLE_TRY(updateActiveTextures(context, command));
// Take care of read-after-write hazards that require implicit synchronization.
if (command == gl::Command::Dispatch)
{
ANGLE_TRY(endRenderPassIfComputeReadAfterAttachmentWrite());
}
}
return angle::Result::Continue;
}
angle::Result ContextVk::invalidateCurrentShaderResources(gl::Command command)
{
const gl::ProgramExecutable *executable = mState.getProgramExecutable();
ASSERT(executable);
const bool hasImages = executable->hasImages();
const bool hasStorageBuffers =
executable->hasStorageBuffers() || executable->hasAtomicCounterBuffers();
const bool hasUniformBuffers = executable->hasUniformBuffers();
if (hasUniformBuffers || hasStorageBuffers || hasImages || executable->usesFramebufferFetch())
{
mGraphicsDirtyBits |= kResourcesAndDescSetDirtyBits;
mComputeDirtyBits |= kResourcesAndDescSetDirtyBits;
}
// Take care of read-after-write hazards that require implicit synchronization.
if (hasUniformBuffers && command == gl::Command::Dispatch)
{
ANGLE_TRY(endRenderPassIfComputeReadAfterTransformFeedbackWrite());
}
// If memory barrier has been issued but the command buffers haven't been flushed, make sure
// they get a chance to do so if necessary on program and storage buffer/image binding change.
const bool hasGLMemoryBarrierIssuedInCommandBuffers =
mOutsideRenderPassCommands->hasGLMemoryBarrierIssued() ||
mRenderPassCommands->hasGLMemoryBarrierIssued();
if ((hasStorageBuffers || hasImages) && hasGLMemoryBarrierIssuedInCommandBuffers)
{
mGraphicsDirtyBits.set(DIRTY_BIT_MEMORY_BARRIER);
mComputeDirtyBits.set(DIRTY_BIT_MEMORY_BARRIER);
}
if (hasUniformBuffers || hasStorageBuffers)
{
mShaderBuffersDescriptorDesc.reset();
ProgramExecutableVk *executableVk = nullptr;
if (mState.getProgram())
{
ProgramVk *programVk = vk::GetImpl(mState.getProgram());
executableVk = &programVk->getExecutable();
}
else
{
ASSERT(mState.getProgramPipeline());
ProgramPipelineVk *pipelineVk = vk::GetImpl(mState.getProgramPipeline());
executableVk = &pipelineVk->getExecutable();
}
const gl::BufferVector &uniformBuffers = mState.getOffsetBindingPointerUniformBuffers();
bool isDynamicDescriptor = executableVk->usesDynamicUniformBufferDescriptors();
bool appendOffset = !isDynamicDescriptor;
AppendBufferVectorToDesc(&mShaderBuffersDescriptorDesc, uniformBuffers,
mState.getUniformBuffersMask(), isDynamicDescriptor, appendOffset);
const gl::BufferVector &shaderStorageBuffers =
mState.getOffsetBindingPointerShaderStorageBuffers();
isDynamicDescriptor = executableVk->usesDynamicShaderStorageBufferDescriptors();
appendOffset = true;
AppendBufferVectorToDesc(&mShaderBuffersDescriptorDesc, shaderStorageBuffers,
mState.getShaderStorageBuffersMask(), isDynamicDescriptor,
appendOffset);
const gl::BufferVector &atomicCounterBuffers =
mState.getOffsetBindingPointerAtomicCounterBuffers();
isDynamicDescriptor = executableVk->usesDynamicAtomicCounterBufferDescriptors();
appendOffset = true;
AppendBufferVectorToDesc(&mShaderBuffersDescriptorDesc, atomicCounterBuffers,
mState.getAtomicCounterBuffersMask(), isDynamicDescriptor,
appendOffset);
}
return angle::Result::Continue;
}
void ContextVk::invalidateGraphicsDriverUniforms()
{
mGraphicsDirtyBits |= kDriverUniformsAndBindingDirtyBits;
}
void ContextVk::invalidateDriverUniforms()
{
mGraphicsDirtyBits |= kDriverUniformsAndBindingDirtyBits;
mComputeDirtyBits |= kDriverUniformsAndBindingDirtyBits;
}
angle::Result ContextVk::onFramebufferChange(FramebufferVk *framebufferVk, gl::Command command)
{
// This is called from FramebufferVk::syncState. Skip these updates if the framebuffer being
// synced is the read framebuffer (which is not equal the draw framebuffer).
if (framebufferVk != vk::GetImpl(mState.getDrawFramebuffer()))
{
return angle::Result::Continue;
}
// Always consider the render pass finished. FramebufferVk::syncState (caller of this function)
// normally closes the render pass, except for blit to allow an optimization. The following
// code nevertheless must treat the render pass closed.
onRenderPassFinished(RenderPassClosureReason::FramebufferChange);
// Ensure that the pipeline description is updated.
if (mGraphicsPipelineDesc->getRasterizationSamples() !=
static_cast<uint32_t>(framebufferVk->getSamples()))
{
updateRasterizationSamples(framebufferVk->getSamples());
}
// Update scissor.
updateScissor(mState);
// Update depth and stencil.
updateDepthStencil(mState);
if (mState.getProgramExecutable())
{
ANGLE_TRY(invalidateCurrentShaderResources(command));
}
onDrawFramebufferRenderPassDescChange(framebufferVk, nullptr);
return angle::Result::Continue;
}
void ContextVk::onDrawFramebufferRenderPassDescChange(FramebufferVk *framebufferVk,
bool *renderPassDescChangedOut)
{
mGraphicsPipelineDesc->updateRenderPassDesc(&mGraphicsPipelineTransition,
framebufferVk->getRenderPassDesc());
const gl::Box &dimensions = framebufferVk->getState().getDimensions();
mGraphicsPipelineDesc->updateDrawableSize(&mGraphicsPipelineTransition, dimensions.width,
dimensions.height);
if (renderPassDescChangedOut)
{
// If render pass desc has changed while processing the dirty bits, notify the caller.
*renderPassDescChangedOut = true;
}
else
{
// Otherwise mark the pipeline as dirty.
invalidateCurrentGraphicsPipeline();
}
}
void ContextVk::invalidateCurrentTransformFeedbackBuffers()
{
if (getFeatures().supportsTransformFeedbackExtension.enabled)
{
mGraphicsDirtyBits.set(DIRTY_BIT_TRANSFORM_FEEDBACK_BUFFERS);
}
else if (getFeatures().emulateTransformFeedback.enabled)
{
mGraphicsDirtyBits |= kXfbBuffersAndDescSetDirtyBits;
}
}
void ContextVk::onTransformFeedbackStateChanged()
{
if (getFeatures().supportsTransformFeedbackExtension.enabled)
{
mGraphicsDirtyBits.set(DIRTY_BIT_TRANSFORM_FEEDBACK_BUFFERS);
}
else if (getFeatures().emulateTransformFeedback.enabled)
{
invalidateGraphicsDriverUniforms();
invalidateCurrentTransformFeedbackBuffers();
// Invalidate the graphics pipeline too. On transform feedback state change, the current
// program may be used again, and it should switch between outputting transform feedback and
// not.
invalidateCurrentGraphicsPipeline();
resetCurrentGraphicsPipeline();
}
}
angle::Result ContextVk::onBeginTransformFeedback(
size_t bufferCount,
const gl::TransformFeedbackBuffersArray<vk::BufferHelper *> &buffers,
const gl::TransformFeedbackBuffersArray<vk::BufferHelper> &counterBuffers)
{
onTransformFeedbackStateChanged();
bool shouldEndRenderPass = false;
// If any of the buffers were previously used in the render pass, break the render pass as a
// barrier is needed.
for (size_t bufferIndex = 0; bufferIndex < bufferCount; ++bufferIndex)
{
const vk::BufferHelper *buffer = buffers[bufferIndex];
if (mRenderPassCommands->usesBuffer(*buffer))
{
shouldEndRenderPass = true;
break;
}
}
if (getFeatures().supportsTransformFeedbackExtension.enabled)
{
// Break the render pass if the counter buffers are used too. Note that Vulkan requires a
// barrier on the counter buffer between pause and resume, so it cannot be resumed in the
// same render pass. Note additionally that we don't need to test all counters being used
// in the render pass, as outside of the transform feedback object these buffers are
// inaccessible and are therefore always used together.
if (!shouldEndRenderPass && mRenderPassCommands->usesBuffer(counterBuffers[0]))
{
shouldEndRenderPass = true;
}
mGraphicsDirtyBits.set(DIRTY_BIT_TRANSFORM_FEEDBACK_RESUME);
}
if (shouldEndRenderPass)
{
ANGLE_TRY(flushCommandsAndEndRenderPass(RenderPassClosureReason::BufferUseThenXfbWrite));
}
populateTransformFeedbackBufferSet(bufferCount, buffers);
return angle::Result::Continue;
}
void ContextVk::populateTransformFeedbackBufferSet(
size_t bufferCount,
const gl::TransformFeedbackBuffersArray<vk::BufferHelper *> &buffers)
{
for (size_t bufferIndex = 0; bufferIndex < bufferCount; ++bufferIndex)
{
vk::BufferHelper *buffer = buffers[bufferIndex];
if (!mCurrentTransformFeedbackBuffers.contains(buffer))
{
mCurrentTransformFeedbackBuffers.insert(buffer);
}
}
}
void ContextVk::onEndTransformFeedback()
{
if (getFeatures().supportsTransformFeedbackExtension.enabled)
{
if (mRenderPassCommands->isTransformFeedbackStarted())
{
mRenderPassCommands->endTransformFeedback();
}
}
else if (getFeatures().emulateTransformFeedback.enabled)
{
onTransformFeedbackStateChanged();
}
}
angle::Result ContextVk::onPauseTransformFeedback()
{
if (getFeatures().supportsTransformFeedbackExtension.enabled)
{
// If transform feedback was already active on this render pass, break it. This
// is for simplicity to avoid tracking multiple simultaneously active transform feedback
// settings in the render pass.
if (mRenderPassCommands->isTransformFeedbackActiveUnpaused())
{
return flushCommandsAndEndRenderPass(RenderPassClosureReason::XfbPause);
}
}
else if (getFeatures().emulateTransformFeedback.enabled)
{
invalidateCurrentTransformFeedbackBuffers();
}
return angle::Result::Continue;
}
void ContextVk::invalidateGraphicsPipelineBinding()
{
mGraphicsDirtyBits.set(DIRTY_BIT_PIPELINE_BINDING);
}
void ContextVk::invalidateComputePipelineBinding()
{
mComputeDirtyBits.set(DIRTY_BIT_PIPELINE_BINDING);
}
void ContextVk::invalidateGraphicsDescriptorSet(DescriptorSetIndex usedDescriptorSet)
{
// UtilsVk currently only uses set 0
ASSERT(usedDescriptorSet == DescriptorSetIndex::Internal);
if (mDriverUniforms[PipelineType::Graphics].descriptorSet != VK_NULL_HANDLE)
{
mGraphicsDirtyBits.set(DIRTY_BIT_DRIVER_UNIFORMS_BINDING);
}
}
void ContextVk::invalidateComputeDescriptorSet(DescriptorSetIndex usedDescriptorSet)
{
// UtilsVk currently only uses set 0
ASSERT(usedDescriptorSet == DescriptorSetIndex::Internal);
if (mDriverUniforms[PipelineType::Compute].descriptorSet != VK_NULL_HANDLE)
{
mComputeDirtyBits.set(DIRTY_BIT_DRIVER_UNIFORMS_BINDING);
}
}
void ContextVk::invalidateViewportAndScissor()
{
mGraphicsDirtyBits.set(DIRTY_BIT_VIEWPORT);
mGraphicsDirtyBits.set(DIRTY_BIT_SCISSOR);
}
angle::Result ContextVk::dispatchCompute(const gl::Context *context,
GLuint numGroupsX,
GLuint numGroupsY,
GLuint numGroupsZ)
{
ANGLE_TRY(setupDispatch(context));
mOutsideRenderPassCommands->getCommandBuffer().dispatch(numGroupsX, numGroupsY, numGroupsZ);
return angle::Result::Continue;
}
angle::Result ContextVk::dispatchComputeIndirect(const gl::Context *context, GLintptr indirect)
{
gl::Buffer *glBuffer = getState().getTargetBuffer(gl::BufferBinding::DispatchIndirect);
vk::BufferHelper &buffer = vk::GetImpl(glBuffer)->getBuffer();
// Break the render pass if the indirect buffer was previously used as the output from transform
// feedback.
if (mCurrentTransformFeedbackBuffers.contains(&buffer))
{
ANGLE_TRY(flushCommandsAndEndRenderPass(
RenderPassClosureReason::XfbWriteThenIndirectDispatchBuffer));
}
ANGLE_TRY(setupDispatch(context));
// Process indirect buffer after command buffer has started.
mOutsideRenderPassCommands->bufferRead(this, VK_ACCESS_INDIRECT_COMMAND_READ_BIT,
vk::PipelineStage::DrawIndirect, &buffer);
mOutsideRenderPassCommands->getCommandBuffer().dispatchIndirect(buffer.getBuffer(),
buffer.getOffset() + indirect);
return angle::Result::Continue;
}
angle::Result ContextVk::memoryBarrier(const gl::Context *context, GLbitfield barriers)
{
// First, turn GL_ALL_BARRIER_BITS into a mask that has only the valid barriers set.
constexpr GLbitfield kCoreBarrierBits =
GL_VERTEX_ATTRIB_ARRAY_BARRIER_BIT | GL_ELEMENT_ARRAY_BARRIER_BIT | GL_UNIFORM_BARRIER_BIT |
GL_TEXTURE_FETCH_BARRIER_BIT | GL_SHADER_IMAGE_ACCESS_BARRIER_BIT | GL_COMMAND_BARRIER_BIT |
GL_PIXEL_BUFFER_BARRIER_BIT | GL_TEXTURE_UPDATE_BARRIER_BIT | GL_BUFFER_UPDATE_BARRIER_BIT |
GL_FRAMEBUFFER_BARRIER_BIT | GL_TRANSFORM_FEEDBACK_BARRIER_BIT |
GL_ATOMIC_COUNTER_BARRIER_BIT | GL_SHADER_STORAGE_BARRIER_BIT;
constexpr GLbitfield kExtensionBarrierBits = GL_CLIENT_MAPPED_BUFFER_BARRIER_BIT_EXT;
barriers &= kCoreBarrierBits | kExtensionBarrierBits;
// GL_CLIENT_MAPPED_BUFFER_BARRIER_BIT_EXT specifies that a fence sync or glFinish must be used
// after the barrier for the CPU to to see the shader writes. Since host-visible buffer writes
// always issue a barrier automatically for the sake of glMapBuffer() (see
// comment on |mIsAnyHostVisibleBufferWritten|), there's nothing to do for
// GL_CLIENT_MAPPED_BUFFER_BARRIER_BIT_EXT.
barriers &= ~GL_CLIENT_MAPPED_BUFFER_BARRIER_BIT_EXT;
// If no other barrier, early out.
if (barriers == 0)
{
return angle::Result::Continue;
}
// glMemoryBarrier for barrier bit X_BARRIER_BIT implies:
//
// - An execution+memory barrier: shader writes are made visible to subsequent X accesses
//
// Additionally, SHADER_IMAGE_ACCESS_BARRIER_BIT and SHADER_STORAGE_BARRIER_BIT imply:
//
// - An execution+memory barrier: all accesses are finished before image/buffer writes
//
// For the first barrier, we can simplify the implementation by assuming that prior writes are
// expected to be used right after this barrier, so we can close the render pass or flush the
// outside render pass commands right away if they have had any writes.
//
// It's noteworthy that some barrier bits affect draw/dispatch calls only, while others affect
// other commands. For the latter, since storage buffer and images are not tracked in command
// buffers, we can't rely on the command buffers being flushed in the usual way when recording
// these commands (i.e. through |getOutsideRenderPassCommandBuffer()| and
// |vk::CommandBufferAccess|). Conservatively flushing command buffers with any storage output
// simplifies this use case. If this needs to be avoided in the future,
// |getOutsideRenderPassCommandBuffer()| can be modified to flush the command buffers if they
// have had any storage output.
//
// For the second barrier, we need to defer closing the render pass until there's a draw or
// dispatch call that uses storage buffers or images that were previously used in the render
// pass. This allows the render pass to remain open in scenarios such as this:
//
// - Draw using resource X
// - glMemoryBarrier
// - Draw/dispatch with storage buffer/image Y
//
// To achieve this, a dirty bit is added that breaks the render pass if any storage
// buffer/images are used in it. Until the render pass breaks, changing the program or storage
// buffer/image bindings should set this dirty bit again.
if (mRenderPassCommands->hasShaderStorageOutput())
{
// Break the render pass if necessary as future non-draw commands can't know if they should.
ANGLE_TRY(flushCommandsAndEndRenderPass(
RenderPassClosureReason::StorageResourceUseThenGLMemoryBarrier));
}
else if (mOutsideRenderPassCommands->hasShaderStorageOutput())
{
// Otherwise flush the outside render pass commands if necessary.
ANGLE_TRY(flushOutsideRenderPassCommands());
}
constexpr GLbitfield kWriteAfterAccessBarriers =
GL_SHADER_IMAGE_ACCESS_BARRIER_BIT | GL_SHADER_STORAGE_BARRIER_BIT;
if ((barriers & kWriteAfterAccessBarriers) == 0)
{
return angle::Result::Continue;
}
// Defer flushing the command buffers until a draw/dispatch with storage buffer/image is
// encountered.
mGraphicsDirtyBits.set(DIRTY_BIT_MEMORY_BARRIER);
mComputeDirtyBits.set(DIRTY_BIT_MEMORY_BARRIER);
// Make sure memory barrier is issued for future usages of storage buffers and images even if
// there's no binding change.
mGraphicsDirtyBits.set(DIRTY_BIT_SHADER_RESOURCES);
mComputeDirtyBits.set(DIRTY_BIT_SHADER_RESOURCES);
// Mark the command buffers as affected by glMemoryBarrier, so future program and storage
// buffer/image binding changes can set DIRTY_BIT_MEMORY_BARRIER again.
mOutsideRenderPassCommands->setGLMemoryBarrierIssued();
mRenderPassCommands->setGLMemoryBarrierIssued();
return angle::Result::Continue;
}
angle::Result ContextVk::memoryBarrierByRegion(const gl::Context *context, GLbitfield barriers)
{
// Note: memoryBarrierByRegion is expected to affect only the fragment pipeline, but is
// otherwise similar to memoryBarrier in function.
//
// TODO: Optimize memoryBarrierByRegion by issuing an in-subpass pipeline barrier instead of
// breaking the render pass. http://anglebug.com/5132
return memoryBarrier(context, barriers);
}
void ContextVk::framebufferFetchBarrier()
{
mGraphicsDirtyBits.set(DIRTY_BIT_FRAMEBUFFER_FETCH_BARRIER);
}
angle::Result ContextVk::acquireTextures(const gl::Context *context,
const gl::TextureBarrierVector &textureBarriers)
{
for (const gl::TextureAndLayout &textureBarrier : textureBarriers)
{
TextureVk *textureVk = vk::GetImpl(textureBarrier.texture);
vk::ImageHelper &image = textureVk->getImage();
vk::ImageLayout layout = vk::GetImageLayoutFromGLImageLayout(textureBarrier.layout);
// Image should not be accessed while unowned. Emulated formats may have staged updates
// to clear the image after initialization.
ASSERT(!image.hasStagedUpdatesInAllocatedLevels() || image.hasEmulatedImageChannels());
image.setCurrentImageLayout(layout);
}
return angle::Result::Continue;
}
angle::Result ContextVk::releaseTextures(const gl::Context *context,
gl::TextureBarrierVector *textureBarriers)
{
for (gl::TextureAndLayout &textureBarrier : *textureBarriers)
{
TextureVk *textureVk = vk::GetImpl(textureBarrier.texture);
ANGLE_TRY(textureVk->ensureImageInitialized(this, ImageMipLevels::EnabledLevels));
vk::ImageHelper &image = textureVk->getImage();
ANGLE_TRY(onImageReleaseToExternal(image));
textureBarrier.layout =
vk::ConvertImageLayoutToGLImageLayout(image.getCurrentImageLayout());
}
ANGLE_TRY(flushImpl(nullptr, RenderPassClosureReason::ImageUseThenReleaseToExternal));
return mRenderer->ensureNoPendingWork(this);
}
vk::DynamicQueryPool *ContextVk::getQueryPool(gl::QueryType queryType)
{
ASSERT(queryType == gl::QueryType::AnySamples ||
queryType == gl::QueryType::AnySamplesConservative ||
queryType == gl::QueryType::PrimitivesGenerated ||
queryType == gl::QueryType::TransformFeedbackPrimitivesWritten ||
queryType == gl::QueryType::Timestamp || queryType == gl::QueryType::TimeElapsed);
// For PrimitivesGenerated queries:
//
// - If VK_EXT_primitives_generated_query is supported, use that.
// TODO: http://anglebug.com/5430
// - Otherwise, if pipelineStatisticsQuery is supported, use that,
// - Otherwise, use the same pool as TransformFeedbackPrimitivesWritten and share the query as
// the Vulkan transform feedback query produces both results. This option is non-conformant
// as the primitives generated query will not be functional without transform feedback.
//
if (queryType == gl::QueryType::PrimitivesGenerated &&
!getFeatures().supportsPipelineStatisticsQuery.enabled)
{
queryType = gl::QueryType::TransformFeedbackPrimitivesWritten;
}
// Assert that timestamp extension is available if needed.
ASSERT(queryType != gl::QueryType::Timestamp && queryType != gl::QueryType::TimeElapsed ||
mRenderer->getQueueFamilyProperties().timestampValidBits > 0);
ASSERT(mQueryPools[queryType].isValid());
return &mQueryPools[queryType];
}
const VkClearValue &ContextVk::getClearColorValue() const
{
return mClearColorValue;
}
const VkClearValue &ContextVk::getClearDepthStencilValue() const
{
return mClearDepthStencilValue;
}
gl::BlendStateExt::ColorMaskStorage::Type ContextVk::getClearColorMasks() const
{
return mClearColorMasks;
}
void ContextVk::writeAtomicCounterBufferDriverUniformOffsets(uint32_t *offsetsOut,
size_t offsetsSize)
{
const VkDeviceSize offsetAlignment =
mRenderer->getPhysicalDeviceProperties().limits.minStorageBufferOffsetAlignment;
size_t atomicCounterBufferCount = mState.getAtomicCounterBufferCount();
ASSERT(atomicCounterBufferCount <= offsetsSize * 4);
for (uint32_t bufferIndex = 0; bufferIndex < atomicCounterBufferCount; ++bufferIndex)
{
uint32_t offsetDiff = 0;
const gl::OffsetBindingPointer<gl::Buffer> *atomicCounterBuffer =
&mState.getIndexedAtomicCounterBuffer(bufferIndex);
if (atomicCounterBuffer->get())
{
VkDeviceSize offset = atomicCounterBuffer->getOffset();
VkDeviceSize alignedOffset = (offset / offsetAlignment) * offsetAlignment;
// GL requires the atomic counter buffer offset to be aligned with uint.
ASSERT((offset - alignedOffset) % sizeof(uint32_t) == 0);
offsetDiff = static_cast<uint32_t>((offset - alignedOffset) / sizeof(uint32_t));
// We expect offsetDiff to fit in an 8-bit value. The maximum difference is
// minStorageBufferOffsetAlignment / 4, where minStorageBufferOffsetAlignment
// currently has a maximum value of 256 on any device.
ASSERT(offsetDiff < (1 << 8));
}
// The output array is already cleared prior to this call.
ASSERT(bufferIndex % 4 != 0 || offsetsOut[bufferIndex / 4] == 0);
offsetsOut[bufferIndex / 4] |= static_cast<uint8_t>(offsetDiff) << ((bufferIndex % 4) * 8);
}
}
void ContextVk::pauseTransformFeedbackIfActiveUnpaused()
{
if (mRenderPassCommands->isTransformFeedbackActiveUnpaused())
{
ASSERT(getFeatures().supportsTransformFeedbackExtension.enabled);
mRenderPassCommands->pauseTransformFeedback();
// Note that this function is called when render pass break is imminent
// (flushCommandsAndEndRenderPass(), or UtilsVk::clearFramebuffer which will close the
// render pass after the clear). This dirty bit allows transform feedback to resume
// automatically on next render pass.
mGraphicsDirtyBits.set(DIRTY_BIT_TRANSFORM_FEEDBACK_RESUME);
}
}
angle::Result ContextVk::handleDirtyGraphicsDriverUniforms(DirtyBits::Iterator *dirtyBitsIterator,
DirtyBits dirtyBitMask)
{
// Allocate a new region in the dynamic buffer.
bool useGraphicsDriverUniformsExtended = getFeatures().forceDriverUniformOverSpecConst.enabled;
uint8_t *ptr;
bool newBuffer;
GraphicsDriverUniforms *driverUniforms;
size_t driverUniformSize;
if (useGraphicsDriverUniformsExtended)
{
driverUniformSize = sizeof(GraphicsDriverUniformsExtended);
}
else
{
driverUniformSize = sizeof(GraphicsDriverUniforms);
}
ANGLE_TRY(allocateDriverUniforms(driverUniformSize, &mDriverUniforms[PipelineType::Graphics],
&ptr, &newBuffer));
if (useGraphicsDriverUniformsExtended)
{
float halfRenderAreaWidth =
static_cast<float>(mDrawFramebuffer->getState().getDimensions().width) * 0.5f;
float halfRenderAreaHeight =
static_cast<float>(mDrawFramebuffer->getState().getDimensions().height) * 0.5f;
float flipX = 1.0f;
float flipY = -1.0f;
// Y-axis flipping only comes into play with the default framebuffer (i.e. a swapchain
// image). For 0-degree rotation, an FBO or pbuffer could be the draw framebuffer, and so we
// must check whether flipY should be positive or negative. All other rotations, will be to
// the default framebuffer, and so the value of isViewportFlipEnabledForDrawFBO() is assumed
// true; the appropriate flipY value is chosen such that gl_FragCoord is positioned at the
// lower-left corner of the window.
switch (mCurrentRotationDrawFramebuffer)
{
case SurfaceRotation::Identity:
flipX = 1.0f;
flipY = isViewportFlipEnabledForDrawFBO() ? -1.0f : 1.0f;
break;
case SurfaceRotation::Rotated90Degrees:
ASSERT(isViewportFlipEnabledForDrawFBO());
flipX = 1.0f;
flipY = 1.0f;
break;
case SurfaceRotation::Rotated180Degrees:
ASSERT(isViewportFlipEnabledForDrawFBO());
flipX = -1.0f;
flipY = 1.0f;
break;
case SurfaceRotation::Rotated270Degrees:
ASSERT(isViewportFlipEnabledForDrawFBO());
flipX = -1.0f;
flipY = -1.0f;
break;
default:
UNREACHABLE();
break;
}
GraphicsDriverUniformsExtended *driverUniformsExt =
reinterpret_cast<GraphicsDriverUniformsExtended *>(ptr);
driverUniformsExt->halfRenderArea = {halfRenderAreaWidth, halfRenderAreaHeight};
driverUniformsExt->flipXY = {flipX, flipY};
driverUniformsExt->negFlipXY = {flipX, -flipY};
memcpy(&driverUniformsExt->fragRotation,
&kFragRotationMatrices[mCurrentRotationDrawFramebuffer],
sizeof(PreRotationMatrixValues));
driverUniforms = &driverUniformsExt->common;
}
else
{
driverUniforms = reinterpret_cast<GraphicsDriverUniforms *>(ptr);
}
gl::Rectangle glViewport = mState.getViewport();
if (isRotatedAspectRatioForDrawFBO())
{
// The surface is rotated 90/270 degrees. This changes the aspect ratio of the surface.
std::swap(glViewport.x, glViewport.y);
std::swap(glViewport.width, glViewport.height);
}
float depthRangeNear = mState.getNearPlane();
float depthRangeFar = mState.getFarPlane();
float depthRangeDiff = depthRangeFar - depthRangeNear;
int32_t numSamples = mDrawFramebuffer->getSamples();
// Copy and flush to the device.
*driverUniforms = {
{static_cast<float>(glViewport.x), static_cast<float>(glViewport.y),
static_cast<float>(glViewport.width), static_cast<float>(glViewport.height)},
mState.getEnabledClipDistances().bits(),
0,
static_cast<int32_t>(mXfbVertexCountPerInstance),
numSamples,
{},
{},
{depthRangeNear, depthRangeFar, depthRangeDiff, 0.0f}};
if (mState.isTransformFeedbackActiveUnpaused())
{
TransformFeedbackVk *transformFeedbackVk =
vk::GetImpl(mState.getCurrentTransformFeedback());
transformFeedbackVk->getBufferOffsets(this, mXfbBaseVertex,
driverUniforms->xfbBufferOffsets.data(),
driverUniforms->xfbBufferOffsets.size());
}
if (mState.hasValidAtomicCounterBuffer())
{
writeAtomicCounterBufferDriverUniformOffsets(driverUniforms->acbBufferOffsets.data(),
driverUniforms->acbBufferOffsets.size());
}
return updateDriverUniformsDescriptorSet(newBuffer, driverUniformSize, PipelineType::Graphics);
}
angle::Result ContextVk::handleDirtyComputeDriverUniforms()
{
// Allocate a new region in the dynamic buffer.
uint8_t *ptr;
bool newBuffer;
ANGLE_TRY(allocateDriverUniforms(sizeof(ComputeDriverUniforms),
&mDriverUniforms[PipelineType::Compute], &ptr, &newBuffer));
// Copy and flush to the device.
ComputeDriverUniforms *driverUniforms = reinterpret_cast<ComputeDriverUniforms *>(ptr);
*driverUniforms = {};
if (mState.hasValidAtomicCounterBuffer())
{
writeAtomicCounterBufferDriverUniformOffsets(driverUniforms->acbBufferOffsets.data(),
driverUniforms->acbBufferOffsets.size());
}
return updateDriverUniformsDescriptorSet(newBuffer, sizeof(ComputeDriverUniforms),
PipelineType::Compute);
}
template <typename CommandBufferT>
void ContextVk::handleDirtyDriverUniformsBindingImpl(CommandBufferT *commandBuffer,
VkPipelineBindPoint bindPoint,
DriverUniformsDescriptorSet *driverUniforms)
{
// The descriptor pool that this descriptor set was allocated from needs to be retained when the
// descriptor set is used in a new command. Since the descriptor pools are specific to each
// ContextVk, we only need to retain them once to ensure the reference count and Serial are
// updated correctly.
if (!driverUniforms->descriptorPoolBinding.get().usedInRecordedCommands())
{
driverUniforms->descriptorPoolBinding.get().retain(&mResourceUseList);
}
commandBuffer->bindDescriptorSets(
mExecutable->getPipelineLayout(), bindPoint, DescriptorSetIndex::Internal, 1,
&driverUniforms->descriptorSet, 1, &driverUniforms->dynamicOffset);
}
angle::Result ContextVk::handleDirtyGraphicsDriverUniformsBinding(
DirtyBits::Iterator *dirtyBitsIterator,
DirtyBits dirtyBitMask)
{
// Bind the driver descriptor set.
handleDirtyDriverUniformsBindingImpl(mRenderPassCommandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS,
&mDriverUniforms[PipelineType::Graphics]);
return angle::Result::Continue;
}
angle::Result ContextVk::handleDirtyComputeDriverUniformsBinding()
{
// Bind the driver descriptor set.
handleDirtyDriverUniformsBindingImpl(&mOutsideRenderPassCommands->getCommandBuffer(),
VK_PIPELINE_BIND_POINT_COMPUTE,
&mDriverUniforms[PipelineType::Compute]);
return angle::Result::Continue;
}
angle::Result ContextVk::allocateDriverUniforms(size_t driverUniformsSize,
DriverUniformsDescriptorSet *driverUniforms,
uint8_t **ptrOut,
bool *newBufferOut)
{
// Allocate a new region in the dynamic buffer. The allocate call may put buffer into dynamic
// buffer's mInflightBuffers. During command submission time, these in-flight buffers are added
// into context's mResourceUseList which will ensure they get tagged with queue serial number
// before moving them into the free list.
VkDeviceSize offset;
ANGLE_TRY(driverUniforms->dynamicBuffer.allocate(this, driverUniformsSize, ptrOut, nullptr,
&offset, newBufferOut));
driverUniforms->dynamicOffset = static_cast<uint32_t>(offset);
return angle::Result::Continue;
}
angle::Result ContextVk::updateDriverUniformsDescriptorSet(bool newBuffer,
size_t driverUniformsSize,
PipelineType pipelineType)
{
DriverUniformsDescriptorSet &driverUniforms = mDriverUniforms[pipelineType];
ANGLE_TRY(driverUniforms.dynamicBuffer.flush(this));
if (!newBuffer)
{
return angle::Result::Continue;
}
const vk::BufferHelper *buffer = driverUniforms.dynamicBuffer.getCurrentBuffer();
vk::BufferSerial bufferSerial = buffer->getBufferSerial();
// Look up in the cache first
if (driverUniforms.descriptorSetCache.get(bufferSerial.getValue(),
&driverUniforms.descriptorSet))
{
// The descriptor pool that this descriptor set was allocated from needs to be retained each
// time the descriptor set is used in a new command.
driverUniforms.descriptorPoolBinding.get().retain(&mResourceUseList);
return angle::Result::Continue;
}
// Allocate a new descriptor set.
bool newPoolAllocated;
ANGLE_TRY(mDriverUniformsDescriptorPools[pipelineType].allocateSetsAndGetInfo(
this, driverUniforms.descriptorSetLayout.get().ptr(), 1,
&driverUniforms.descriptorPoolBinding, &driverUniforms.descriptorSet, &newPoolAllocated));
mContextPerfCounters.descriptorSetsAllocated[pipelineType]++;
// Clear descriptor set cache. It may no longer be valid.
if (newPoolAllocated)
{
driverUniforms.descriptorSetCache.clear();
}
// Update the driver uniform descriptor set.
VkDescriptorBufferInfo &bufferInfo = allocDescriptorBufferInfo();
bufferInfo.buffer = buffer->getBuffer().getHandle();
bufferInfo.offset = 0;
bufferInfo.range = driverUniformsSize;
VkWriteDescriptorSet &writeInfo = allocWriteDescriptorSet();
writeInfo.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writeInfo.dstSet = driverUniforms.descriptorSet;
writeInfo.dstBinding = 0;
writeInfo.dstArrayElement = 0;
writeInfo.descriptorCount = 1;
writeInfo.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC;
writeInfo.pImageInfo = nullptr;
writeInfo.pTexelBufferView = nullptr;
writeInfo.pBufferInfo = &bufferInfo;
// Add into descriptor set cache
driverUniforms.descriptorSetCache.insert(bufferSerial.getValue(), driverUniforms.descriptorSet);
return angle::Result::Continue;
}
void ContextVk::handleError(VkResult errorCode,
const char *file,
const char *function,
unsigned int line)
{
ASSERT(errorCode != VK_SUCCESS);
GLenum glErrorCode = DefaultGLErrorCode(errorCode);
std::stringstream errorStream;
errorStream << "Internal Vulkan error (" << errorCode << "): " << VulkanResultString(errorCode)
<< ".";
if (errorCode == VK_ERROR_DEVICE_LOST)
{
WARN() << errorStream.str();
handleDeviceLost();
}
mErrors->handleError(glErrorCode, errorStream.str().c_str(), file, function, line);
}
angle::Result ContextVk::updateActiveTextures(const gl::Context *context, gl::Command command)
{
const gl::ProgramExecutable *executable = mState.getProgramExecutable();
ASSERT(executable);
uint32_t prevMaxIndex = mActiveTexturesDesc.getMaxIndex();
memset(mActiveTextures.data(), 0, sizeof(mActiveTextures[0]) * prevMaxIndex);
mActiveTexturesDesc.reset();
const gl::ActiveTexturesCache &textures = mState.getActiveTexturesCache();
const gl::ActiveTextureMask &activeTextures = executable->getActiveSamplersMask();
const gl::ActiveTextureTypeArray &textureTypes = executable->getActiveSamplerTypes();
bool recreatePipelineLayout = false;
ImmutableSamplerIndexMap immutableSamplerIndexMap = {};
for (size_t textureUnit : activeTextures)
{
gl::Texture *texture = textures[textureUnit];
gl::TextureType textureType = textureTypes[textureUnit];
ASSERT(textureType != gl::TextureType::InvalidEnum);
const bool isIncompleteTexture = texture == nullptr;
// Null textures represent incomplete textures.
if (isIncompleteTexture)
{
ANGLE_TRY(getIncompleteTexture(
context, textureType, executable->getSamplerFormatForTextureUnitIndex(textureUnit),
&texture));
}
TextureVk *textureVk = vk::GetImpl(texture);
ASSERT(textureVk != nullptr);
vk::TextureUnit &activeTexture = mActiveTextures[textureUnit];
// Special handling of texture buffers. They have a buffer attached instead of an image.
if (textureType == gl::TextureType::Buffer)
{
activeTexture.texture = textureVk;
mActiveTexturesDesc.update(textureUnit, textureVk->getBufferViewSerial(),
vk::SamplerSerial());
continue;
}
if (!isIncompleteTexture && texture->isDepthOrStencil() &&
shouldSwitchToReadOnlyDepthFeedbackLoopMode(texture, command))
{
// Special handling for deferred clears.
ANGLE_TRY(mDrawFramebuffer->flushDeferredClears(this));
if (hasStartedRenderPass())
{
if (!textureVk->getImage().hasRenderPassUsageFlag(
vk::RenderPassUsage::ReadOnlyAttachment))
{
// To enter depth feedback loop, we must flush and start a new renderpass.
// Otherwise it will stick with writable layout and cause validation error.
ANGLE_TRY(flushCommandsAndEndRenderPass(
RenderPassClosureReason::DepthStencilUseInFeedbackLoop));
}
else
{
mDrawFramebuffer->updateRenderPassReadOnlyDepthMode(this, mRenderPassCommands);
}
}
mDrawFramebuffer->setReadOnlyDepthFeedbackLoopMode(true);
}
gl::Sampler *sampler = mState.getSampler(static_cast<uint32_t>(textureUnit));
const SamplerVk *samplerVk = sampler ? vk::GetImpl(sampler) : nullptr;
const vk::SamplerHelper &samplerHelper =
samplerVk ? samplerVk->getSampler() : textureVk->getSampler();
const gl::SamplerState &samplerState =
sampler ? sampler->getSamplerState() : texture->getSamplerState();
activeTexture.texture = textureVk;
activeTexture.sampler = &samplerHelper;
activeTexture.srgbDecode = samplerState.getSRGBDecode();
// GL_EXT_texture_sRGB_decode
// The new parameter, TEXTURE_SRGB_DECODE_EXT controls whether the
// decoding happens at sample time. It only applies to textures with an
// internal format that is sRGB and is ignored for all other textures.
ASSERT(textureVk->getImage().valid());
if (textureVk->getImage().getActualFormat().isSRGB &&
activeTexture.srgbDecode == GL_SKIP_DECODE_EXT)
{
// Make sure we use the MUTABLE bit for the storage. Because the "skip decode" is a
// Sampler state we might not have caught this setting in TextureVk::syncState.
ANGLE_TRY(textureVk->ensureMutable(this));
}
if (textureVk->getImage().hasEmulatedImageFormat())
{
ANGLE_VK_PERF_WARNING(
this, GL_DEBUG_SEVERITY_LOW,
"The Vulkan driver does not support texture format 0x%04X, emulating with 0x%04X",
textureVk->getImage().getIntendedFormat().glInternalFormat,
textureVk->getImage().getActualFormat().glInternalFormat);
}
vk::ImageOrBufferViewSubresourceSerial imageViewSerial =
textureVk->getImageViewSubresourceSerial(samplerState);
mActiveTexturesDesc.update(textureUnit, imageViewSerial, samplerHelper.getSamplerSerial());
if (textureVk->getImage().hasImmutableSampler())
{
immutableSamplerIndexMap[*textureVk->getImage().getYcbcrConversionDesc()] =
static_cast<uint32_t>(textureUnit);
}
if (textureVk->getAndResetImmutableSamplerDirtyState())
{
recreatePipelineLayout = true;
}
}
if (!mExecutable->areImmutableSamplersCompatible(immutableSamplerIndexMap))
{
recreatePipelineLayout = true;
}
// Recreate the pipeline layout, if necessary.
if (recreatePipelineLayout)
{
ANGLE_TRY(mExecutable->createPipelineLayout(this, *executable, &mActiveTextures));
// The default uniforms descriptor set was reset during createPipelineLayout(), so mark them
// dirty to get everything reallocated/rebound before the next draw.
if (executable->hasDefaultUniforms())
{
if (mProgram)
{
mProgram->setAllDefaultUniformsDirty();
}
else if (mProgramPipeline)
{
mProgramPipeline->setAllDefaultUniformsDirty();
}
}
}
return angle::Result::Continue;
}
template <typename CommandBufferHelperT>
angle::Result ContextVk::updateActiveImages(CommandBufferHelperT *commandBufferHelper)
{
const gl::State &glState = mState;
const gl::ProgramExecutable *executable = glState.getProgramExecutable();
ASSERT(executable);
mActiveImages.fill(nullptr);
const gl::ActiveTextureMask &activeImages = executable->getActiveImagesMask();
const gl::ActiveTextureArray<gl::ShaderBitSet> &activeImageShaderBits =
executable->getActiveImageShaderBits();
// Note: currently, the image layout is transitioned entirely even if only one level or layer is
// used. This is an issue if one subresource of the image is used as framebuffer attachment and
// the other as image. This is a similar issue to http://anglebug.com/2914. Another issue
// however is if multiple subresources of the same image are used at the same time.
// Inefficiencies aside, setting write dependency on the same image multiple times is not
// supported. The following makes sure write dependencies are set only once per image.
std::set<vk::ImageHelper *> alreadyProcessed;
for (size_t imageUnitIndex : activeImages)
{
const gl::ImageUnit &imageUnit = glState.getImageUnit(imageUnitIndex);
const gl::Texture *texture = imageUnit.texture.get();
if (texture == nullptr)
{
continue;
}
TextureVk *textureVk = vk::GetImpl(texture);
mActiveImages[imageUnitIndex] = textureVk;
// The image should be flushed and ready to use at this point. There may still be
// lingering staged updates in its staging buffer for unused texture mip levels or
// layers. Therefore we can't verify it has no staged updates right here.
gl::ShaderBitSet shaderStages = activeImageShaderBits[imageUnitIndex];
ASSERT(shaderStages.any());
// Special handling of texture buffers. They have a buffer attached instead of an image.
if (texture->getType() == gl::TextureType::Buffer)
{
BufferVk *bufferVk = vk::GetImpl(textureVk->getBuffer().get());
OnImageBufferWrite(this, bufferVk, shaderStages, commandBufferHelper);
textureVk->retainBufferViews(&mResourceUseList);
continue;
}
vk::ImageHelper *image = &textureVk->getImage();
if (alreadyProcessed.find(image) != alreadyProcessed.end())
{
continue;
}
alreadyProcessed.insert(image);
gl::LevelIndex level;
uint32_t layerStart = 0;
uint32_t layerCount = 0;
const vk::ImageLayout imageLayout = GetImageWriteLayoutAndSubresource(
imageUnit, *image, shaderStages, &level, &layerStart, &layerCount);
commandBufferHelper->imageWrite(this, level, layerStart, layerCount,
image->getAspectFlags(), imageLayout,
vk::AliasingMode::Allowed, image);
}
return angle::Result::Continue;
}
angle::Result ContextVk::flushImpl(const vk::Semaphore *signalSemaphore,
RenderPassClosureReason renderPassClosureReason)
{
Serial unusedSerial;
return flushAndGetSerial(signalSemaphore, &unusedSerial, renderPassClosureReason);
}
angle::Result ContextVk::flushAndGetSerial(const vk::Semaphore *signalSemaphore,
Serial *submitSerialOut,
RenderPassClosureReason renderPassClosureReason)
{
ANGLE_TRACE_EVENT0("gpu.angle", "ContextVk::flushImpl");
// We must set this to false before calling flushCommandsAndEndRenderPass to prevent it from
// calling back to flushImpl.
mHasDeferredFlush = false;
// Avoid calling vkQueueSubmit() twice, since submitFrame() below will do that.
ANGLE_TRY(flushCommandsAndEndRenderPassWithoutQueueSubmit(renderPassClosureReason));
if (mIsAnyHostVisibleBufferWritten)
{
// Make sure all writes to host-visible buffers are flushed. We have no way of knowing
// whether any buffer will be mapped for readback in the future, and we can't afford to
// flush and wait on a one-pipeline-barrier command buffer on every map().
VkMemoryBarrier memoryBarrier = {};
memoryBarrier.sType = VK_STRUCTURE_TYPE_MEMORY_BARRIER;
memoryBarrier.srcAccessMask = VK_ACCESS_MEMORY_WRITE_BIT;
memoryBarrier.dstAccessMask = VK_ACCESS_HOST_READ_BIT | VK_ACCESS_HOST_WRITE_BIT;
const VkPipelineStageFlags supportedShaderStages =
(VK_PIPELINE_STAGE_VERTEX_SHADER_BIT |
VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT |
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT |
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT | VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT |
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT) &
mRenderer->getSupportedVulkanPipelineStageMask();
const VkPipelineStageFlags bufferWriteStages =
VK_PIPELINE_STAGE_TRANSFER_BIT | supportedShaderStages |
(getFeatures().supportsTransformFeedbackExtension.enabled
? VK_PIPELINE_STAGE_TRANSFORM_FEEDBACK_BIT_EXT
: 0);
mOutsideRenderPassCommands->getCommandBuffer().memoryBarrier(
bufferWriteStages, VK_PIPELINE_STAGE_HOST_BIT, &memoryBarrier);
mIsAnyHostVisibleBufferWritten = false;
}
if (mGpuEventsEnabled)
{
EventName eventName = GetTraceEventName("Primary", mPerfCounters.primaryBuffers);
ANGLE_TRY(traceGpuEvent(&mOutsideRenderPassCommands->getCommandBuffer(),
TRACE_EVENT_PHASE_END, eventName));
}
ANGLE_TRY(flushOutsideRenderPassCommands());
// We must add the per context dynamic buffers into mResourceUseList before submission so that
// they get retained properly until GPU completes. We do not add current buffer into
// mResourceUseList since they never get reused or freed until context gets destroyed, at which
// time we always wait for GPU to finish before destroying the dynamic buffers.
for (DriverUniformsDescriptorSet &driverUniform : mDriverUniforms)
{
driverUniform.dynamicBuffer.releaseInFlightBuffersToResourceUseList(this);
}
mDefaultUniformStorage.releaseInFlightBuffersToResourceUseList(this);
ANGLE_TRY(submitFrame(signalSemaphore, submitSerialOut));
mPerfCounters.renderPasses = 0;
mPerfCounters.writeDescriptorSets = 0;
mPerfCounters.flushedOutsideRenderPassCommandBuffers = 0;
mPerfCounters.resolveImageCommands = 0;
ASSERT(mWaitSemaphores.empty());
ASSERT(mWaitSemaphoreStageMasks.empty());
mPerfCounters.primaryBuffers++;
if (mGpuEventsEnabled)
{
EventName eventName = GetTraceEventName("Primary", mPerfCounters.primaryBuffers);
ANGLE_TRY(traceGpuEvent(&mOutsideRenderPassCommands->getCommandBuffer(),
TRACE_EVENT_PHASE_BEGIN, eventName));
}
// Try to detect frame boundary for both on screen and offscreen usage by detecting
// fush/finish/swap.
if ((renderPassClosureReason == RenderPassClosureReason::GLFlush ||
renderPassClosureReason == RenderPassClosureReason::GLFinish ||
renderPassClosureReason == RenderPassClosureReason::EGLSwapBuffers) &&
mShareGroupVk->isDueForBufferPoolPrune())
{
mShareGroupVk->pruneDefaultBufferPools(mRenderer);
}
return angle::Result::Continue;
}
angle::Result ContextVk::finishImpl(RenderPassClosureReason renderPassClosureReason)
{
ANGLE_TRACE_EVENT0("gpu.angle", "ContextVk::finishImpl");
ANGLE_TRY(flushImpl(nullptr, renderPassClosureReason));
ANGLE_TRY(mRenderer->finish(this, hasProtectedContent()));
clearAllGarbage();
if (mGpuEventsEnabled)
{
// This loop should in practice execute once since the queue is already idle.
while (mInFlightGpuEventQueries.size() > 0)
{
ANGLE_TRY(checkCompletedGpuEvents());
}
// Recalculate the CPU/GPU time difference to account for clock drifting. Avoid
// unnecessary synchronization if there is no event to be adjusted (happens when
// finish() gets called multiple times towards the end of the application).
if (mGpuEvents.size() > 0)
{
ANGLE_TRY(synchronizeCpuGpuTime());
}
}
return angle::Result::Continue;
}
void ContextVk::addWaitSemaphore(VkSemaphore semaphore, VkPipelineStageFlags stageMask)
{
mWaitSemaphores.push_back(semaphore);
mWaitSemaphoreStageMasks.push_back(stageMask);
}
bool ContextVk::isSerialInUse(Serial serial) const
{
return serial > getLastCompletedQueueSerial();
}
angle::Result ContextVk::checkCompletedCommands()
{
return mRenderer->checkCompletedCommands(this);
}
angle::Result ContextVk::finishToSerial(Serial serial)
{
return mRenderer->finishToSerial(this, serial);
}
angle::Result ContextVk::getCompatibleRenderPass(const vk::RenderPassDesc &desc,
vk::RenderPass **renderPassOut)
{
// Note: Each context has it's own RenderPassCache so no locking needed.
return mRenderPassCache.getCompatibleRenderPass(this, desc, renderPassOut);
}
angle::Result ContextVk::getRenderPassWithOps(const vk::RenderPassDesc &desc,
const vk::AttachmentOpsArray &ops,
vk::RenderPass **renderPassOut)
{
// Note: Each context has it's own RenderPassCache so no locking needed.
return mRenderPassCache.getRenderPassWithOps(this, desc, ops, renderPassOut);
}
angle::Result ContextVk::getTimestamp(uint64_t *timestampOut)
{
// The intent of this function is to query the timestamp without stalling the GPU.
// Currently, that seems impossible, so instead, we are going to make a small submission
// with just a timestamp query. First, the disjoint timer query extension says:
//
// > This will return the GL time after all previous commands have reached the GL server but
// have not yet necessarily executed.
//
// The previous commands may be deferred at the moment and not yet flushed. The wording allows
// us to make a submission to get the timestamp without flushing.
//
// Second:
//
// > By using a combination of this synchronous get command and the asynchronous timestamp
// query object target, applications can measure the latency between when commands reach the
// GL server and when they are realized in the framebuffer.
//
// This fits with the above strategy as well, although inevitably we are possibly
// introducing a GPU bubble. This function directly generates a command buffer and submits
// it instead of using the other member functions. This is to avoid changing any state,
// such as the queue serial.
// Create a query used to receive the GPU timestamp
VkDevice device = getDevice();
vk::DeviceScoped<vk::DynamicQueryPool> timestampQueryPool(device);
vk::QueryHelper timestampQuery;
ANGLE_TRY(timestampQueryPool.get().init(this, VK_QUERY_TYPE_TIMESTAMP, 1));
ANGLE_TRY(timestampQueryPool.get().allocateQuery(this, &timestampQuery, 1));
vk::ResourceUseList scratchResourceUseList;
// Record the command buffer
vk::DeviceScoped<vk::PrimaryCommandBuffer> commandBatch(device);
vk::PrimaryCommandBuffer &commandBuffer = commandBatch.get();
ANGLE_TRY(mRenderer->getCommandBufferOneOff(this, hasProtectedContent(), &commandBuffer));
timestampQuery.writeTimestampToPrimary(this, &commandBuffer);
timestampQuery.retain(&scratchResourceUseList);
ANGLE_VK_TRY(this, commandBuffer.end());
// Create fence for the submission
VkFenceCreateInfo fenceInfo = {};
fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
fenceInfo.flags = 0;
vk::DeviceScoped<vk::Fence> fence(device);
ANGLE_VK_TRY(this, fence.get().init(device, fenceInfo));
Serial throwAwaySerial;
ANGLE_TRY(mRenderer->queueSubmitOneOff(this, std::move(commandBuffer), hasProtectedContent(),
mContextPriority, nullptr, 0, &fence.get(),
vk::SubmitPolicy::EnsureSubmitted, &throwAwaySerial));
// Wait for the submission to finish. Given no semaphores, there is hope that it would execute
// in parallel with what's already running on the GPU.
ANGLE_VK_TRY(this, fence.get().wait(device, mRenderer->getMaxFenceWaitTimeNs()));
scratchResourceUseList.releaseResourceUsesAndUpdateSerials(throwAwaySerial);
// Get the query results
vk::QueryResult result(1);
ANGLE_TRY(timestampQuery.getUint64Result(this, &result));
*timestampOut = result.getResult(vk::QueryResult::kDefaultResultIndex);
timestampQueryPool.get().freeQuery(this, &timestampQuery);
// Convert results to nanoseconds.
*timestampOut = static_cast<uint64_t>(
*timestampOut *
static_cast<double>(getRenderer()->getPhysicalDeviceProperties().limits.timestampPeriod));
return angle::Result::Continue;
}
void ContextVk::invalidateDefaultAttribute(size_t attribIndex)
{
mDirtyDefaultAttribsMask.set(attribIndex);
mGraphicsDirtyBits.set(DIRTY_BIT_DEFAULT_ATTRIBS);
}
void ContextVk::invalidateDefaultAttributes(const gl::AttributesMask &dirtyMask)
{
if (dirtyMask.any())
{
mDirtyDefaultAttribsMask |= dirtyMask;
mGraphicsDirtyBits.set(DIRTY_BIT_DEFAULT_ATTRIBS);
mGraphicsDirtyBits.set(DIRTY_BIT_VERTEX_BUFFERS);
}
}
angle::Result ContextVk::updateDefaultAttribute(size_t attribIndex)
{
vk::DynamicBuffer &defaultBuffer = mDefaultAttribBuffers[attribIndex];
defaultBuffer.releaseInFlightBuffers(this);
uint8_t *ptr;
VkBuffer bufferHandle = VK_NULL_HANDLE;
VkDeviceSize offset = 0;
ANGLE_TRY(
defaultBuffer.allocate(this, kDefaultValueSize, &ptr, &bufferHandle, &offset, nullptr));
const gl::State &glState = mState;
const gl::VertexAttribCurrentValueData &defaultValue =
glState.getVertexAttribCurrentValues()[attribIndex];
memcpy(ptr, &defaultValue.Values, kDefaultValueSize);
ASSERT(!defaultBuffer.isCoherent());
ANGLE_TRY(defaultBuffer.flush(this));
return mVertexArray->updateDefaultAttrib(this, attribIndex, bufferHandle,
defaultBuffer.getCurrentBuffer(),
static_cast<uint32_t>(offset));
}
vk::DescriptorSetLayoutDesc ContextVk::getDriverUniformsDescriptorSetDesc() const
{
constexpr VkShaderStageFlags kShaderStages =
VK_SHADER_STAGE_ALL_GRAPHICS | VK_SHADER_STAGE_COMPUTE_BIT;
vk::DescriptorSetLayoutDesc desc;
desc.update(0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, 1, kShaderStages, nullptr);
return desc;
}
bool ContextVk::shouldEmulateSeamfulCubeMapSampling() const
{
// Only allow seamful cube map sampling in non-webgl ES2.
if (mState.getClientMajorVersion() != 2 || mState.isWebGL())
{
return false;
}
if (mRenderer->getFeatures().disallowSeamfulCubeMapEmulation.enabled)
{
return false;
}
return true;
}
angle::Result ContextVk::onBufferReleaseToExternal(const vk::BufferHelper &buffer)
{
if (mRenderPassCommands->usesBuffer(buffer))
{
return flushCommandsAndEndRenderPass(
RenderPassClosureReason::BufferUseThenReleaseToExternal);
}
return angle::Result::Continue;
}
angle::Result ContextVk::onImageReleaseToExternal(const vk::ImageHelper &image)
{
if (IsRenderPassStartedAndUsesImage(*mRenderPassCommands, image))
{
return flushCommandsAndEndRenderPass(
RenderPassClosureReason::ImageUseThenReleaseToExternal);
}
return angle::Result::Continue;
}
angle::Result ContextVk::beginNewRenderPass(
const vk::Framebuffer &framebuffer,
const gl::Rectangle &renderArea,
const vk::RenderPassDesc &renderPassDesc,
const vk::AttachmentOpsArray &renderPassAttachmentOps,
const vk::PackedAttachmentCount colorAttachmentCount,
const vk::PackedAttachmentIndex depthStencilAttachmentIndex,
const vk::PackedClearValuesArray &clearValues,
vk::RenderPassCommandBuffer **commandBufferOut)
{
// Next end any currently outstanding render pass. The render pass is normally closed before
// reaching here for various reasons, except typically when UtilsVk needs to start one.
ANGLE_TRY(flushCommandsAndEndRenderPass(RenderPassClosureReason::NewRenderPass));
mPerfCounters.renderPasses++;
return mRenderPassCommands->beginRenderPass(
this, framebuffer, renderArea, renderPassDesc, renderPassAttachmentOps,
colorAttachmentCount, depthStencilAttachmentIndex, clearValues, commandBufferOut);
}
angle::Result ContextVk::startRenderPass(gl::Rectangle renderArea,
vk::RenderPassCommandBuffer **commandBufferOut,
bool *renderPassDescChangedOut)
{
ASSERT(mDrawFramebuffer == vk::GetImpl(mState.getDrawFramebuffer()));
ANGLE_TRY(mDrawFramebuffer->startNewRenderPass(this, renderArea, &mRenderPassCommandBuffer,
renderPassDescChangedOut));
// Make sure the render pass is not restarted if it is started by UtilsVk (as opposed to
// setupDraw(), which clears this bit automatically).
mGraphicsDirtyBits.reset(DIRTY_BIT_RENDER_PASS);
ANGLE_TRY(resumeRenderPassQueriesIfActive());
const gl::DepthStencilState &dsState = mState.getDepthStencilState();
vk::ResourceAccess depthAccess = GetDepthAccess(dsState);
vk::ResourceAccess stencilAccess = GetStencilAccess(dsState);
mRenderPassCommands->onDepthAccess(depthAccess);
mRenderPassCommands->onStencilAccess(stencilAccess);
mDrawFramebuffer->updateRenderPassReadOnlyDepthMode(this, mRenderPassCommands);
if (commandBufferOut)
{
*commandBufferOut = mRenderPassCommandBuffer;
}
return angle::Result::Continue;
}
void ContextVk::startNextSubpass()
{
ASSERT(hasStartedRenderPass());
mRenderPassCommands->getCommandBuffer().nextSubpass(VK_SUBPASS_CONTENTS_INLINE);
// The graphics pipelines are bound to a subpass, so update the subpass as well.
mGraphicsPipelineDesc->nextSubpass(&mGraphicsPipelineTransition);
}
void ContextVk::restoreFinishedRenderPass(vk::Framebuffer *framebuffer)
{
if (mRenderPassCommandBuffer != nullptr)
{
// The render pass isn't finished yet, so nothing to restore.
return;
}
if (mRenderPassCommands->started() &&
mRenderPassCommands->getFramebufferHandle() == framebuffer->getHandle())
{
// There is already a render pass open for this framebuffer, so just restore the
// pointer rather than starting a whole new render pass. One possible path here
// is if the draw framebuffer binding has changed from FBO A -> B -> A, without
// any commands that started a new render pass for FBO B (such as a clear being
// issued that was deferred).
mRenderPassCommandBuffer = &mRenderPassCommands->getCommandBuffer();
ASSERT(hasStartedRenderPass());
}
}
uint32_t ContextVk::getCurrentSubpassIndex() const
{
return mGraphicsPipelineDesc->getSubpass();
}
uint32_t ContextVk::getCurrentViewCount() const
{
FramebufferVk *drawFBO = vk::GetImpl(mState.getDrawFramebuffer());
return drawFBO->getRenderPassDesc().viewCount();
}
angle::Result ContextVk::flushCommandsAndEndRenderPassImpl(QueueSubmitType queueSubmit,
RenderPassClosureReason reason)
{
// Ensure we flush the RenderPass *after* the prior commands.
ANGLE_TRY(flushOutsideRenderPassCommands());
ASSERT(mOutsideRenderPassCommands->empty());
if (!mRenderPassCommands->started())
{
onRenderPassFinished(RenderPassClosureReason::AlreadySpecifiedElsewhere);
return angle::Result::Continue;
}
// Set dirty bits if render pass was open (and thus will be closed).
mGraphicsDirtyBits |= mNewGraphicsCommandBufferDirtyBits;
// Restart at subpass 0.
mGraphicsPipelineDesc->resetSubpass(&mGraphicsPipelineTransition);
mCurrentTransformFeedbackBuffers.clear();
// Reset serials for XFB if active.
if (mState.isTransformFeedbackActiveUnpaused())
{
const gl::ProgramExecutable *executable = mState.getProgramExecutable();
ASSERT(executable);
size_t xfbBufferCount = executable->getTransformFeedbackBufferCount();
TransformFeedbackVk *transformFeedbackVk =
vk::GetImpl(mState.getCurrentTransformFeedback());
populateTransformFeedbackBufferSet(xfbBufferCount, transformFeedbackVk->getBufferHelpers());
}
onRenderPassFinished(reason);
if (mGpuEventsEnabled)
{
EventName eventName = GetTraceEventName("RP", mPerfCounters.renderPasses);
ANGLE_TRY(traceGpuEvent(&mOutsideRenderPassCommands->getCommandBuffer(),
TRACE_EVENT_PHASE_BEGIN, eventName));
ANGLE_TRY(flushOutsideRenderPassCommands());
}
addOverlayUsedBuffersCount(mRenderPassCommands);
pauseTransformFeedbackIfActiveUnpaused();
ANGLE_TRY(mRenderPassCommands->endRenderPass(this));
if (vk::CommandBufferHelperCommon::kEnableCommandStreamDiagnostics)
{
mRenderPassCommands->addCommandDiagnostics(this);
}
vk::RenderPass *renderPass = nullptr;
ANGLE_TRY(getRenderPassWithOps(mRenderPassCommands->getRenderPassDesc(),
mRenderPassCommands->getAttachmentOps(), &renderPass));
flushDescriptorSetUpdates();
ANGLE_TRY(mRenderer->flushRenderPassCommands(this, hasProtectedContent(), *renderPass,
&mRenderPassCommands));
if (mGpuEventsEnabled)
{
EventName eventName = GetTraceEventName("RP", mPerfCounters.renderPasses);
ANGLE_TRY(traceGpuEvent(&mOutsideRenderPassCommands->getCommandBuffer(),
TRACE_EVENT_PHASE_END, eventName));
ANGLE_TRY(flushOutsideRenderPassCommands());
}
if (mHasDeferredFlush && queueSubmit == QueueSubmitType::PerformQueueSubmit)
{
// If we have deferred glFlush call in the middle of renderpass, flush them now.
ANGLE_TRY(flushImpl(nullptr, RenderPassClosureReason::AlreadySpecifiedElsewhere));
}
return angle::Result::Continue;
}
angle::Result ContextVk::flushCommandsAndEndRenderPass(RenderPassClosureReason reason)
{
return flushCommandsAndEndRenderPassImpl(QueueSubmitType::PerformQueueSubmit, reason);
}
angle::Result ContextVk::flushCommandsAndEndRenderPassWithoutQueueSubmit(
RenderPassClosureReason reason)
{
return flushCommandsAndEndRenderPassImpl(QueueSubmitType::SkipQueueSubmit, reason);
}
angle::Result ContextVk::flushDirtyGraphicsRenderPass(DirtyBits::Iterator *dirtyBitsIterator,
DirtyBits dirtyBitMask,
RenderPassClosureReason reason)
{
ASSERT(mRenderPassCommands->started());
ANGLE_TRY(flushCommandsAndEndRenderPassImpl(QueueSubmitType::PerformQueueSubmit, reason));
// Set dirty bits that need processing on new render pass on the dirty bits iterator that's
// being processed right now.
dirtyBitsIterator->setLaterBits(mNewGraphicsCommandBufferDirtyBits & dirtyBitMask);
// Additionally, make sure any dirty bits not included in the mask are left for future
// processing. Note that |dirtyBitMask| is removed from |mNewGraphicsCommandBufferDirtyBits|
// after dirty bits are iterated, so there's no need to mask them out.
mGraphicsDirtyBits |= mNewGraphicsCommandBufferDirtyBits;
// Restart at subpass 0.
mGraphicsPipelineDesc->resetSubpass(&mGraphicsPipelineTransition);
return angle::Result::Continue;
}
angle::Result ContextVk::syncExternalMemory()
{
VkMemoryBarrier memoryBarrier = {};
memoryBarrier.sType = VK_STRUCTURE_TYPE_MEMORY_BARRIER;
memoryBarrier.srcAccessMask = VK_ACCESS_MEMORY_WRITE_BIT;
memoryBarrier.dstAccessMask = VK_ACCESS_MEMORY_READ_BIT | VK_ACCESS_MEMORY_WRITE_BIT;
mOutsideRenderPassCommands->getCommandBuffer().memoryBarrier(
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, &memoryBarrier);
return angle::Result::Continue;
}
void ContextVk::addCommandBufferDiagnostics(const std::string &commandBufferDiagnostics)
{
mCommandBufferDiagnostics.push_back(commandBufferDiagnostics);
}
void ContextVk::dumpCommandStreamDiagnostics()
{
std::ostream &out = std::cout;
if (mCommandBufferDiagnostics.empty())
return;
out << "digraph {\n"
<< " node [shape=plaintext fontname=\"Consolas\"]\n";
for (size_t index = 0; index < mCommandBufferDiagnostics.size(); ++index)
{
const std::string &payload = mCommandBufferDiagnostics[index];
out << " cb" << index << " [label =\"" << payload << "\"];\n";
}
for (size_t index = 0; index < mCommandBufferDiagnostics.size() - 1; ++index)
{
out << " cb" << index << " -> cb" << index + 1 << "\n";
}
mCommandBufferDiagnostics.clear();
out << "}\n";
}
void ContextVk::initIndexTypeMap()
{
// Init gles-vulkan index type map
mIndexTypeMap[gl::DrawElementsType::UnsignedByte] =
mRenderer->getFeatures().supportsIndexTypeUint8.enabled ? VK_INDEX_TYPE_UINT8_EXT
: VK_INDEX_TYPE_UINT16;
mIndexTypeMap[gl::DrawElementsType::UnsignedShort] = VK_INDEX_TYPE_UINT16;
mIndexTypeMap[gl::DrawElementsType::UnsignedInt] = VK_INDEX_TYPE_UINT32;
}
VkIndexType ContextVk::getVkIndexType(gl::DrawElementsType glIndexType) const
{
return mIndexTypeMap[glIndexType];
}
size_t ContextVk::getVkIndexTypeSize(gl::DrawElementsType glIndexType) const
{
gl::DrawElementsType elementsType = shouldConvertUint8VkIndexType(glIndexType)
? gl::DrawElementsType::UnsignedShort
: glIndexType;
ASSERT(elementsType < gl::DrawElementsType::EnumCount);
// Use GetDrawElementsTypeSize() to get the size
return static_cast<size_t>(gl::GetDrawElementsTypeSize(elementsType));
}
bool ContextVk::shouldConvertUint8VkIndexType(gl::DrawElementsType glIndexType) const
{
return (glIndexType == gl::DrawElementsType::UnsignedByte &&
!mRenderer->getFeatures().supportsIndexTypeUint8.enabled);
}
angle::Result ContextVk::flushOutsideRenderPassCommands()
{
if (mOutsideRenderPassCommands->empty())
{
return angle::Result::Continue;
}
addOverlayUsedBuffersCount(mOutsideRenderPassCommands);
if (vk::CommandBufferHelperCommon::kEnableCommandStreamDiagnostics)
{
mOutsideRenderPassCommands->addCommandDiagnostics(this);
}
flushDescriptorSetUpdates();
ANGLE_TRY(mRenderer->flushOutsideRPCommands(this, hasProtectedContent(),
&mOutsideRenderPassCommands));
// Make sure appropriate dirty bits are set, in case another thread makes a submission before
// the next dispatch call.
mComputeDirtyBits |= mNewComputeCommandBufferDirtyBits;
mPerfCounters.flushedOutsideRenderPassCommandBuffers++;
return angle::Result::Continue;
}
angle::Result ContextVk::beginRenderPassQuery(QueryVk *queryVk)
{
// Emit debug-util markers before calling the query command.
ANGLE_TRY(handleGraphicsEventLog(rx::GraphicsEventCmdBuf::InRenderPassCmdBufQueryCmd));
// To avoid complexity, we always start and end these queries inside the render pass. If the
// render pass has not yet started, the query is deferred until it does.
if (mRenderPassCommandBuffer)
{
ANGLE_TRY(queryVk->getQueryHelper()->beginRenderPassQuery(this));
}
// Update rasterizer discard emulation with primitives generated query if necessary.
if (queryVk->getType() == gl::QueryType::PrimitivesGenerated)
{
updateRasterizerDiscardEnabled(true);
}
gl::QueryType type = queryVk->getType();
ASSERT(mActiveRenderPassQueries[type] == nullptr);
mActiveRenderPassQueries[type] = queryVk;
return angle::Result::Continue;
}
angle::Result ContextVk::endRenderPassQuery(QueryVk *queryVk)
{
gl::QueryType type = queryVk->getType();
// Emit debug-util markers before calling the query command.
ANGLE_TRY(handleGraphicsEventLog(rx::GraphicsEventCmdBuf::InRenderPassCmdBufQueryCmd));
// End the query inside the render pass. In some situations, the query may not have actually
// been issued, so there is nothing to do there. That is the case for transform feedback
// queries which are deferred until a draw call with transform feedback active is issued, which
// may have never happened.
ASSERT(mRenderPassCommandBuffer == nullptr ||
type == gl::QueryType::TransformFeedbackPrimitivesWritten || queryVk->hasQueryBegun());
if (mRenderPassCommandBuffer && queryVk->hasQueryBegun())
{
queryVk->getQueryHelper()->endRenderPassQuery(this);
}
// Update rasterizer discard emulation with primitives generated query if necessary.
if (type == gl::QueryType::PrimitivesGenerated)
{
updateRasterizerDiscardEnabled(false);
}
ASSERT(mActiveRenderPassQueries[type] == queryVk);
mActiveRenderPassQueries[type] = nullptr;
return angle::Result::Continue;
}
void ContextVk::pauseRenderPassQueriesIfActive()
{
if (mRenderPassCommandBuffer == nullptr)
{
return;
}
for (QueryVk *activeQuery : mActiveRenderPassQueries)
{
if (activeQuery)
{
activeQuery->onRenderPassEnd(this);
// No need to update rasterizer discard emulation with primitives generated query. The
// state will be updated when the next render pass starts.
}
}
}
angle::Result ContextVk::resumeRenderPassQueriesIfActive()
{
ASSERT(mRenderPassCommandBuffer);
// Note: these queries should be processed in order. See comment in QueryVk::onRenderPassStart.
for (QueryVk *activeQuery : mActiveRenderPassQueries)
{
if (activeQuery)
{
// Transform feedback queries are handled separately.
if (activeQuery->getType() == gl::QueryType::TransformFeedbackPrimitivesWritten)
{
continue;
}
ANGLE_TRY(activeQuery->onRenderPassStart(this));
// Update rasterizer discard emulation with primitives generated query if necessary.
if (activeQuery->getType() == gl::QueryType::PrimitivesGenerated)
{
updateRasterizerDiscardEnabled(true);
}
}
}
return angle::Result::Continue;
}
angle::Result ContextVk::resumeXfbRenderPassQueriesIfActive()
{
ASSERT(mRenderPassCommandBuffer);
// All other queries are handled separately.
QueryVk *xfbQuery = mActiveRenderPassQueries[gl::QueryType::TransformFeedbackPrimitivesWritten];
if (xfbQuery && mState.isTransformFeedbackActiveUnpaused())
{
ANGLE_TRY(xfbQuery->onRenderPassStart(this));
}
return angle::Result::Continue;
}
bool ContextVk::doesPrimitivesGeneratedQuerySupportRasterizerDiscard() const
{
// TODO: If primitives generated is implemented with VK_EXT_primitives_generated_query, check
// the corresponding feature bit. http://anglebug.com/5430.
// If primitives generated is emulated with pipeline statistics query, it's unknown on which
// hardware rasterizer discard is supported. Assume it's supported on none.
if (getFeatures().supportsPipelineStatisticsQuery.enabled)
{
return false;
}
return true;
}
bool ContextVk::isEmulatingRasterizerDiscardDuringPrimitivesGeneratedQuery(
bool isPrimitivesGeneratedQueryActive) const
{
return isPrimitivesGeneratedQueryActive && mState.isRasterizerDiscardEnabled() &&
!doesPrimitivesGeneratedQuerySupportRasterizerDiscard();
}
QueryVk *ContextVk::getActiveRenderPassQuery(gl::QueryType queryType) const
{
return mActiveRenderPassQueries[queryType];
}
bool ContextVk::isRobustResourceInitEnabled() const
{
return mState.isRobustResourceInitEnabled();
}
template <typename T, const T *VkWriteDescriptorSet::*pInfo>
void ContextVk::growDesciptorCapacity(std::vector<T> *descriptorVector, size_t newSize)
{
const T *const oldInfoStart = descriptorVector->empty() ? nullptr : &(*descriptorVector)[0];
size_t newCapacity = std::max(descriptorVector->capacity() << 1, newSize);
descriptorVector->reserve(newCapacity);
if (oldInfoStart)
{
// patch mWriteInfo with new BufferInfo/ImageInfo pointers
for (VkWriteDescriptorSet &set : mWriteDescriptorSets)
{
if (set.*pInfo)
{
size_t index = set.*pInfo - oldInfoStart;
set.*pInfo = &(*descriptorVector)[index];
}
}
}
}
template <typename T, const T *VkWriteDescriptorSet::*pInfo>
T *ContextVk::allocDescriptorInfos(std::vector<T> *descriptorVector, size_t count)
{
size_t oldSize = descriptorVector->size();
size_t newSize = oldSize + count;
if (newSize > descriptorVector->capacity())
{
// If we have reached capacity, grow the storage and patch the descriptor set with new
// buffer info pointer
growDesciptorCapacity<T, pInfo>(descriptorVector, newSize);
}
descriptorVector->resize(newSize);
return &(*descriptorVector)[oldSize];
}
VkDescriptorBufferInfo *ContextVk::allocDescriptorBufferInfos(size_t count)
{
return allocDescriptorInfos<VkDescriptorBufferInfo, &VkWriteDescriptorSet::pBufferInfo>(
&mDescriptorBufferInfos, count);
}
VkDescriptorImageInfo *ContextVk::allocDescriptorImageInfos(size_t count)
{
return allocDescriptorInfos<VkDescriptorImageInfo, &VkWriteDescriptorSet::pImageInfo>(
&mDescriptorImageInfos, count);
}
VkWriteDescriptorSet *ContextVk::allocWriteDescriptorSets(size_t count)
{
mPerfCounters.writeDescriptorSets += count;
size_t oldSize = mWriteDescriptorSets.size();
size_t newSize = oldSize + count;
mWriteDescriptorSets.resize(newSize);
return &mWriteDescriptorSets[oldSize];
}
void ContextVk::setDefaultUniformBlocksMinSizeForTesting(size_t minSize)
{
mDefaultUniformStorage.setMinimumSizeForTesting(minSize);
}
angle::Result ContextVk::initializeMultisampleTextureToBlack(const gl::Context *context,
gl::Texture *glTexture)
{
ASSERT(glTexture->getType() == gl::TextureType::_2DMultisample);
TextureVk *textureVk = vk::GetImpl(glTexture);
return textureVk->initializeContents(context, gl::ImageIndex::Make2DMultisample());
}
void ContextVk::onProgramExecutableReset(ProgramExecutableVk *executableVk)
{
const gl::ProgramExecutable *executable = getState().getProgramExecutable();
if (!executable)
{
return;
}
// Only do this for the currently bound ProgramExecutableVk, since Program A can be linked while
// Program B is currently in use and we don't want to reset/invalidate Program B's pipeline.
if (executableVk != mExecutable)
{
return;
}
// Reset *ContextVk::mCurrentGraphicsPipeline, since programInfo.release() freed the
// PipelineHelper that it's currently pointing to.
// TODO(http://anglebug.com/5624): rework updateActiveTextures(), createPipelineLayout(),
// handleDirtyGraphicsPipeline(), and ProgramPipelineVk::link().
resetCurrentGraphicsPipeline();
if (executable->hasLinkedShaderStage(gl::ShaderType::Compute))
{
invalidateCurrentComputePipeline();
}
if (executable->hasLinkedShaderStage(gl::ShaderType::Vertex))
{
invalidateCurrentGraphicsPipeline();
}
}
angle::Result ContextVk::updateRenderPassDepthStencilAccess()
{
if (hasStartedRenderPass() && mDrawFramebuffer->getDepthStencilRenderTarget())
{
const gl::DepthStencilState &dsState = mState.getDepthStencilState();
vk::ResourceAccess depthAccess = GetDepthAccess(dsState);
vk::ResourceAccess stencilAccess = GetStencilAccess(dsState);
if ((depthAccess == vk::ResourceAccess::Write ||
stencilAccess == vk::ResourceAccess::Write) &&
mDrawFramebuffer->isReadOnlyDepthFeedbackLoopMode())
{
// If we are switching out of read only mode and we are in feedback loop, we must end
// renderpass here. Otherwise, updating it to writeable layout will produce a writable
// feedback loop that is illegal in vulkan and will trigger validation errors that depth
// texture is using the writable layout.
ANGLE_TRY(flushCommandsAndEndRenderPass(
RenderPassClosureReason::DepthStencilWriteAfterFeedbackLoop));
// Clear read-only depth feedback mode.
mDrawFramebuffer->setReadOnlyDepthFeedbackLoopMode(false);
}
else
{
mRenderPassCommands->onDepthAccess(depthAccess);
mRenderPassCommands->onStencilAccess(stencilAccess);
mDrawFramebuffer->updateRenderPassReadOnlyDepthMode(this, mRenderPassCommands);
}
}
return angle::Result::Continue;
}
bool ContextVk::shouldSwitchToReadOnlyDepthFeedbackLoopMode(gl::Texture *texture,
gl::Command command) const
{
ASSERT(texture->isDepthOrStencil());
// When running compute we don't have a draw FBO.
if (command == gl::Command::Dispatch)
{
return false;
}
// The "readOnlyDepthMode" feature enables read-only depth-stencil feedback loops. We
// only switch to "read-only" mode when there's loop. We track the depth-stencil access
// mode in the RenderPass. The tracking tells us when we can retroactively go back and
// change the RenderPass to read-only. If there are any writes we need to break and
// finish the current RP before starting the read-only one.
return texture->isBoundToFramebuffer(mDrawFramebuffer->getState().getFramebufferSerial()) &&
!mState.isDepthWriteEnabled() && !mDrawFramebuffer->isReadOnlyDepthFeedbackLoopMode();
}
angle::Result ContextVk::onResourceAccess(const vk::CommandBufferAccess &access)
{
ANGLE_TRY(flushCommandBuffersIfNecessary(access));
vk::OutsideRenderPassCommandBuffer *commandBuffer =
&mOutsideRenderPassCommands->getCommandBuffer();
for (const vk::CommandBufferImageAccess &imageAccess : access.getReadImages())
{
ASSERT(!IsRenderPassStartedAndUsesImage(*mRenderPassCommands, *imageAccess.image));
imageAccess.image->recordReadBarrier(this, imageAccess.aspectFlags, imageAccess.imageLayout,
commandBuffer);
imageAccess.image->retain(&mResourceUseList);
}
for (const vk::CommandBufferImageWrite &imageWrite : access.getWriteImages())
{
ASSERT(!IsRenderPassStartedAndUsesImage(*mRenderPassCommands, *imageWrite.access.image));
imageWrite.access.image->recordWriteBarrier(this, imageWrite.access.aspectFlags,
imageWrite.access.imageLayout, commandBuffer);
imageWrite.access.image->retain(&mResourceUseList);
imageWrite.access.image->onWrite(imageWrite.levelStart, imageWrite.levelCount,
imageWrite.layerStart, imageWrite.layerCount,
imageWrite.access.aspectFlags);
}
for (const vk::CommandBufferBufferAccess &bufferAccess : access.getReadBuffers())
{
ASSERT(!mRenderPassCommands->usesBufferForWrite(*bufferAccess.buffer));
ASSERT(!mOutsideRenderPassCommands->usesBufferForWrite(*bufferAccess.buffer));
mOutsideRenderPassCommands->bufferRead(this, bufferAccess.accessType, bufferAccess.stage,
bufferAccess.buffer);
}
for (const vk::CommandBufferBufferAccess &bufferAccess : access.getWriteBuffers())
{
ASSERT(!mRenderPassCommands->usesBuffer(*bufferAccess.buffer));
ASSERT(!mOutsideRenderPassCommands->usesBuffer(*bufferAccess.buffer));
mOutsideRenderPassCommands->bufferWrite(this, bufferAccess.accessType, bufferAccess.stage,
vk::AliasingMode::Disallowed, bufferAccess.buffer);
}
return angle::Result::Continue;
}
angle::Result ContextVk::flushCommandBuffersIfNecessary(const vk::CommandBufferAccess &access)
{
// Go over resources and decide whether the render pass needs to close, whether the outside
// render pass commands need to be flushed, or neither. Note that closing the render pass
// implies flushing the outside render pass as well, so if that needs to be done, we can close
// the render pass and immediately return from this function. Otherwise, this function keeps
// track of whether the outside render pass commands need to be closed, and if so, it will do
// that once at the end.
// Read images only need to close the render pass if they need a layout transition.
for (const vk::CommandBufferImageAccess &imageAccess : access.getReadImages())
{
// Note that different read methods are not compatible. A shader read uses a different
// layout than a transfer read. So we cannot support simultaneous read usage as easily as
// for Buffers. TODO: Don't close the render pass if the image was only used read-only in
// the render pass. http://anglebug.com/4984
if (IsRenderPassStartedAndUsesImage(*mRenderPassCommands, *imageAccess.image))
{
return flushCommandsAndEndRenderPass(RenderPassClosureReason::ImageUseThenOutOfRPRead);
}
}
// Write images only need to close the render pass if they need a layout transition.
for (const vk::CommandBufferImageWrite &imageWrite : access.getWriteImages())
{
if (IsRenderPassStartedAndUsesImage(*mRenderPassCommands, *imageWrite.access.image))
{
return flushCommandsAndEndRenderPass(RenderPassClosureReason::ImageUseThenOutOfRPWrite);
}
}
bool shouldCloseOutsideRenderPassCommands = false;
// Read buffers only need a new command buffer if previously used for write.
for (const vk::CommandBufferBufferAccess &bufferAccess : access.getReadBuffers())
{
if (mRenderPassCommands->usesBufferForWrite(*bufferAccess.buffer))
{
return flushCommandsAndEndRenderPass(RenderPassClosureReason::BufferUseThenOutOfRPRead);
}
else if (mOutsideRenderPassCommands->usesBufferForWrite(*bufferAccess.buffer))
{
shouldCloseOutsideRenderPassCommands = true;
}
}
// Write buffers always need a new command buffer if previously used.
for (const vk::CommandBufferBufferAccess &bufferAccess : access.getWriteBuffers())
{
if (mRenderPassCommands->usesBuffer(*bufferAccess.buffer))
{
return flushCommandsAndEndRenderPass(
RenderPassClosureReason::BufferUseThenOutOfRPWrite);
}
else if (mOutsideRenderPassCommands->usesBuffer(*bufferAccess.buffer))
{
shouldCloseOutsideRenderPassCommands = true;
}
}
if (shouldCloseOutsideRenderPassCommands)
{
return flushOutsideRenderPassCommands();
}
return angle::Result::Continue;
}
angle::Result ContextVk::endRenderPassIfComputeReadAfterTransformFeedbackWrite()
{
// Similar to flushCommandBuffersIfNecessary(), but using uniform buffers currently bound and
// used by the current (compute) program. This is to handle read-after-write hazards where the
// write originates from transform feedback.
if (mCurrentTransformFeedbackBuffers.empty())
{
return angle::Result::Continue;
}
const gl::ProgramExecutable *executable = mState.getProgramExecutable();
ASSERT(executable && executable->hasLinkedShaderStage(gl::ShaderType::Compute));
gl::ShaderMap<const gl::ProgramState *> programStates;
mExecutable->fillProgramStateMap(this, &programStates);
for (const gl::ShaderType shaderType : executable->getLinkedShaderStages())
{
const gl::ProgramState *programState = programStates[shaderType];
ASSERT(programState);
// Uniform buffers:
const std::vector<gl::InterfaceBlock> &blocks = programState->getUniformBlocks();
for (uint32_t bufferIndex = 0; bufferIndex < blocks.size(); ++bufferIndex)
{
const gl::InterfaceBlock &block = blocks[bufferIndex];
const gl::OffsetBindingPointer<gl::Buffer> &bufferBinding =
mState.getIndexedUniformBuffer(block.binding);
if (!block.isActive(shaderType) || bufferBinding.get() == nullptr)
{
continue;
}
vk::BufferHelper &buffer = vk::GetImpl(bufferBinding.get())->getBuffer();
if (mCurrentTransformFeedbackBuffers.contains(&buffer))
{
return flushCommandsAndEndRenderPass(
RenderPassClosureReason::XfbWriteThenComputeRead);
}
}
}
return angle::Result::Continue;
}
angle::Result ContextVk::endRenderPassIfComputeReadAfterAttachmentWrite()
{
// Similar to flushCommandBuffersIfNecessary(), but using textures currently bound and used by
// the current (compute) program. This is to handle read-after-write hazards where the write
// originates from a framebuffer attachment.
const gl::ProgramExecutable *executable = mState.getProgramExecutable();
ASSERT(executable && executable->hasLinkedShaderStage(gl::ShaderType::Compute) &&
executable->hasTextures());
const gl::ActiveTexturesCache &textures = mState.getActiveTexturesCache();
const gl::ActiveTextureTypeArray &textureTypes = executable->getActiveSamplerTypes();
for (size_t textureUnit : executable->getActiveSamplersMask())
{
gl::Texture *texture = textures[textureUnit];
gl::TextureType textureType = textureTypes[textureUnit];
if (texture == nullptr || textureType == gl::TextureType::Buffer)
{
continue;
}
TextureVk *textureVk = vk::GetImpl(texture);
ASSERT(textureVk != nullptr);
vk::ImageHelper &image = textureVk->getImage();
if (IsRenderPassStartedAndUsesImage(*mRenderPassCommands, image))
{
return flushCommandsAndEndRenderPass(
RenderPassClosureReason::ImageAttachmentThenComputeRead);
}
}
return angle::Result::Continue;
}
// Requires that trace is enabled to see the output, which is supported with is_debug=true
void ContextVk::outputCumulativePerfCounters()
{
if (!vk::kOutputCumulativePerfCounters)
{
return;
}
INFO() << "Context Descriptor Set Allocations: ";
for (PipelineType pipelineType : angle::AllEnums<PipelineType>())
{
uint32_t count = mCumulativeContextPerfCounters.descriptorSetsAllocated[pipelineType];
if (count > 0)
{
INFO() << " PipelineType " << ToUnderlying(pipelineType) << ": " << count;
}
}
}
ContextVkPerfCounters ContextVk::getAndResetObjectPerfCounters()
{
mCumulativeContextPerfCounters.descriptorSetsAllocated +=
mContextPerfCounters.descriptorSetsAllocated;
ContextVkPerfCounters counters = mContextPerfCounters;
mContextPerfCounters.descriptorSetsAllocated = {};
return counters;
}
} // namespace rx