blob: 37c2042a2ccd5af0c62c12985168baf5036e20d3 [file] [log] [blame]
//=- HexagonInstrInfoV4.td - Target Desc. for Hexagon Target -*- tablegen -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the Hexagon V4 instructions in TableGen format.
//
//===----------------------------------------------------------------------===//
def DuplexIClass0: InstDuplex < 0 >;
def DuplexIClass1: InstDuplex < 1 >;
def DuplexIClass2: InstDuplex < 2 >;
let isExtendable = 1 in {
def DuplexIClass3: InstDuplex < 3 >;
def DuplexIClass4: InstDuplex < 4 >;
def DuplexIClass5: InstDuplex < 5 >;
def DuplexIClass6: InstDuplex < 6 >;
def DuplexIClass7: InstDuplex < 7 >;
}
def DuplexIClass8: InstDuplex < 8 >;
def DuplexIClass9: InstDuplex < 9 >;
def DuplexIClassA: InstDuplex < 0xA >;
def DuplexIClassB: InstDuplex < 0xB >;
def DuplexIClassC: InstDuplex < 0xC >;
def DuplexIClassD: InstDuplex < 0xD >;
def DuplexIClassE: InstDuplex < 0xE >;
def DuplexIClassF: InstDuplex < 0xF >;
def addrga: PatLeaf<(i32 AddrGA:$Addr)>;
def addrgp: PatLeaf<(i32 AddrGP:$Addr)>;
let hasSideEffects = 0 in
class T_Immext<Operand ImmType>
: EXTENDERInst<(outs), (ins ImmType:$imm),
"immext(#$imm)", []> {
bits<32> imm;
let IClass = 0b0000;
let Inst{27-16} = imm{31-20};
let Inst{13-0} = imm{19-6};
}
def A4_ext : T_Immext<u26_6Imm>;
let isCodeGenOnly = 1 in {
let isBranch = 1 in
def A4_ext_b : T_Immext<brtarget>;
let isCall = 1 in
def A4_ext_c : T_Immext<calltarget>;
def A4_ext_g : T_Immext<globaladdress>;
}
def BITPOS32 : SDNodeXForm<imm, [{
// Return the bit position we will set [0-31].
// As an SDNode.
int32_t imm = N->getSExtValue();
return XformMskToBitPosU5Imm(imm, SDLoc(N));
}]>;
// Hexagon V4 Architecture spec defines 8 instruction classes:
// LD ST ALU32 XTYPE J JR MEMOP NV CR SYSTEM(system is not implemented in the
// compiler)
// LD Instructions:
// ========================================
// Loads (8/16/32/64 bit)
// Deallocframe
// ST Instructions:
// ========================================
// Stores (8/16/32/64 bit)
// Allocframe
// ALU32 Instructions:
// ========================================
// Arithmetic / Logical (32 bit)
// Vector Halfword
// XTYPE Instructions (32/64 bit):
// ========================================
// Arithmetic, Logical, Bit Manipulation
// Multiply (Integer, Fractional, Complex)
// Permute / Vector Permute Operations
// Predicate Operations
// Shift / Shift with Add/Sub/Logical
// Vector Byte ALU
// Vector Halfword (ALU, Shift, Multiply)
// Vector Word (ALU, Shift)
// J Instructions:
// ========================================
// Jump/Call PC-relative
// JR Instructions:
// ========================================
// Jump/Call Register
// MEMOP Instructions:
// ========================================
// Operation on memory (8/16/32 bit)
// NV Instructions:
// ========================================
// New-value Jumps
// New-value Stores
// CR Instructions:
// ========================================
// Control-Register Transfers
// Hardware Loop Setup
// Predicate Logicals & Reductions
// SYSTEM Instructions (not implemented in the compiler):
// ========================================
// Prefetch
// Cache Maintenance
// Bus Operations
//===----------------------------------------------------------------------===//
// ALU32 +
//===----------------------------------------------------------------------===//
class T_ALU32_3op_not<string mnemonic, bits<3> MajOp, bits<3> MinOp,
bit OpsRev>
: T_ALU32_3op<mnemonic, MajOp, MinOp, OpsRev, 0> {
let AsmString = "$Rd = "#mnemonic#"($Rs, ~$Rt)";
}
let BaseOpcode = "andn_rr", CextOpcode = "andn" in
def A4_andn : T_ALU32_3op_not<"and", 0b001, 0b100, 1>;
let BaseOpcode = "orn_rr", CextOpcode = "orn" in
def A4_orn : T_ALU32_3op_not<"or", 0b001, 0b101, 1>;
let CextOpcode = "rcmp.eq" in
def A4_rcmpeq : T_ALU32_3op<"cmp.eq", 0b011, 0b010, 0, 1>;
let CextOpcode = "!rcmp.eq" in
def A4_rcmpneq : T_ALU32_3op<"!cmp.eq", 0b011, 0b011, 0, 1>;
def C4_cmpneq : T_ALU32_3op_cmp<"!cmp.eq", 0b00, 1, 1>;
def C4_cmplte : T_ALU32_3op_cmp<"!cmp.gt", 0b10, 1, 0>;
def C4_cmplteu : T_ALU32_3op_cmp<"!cmp.gtu", 0b11, 1, 0>;
// Pats for instruction selection.
// A class to embed the usual comparison patfrags within a zext to i32.
// The seteq/setne frags use "lhs" and "rhs" as operands, so use the same
// names, or else the frag's "body" won't match the operands.
class CmpInReg<PatFrag Op>
: PatFrag<(ops node:$lhs, node:$rhs),(i32 (zext (i1 Op.Fragment)))>;
def: T_cmp32_rr_pat<A4_rcmpeq, CmpInReg<seteq>, i32>;
def: T_cmp32_rr_pat<A4_rcmpneq, CmpInReg<setne>, i32>;
def: T_cmp32_rr_pat<C4_cmpneq, setne, i1>;
def: T_cmp32_rr_pat<C4_cmplteu, setule, i1>;
def: T_cmp32_rr_pat<C4_cmplteu, RevCmp<setuge>, i1>;
class T_CMP_rrbh<string mnemonic, bits<3> MinOp, bit IsComm>
: SInst<(outs PredRegs:$Pd), (ins IntRegs:$Rs, IntRegs:$Rt),
"$Pd = "#mnemonic#"($Rs, $Rt)", [], "", S_3op_tc_2early_SLOT23>,
ImmRegRel {
let InputType = "reg";
let CextOpcode = mnemonic;
let isCompare = 1;
let isCommutable = IsComm;
let hasSideEffects = 0;
bits<2> Pd;
bits<5> Rs;
bits<5> Rt;
let IClass = 0b1100;
let Inst{27-21} = 0b0111110;
let Inst{20-16} = Rs;
let Inst{12-8} = Rt;
let Inst{7-5} = MinOp;
let Inst{1-0} = Pd;
}
def A4_cmpbeq : T_CMP_rrbh<"cmpb.eq", 0b110, 1>;
def A4_cmpbgt : T_CMP_rrbh<"cmpb.gt", 0b010, 0>;
def A4_cmpbgtu : T_CMP_rrbh<"cmpb.gtu", 0b111, 0>;
def A4_cmpheq : T_CMP_rrbh<"cmph.eq", 0b011, 1>;
def A4_cmphgt : T_CMP_rrbh<"cmph.gt", 0b100, 0>;
def A4_cmphgtu : T_CMP_rrbh<"cmph.gtu", 0b101, 0>;
let AddedComplexity = 100 in {
def: Pat<(i1 (seteq (and (xor (i32 IntRegs:$Rs), (i32 IntRegs:$Rt)),
255), 0)),
(A4_cmpbeq IntRegs:$Rs, IntRegs:$Rt)>;
def: Pat<(i1 (setne (and (xor (i32 IntRegs:$Rs), (i32 IntRegs:$Rt)),
255), 0)),
(C2_not (A4_cmpbeq IntRegs:$Rs, IntRegs:$Rt))>;
def: Pat<(i1 (seteq (and (xor (i32 IntRegs:$Rs), (i32 IntRegs:$Rt)),
65535), 0)),
(A4_cmpheq IntRegs:$Rs, IntRegs:$Rt)>;
def: Pat<(i1 (setne (and (xor (i32 IntRegs:$Rs), (i32 IntRegs:$Rt)),
65535), 0)),
(C2_not (A4_cmpheq IntRegs:$Rs, IntRegs:$Rt))>;
}
class T_CMP_ribh<string mnemonic, bits<2> MajOp, bit IsHalf, bit IsComm,
Operand ImmType, bit IsImmExt, bit IsImmSigned, int ImmBits>
: ALU64Inst<(outs PredRegs:$Pd), (ins IntRegs:$Rs, ImmType:$Imm),
"$Pd = "#mnemonic#"($Rs, #$Imm)", [], "", ALU64_tc_2early_SLOT23>,
ImmRegRel {
let InputType = "imm";
let CextOpcode = mnemonic;
let isCompare = 1;
let isCommutable = IsComm;
let hasSideEffects = 0;
let isExtendable = IsImmExt;
let opExtendable = !if (IsImmExt, 2, 0);
let isExtentSigned = IsImmSigned;
let opExtentBits = ImmBits;
bits<2> Pd;
bits<5> Rs;
bits<8> Imm;
let IClass = 0b1101;
let Inst{27-24} = 0b1101;
let Inst{22-21} = MajOp;
let Inst{20-16} = Rs;
let Inst{12-5} = Imm;
let Inst{4} = 0b0;
let Inst{3} = IsHalf;
let Inst{1-0} = Pd;
}
def A4_cmpbeqi : T_CMP_ribh<"cmpb.eq", 0b00, 0, 1, u8Imm, 0, 0, 8>;
def A4_cmpbgti : T_CMP_ribh<"cmpb.gt", 0b01, 0, 0, s8Imm, 0, 1, 8>;
def A4_cmpbgtui : T_CMP_ribh<"cmpb.gtu", 0b10, 0, 0, u7Ext, 1, 0, 7>;
def A4_cmpheqi : T_CMP_ribh<"cmph.eq", 0b00, 1, 1, s8Ext, 1, 1, 8>;
def A4_cmphgti : T_CMP_ribh<"cmph.gt", 0b01, 1, 0, s8Ext, 1, 1, 8>;
def A4_cmphgtui : T_CMP_ribh<"cmph.gtu", 0b10, 1, 0, u7Ext, 1, 0, 7>;
class T_RCMP_EQ_ri<string mnemonic, bit IsNeg>
: ALU32_ri<(outs IntRegs:$Rd), (ins IntRegs:$Rs, s8Ext:$s8),
"$Rd = "#mnemonic#"($Rs, #$s8)", [], "", ALU32_2op_tc_1_SLOT0123>,
ImmRegRel {
let InputType = "imm";
let CextOpcode = !if (IsNeg, "!rcmp.eq", "rcmp.eq");
let isExtendable = 1;
let opExtendable = 2;
let isExtentSigned = 1;
let opExtentBits = 8;
let hasNewValue = 1;
bits<5> Rd;
bits<5> Rs;
bits<8> s8;
let IClass = 0b0111;
let Inst{27-24} = 0b0011;
let Inst{22} = 0b1;
let Inst{21} = IsNeg;
let Inst{20-16} = Rs;
let Inst{13} = 0b1;
let Inst{12-5} = s8;
let Inst{4-0} = Rd;
}
def A4_rcmpeqi : T_RCMP_EQ_ri<"cmp.eq", 0>;
def A4_rcmpneqi : T_RCMP_EQ_ri<"!cmp.eq", 1>;
def: Pat<(i32 (zext (i1 (seteq (i32 IntRegs:$Rs), s32ImmPred:$s8)))),
(A4_rcmpeqi IntRegs:$Rs, s32ImmPred:$s8)>;
def: Pat<(i32 (zext (i1 (setne (i32 IntRegs:$Rs), s32ImmPred:$s8)))),
(A4_rcmpneqi IntRegs:$Rs, s32ImmPred:$s8)>;
// Preserve the S2_tstbit_r generation
def: Pat<(i32 (zext (i1 (setne (i32 (and (i32 (shl 1, (i32 IntRegs:$src2))),
(i32 IntRegs:$src1))), 0)))),
(C2_muxii (S2_tstbit_r IntRegs:$src1, IntRegs:$src2), 1, 0)>;
//===----------------------------------------------------------------------===//
// ALU32 -
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// ALU32/PERM +
//===----------------------------------------------------------------------===//
// Combine a word and an immediate into a register pair.
let hasSideEffects = 0, isExtentSigned = 1, isExtendable = 1,
opExtentBits = 8 in
class T_Combine1 <bits<2> MajOp, dag ins, string AsmStr>
: ALU32Inst <(outs DoubleRegs:$Rdd), ins, AsmStr> {
bits<5> Rdd;
bits<5> Rs;
bits<8> s8;
let IClass = 0b0111;
let Inst{27-24} = 0b0011;
let Inst{22-21} = MajOp;
let Inst{20-16} = Rs;
let Inst{13} = 0b1;
let Inst{12-5} = s8;
let Inst{4-0} = Rdd;
}
let opExtendable = 2 in
def A4_combineri : T_Combine1<0b00, (ins IntRegs:$Rs, s8Ext:$s8),
"$Rdd = combine($Rs, #$s8)">;
let opExtendable = 1 in
def A4_combineir : T_Combine1<0b01, (ins s8Ext:$s8, IntRegs:$Rs),
"$Rdd = combine(#$s8, $Rs)">;
// The complexity of the combines involving immediates should be greater
// than the complexity of the combine with two registers.
let AddedComplexity = 50 in {
def: Pat<(HexagonCOMBINE IntRegs:$r, s32ImmPred:$i),
(A4_combineri IntRegs:$r, s32ImmPred:$i)>;
def: Pat<(HexagonCOMBINE s32ImmPred:$i, IntRegs:$r),
(A4_combineir s32ImmPred:$i, IntRegs:$r)>;
}
// A4_combineii: Set two small immediates.
let hasSideEffects = 0, isExtendable = 1, opExtentBits = 6, opExtendable = 2 in
def A4_combineii: ALU32Inst<(outs DoubleRegs:$Rdd), (ins s8Imm:$s8, u6Ext:$U6),
"$Rdd = combine(#$s8, #$U6)"> {
bits<5> Rdd;
bits<8> s8;
bits<6> U6;
let IClass = 0b0111;
let Inst{27-23} = 0b11001;
let Inst{20-16} = U6{5-1};
let Inst{13} = U6{0};
let Inst{12-5} = s8;
let Inst{4-0} = Rdd;
}
// The complexity of the combine with two immediates should be greater than
// the complexity of a combine involving a register.
let AddedComplexity = 75 in
def: Pat<(HexagonCOMBINE s8ImmPred:$s8, u32ImmPred:$u6),
(A4_combineii imm:$s8, imm:$u6)>;
//===----------------------------------------------------------------------===//
// ALU32/PERM -
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// LD +
//===----------------------------------------------------------------------===//
def Zext64: OutPatFrag<(ops node:$Rs),
(i64 (A4_combineir 0, (i32 $Rs)))>;
def Sext64: OutPatFrag<(ops node:$Rs),
(i64 (A2_sxtw (i32 $Rs)))>;
// Patterns to generate indexed loads with different forms of the address:
// - frameindex,
// - base + offset,
// - base (without offset).
multiclass Loadxm_pat<PatFrag Load, ValueType VT, PatFrag ValueMod,
PatLeaf ImmPred, InstHexagon MI> {
def: Pat<(VT (Load AddrFI:$fi)),
(VT (ValueMod (MI AddrFI:$fi, 0)))>;
def: Pat<(VT (Load (add AddrFI:$fi, ImmPred:$Off))),
(VT (ValueMod (MI AddrFI:$fi, imm:$Off)))>;
def: Pat<(VT (Load (add IntRegs:$Rs, ImmPred:$Off))),
(VT (ValueMod (MI IntRegs:$Rs, imm:$Off)))>;
def: Pat<(VT (Load (i32 IntRegs:$Rs))),
(VT (ValueMod (MI IntRegs:$Rs, 0)))>;
}
defm: Loadxm_pat<extloadi1, i64, Zext64, s32_0ImmPred, L2_loadrub_io>;
defm: Loadxm_pat<extloadi8, i64, Zext64, s32_0ImmPred, L2_loadrub_io>;
defm: Loadxm_pat<extloadi16, i64, Zext64, s31_1ImmPred, L2_loadruh_io>;
defm: Loadxm_pat<zextloadi1, i64, Zext64, s32_0ImmPred, L2_loadrub_io>;
defm: Loadxm_pat<zextloadi8, i64, Zext64, s32_0ImmPred, L2_loadrub_io>;
defm: Loadxm_pat<zextloadi16, i64, Zext64, s31_1ImmPred, L2_loadruh_io>;
defm: Loadxm_pat<sextloadi8, i64, Sext64, s32_0ImmPred, L2_loadrb_io>;
defm: Loadxm_pat<sextloadi16, i64, Sext64, s31_1ImmPred, L2_loadrh_io>;
// Map Rdd = anyext(Rs) -> Rdd = combine(#0, Rs).
def: Pat<(i64 (anyext (i32 IntRegs:$src1))), (Zext64 IntRegs:$src1)>;
//===----------------------------------------------------------------------===//
// Template class for load instructions with Absolute set addressing mode.
//===----------------------------------------------------------------------===//
let isExtended = 1, opExtendable = 2, opExtentBits = 6, addrMode = AbsoluteSet,
hasSideEffects = 0 in
class T_LD_abs_set<string mnemonic, RegisterClass RC, bits<4>MajOp>:
LDInst<(outs RC:$dst1, IntRegs:$dst2),
(ins u6Ext:$addr),
"$dst1 = "#mnemonic#"($dst2 = #$addr)",
[]> {
bits<7> name;
bits<5> dst1;
bits<5> dst2;
bits<6> addr;
let IClass = 0b1001;
let Inst{27-25} = 0b101;
let Inst{24-21} = MajOp;
let Inst{13-12} = 0b01;
let Inst{4-0} = dst1;
let Inst{20-16} = dst2;
let Inst{11-8} = addr{5-2};
let Inst{6-5} = addr{1-0};
}
let accessSize = ByteAccess, hasNewValue = 1 in {
def L4_loadrb_ap : T_LD_abs_set <"memb", IntRegs, 0b1000>;
def L4_loadrub_ap : T_LD_abs_set <"memub", IntRegs, 0b1001>;
}
let accessSize = HalfWordAccess, hasNewValue = 1 in {
def L4_loadrh_ap : T_LD_abs_set <"memh", IntRegs, 0b1010>;
def L4_loadruh_ap : T_LD_abs_set <"memuh", IntRegs, 0b1011>;
def L4_loadbsw2_ap : T_LD_abs_set <"membh", IntRegs, 0b0001>;
def L4_loadbzw2_ap : T_LD_abs_set <"memubh", IntRegs, 0b0011>;
}
let accessSize = WordAccess, hasNewValue = 1 in
def L4_loadri_ap : T_LD_abs_set <"memw", IntRegs, 0b1100>;
let accessSize = WordAccess in {
def L4_loadbzw4_ap : T_LD_abs_set <"memubh", DoubleRegs, 0b0101>;
def L4_loadbsw4_ap : T_LD_abs_set <"membh", DoubleRegs, 0b0111>;
}
let accessSize = DoubleWordAccess in
def L4_loadrd_ap : T_LD_abs_set <"memd", DoubleRegs, 0b1110>;
let accessSize = ByteAccess in
def L4_loadalignb_ap : T_LD_abs_set <"memb_fifo", DoubleRegs, 0b0100>;
let accessSize = HalfWordAccess in
def L4_loadalignh_ap : T_LD_abs_set <"memh_fifo", DoubleRegs, 0b0010>;
// Load - Indirect with long offset
let InputType = "imm", addrMode = BaseLongOffset, isExtended = 1,
opExtentBits = 6, opExtendable = 3 in
class T_LoadAbsReg <string mnemonic, string CextOp, RegisterClass RC,
bits<4> MajOp>
: LDInst <(outs RC:$dst), (ins IntRegs:$src1, u2Imm:$src2, u6Ext:$src3),
"$dst = "#mnemonic#"($src1<<#$src2 + #$src3)",
[] >, ImmRegShl {
bits<5> dst;
bits<5> src1;
bits<2> src2;
bits<6> src3;
let CextOpcode = CextOp;
let hasNewValue = !if (!eq(!cast<string>(RC), "DoubleRegs"), 0, 1);
let IClass = 0b1001;
let Inst{27-25} = 0b110;
let Inst{24-21} = MajOp;
let Inst{20-16} = src1;
let Inst{13} = src2{1};
let Inst{12} = 0b1;
let Inst{11-8} = src3{5-2};
let Inst{7} = src2{0};
let Inst{6-5} = src3{1-0};
let Inst{4-0} = dst;
}
let accessSize = ByteAccess in {
def L4_loadrb_ur : T_LoadAbsReg<"memb", "LDrib", IntRegs, 0b1000>;
def L4_loadrub_ur : T_LoadAbsReg<"memub", "LDriub", IntRegs, 0b1001>;
def L4_loadalignb_ur : T_LoadAbsReg<"memb_fifo", "LDrib_fifo",
DoubleRegs, 0b0100>;
}
let accessSize = HalfWordAccess in {
def L4_loadrh_ur : T_LoadAbsReg<"memh", "LDrih", IntRegs, 0b1010>;
def L4_loadruh_ur : T_LoadAbsReg<"memuh", "LDriuh", IntRegs, 0b1011>;
def L4_loadbsw2_ur : T_LoadAbsReg<"membh", "LDribh2", IntRegs, 0b0001>;
def L4_loadbzw2_ur : T_LoadAbsReg<"memubh", "LDriubh2", IntRegs, 0b0011>;
def L4_loadalignh_ur : T_LoadAbsReg<"memh_fifo", "LDrih_fifo",
DoubleRegs, 0b0010>;
}
let accessSize = WordAccess in {
def L4_loadri_ur : T_LoadAbsReg<"memw", "LDriw", IntRegs, 0b1100>;
def L4_loadbsw4_ur : T_LoadAbsReg<"membh", "LDribh4", DoubleRegs, 0b0111>;
def L4_loadbzw4_ur : T_LoadAbsReg<"memubh", "LDriubh4", DoubleRegs, 0b0101>;
}
let accessSize = DoubleWordAccess in
def L4_loadrd_ur : T_LoadAbsReg<"memd", "LDrid", DoubleRegs, 0b1110>;
multiclass T_LoadAbsReg_Pat <PatFrag ldOp, InstHexagon MI, ValueType VT = i32> {
def : Pat <(VT (ldOp (add (shl IntRegs:$src1, u2ImmPred:$src2),
(HexagonCONST32 tglobaladdr:$src3)))),
(MI IntRegs:$src1, u2ImmPred:$src2, tglobaladdr:$src3)>;
def : Pat <(VT (ldOp (add IntRegs:$src1,
(HexagonCONST32 tglobaladdr:$src2)))),
(MI IntRegs:$src1, 0, tglobaladdr:$src2)>;
def : Pat <(VT (ldOp (add (shl IntRegs:$src1, u2ImmPred:$src2),
(HexagonCONST32 tconstpool:$src3)))),
(MI IntRegs:$src1, u2ImmPred:$src2, tconstpool:$src3)>;
def : Pat <(VT (ldOp (add IntRegs:$src1,
(HexagonCONST32 tconstpool:$src2)))),
(MI IntRegs:$src1, 0, tconstpool:$src2)>;
def : Pat <(VT (ldOp (add (shl IntRegs:$src1, u2ImmPred:$src2),
(HexagonCONST32 tjumptable:$src3)))),
(MI IntRegs:$src1, u2ImmPred:$src2, tjumptable:$src3)>;
def : Pat <(VT (ldOp (add IntRegs:$src1,
(HexagonCONST32 tjumptable:$src2)))),
(MI IntRegs:$src1, 0, tjumptable:$src2)>;
}
let AddedComplexity = 60 in {
defm : T_LoadAbsReg_Pat <sextloadi8, L4_loadrb_ur>;
defm : T_LoadAbsReg_Pat <zextloadi8, L4_loadrub_ur>;
defm : T_LoadAbsReg_Pat <extloadi8, L4_loadrub_ur>;
defm : T_LoadAbsReg_Pat <sextloadi16, L4_loadrh_ur>;
defm : T_LoadAbsReg_Pat <zextloadi16, L4_loadruh_ur>;
defm : T_LoadAbsReg_Pat <extloadi16, L4_loadruh_ur>;
defm : T_LoadAbsReg_Pat <load, L4_loadri_ur>;
defm : T_LoadAbsReg_Pat <load, L4_loadrd_ur, i64>;
}
//===----------------------------------------------------------------------===//
// Template classes for the non-predicated load instructions with
// base + register offset addressing mode
//===----------------------------------------------------------------------===//
class T_load_rr <string mnemonic, RegisterClass RC, bits<3> MajOp>:
LDInst<(outs RC:$dst), (ins IntRegs:$src1, IntRegs:$src2, u2Imm:$u2),
"$dst = "#mnemonic#"($src1 + $src2<<#$u2)",
[], "", V4LDST_tc_ld_SLOT01>, ImmRegShl, AddrModeRel {
bits<5> dst;
bits<5> src1;
bits<5> src2;
bits<2> u2;
let IClass = 0b0011;
let Inst{27-24} = 0b1010;
let Inst{23-21} = MajOp;
let Inst{20-16} = src1;
let Inst{12-8} = src2;
let Inst{13} = u2{1};
let Inst{7} = u2{0};
let Inst{4-0} = dst;
}
//===----------------------------------------------------------------------===//
// Template classes for the predicated load instructions with
// base + register offset addressing mode
//===----------------------------------------------------------------------===//
let isPredicated = 1 in
class T_pload_rr <string mnemonic, RegisterClass RC, bits<3> MajOp,
bit isNot, bit isPredNew>:
LDInst <(outs RC:$dst),
(ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3, u2Imm:$u2),
!if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
") ")#"$dst = "#mnemonic#"($src2+$src3<<#$u2)",
[], "", V4LDST_tc_ld_SLOT01>, AddrModeRel {
bits<5> dst;
bits<2> src1;
bits<5> src2;
bits<5> src3;
bits<2> u2;
let isPredicatedFalse = isNot;
let isPredicatedNew = isPredNew;
let IClass = 0b0011;
let Inst{27-26} = 0b00;
let Inst{25} = isPredNew;
let Inst{24} = isNot;
let Inst{23-21} = MajOp;
let Inst{20-16} = src2;
let Inst{12-8} = src3;
let Inst{13} = u2{1};
let Inst{7} = u2{0};
let Inst{6-5} = src1;
let Inst{4-0} = dst;
}
//===----------------------------------------------------------------------===//
// multiclass for load instructions with base + register offset
// addressing mode
//===----------------------------------------------------------------------===//
let hasSideEffects = 0, addrMode = BaseRegOffset in
multiclass ld_idxd_shl <string mnemonic, string CextOp, RegisterClass RC,
bits<3> MajOp > {
let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed_shl,
InputType = "reg" in {
let isPredicable = 1 in
def L4_#NAME#_rr : T_load_rr <mnemonic, RC, MajOp>;
// Predicated
def L4_p#NAME#t_rr : T_pload_rr <mnemonic, RC, MajOp, 0, 0>;
def L4_p#NAME#f_rr : T_pload_rr <mnemonic, RC, MajOp, 1, 0>;
// Predicated new
def L4_p#NAME#tnew_rr : T_pload_rr <mnemonic, RC, MajOp, 0, 1>;
def L4_p#NAME#fnew_rr : T_pload_rr <mnemonic, RC, MajOp, 1, 1>;
}
}
let hasNewValue = 1, accessSize = ByteAccess in {
defm loadrb : ld_idxd_shl<"memb", "LDrib", IntRegs, 0b000>;
defm loadrub : ld_idxd_shl<"memub", "LDriub", IntRegs, 0b001>;
}
let hasNewValue = 1, accessSize = HalfWordAccess in {
defm loadrh : ld_idxd_shl<"memh", "LDrih", IntRegs, 0b010>;
defm loadruh : ld_idxd_shl<"memuh", "LDriuh", IntRegs, 0b011>;
}
let hasNewValue = 1, accessSize = WordAccess in
defm loadri : ld_idxd_shl<"memw", "LDriw", IntRegs, 0b100>;
let accessSize = DoubleWordAccess in
defm loadrd : ld_idxd_shl<"memd", "LDrid", DoubleRegs, 0b110>;
// 'def pats' for load instructions with base + register offset and non-zero
// immediate value. Immediate value is used to left-shift the second
// register operand.
class Loadxs_pat<PatFrag Load, ValueType VT, InstHexagon MI>
: Pat<(VT (Load (add (i32 IntRegs:$Rs),
(i32 (shl (i32 IntRegs:$Rt), u2ImmPred:$u2))))),
(VT (MI IntRegs:$Rs, IntRegs:$Rt, imm:$u2))>;
let AddedComplexity = 40 in {
def: Loadxs_pat<extloadi8, i32, L4_loadrub_rr>;
def: Loadxs_pat<zextloadi8, i32, L4_loadrub_rr>;
def: Loadxs_pat<sextloadi8, i32, L4_loadrb_rr>;
def: Loadxs_pat<extloadi16, i32, L4_loadruh_rr>;
def: Loadxs_pat<zextloadi16, i32, L4_loadruh_rr>;
def: Loadxs_pat<sextloadi16, i32, L4_loadrh_rr>;
def: Loadxs_pat<load, i32, L4_loadri_rr>;
def: Loadxs_pat<load, i64, L4_loadrd_rr>;
}
// 'def pats' for load instruction base + register offset and
// zero immediate value.
class Loadxs_simple_pat<PatFrag Load, ValueType VT, InstHexagon MI>
: Pat<(VT (Load (add (i32 IntRegs:$Rs), (i32 IntRegs:$Rt)))),
(VT (MI IntRegs:$Rs, IntRegs:$Rt, 0))>;
let AddedComplexity = 20 in {
def: Loadxs_simple_pat<extloadi8, i32, L4_loadrub_rr>;
def: Loadxs_simple_pat<zextloadi8, i32, L4_loadrub_rr>;
def: Loadxs_simple_pat<sextloadi8, i32, L4_loadrb_rr>;
def: Loadxs_simple_pat<extloadi16, i32, L4_loadruh_rr>;
def: Loadxs_simple_pat<zextloadi16, i32, L4_loadruh_rr>;
def: Loadxs_simple_pat<sextloadi16, i32, L4_loadrh_rr>;
def: Loadxs_simple_pat<load, i32, L4_loadri_rr>;
def: Loadxs_simple_pat<load, i64, L4_loadrd_rr>;
}
// zext i1->i64
def: Pat<(i64 (zext (i1 PredRegs:$src1))),
(Zext64 (C2_muxii PredRegs:$src1, 1, 0))>;
// zext i32->i64
def: Pat<(i64 (zext (i32 IntRegs:$src1))),
(Zext64 IntRegs:$src1)>;
//===----------------------------------------------------------------------===//
// LD -
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// ST +
//===----------------------------------------------------------------------===//
///
//===----------------------------------------------------------------------===//
// Template class for store instructions with Absolute set addressing mode.
//===----------------------------------------------------------------------===//
let isExtended = 1, opExtendable = 1, opExtentBits = 6,
addrMode = AbsoluteSet in
class T_ST_absset <string mnemonic, string BaseOp, RegisterClass RC,
bits<3> MajOp, MemAccessSize AccessSz, bit isHalf = 0>
: STInst<(outs IntRegs:$dst),
(ins u6Ext:$addr, RC:$src),
mnemonic#"($dst = #$addr) = $src"#!if(isHalf, ".h","")>, NewValueRel {
bits<5> dst;
bits<6> addr;
bits<5> src;
let accessSize = AccessSz;
let BaseOpcode = BaseOp#"_AbsSet";
// Store upper-half and store doubleword cannot be NV.
let isNVStorable = !if (!eq(mnemonic, "memd"), 0, !if(isHalf,0,1));
let IClass = 0b1010;
let Inst{27-24} = 0b1011;
let Inst{23-21} = MajOp;
let Inst{20-16} = dst;
let Inst{13} = 0b0;
let Inst{12-8} = src;
let Inst{7} = 0b1;
let Inst{5-0} = addr;
}
def S4_storerb_ap : T_ST_absset <"memb", "STrib", IntRegs, 0b000, ByteAccess>;
def S4_storerh_ap : T_ST_absset <"memh", "STrih", IntRegs, 0b010,
HalfWordAccess>;
def S4_storeri_ap : T_ST_absset <"memw", "STriw", IntRegs, 0b100, WordAccess>;
let isNVStorable = 0 in {
def S4_storerf_ap : T_ST_absset <"memh", "STrif", IntRegs,
0b011, HalfWordAccess, 1>;
def S4_storerd_ap : T_ST_absset <"memd", "STrid", DoubleRegs,
0b110, DoubleWordAccess>;
}
let opExtendable = 1, isNewValue = 1, isNVStore = 1, opNewValue = 2,
isExtended = 1, opExtentBits= 6 in
class T_ST_absset_nv <string mnemonic, string BaseOp, bits<2> MajOp,
MemAccessSize AccessSz >
: NVInst <(outs IntRegs:$dst),
(ins u6Ext:$addr, IntRegs:$src),
mnemonic#"($dst = #$addr) = $src.new">, NewValueRel {
bits<5> dst;
bits<6> addr;
bits<3> src;
let accessSize = AccessSz;
let BaseOpcode = BaseOp#"_AbsSet";
let IClass = 0b1010;
let Inst{27-21} = 0b1011101;
let Inst{20-16} = dst;
let Inst{13-11} = 0b000;
let Inst{12-11} = MajOp;
let Inst{10-8} = src;
let Inst{7} = 0b1;
let Inst{5-0} = addr;
}
let mayStore = 1, addrMode = AbsoluteSet in {
def S4_storerbnew_ap : T_ST_absset_nv <"memb", "STrib", 0b00, ByteAccess>;
def S4_storerhnew_ap : T_ST_absset_nv <"memh", "STrih", 0b01, HalfWordAccess>;
def S4_storerinew_ap : T_ST_absset_nv <"memw", "STriw", 0b10, WordAccess>;
}
let isExtended = 1, opExtendable = 2, opExtentBits = 6, InputType = "imm",
addrMode = BaseLongOffset, AddedComplexity = 40 in
class T_StoreAbsReg <string mnemonic, string CextOp, RegisterClass RC,
bits<3> MajOp, MemAccessSize AccessSz, bit isHalf = 0>
: STInst<(outs),
(ins IntRegs:$src1, u2Imm:$src2, u6Ext:$src3, RC:$src4),
mnemonic#"($src1<<#$src2 + #$src3) = $src4"#!if(isHalf, ".h",""),
[]>, ImmRegShl, NewValueRel {
bits<5> src1;
bits<2> src2;
bits<6> src3;
bits<5> src4;
let accessSize = AccessSz;
let CextOpcode = CextOp;
let BaseOpcode = CextOp#"_shl";
// Store upper-half and store doubleword cannot be NV.
let isNVStorable = !if (!eq(mnemonic, "memd"), 0, !if(isHalf,0,1));
let IClass = 0b1010;
let Inst{27-24} =0b1101;
let Inst{23-21} = MajOp;
let Inst{20-16} = src1;
let Inst{13} = src2{1};
let Inst{12-8} = src4;
let Inst{7} = 0b1;
let Inst{6} = src2{0};
let Inst{5-0} = src3;
}
def S4_storerb_ur : T_StoreAbsReg <"memb", "STrib", IntRegs, 0b000, ByteAccess>;
def S4_storerh_ur : T_StoreAbsReg <"memh", "STrih", IntRegs, 0b010,
HalfWordAccess>;
def S4_storerf_ur : T_StoreAbsReg <"memh", "STrif", IntRegs, 0b011,
HalfWordAccess, 1>;
def S4_storeri_ur : T_StoreAbsReg <"memw", "STriw", IntRegs, 0b100, WordAccess>;
def S4_storerd_ur : T_StoreAbsReg <"memd", "STrid", DoubleRegs, 0b110,
DoubleWordAccess>;
let AddedComplexity = 40 in
multiclass T_StoreAbsReg_Pats <InstHexagon MI, RegisterClass RC, ValueType VT,
PatFrag stOp> {
def : Pat<(stOp (VT RC:$src4),
(add (shl (i32 IntRegs:$src1), u2ImmPred:$src2),
u32ImmPred:$src3)),
(MI IntRegs:$src1, u2ImmPred:$src2, u32ImmPred:$src3, RC:$src4)>;
def : Pat<(stOp (VT RC:$src4),
(add (shl IntRegs:$src1, u2ImmPred:$src2),
(HexagonCONST32 tglobaladdr:$src3))),
(MI IntRegs:$src1, u2ImmPred:$src2, tglobaladdr:$src3, RC:$src4)>;
def : Pat<(stOp (VT RC:$src4),
(add IntRegs:$src1, (HexagonCONST32 tglobaladdr:$src3))),
(MI IntRegs:$src1, 0, tglobaladdr:$src3, RC:$src4)>;
}
defm : T_StoreAbsReg_Pats <S4_storerd_ur, DoubleRegs, i64, store>;
defm : T_StoreAbsReg_Pats <S4_storeri_ur, IntRegs, i32, store>;
defm : T_StoreAbsReg_Pats <S4_storerb_ur, IntRegs, i32, truncstorei8>;
defm : T_StoreAbsReg_Pats <S4_storerh_ur, IntRegs, i32, truncstorei16>;
let mayStore = 1, isNVStore = 1, isExtended = 1, addrMode = BaseLongOffset,
opExtentBits = 6, isNewValue = 1, opNewValue = 3, opExtendable = 2 in
class T_StoreAbsRegNV <string mnemonic, string CextOp, bits<2> MajOp,
MemAccessSize AccessSz>
: NVInst <(outs ),
(ins IntRegs:$src1, u2Imm:$src2, u6Ext:$src3, IntRegs:$src4),
mnemonic#"($src1<<#$src2 + #$src3) = $src4.new">, NewValueRel {
bits<5> src1;
bits<2> src2;
bits<6> src3;
bits<3> src4;
let CextOpcode = CextOp;
let BaseOpcode = CextOp#"_shl";
let IClass = 0b1010;
let Inst{27-21} = 0b1101101;
let Inst{12-11} = 0b00;
let Inst{7} = 0b1;
let Inst{20-16} = src1;
let Inst{13} = src2{1};
let Inst{12-11} = MajOp;
let Inst{10-8} = src4;
let Inst{6} = src2{0};
let Inst{5-0} = src3;
}
def S4_storerbnew_ur : T_StoreAbsRegNV <"memb", "STrib", 0b00, ByteAccess>;
def S4_storerhnew_ur : T_StoreAbsRegNV <"memh", "STrih", 0b01, HalfWordAccess>;
def S4_storerinew_ur : T_StoreAbsRegNV <"memw", "STriw", 0b10, WordAccess>;
//===----------------------------------------------------------------------===//
// Template classes for the non-predicated store instructions with
// base + register offset addressing mode
//===----------------------------------------------------------------------===//
let isPredicable = 1 in
class T_store_rr <string mnemonic, RegisterClass RC, bits<3> MajOp, bit isH>
: STInst < (outs ), (ins IntRegs:$Rs, IntRegs:$Ru, u2Imm:$u2, RC:$Rt),
mnemonic#"($Rs + $Ru<<#$u2) = $Rt"#!if(isH, ".h",""),
[],"",V4LDST_tc_st_SLOT01>, ImmRegShl, AddrModeRel {
bits<5> Rs;
bits<5> Ru;
bits<2> u2;
bits<5> Rt;
// Store upper-half and store doubleword cannot be NV.
let isNVStorable = !if (!eq(mnemonic, "memd"), 0, !if(isH,0,1));
let IClass = 0b0011;
let Inst{27-24} = 0b1011;
let Inst{23-21} = MajOp;
let Inst{20-16} = Rs;
let Inst{12-8} = Ru;
let Inst{13} = u2{1};
let Inst{7} = u2{0};
let Inst{4-0} = Rt;
}
//===----------------------------------------------------------------------===//
// Template classes for the predicated store instructions with
// base + register offset addressing mode
//===----------------------------------------------------------------------===//
let isPredicated = 1 in
class T_pstore_rr <string mnemonic, RegisterClass RC, bits<3> MajOp,
bit isNot, bit isPredNew, bit isH>
: STInst <(outs),
(ins PredRegs:$Pv, IntRegs:$Rs, IntRegs:$Ru, u2Imm:$u2, RC:$Rt),
!if(isNot, "if (!$Pv", "if ($Pv")#!if(isPredNew, ".new) ",
") ")#mnemonic#"($Rs+$Ru<<#$u2) = $Rt"#!if(isH, ".h",""),
[], "", V4LDST_tc_st_SLOT01> , AddrModeRel{
bits<2> Pv;
bits<5> Rs;
bits<5> Ru;
bits<2> u2;
bits<5> Rt;
let isPredicatedFalse = isNot;
let isPredicatedNew = isPredNew;
// Store upper-half and store doubleword cannot be NV.
let isNVStorable = !if (!eq(mnemonic, "memd"), 0, !if(isH,0,1));
let IClass = 0b0011;
let Inst{27-26} = 0b01;
let Inst{25} = isPredNew;
let Inst{24} = isNot;
let Inst{23-21} = MajOp;
let Inst{20-16} = Rs;
let Inst{12-8} = Ru;
let Inst{13} = u2{1};
let Inst{7} = u2{0};
let Inst{6-5} = Pv;
let Inst{4-0} = Rt;
}
//===----------------------------------------------------------------------===//
// Template classes for the new-value store instructions with
// base + register offset addressing mode
//===----------------------------------------------------------------------===//
let isPredicable = 1, isNewValue = 1, opNewValue = 3 in
class T_store_new_rr <string mnemonic, bits<2> MajOp> :
NVInst < (outs ), (ins IntRegs:$Rs, IntRegs:$Ru, u2Imm:$u2, IntRegs:$Nt),
mnemonic#"($Rs + $Ru<<#$u2) = $Nt.new",
[],"",V4LDST_tc_st_SLOT0>, ImmRegShl, AddrModeRel {
bits<5> Rs;
bits<5> Ru;
bits<2> u2;
bits<3> Nt;
let IClass = 0b0011;
let Inst{27-21} = 0b1011101;
let Inst{20-16} = Rs;
let Inst{12-8} = Ru;
let Inst{13} = u2{1};
let Inst{7} = u2{0};
let Inst{4-3} = MajOp;
let Inst{2-0} = Nt;
}
//===----------------------------------------------------------------------===//
// Template classes for the predicated new-value store instructions with
// base + register offset addressing mode
//===----------------------------------------------------------------------===//
let isPredicated = 1, isNewValue = 1, opNewValue = 4 in
class T_pstore_new_rr <string mnemonic, bits<2> MajOp, bit isNot, bit isPredNew>
: NVInst<(outs),
(ins PredRegs:$Pv, IntRegs:$Rs, IntRegs:$Ru, u2Imm:$u2, IntRegs:$Nt),
!if(isNot, "if (!$Pv", "if ($Pv")#!if(isPredNew, ".new) ",
") ")#mnemonic#"($Rs+$Ru<<#$u2) = $Nt.new",
[], "", V4LDST_tc_st_SLOT0>, AddrModeRel {
bits<2> Pv;
bits<5> Rs;
bits<5> Ru;
bits<2> u2;
bits<3> Nt;
let isPredicatedFalse = isNot;
let isPredicatedNew = isPredNew;
let IClass = 0b0011;
let Inst{27-26} = 0b01;
let Inst{25} = isPredNew;
let Inst{24} = isNot;
let Inst{23-21} = 0b101;
let Inst{20-16} = Rs;
let Inst{12-8} = Ru;
let Inst{13} = u2{1};
let Inst{7} = u2{0};
let Inst{6-5} = Pv;
let Inst{4-3} = MajOp;
let Inst{2-0} = Nt;
}
//===----------------------------------------------------------------------===//
// multiclass for store instructions with base + register offset addressing
// mode
//===----------------------------------------------------------------------===//
let isNVStorable = 1 in
multiclass ST_Idxd_shl<string mnemonic, string CextOp, RegisterClass RC,
bits<3> MajOp, bit isH = 0> {
let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed_shl in {
def S4_#NAME#_rr : T_store_rr <mnemonic, RC, MajOp, isH>;
// Predicated
def S4_p#NAME#t_rr : T_pstore_rr <mnemonic, RC, MajOp, 0, 0, isH>;
def S4_p#NAME#f_rr : T_pstore_rr <mnemonic, RC, MajOp, 1, 0, isH>;
// Predicated new
def S4_p#NAME#tnew_rr : T_pstore_rr <mnemonic, RC, MajOp, 0, 1, isH>;
def S4_p#NAME#fnew_rr : T_pstore_rr <mnemonic, RC, MajOp, 1, 1, isH>;
}
}
//===----------------------------------------------------------------------===//
// multiclass for new-value store instructions with base + register offset
// addressing mode.
//===----------------------------------------------------------------------===//
let mayStore = 1, isNVStore = 1 in
multiclass ST_Idxd_shl_nv <string mnemonic, string CextOp, RegisterClass RC,
bits<2> MajOp> {
let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed_shl in {
def S4_#NAME#new_rr : T_store_new_rr<mnemonic, MajOp>;
// Predicated
def S4_p#NAME#newt_rr : T_pstore_new_rr <mnemonic, MajOp, 0, 0>;
def S4_p#NAME#newf_rr : T_pstore_new_rr <mnemonic, MajOp, 1, 0>;
// Predicated new
def S4_p#NAME#newtnew_rr : T_pstore_new_rr <mnemonic, MajOp, 0, 1>;
def S4_p#NAME#newfnew_rr : T_pstore_new_rr <mnemonic, MajOp, 1, 1>;
}
}
let addrMode = BaseRegOffset, InputType = "reg", hasSideEffects = 0 in {
let accessSize = ByteAccess in
defm storerb: ST_Idxd_shl<"memb", "STrib", IntRegs, 0b000>,
ST_Idxd_shl_nv<"memb", "STrib", IntRegs, 0b00>;
let accessSize = HalfWordAccess in
defm storerh: ST_Idxd_shl<"memh", "STrih", IntRegs, 0b010>,
ST_Idxd_shl_nv<"memh", "STrih", IntRegs, 0b01>;
let accessSize = WordAccess in
defm storeri: ST_Idxd_shl<"memw", "STriw", IntRegs, 0b100>,
ST_Idxd_shl_nv<"memw", "STriw", IntRegs, 0b10>;
let isNVStorable = 0, accessSize = DoubleWordAccess in
defm storerd: ST_Idxd_shl<"memd", "STrid", DoubleRegs, 0b110>;
let isNVStorable = 0, accessSize = HalfWordAccess in
defm storerf: ST_Idxd_shl<"memh", "STrif", IntRegs, 0b011, 1>;
}
class Storexs_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
: Pat<(Store Value:$Ru, (add (i32 IntRegs:$Rs),
(i32 (shl (i32 IntRegs:$Rt), u2ImmPred:$u2)))),
(MI IntRegs:$Rs, IntRegs:$Rt, imm:$u2, Value:$Ru)>;
let AddedComplexity = 40 in {
def: Storexs_pat<truncstorei8, I32, S4_storerb_rr>;
def: Storexs_pat<truncstorei16, I32, S4_storerh_rr>;
def: Storexs_pat<store, I32, S4_storeri_rr>;
def: Storexs_pat<store, I64, S4_storerd_rr>;
}
// memd(Rx++#s4:3)=Rtt
// memd(Rx++#s4:3:circ(Mu))=Rtt
// memd(Rx++I:circ(Mu))=Rtt
// memd(Rx++Mu)=Rtt
// memd(Rx++Mu:brev)=Rtt
// memd(gp+#u16:3)=Rtt
// Store doubleword conditionally.
// if ([!]Pv[.new]) memd(#u6)=Rtt
// TODO: needs to be implemented.
//===----------------------------------------------------------------------===//
// Template class
//===----------------------------------------------------------------------===//
let isPredicable = 1, isExtendable = 1, isExtentSigned = 1, opExtentBits = 8,
opExtendable = 2 in
class T_StoreImm <string mnemonic, Operand OffsetOp, bits<2> MajOp >
: STInst <(outs ), (ins IntRegs:$Rs, OffsetOp:$offset, s8Ext:$S8),
mnemonic#"($Rs+#$offset)=#$S8",
[], "", V4LDST_tc_st_SLOT01>,
ImmRegRel, PredNewRel {
bits<5> Rs;
bits<8> S8;
bits<8> offset;
bits<6> offsetBits;
string OffsetOpStr = !cast<string>(OffsetOp);
let offsetBits = !if (!eq(OffsetOpStr, "u6_2Imm"), offset{7-2},
!if (!eq(OffsetOpStr, "u6_1Imm"), offset{6-1},
/* u6_0Imm */ offset{5-0}));
let IClass = 0b0011;
let Inst{27-25} = 0b110;
let Inst{22-21} = MajOp;
let Inst{20-16} = Rs;
let Inst{12-7} = offsetBits;
let Inst{13} = S8{7};
let Inst{6-0} = S8{6-0};
}
let isPredicated = 1, isExtendable = 1, isExtentSigned = 1, opExtentBits = 6,
opExtendable = 3 in
class T_StoreImm_pred <string mnemonic, Operand OffsetOp, bits<2> MajOp,
bit isPredNot, bit isPredNew >
: STInst <(outs ),
(ins PredRegs:$Pv, IntRegs:$Rs, OffsetOp:$offset, s6Ext:$S6),
!if(isPredNot, "if (!$Pv", "if ($Pv")#!if(isPredNew, ".new) ",
") ")#mnemonic#"($Rs+#$offset)=#$S6",
[], "", V4LDST_tc_st_SLOT01>,
ImmRegRel, PredNewRel {
bits<2> Pv;
bits<5> Rs;
bits<6> S6;
bits<8> offset;
bits<6> offsetBits;
string OffsetOpStr = !cast<string>(OffsetOp);
let offsetBits = !if (!eq(OffsetOpStr, "u6_2Imm"), offset{7-2},
!if (!eq(OffsetOpStr, "u6_1Imm"), offset{6-1},
/* u6_0Imm */ offset{5-0}));
let isPredicatedNew = isPredNew;
let isPredicatedFalse = isPredNot;
let IClass = 0b0011;
let Inst{27-25} = 0b100;
let Inst{24} = isPredNew;
let Inst{23} = isPredNot;
let Inst{22-21} = MajOp;
let Inst{20-16} = Rs;
let Inst{13} = S6{5};
let Inst{12-7} = offsetBits;
let Inst{6-5} = Pv;
let Inst{4-0} = S6{4-0};
}
//===----------------------------------------------------------------------===//
// multiclass for store instructions with base + immediate offset
// addressing mode and immediate stored value.
// mem[bhw](Rx++#s4:3)=#s8
// if ([!]Pv[.new]) mem[bhw](Rx++#s4:3)=#s6
//===----------------------------------------------------------------------===//
multiclass ST_Imm_Pred <string mnemonic, Operand OffsetOp, bits<2> MajOp,
bit PredNot> {
def _io : T_StoreImm_pred <mnemonic, OffsetOp, MajOp, PredNot, 0>;
// Predicate new
def new_io : T_StoreImm_pred <mnemonic, OffsetOp, MajOp, PredNot, 1>;
}
multiclass ST_Imm <string mnemonic, string CextOp, Operand OffsetOp,
bits<2> MajOp> {
let CextOpcode = CextOp, BaseOpcode = CextOp#_imm in {
def _io : T_StoreImm <mnemonic, OffsetOp, MajOp>;
defm t : ST_Imm_Pred <mnemonic, OffsetOp, MajOp, 0>;
defm f : ST_Imm_Pred <mnemonic, OffsetOp, MajOp, 1>;
}
}
let hasSideEffects = 0, addrMode = BaseImmOffset,
InputType = "imm" in {
let accessSize = ByteAccess in
defm S4_storeirb : ST_Imm<"memb", "STrib", u6_0Imm, 0b00>;
let accessSize = HalfWordAccess in
defm S4_storeirh : ST_Imm<"memh", "STrih", u6_1Imm, 0b01>;
let accessSize = WordAccess in
defm S4_storeiri : ST_Imm<"memw", "STriw", u6_2Imm, 0b10>;
}
def IMM_BYTE : SDNodeXForm<imm, [{
// -1 etc is represented as 255 etc
// assigning to a byte restores our desired signed value.
int8_t imm = N->getSExtValue();
return CurDAG->getTargetConstant(imm, SDLoc(N), MVT::i32);
}]>;
def IMM_HALF : SDNodeXForm<imm, [{
// -1 etc is represented as 65535 etc
// assigning to a short restores our desired signed value.
int16_t imm = N->getSExtValue();
return CurDAG->getTargetConstant(imm, SDLoc(N), MVT::i32);
}]>;
def IMM_WORD : SDNodeXForm<imm, [{
// -1 etc can be represented as 4294967295 etc
// Currently, it's not doing this. But some optimization
// might convert -1 to a large +ve number.
// assigning to a word restores our desired signed value.
int32_t imm = N->getSExtValue();
return CurDAG->getTargetConstant(imm, SDLoc(N), MVT::i32);
}]>;
def ToImmByte : OutPatFrag<(ops node:$R), (IMM_BYTE $R)>;
def ToImmHalf : OutPatFrag<(ops node:$R), (IMM_HALF $R)>;
def ToImmWord : OutPatFrag<(ops node:$R), (IMM_WORD $R)>;
let AddedComplexity = 40 in {
// Not using frameindex patterns for these stores, because the offset
// is not extendable. This could cause problems during removing the frame
// indices, since the offset with respect to R29/R30 may not fit in the
// u6 field.
def: Storexm_add_pat<truncstorei8, s32ImmPred, u6_0ImmPred, ToImmByte,
S4_storeirb_io>;
def: Storexm_add_pat<truncstorei16, s32ImmPred, u6_1ImmPred, ToImmHalf,
S4_storeirh_io>;
def: Storexm_add_pat<store, s32ImmPred, u6_2ImmPred, ToImmWord,
S4_storeiri_io>;
}
def: Storexm_simple_pat<truncstorei8, s32ImmPred, ToImmByte, S4_storeirb_io>;
def: Storexm_simple_pat<truncstorei16, s32ImmPred, ToImmHalf, S4_storeirh_io>;
def: Storexm_simple_pat<store, s32ImmPred, ToImmWord, S4_storeiri_io>;
// memb(Rx++#s4:0:circ(Mu))=Rt
// memb(Rx++I:circ(Mu))=Rt
// memb(Rx++Mu)=Rt
// memb(Rx++Mu:brev)=Rt
// memb(gp+#u16:0)=Rt
// Store halfword.
// TODO: needs to be implemented
// memh(Re=#U6)=Rt.H
// memh(Rs+#s11:1)=Rt.H
// memh(Rs+Ru<<#u2)=Rt.H
// TODO: needs to be implemented.
// memh(Ru<<#u2+#U6)=Rt.H
// memh(Rx++#s4:1:circ(Mu))=Rt.H
// memh(Rx++#s4:1:circ(Mu))=Rt
// memh(Rx++I:circ(Mu))=Rt.H
// memh(Rx++I:circ(Mu))=Rt
// memh(Rx++Mu)=Rt.H
// memh(Rx++Mu)=Rt
// memh(Rx++Mu:brev)=Rt.H
// memh(Rx++Mu:brev)=Rt
// memh(gp+#u16:1)=Rt
// if ([!]Pv[.new]) memh(#u6)=Rt.H
// if ([!]Pv[.new]) memh(#u6)=Rt
// if ([!]Pv[.new]) memh(Rs+#u6:1)=Rt.H
// TODO: needs to be implemented.
// if ([!]Pv[.new]) memh(Rx++#s4:1)=Rt.H
// TODO: Needs to be implemented.
// Store word.
// memw(Re=#U6)=Rt
// TODO: Needs to be implemented.
// memw(Rx++#s4:2)=Rt
// memw(Rx++#s4:2:circ(Mu))=Rt
// memw(Rx++I:circ(Mu))=Rt
// memw(Rx++Mu)=Rt
// memw(Rx++Mu:brev)=Rt
//===----------------------------------------------------------------------===
// ST -
//===----------------------------------------------------------------------===
//===----------------------------------------------------------------------===//
// NV/ST +
//===----------------------------------------------------------------------===//
let opNewValue = 2, opExtendable = 1, isExtentSigned = 1, isPredicable = 1 in
class T_store_io_nv <string mnemonic, RegisterClass RC,
Operand ImmOp, bits<2>MajOp>
: NVInst_V4 <(outs),
(ins IntRegs:$src1, ImmOp:$src2, RC:$src3),
mnemonic#"($src1+#$src2) = $src3.new",
[],"",ST_tc_st_SLOT0> {
bits<5> src1;
bits<13> src2; // Actual address offset
bits<3> src3;
bits<11> offsetBits; // Represents offset encoding
let opExtentBits = !if (!eq(mnemonic, "memb"), 11,
!if (!eq(mnemonic, "memh"), 12,
!if (!eq(mnemonic, "memw"), 13, 0)));
let opExtentAlign = !if (!eq(mnemonic, "memb"), 0,
!if (!eq(mnemonic, "memh"), 1,
!if (!eq(mnemonic, "memw"), 2, 0)));
let offsetBits = !if (!eq(mnemonic, "memb"), src2{10-0},
!if (!eq(mnemonic, "memh"), src2{11-1},
!if (!eq(mnemonic, "memw"), src2{12-2}, 0)));
let IClass = 0b1010;
let Inst{27} = 0b0;
let Inst{26-25} = offsetBits{10-9};
let Inst{24-21} = 0b1101;
let Inst{20-16} = src1;
let Inst{13} = offsetBits{8};
let Inst{12-11} = MajOp;
let Inst{10-8} = src3;
let Inst{7-0} = offsetBits{7-0};
}
let opExtendable = 2, opNewValue = 3, isPredicated = 1 in
class T_pstore_io_nv <string mnemonic, RegisterClass RC, Operand predImmOp,
bits<2>MajOp, bit PredNot, bit isPredNew>
: NVInst_V4 <(outs),
(ins PredRegs:$src1, IntRegs:$src2, predImmOp:$src3, RC:$src4),
!if(PredNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
") ")#mnemonic#"($src2+#$src3) = $src4.new",
[],"",V2LDST_tc_st_SLOT0> {
bits<2> src1;
bits<5> src2;
bits<9> src3;
bits<3> src4;
bits<6> offsetBits; // Represents offset encoding
let isPredicatedNew = isPredNew;
let isPredicatedFalse = PredNot;
let opExtentBits = !if (!eq(mnemonic, "memb"), 6,
!if (!eq(mnemonic, "memh"), 7,
!if (!eq(mnemonic, "memw"), 8, 0)));
let opExtentAlign = !if (!eq(mnemonic, "memb"), 0,
!if (!eq(mnemonic, "memh"), 1,
!if (!eq(mnemonic, "memw"), 2, 0)));
let offsetBits = !if (!eq(mnemonic, "memb"), src3{5-0},
!if (!eq(mnemonic, "memh"), src3{6-1},
!if (!eq(mnemonic, "memw"), src3{7-2}, 0)));
let IClass = 0b0100;
let Inst{27} = 0b0;
let Inst{26} = PredNot;
let Inst{25} = isPredNew;
let Inst{24-21} = 0b0101;
let Inst{20-16} = src2;
let Inst{13} = offsetBits{5};
let Inst{12-11} = MajOp;
let Inst{10-8} = src4;
let Inst{7-3} = offsetBits{4-0};
let Inst{2} = 0b0;
let Inst{1-0} = src1;
}
// multiclass for new-value store instructions with base + immediate offset.
//
let mayStore = 1, isNVStore = 1, isNewValue = 1, hasSideEffects = 0,
isExtendable = 1 in
multiclass ST_Idxd_nv<string mnemonic, string CextOp, RegisterClass RC,
Operand ImmOp, Operand predImmOp, bits<2> MajOp> {
let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed in {
def S2_#NAME#new_io : T_store_io_nv <mnemonic, RC, ImmOp, MajOp>;
// Predicated
def S2_p#NAME#newt_io :T_pstore_io_nv <mnemonic, RC, predImmOp, MajOp, 0, 0>;
def S2_p#NAME#newf_io :T_pstore_io_nv <mnemonic, RC, predImmOp, MajOp, 1, 0>;
// Predicated new
def S4_p#NAME#newtnew_io :T_pstore_io_nv <mnemonic, RC, predImmOp,
MajOp, 0, 1>;
def S4_p#NAME#newfnew_io :T_pstore_io_nv <mnemonic, RC, predImmOp,
MajOp, 1, 1>;
}
}
let addrMode = BaseImmOffset, InputType = "imm" in {
let accessSize = ByteAccess in
defm storerb: ST_Idxd_nv<"memb", "STrib", IntRegs, s11_0Ext,
u6_0Ext, 0b00>, AddrModeRel;
let accessSize = HalfWordAccess, opExtentAlign = 1 in
defm storerh: ST_Idxd_nv<"memh", "STrih", IntRegs, s11_1Ext,
u6_1Ext, 0b01>, AddrModeRel;
let accessSize = WordAccess, opExtentAlign = 2 in
defm storeri: ST_Idxd_nv<"memw", "STriw", IntRegs, s11_2Ext,
u6_2Ext, 0b10>, AddrModeRel;
}
//===----------------------------------------------------------------------===//
// Post increment loads with register offset.
//===----------------------------------------------------------------------===//
let hasNewValue = 1 in
def L2_loadbsw2_pr : T_load_pr <"membh", IntRegs, 0b0001, HalfWordAccess>;
def L2_loadbsw4_pr : T_load_pr <"membh", DoubleRegs, 0b0111, WordAccess>;
let hasSideEffects = 0, addrMode = PostInc in
class T_loadalign_pr <string mnemonic, bits<4> MajOp, MemAccessSize AccessSz>
: LDInstPI <(outs DoubleRegs:$dst, IntRegs:$_dst_),
(ins DoubleRegs:$src1, IntRegs:$src2, ModRegs:$src3),
"$dst = "#mnemonic#"($src2++$src3)", [],
"$src1 = $dst, $src2 = $_dst_"> {
bits<5> dst;
bits<5> src2;
bits<1> src3;
let accessSize = AccessSz;
let IClass = 0b1001;
let Inst{27-25} = 0b110;
let Inst{24-21} = MajOp;
let Inst{20-16} = src2;
let Inst{13} = src3;
let Inst{12} = 0b0;
let Inst{7} = 0b0;
let Inst{4-0} = dst;
}
def L2_loadalignb_pr : T_loadalign_pr <"memb_fifo", 0b0100, ByteAccess>;
def L2_loadalignh_pr : T_loadalign_pr <"memh_fifo", 0b0010, HalfWordAccess>;
//===----------------------------------------------------------------------===//
// Template class for non-predicated post increment .new stores
// mem[bhwd](Rx++#s4:[0123])=Nt.new
//===----------------------------------------------------------------------===//
let isPredicable = 1, hasSideEffects = 0, addrMode = PostInc, isNVStore = 1,
isNewValue = 1, opNewValue = 3 in
class T_StorePI_nv <string mnemonic, Operand ImmOp, bits<2> MajOp >
: NVInstPI_V4 <(outs IntRegs:$_dst_),
(ins IntRegs:$src1, ImmOp:$offset, IntRegs:$src2),
mnemonic#"($src1++#$offset) = $src2.new",
[], "$src1 = $_dst_">,
AddrModeRel {
bits<5> src1;
bits<3> src2;
bits<7> offset;
bits<4> offsetBits;
string ImmOpStr = !cast<string>(ImmOp);
let offsetBits = !if (!eq(ImmOpStr, "s4_2Imm"), offset{5-2},
!if (!eq(ImmOpStr, "s4_1Imm"), offset{4-1},
/* s4_0Imm */ offset{3-0}));
let IClass = 0b1010;
let Inst{27-21} = 0b1011101;
let Inst{20-16} = src1;
let Inst{13} = 0b0;
let Inst{12-11} = MajOp;
let Inst{10-8} = src2;
let Inst{7} = 0b0;
let Inst{6-3} = offsetBits;
let Inst{1} = 0b0;
}
//===----------------------------------------------------------------------===//
// Template class for predicated post increment .new stores
// if([!]Pv[.new]) mem[bhwd](Rx++#s4:[0123])=Nt.new
//===----------------------------------------------------------------------===//
let isPredicated = 1, hasSideEffects = 0, addrMode = PostInc, isNVStore = 1,
isNewValue = 1, opNewValue = 4 in
class T_StorePI_nv_pred <string mnemonic, Operand ImmOp,
bits<2> MajOp, bit isPredNot, bit isPredNew >
: NVInstPI_V4 <(outs IntRegs:$_dst_),
(ins PredRegs:$src1, IntRegs:$src2,
ImmOp:$offset, IntRegs:$src3),
!if(isPredNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
") ")#mnemonic#"($src2++#$offset) = $src3.new",
[], "$src2 = $_dst_">,
AddrModeRel {
bits<2> src1;
bits<5> src2;
bits<3> src3;
bits<7> offset;
bits<4> offsetBits;
string ImmOpStr = !cast<string>(ImmOp);
let offsetBits = !if (!eq(ImmOpStr, "s4_2Imm"), offset{5-2},
!if (!eq(ImmOpStr, "s4_1Imm"), offset{4-1},
/* s4_0Imm */ offset{3-0}));
let isPredicatedNew = isPredNew;
let isPredicatedFalse = isPredNot;
let IClass = 0b1010;
let Inst{27-21} = 0b1011101;
let Inst{20-16} = src2;
let Inst{13} = 0b1;
let Inst{12-11} = MajOp;
let Inst{10-8} = src3;
let Inst{7} = isPredNew;
let Inst{6-3} = offsetBits;
let Inst{2} = isPredNot;
let Inst{1-0} = src1;
}
multiclass ST_PostInc_Pred_nv<string mnemonic, Operand ImmOp,
bits<2> MajOp, bit PredNot> {
def _pi : T_StorePI_nv_pred <mnemonic, ImmOp, MajOp, PredNot, 0>;
// Predicate new
def new_pi : T_StorePI_nv_pred <mnemonic, ImmOp, MajOp, PredNot, 1>;
}
multiclass ST_PostInc_nv<string mnemonic, string BaseOp, Operand ImmOp,
bits<2> MajOp> {
let BaseOpcode = "POST_"#BaseOp in {
def S2_#NAME#_pi : T_StorePI_nv <mnemonic, ImmOp, MajOp>;
// Predicated
defm S2_p#NAME#t : ST_PostInc_Pred_nv <mnemonic, ImmOp, MajOp, 0>;
defm S2_p#NAME#f : ST_PostInc_Pred_nv <mnemonic, ImmOp, MajOp, 1>;
}
}
let accessSize = ByteAccess in
defm storerbnew: ST_PostInc_nv <"memb", "STrib", s4_0Imm, 0b00>;
let accessSize = HalfWordAccess in
defm storerhnew: ST_PostInc_nv <"memh", "STrih", s4_1Imm, 0b01>;
let accessSize = WordAccess in
defm storerinew: ST_PostInc_nv <"memw", "STriw", s4_2Imm, 0b10>;
//===----------------------------------------------------------------------===//
// Template class for post increment .new stores with register offset
//===----------------------------------------------------------------------===//
let isNewValue = 1, mayStore = 1, isNVStore = 1, opNewValue = 3 in
class T_StorePI_RegNV <string mnemonic, bits<2> MajOp, MemAccessSize AccessSz>
: NVInstPI_V4 <(outs IntRegs:$_dst_),
(ins IntRegs:$src1, ModRegs:$src2, IntRegs:$src3),
#mnemonic#"($src1++$src2) = $src3.new",
[], "$src1 = $_dst_"> {
bits<5> src1;
bits<1> src2;
bits<3> src3;
let accessSize = AccessSz;
let IClass = 0b1010;
let Inst{27-21} = 0b1101101;
let Inst{20-16} = src1;
let Inst{13} = src2;
let Inst{12-11} = MajOp;
let Inst{10-8} = src3;
let Inst{7} = 0b0;
}
def S2_storerbnew_pr : T_StorePI_RegNV<"memb", 0b00, ByteAccess>;
def S2_storerhnew_pr : T_StorePI_RegNV<"memh", 0b01, HalfWordAccess>;
def S2_storerinew_pr : T_StorePI_RegNV<"memw", 0b10, WordAccess>;
// memb(Rx++#s4:0:circ(Mu))=Nt.new
// memb(Rx++I:circ(Mu))=Nt.new
// memb(Rx++Mu:brev)=Nt.new
// memh(Rx++#s4:1:circ(Mu))=Nt.new
// memh(Rx++I:circ(Mu))=Nt.new
// memh(Rx++Mu)=Nt.new
// memh(Rx++Mu:brev)=Nt.new
// memw(Rx++#s4:2:circ(Mu))=Nt.new
// memw(Rx++I:circ(Mu))=Nt.new
// memw(Rx++Mu)=Nt.new
// memw(Rx++Mu:brev)=Nt.new
//===----------------------------------------------------------------------===//
// NV/ST -
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// NV/J +
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// multiclass/template class for the new-value compare jumps with the register
// operands.
//===----------------------------------------------------------------------===//
let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 11,
opExtentAlign = 2 in
class NVJrr_template<string mnemonic, bits<3> majOp, bit NvOpNum,
bit isNegCond, bit isTak>
: NVInst_V4<(outs),
(ins IntRegs:$src1, IntRegs:$src2, brtarget:$offset),
"if ("#!if(isNegCond, "!","")#mnemonic#
"($src1"#!if(!eq(NvOpNum, 0),".new, ",", ")#
"$src2"#!if(!eq(NvOpNum, 1),".new))","))")#" jump:"
#!if(isTak, "t","nt")#" $offset", []> {
bits<5> src1;
bits<5> src2;
bits<3> Ns; // New-Value Operand
bits<5> RegOp; // Non-New-Value Operand
bits<11> offset;
let isTaken = isTak;
let isPredicatedFalse = isNegCond;
let opNewValue{0} = NvOpNum;
let Ns = !if(!eq(NvOpNum, 0), src1{2-0}, src2{2-0});
let RegOp = !if(!eq(NvOpNum, 0), src2, src1);
let IClass = 0b0010;
let Inst{27-26} = 0b00;
let Inst{25-23} = majOp;
let Inst{22} = isNegCond;
let Inst{18-16} = Ns;
let Inst{13} = isTak;
let Inst{12-8} = RegOp;
let Inst{21-20} = offset{10-9};
let Inst{7-1} = offset{8-2};
}
multiclass NVJrr_cond<string mnemonic, bits<3> majOp, bit NvOpNum,
bit isNegCond> {
// Branch not taken:
def _nt: NVJrr_template<mnemonic, majOp, NvOpNum, isNegCond, 0>;
// Branch taken:
def _t : NVJrr_template<mnemonic, majOp, NvOpNum, isNegCond, 1>;
}
// NvOpNum = 0 -> First Operand is a new-value Register
// NvOpNum = 1 -> Second Operand is a new-value Register
multiclass NVJrr_base<string mnemonic, string BaseOp, bits<3> majOp,
bit NvOpNum> {
let BaseOpcode = BaseOp#_NVJ in {
defm _t_jumpnv : NVJrr_cond<mnemonic, majOp, NvOpNum, 0>; // True cond
defm _f_jumpnv : NVJrr_cond<mnemonic, majOp, NvOpNum, 1>; // False cond
}
}
// if ([!]cmp.eq(Ns.new,Rt)) jump:[n]t #r9:2
// if ([!]cmp.gt(Ns.new,Rt)) jump:[n]t #r9:2
// if ([!]cmp.gtu(Ns.new,Rt)) jump:[n]t #r9:2
// if ([!]cmp.gt(Rt,Ns.new)) jump:[n]t #r9:2
// if ([!]cmp.gtu(Rt,Ns.new)) jump:[n]t #r9:2
let isPredicated = 1, isBranch = 1, isNewValue = 1, isTerminator = 1,
Defs = [PC], hasSideEffects = 0 in {
defm J4_cmpeq : NVJrr_base<"cmp.eq", "CMPEQ", 0b000, 0>, PredRel;
defm J4_cmpgt : NVJrr_base<"cmp.gt", "CMPGT", 0b001, 0>, PredRel;
defm J4_cmpgtu : NVJrr_base<"cmp.gtu", "CMPGTU", 0b010, 0>, PredRel;
defm J4_cmplt : NVJrr_base<"cmp.gt", "CMPLT", 0b011, 1>, PredRel;
defm J4_cmpltu : NVJrr_base<"cmp.gtu", "CMPLTU", 0b100, 1>, PredRel;
}
//===----------------------------------------------------------------------===//
// multiclass/template class for the new-value compare jumps instruction
// with a register and an unsigned immediate (U5) operand.
//===----------------------------------------------------------------------===//
let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 11,
opExtentAlign = 2 in
class NVJri_template<string mnemonic, bits<3> majOp, bit isNegCond,
bit isTak>
: NVInst_V4<(outs),
(ins IntRegs:$src1, u5Imm:$src2, brtarget:$offset),
"if ("#!if(isNegCond, "!","")#mnemonic#"($src1.new, #$src2)) jump:"
#!if(isTak, "t","nt")#" $offset", []> {
let isTaken = isTak;
let isPredicatedFalse = isNegCond;
let isTaken = isTak;
bits<3> src1;
bits<5> src2;
bits<11> offset;
let IClass = 0b0010;
let Inst{26} = 0b1;
let Inst{25-23} = majOp;
let Inst{22} = isNegCond;
let Inst{18-16} = src1;
let Inst{13} = isTak;
let Inst{12-8} = src2;
let Inst{21-20} = offset{10-9};
let Inst{7-1} = offset{8-2};
}
multiclass NVJri_cond<string mnemonic, bits<3> majOp, bit isNegCond> {
// Branch not taken:
def _nt: NVJri_template<mnemonic, majOp, isNegCond, 0>;
// Branch taken:
def _t : NVJri_template<mnemonic, majOp, isNegCond, 1>;
}
multiclass NVJri_base<string mnemonic, string BaseOp, bits<3> majOp> {
let BaseOpcode = BaseOp#_NVJri in {
defm _t_jumpnv : NVJri_cond<mnemonic, majOp, 0>; // True Cond
defm _f_jumpnv : NVJri_cond<mnemonic, majOp, 1>; // False cond
}
}
// if ([!]cmp.eq(Ns.new,#U5)) jump:[n]t #r9:2
// if ([!]cmp.gt(Ns.new,#U5)) jump:[n]t #r9:2
// if ([!]cmp.gtu(Ns.new,#U5)) jump:[n]t #r9:2
let isPredicated = 1, isBranch = 1, isNewValue = 1, isTerminator = 1,
Defs = [PC], hasSideEffects = 0 in {
defm J4_cmpeqi : NVJri_base<"cmp.eq", "CMPEQ", 0b000>, PredRel;
defm J4_cmpgti : NVJri_base<"cmp.gt", "CMPGT", 0b001>, PredRel;
defm J4_cmpgtui : NVJri_base<"cmp.gtu", "CMPGTU", 0b010>, PredRel;
}
//===----------------------------------------------------------------------===//
// multiclass/template class for the new-value compare jumps instruction
// with a register and an hardcoded 0/-1 immediate value.
//===----------------------------------------------------------------------===//
let isExtendable = 1, opExtendable = 1, isExtentSigned = 1, opExtentBits = 11,
opExtentAlign = 2 in
class NVJ_ConstImm_template<string mnemonic, bits<3> majOp, string ImmVal,
bit isNegCond, bit isTak>
: NVInst_V4<(outs),
(ins IntRegs:$src1, brtarget:$offset),
"if ("#!if(isNegCond, "!","")#mnemonic
#"($src1.new, #"#ImmVal#")) jump:"
#!if(isTak, "t","nt")#" $offset", []> {
let isTaken = isTak;
let isPredicatedFalse = isNegCond;
let isTaken = isTak;
bits<3> src1;
bits<11> offset;
let IClass = 0b0010;
let Inst{26} = 0b1;
let Inst{25-23} = majOp;
let Inst{22} = isNegCond;
let Inst{18-16} = src1;
let Inst{13} = isTak;
let Inst{21-20} = offset{10-9};
let Inst{7-1} = offset{8-2};
}
multiclass NVJ_ConstImm_cond<string mnemonic, bits<3> majOp, string ImmVal,
bit isNegCond> {
// Branch not taken:
def _nt: NVJ_ConstImm_template<mnemonic, majOp, ImmVal, isNegCond, 0>;
// Branch taken:
def _t : NVJ_ConstImm_template<mnemonic, majOp, ImmVal, isNegCond, 1>;
}
multiclass NVJ_ConstImm_base<string mnemonic, string BaseOp, bits<3> majOp,
string ImmVal> {
let BaseOpcode = BaseOp#_NVJ_ConstImm in {
defm _t_jumpnv : NVJ_ConstImm_cond<mnemonic, majOp, ImmVal, 0>; // True
defm _f_jumpnv : NVJ_ConstImm_cond<mnemonic, majOp, ImmVal, 1>; // False
}
}
// if ([!]tstbit(Ns.new,#0)) jump:[n]t #r9:2
// if ([!]cmp.eq(Ns.new,#-1)) jump:[n]t #r9:2
// if ([!]cmp.gt(Ns.new,#-1)) jump:[n]t #r9:2
let isPredicated = 1, isBranch = 1, isNewValue = 1, isTerminator=1,
Defs = [PC], hasSideEffects = 0 in {
defm J4_tstbit0 : NVJ_ConstImm_base<"tstbit", "TSTBIT", 0b011, "0">, PredRel;
defm J4_cmpeqn1 : NVJ_ConstImm_base<"cmp.eq", "CMPEQ", 0b100, "-1">, PredRel;
defm J4_cmpgtn1 : NVJ_ConstImm_base<"cmp.gt", "CMPGT", 0b101, "-1">, PredRel;
}
// J4_hintjumpr: Hint indirect conditional jump.
let isBranch = 1, isIndirectBranch = 1, hasSideEffects = 0 in
def J4_hintjumpr: JRInst <
(outs),
(ins IntRegs:$Rs),
"hintjr($Rs)"> {
bits<5> Rs;
let IClass = 0b0101;
let Inst{27-21} = 0b0010101;
let Inst{20-16} = Rs;
}
//===----------------------------------------------------------------------===//
// NV/J -
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// CR +
//===----------------------------------------------------------------------===//
// PC-relative add
let hasNewValue = 1, isExtendable = 1, opExtendable = 1,
isExtentSigned = 0, opExtentBits = 6, hasSideEffects = 0, Uses = [PC] in
def C4_addipc : CRInst <(outs IntRegs:$Rd), (ins u6Ext:$u6),
"$Rd = add(pc, #$u6)", [], "", CR_tc_2_SLOT3 > {
bits<5> Rd;
bits<6> u6;
let IClass = 0b0110;
let Inst{27-16} = 0b101001001001;
let Inst{12-7} = u6;
let Inst{4-0} = Rd;
}
let hasSideEffects = 0 in
class T_LOGICAL_3OP<string MnOp1, string MnOp2, bits<2> OpBits, bit IsNeg>
: CRInst<(outs PredRegs:$Pd),
(ins PredRegs:$Ps, PredRegs:$Pt, PredRegs:$Pu),
"$Pd = " # MnOp1 # "($Ps, " # MnOp2 # "($Pt, " #
!if (IsNeg,"!","") # "$Pu))",
[], "", CR_tc_2early_SLOT23> {
bits<2> Pd;
bits<2> Ps;
bits<2> Pt;
bits<2> Pu;
let IClass = 0b0110;
let Inst{27-24} = 0b1011;
let Inst{23} = IsNeg;
let Inst{22-21} = OpBits;
let Inst{20} = 0b1;
let Inst{17-16} = Ps;
let Inst{13} = 0b0;
let Inst{9-8} = Pt;
let Inst{7-6} = Pu;
let Inst{1-0} = Pd;
}
def C4_and_and : T_LOGICAL_3OP<"and", "and", 0b00, 0>;
def C4_and_or : T_LOGICAL_3OP<"and", "or", 0b01, 0>;
def C4_or_and : T_LOGICAL_3OP<"or", "and", 0b10, 0>;
def C4_or_or : T_LOGICAL_3OP<"or", "or", 0b11, 0>;
def C4_and_andn : T_LOGICAL_3OP<"and", "and", 0b00, 1>;
def C4_and_orn : T_LOGICAL_3OP<"and", "or", 0b01, 1>;
def C4_or_andn : T_LOGICAL_3OP<"or", "and", 0b10, 1>;
def C4_or_orn : T_LOGICAL_3OP<"or", "or", 0b11, 1>;
// op(Ps, op(Pt, Pu))
class LogLog_pat<SDNode Op1, SDNode Op2, InstHexagon MI>
: Pat<(i1 (Op1 I1:$Ps, (Op2 I1:$Pt, I1:$Pu))),
(MI I1:$Ps, I1:$Pt, I1:$Pu)>;
// op(Ps, op(Pt, ~Pu))
class LogLogNot_pat<SDNode Op1, SDNode Op2, InstHexagon MI>
: Pat<(i1 (Op1 I1:$Ps, (Op2 I1:$Pt, (not I1:$Pu)))),
(MI I1:$Ps, I1:$Pt, I1:$Pu)>;
def: LogLog_pat<and, and, C4_and_and>;
def: LogLog_pat<and, or, C4_and_or>;
def: LogLog_pat<or, and, C4_or_and>;
def: LogLog_pat<or, or, C4_or_or>;
def: LogLogNot_pat<and, and, C4_and_andn>;
def: LogLogNot_pat<and, or, C4_and_orn>;
def: LogLogNot_pat<or, and, C4_or_andn>;
def: LogLogNot_pat<or, or, C4_or_orn>;
//===----------------------------------------------------------------------===//
// PIC: Support for PIC compilations. The patterns and SD nodes defined
// below are needed to support code generation for PIC
//===----------------------------------------------------------------------===//
def SDT_HexagonAtGot
: SDTypeProfile<1, 3, [SDTCisVT<0, i32>, SDTCisVT<1, i32>, SDTCisVT<2, i32>]>;
def SDT_HexagonAtPcrel
: SDTypeProfile<1, 1, [SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
// AT_GOT address-of-GOT, address-of-global, offset-in-global
def HexagonAtGot : SDNode<"HexagonISD::AT_GOT", SDT_HexagonAtGot>;
// AT_PCREL address-of-global
def HexagonAtPcrel : SDNode<"HexagonISD::AT_PCREL", SDT_HexagonAtPcrel>;
def: Pat<(HexagonAtGot I32:$got, I32:$addr, (i32 0)),
(L2_loadri_io I32:$got, imm:$addr)>;
def: Pat<(HexagonAtGot I32:$got, I32:$addr, s30_2ImmPred:$off),
(A2_addi (L2_loadri_io I32:$got, imm:$addr), imm:$off)>;
def: Pat<(HexagonAtPcrel I32:$addr),
(C4_addipc imm:$addr)>;
//===----------------------------------------------------------------------===//
// CR -
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// XTYPE/ALU +
//===----------------------------------------------------------------------===//
// Logical with-not instructions.
def A4_andnp : T_ALU64_logical<"and", 0b001, 1, 0, 1>;
def A4_ornp : T_ALU64_logical<"or", 0b011, 1, 0, 1>;
def: Pat<(i64 (and (i64 DoubleRegs:$Rs), (i64 (not (i64 DoubleRegs:$Rt))))),
(A4_andnp DoubleRegs:$Rs, DoubleRegs:$Rt)>;
def: Pat<(i64 (or (i64 DoubleRegs:$Rs), (i64 (not (i64 DoubleRegs:$Rt))))),
(A4_ornp DoubleRegs:$Rs, DoubleRegs:$Rt)>;
let hasNewValue = 1, hasSideEffects = 0 in
def S4_parity: ALU64Inst<(outs IntRegs:$Rd), (ins IntRegs:$Rs, IntRegs:$Rt),
"$Rd = parity($Rs, $Rt)", [], "", ALU64_tc_2_SLOT23> {
bits<5> Rd;
bits<5> Rs;
bits<5> Rt;
let IClass = 0b1101;
let Inst{27-21} = 0b0101111;
let Inst{20-16} = Rs;
let Inst{12-8} = Rt;
let Inst{4-0} = Rd;
}
// Add and accumulate.
// Rd=add(Rs,add(Ru,#s6))
let isExtentSigned = 1, hasNewValue = 1, isExtendable = 1, opExtentBits = 6,
opExtendable = 3 in
def S4_addaddi : ALU64Inst <(outs IntRegs:$Rd),
(ins IntRegs:$Rs, IntRegs:$Ru, s6Ext:$s6),
"$Rd = add($Rs, add($Ru, #$s6))" ,
[(set (i32 IntRegs:$Rd), (add (i32 IntRegs:$Rs),
(add (i32 IntRegs:$Ru), s32ImmPred:$s6)))],
"", ALU64_tc_2_SLOT23> {
bits<5> Rd;
bits<5> Rs;
bits<5> Ru;
bits<6> s6;
let IClass = 0b1101;
let Inst{27-23} = 0b10110;
let Inst{22-21} = s6{5-4};
let Inst{20-16} = Rs;
let Inst{13} = s6{3};
let Inst{12-8} = Rd;
let Inst{7-5} = s6{2-0};
let Inst{4-0} = Ru;
}
let isExtentSigned = 1, hasSideEffects = 0, hasNewValue = 1, isExtendable = 1,
opExtentBits = 6, opExtendable = 2 in
def S4_subaddi: ALU64Inst <(outs IntRegs:$Rd),
(ins IntRegs:$Rs, s6Ext:$s6, IntRegs:$Ru),
"$Rd = add($Rs, sub(#$s6, $Ru))",
[], "", ALU64_tc_2_SLOT23> {
bits<5> Rd;
bits<5> Rs;
bits<6> s6;
bits<5> Ru;
let IClass = 0b1101;
let Inst{27-23} = 0b10111;
let Inst{22-21} = s6{5-4};
let Inst{20-16} = Rs;
let Inst{13} = s6{3};
let Inst{12-8} = Rd;
let Inst{7-5} = s6{2-0};
let Inst{4-0} = Ru;
}
// Rd=add(Rs,sub(#s6,Ru))
def: Pat<(add (i32 IntRegs:$src1), (sub s32ImmPred:$src2,
(i32 IntRegs:$src3))),
(S4_subaddi IntRegs:$src1, s32ImmPred:$src2, IntRegs:$src3)>;
// Rd=sub(add(Rs,#s6),Ru)
def: Pat<(sub (add (i32 IntRegs:$src1), s32ImmPred:$src2),
(i32 IntRegs:$src3)),
(S4_subaddi IntRegs:$src1, s32ImmPred:$src2, IntRegs:$src3)>;
// Rd=add(sub(Rs,Ru),#s6)
def: Pat<(add (sub (i32 IntRegs:$src1), (i32 IntRegs:$src3)),
(s32ImmPred:$src2)),
(S4_subaddi IntRegs:$src1, s32ImmPred:$src2, IntRegs:$src3)>;
// Add or subtract doublewords with carry.
//TODO:
// Rdd=add(Rss,Rtt,Px):carry
//TODO:
// Rdd=sub(Rss,Rtt,Px):carry
// Extract bitfield
// Rdd=extract(Rss,#u6,#U6)
// Rdd=extract(Rss,Rtt)
// Rd=extract(Rs,Rtt)
// Rd=extract(Rs,#u5,#U5)
def S4_extractp_rp : T_S3op_64 < "extract", 0b11, 0b100, 0>;
def S4_extractp : T_S2op_extract <"extract", 0b1010, DoubleRegs, u6Imm>;
let hasNewValue = 1 in {
def S4_extract_rp : T_S3op_extract<"extract", 0b01>;
def S4_extract : T_S2op_extract <"extract", 0b1101, IntRegs, u5Imm>;
}
// Complex add/sub halfwords/words
let Defs = [USR_OVF] in {
def S4_vxaddsubh : T_S3op_64 < "vxaddsubh", 0b01, 0b100, 0, 1>;
def S4_vxaddsubw : T_S3op_64 < "vxaddsubw", 0b01, 0b000, 0, 1>;
def S4_vxsubaddh : T_S3op_64 < "vxsubaddh", 0b01, 0b110, 0, 1>;
def S4_vxsubaddw : T_S3op_64 < "vxsubaddw", 0b01, 0b010, 0, 1>;
}
let Defs = [USR_OVF] in {
def S4_vxaddsubhr : T_S3op_64 < "vxaddsubh", 0b11, 0b000, 0, 1, 1, 1>;
def S4_vxsubaddhr : T_S3op_64 < "vxsubaddh", 0b11, 0b010, 0, 1, 1, 1>;
}
let Itinerary = M_tc_3x_SLOT23, Defs = [USR_OVF] in {
def M4_mac_up_s1_sat: T_MType_acc_rr<"+= mpy", 0b011, 0b000, 0, [], 0, 1, 1>;
def M4_nac_up_s1_sat: T_MType_acc_rr<"-= mpy", 0b011, 0b001, 0, [], 0, 1, 1>;
}
// Logical xor with xor accumulation.
// Rxx^=xor(Rss,Rtt)
let hasSideEffects = 0 in
def M4_xor_xacc
: SInst <(outs DoubleRegs:$Rxx),
(ins DoubleRegs:$dst2, DoubleRegs:$Rss, DoubleRegs:$Rtt),
"$Rxx ^= xor($Rss, $Rtt)",
[(set (i64 DoubleRegs:$Rxx),
(xor (i64 DoubleRegs:$dst2), (xor (i64 DoubleRegs:$Rss),
(i64 DoubleRegs:$Rtt))))],
"$dst2 = $Rxx", S_3op_tc_1_SLOT23> {
bits<5> Rxx;
bits<5> Rss;
bits<5> Rtt;
let IClass = 0b1100;
let Inst{27-22} = 0b101010;
let Inst{20-16} = Rss;
let Inst{12-8} = Rtt;
let Inst{7-5} = 0b000;
let Inst{4-0} = Rxx;
}
// Rotate and reduce bytes
// Rdd=vrcrotate(Rss,Rt,#u2)
let hasSideEffects = 0 in
def S4_vrcrotate
: SInst <(outs DoubleRegs:$Rdd),
(ins DoubleRegs:$Rss, IntRegs:$Rt, u2Imm:$u2),
"$Rdd = vrcrotate($Rss, $Rt, #$u2)",
[], "", S_3op_tc_3x_SLOT23> {
bits<5> Rdd;
bits<5> Rss;
bits<5> Rt;
bits<2> u2;
let IClass = 0b1100;
let Inst{27-22} = 0b001111;
let Inst{20-16} = Rss;
let Inst{13} = u2{1};
let Inst{12-8} = Rt;
let Inst{7-6} = 0b11;
let Inst{5} = u2{0};
let Inst{4-0} = Rdd;
}
// Rotate and reduce bytes with accumulation
// Rxx+=vrcrotate(Rss,Rt,#u2)
let hasSideEffects = 0 in
def S4_vrcrotate_acc
: SInst <(outs DoubleRegs:$Rxx),
(ins DoubleRegs:$dst2, DoubleRegs:$Rss, IntRegs:$Rt, u2Imm:$u2),
"$Rxx += vrcrotate($Rss, $Rt, #$u2)", [],
"$dst2 = $Rxx", S_3op_tc_3x_SLOT23> {
bits<5> Rxx;
bits<5> Rss;
bits<5> Rt;
bits<2> u2;
let IClass = 0b1100;
let Inst{27-21} = 0b1011101;
let Inst{20-16} = Rss;
let Inst{13} = u2{1};
let Inst{12-8} = Rt;
let Inst{5} = u2{0};
let Inst{4-0} = Rxx;
}
// Vector reduce conditional negate halfwords
let hasSideEffects = 0 in
def S2_vrcnegh
: SInst <(outs DoubleRegs:$Rxx),
(ins DoubleRegs:$dst2, DoubleRegs:$Rss, IntRegs:$Rt),
"$Rxx += vrcnegh($Rss, $Rt)", [],
"$dst2 = $Rxx", S_3op_tc_3x_SLOT23> {
bits<5> Rxx;
bits<5> Rss;
bits<5> Rt;
let IClass = 0b1100;
let Inst{27-21} = 0b1011001;
let Inst{20-16} = Rss;
let Inst{13} = 0b1;
let Inst{12-8} = Rt;
let Inst{7-5} = 0b111;
let Inst{4-0} = Rxx;
}
// Split bitfield
def A4_bitspliti : T_S2op_2_di <"bitsplit", 0b110, 0b100>;
// Arithmetic/Convergent round
def A4_cround_ri : T_S2op_2_ii <"cround", 0b111, 0b000>;
def A4_round_ri : T_S2op_2_ii <"round", 0b111, 0b100>;
let Defs = [USR_OVF] in
def A4_round_ri_sat : T_S2op_2_ii <"round", 0b111, 0b110, 1>;
// Logical-logical words.
// Compound or-and -- Rx=or(Ru,and(Rx,#s10))
let isExtentSigned = 1, hasNewValue = 1, isExtendable = 1, opExtentBits = 10,
opExtendable = 3 in
def S4_or_andix:
ALU64Inst<(outs IntRegs:$Rx),
(ins IntRegs:$Ru, IntRegs:$_src_, s10Ext:$s10),
"$Rx = or($Ru, and($_src_, #$s10))" ,
[(set (i32 IntRegs:$Rx),
(or (i32 IntRegs:$Ru), (and (i32 IntRegs:$_src_), s32ImmPred:$s10)))] ,
"$_src_ = $Rx", ALU64_tc_2_SLOT23> {
bits<5> Rx;
bits<5> Ru;
bits<10> s10;
let IClass = 0b1101;
let Inst{27-22} = 0b101001;
let Inst{20-16} = Rx;
let Inst{21} = s10{9};
let Inst{13-5} = s10{8-0};
let Inst{4-0} = Ru;
}
// Miscellaneous ALU64 instructions.
//
let hasNewValue = 1, hasSideEffects = 0 in
def A4_modwrapu: ALU64Inst<(outs IntRegs:$Rd), (ins IntRegs:$Rs, IntRegs:$Rt),
"$Rd = modwrap($Rs, $Rt)", [], "", ALU64_tc_2_SLOT23> {
bits<5> Rd;
bits<5> Rs;
bits<5> Rt;
let IClass = 0b1101;
let Inst{27-21} = 0b0011111;
let Inst{20-16} = Rs;
let Inst{12-8} = Rt;
let Inst{7-5} = 0b111;
let Inst{4-0} = Rd;
}
let hasSideEffects = 0 in
def A4_bitsplit: ALU64Inst<(outs DoubleRegs:$Rd),
(ins IntRegs:$Rs, IntRegs:$Rt),
"$Rd = bitsplit($Rs, $Rt)", [], "", ALU64_tc_1_SLOT23> {
bits<5> Rd;
bits<5> Rs;
bits<5> Rt;
let IClass = 0b1101;
let Inst{27-24} = 0b0100;
let Inst{21} = 0b1;
let Inst{20-16} = Rs;
let Inst{12-8} = Rt;
let Inst{4-0} = Rd;
}
let hasSideEffects = 0 in
def dep_S2_packhl: ALU64Inst<(outs DoubleRegs:$Rd),
(ins IntRegs:$Rs, IntRegs:$Rt),
"$Rd = packhl($Rs, $Rt):deprecated", [], "", ALU64_tc_1_SLOT23> {
bits<5> Rd;
bits<5> Rs;
bits<5> Rt;
let IClass = 0b1101;
let Inst{27-24} = 0b0100;
let Inst{21} = 0b0;
let Inst{20-16} = Rs;
let Inst{12-8} = Rt;
let Inst{4-0} = Rd;
}
let hasNewValue = 1, hasSideEffects = 0 in
def dep_A2_addsat: ALU64Inst<(outs IntRegs:$Rd),
(ins IntRegs:$Rs, IntRegs:$Rt),
"$Rd = add($Rs, $Rt):sat:deprecated", [], "", ALU64_tc_2_SLOT23> {
bits<5> Rd;
bits<5> Rs;
bits<5> Rt;
let IClass = 0b1101;
let Inst{27-21} = 0b0101100;
let Inst{20-16} = Rs;
let Inst{12-8} = Rt;
let Inst{7} = 0b0;
let Inst{4-0} = Rd;
}
let hasNewValue = 1, hasSideEffects = 0 in
def dep_A2_subsat: ALU64Inst<(outs IntRegs:$Rd),
(ins IntRegs:$Rs, IntRegs:$Rt),
"$Rd = sub($Rs, $Rt):sat:deprecated", [], "", ALU64_tc_2_SLOT23> {
bits<5> Rd;
bits<5> Rs;
bits<5> Rt;
let IClass = 0b1101;
let Inst{27-21} = 0b0101100;
let Inst{20-16} = Rt;
let Inst{12-8} = Rs;
let Inst{7} = 0b1;
let Inst{4-0} = Rd;
}
// Rx[&|]=xor(Rs,Rt)
def M4_or_xor : T_MType_acc_rr < "|= xor", 0b110, 0b001, 0>;
def M4_and_xor : T_MType_acc_rr < "&= xor", 0b010, 0b010, 0>;
// Rx[&|^]=or(Rs,Rt)
def M4_xor_or : T_MType_acc_rr < "^= or", 0b110, 0b011, 0>;
let CextOpcode = "ORr_ORr" in
def M4_or_or : T_MType_acc_rr < "|= or", 0b110, 0b000, 0>;
def M4_and_or : T_MType_acc_rr < "&= or", 0b010, 0b001, 0>;
// Rx[&|^]=and(Rs,Rt)
def M4_xor_and : T_MType_acc_rr < "^= and", 0b110, 0b010, 0>;
let CextOpcode = "ORr_ANDr" in
def M4_or_and : T_MType_acc_rr < "|= and", 0b010, 0b011, 0>;
def M4_and_and : T_MType_acc_rr < "&= and", 0b010, 0b000, 0>;
// Rx[&|^]=and(Rs,~Rt)
def M4_xor_andn : T_MType_acc_rr < "^= and", 0b001, 0b010, 0, [], 1>;
def M4_or_andn : T_MType_acc_rr < "|= and", 0b001, 0b000, 0, [], 1>;
def M4_and_andn : T_MType_acc_rr < "&= and", 0b001, 0b001, 0, [], 1>;
def: T_MType_acc_pat2 <M4_or_xor, xor, or>;
def: T_MType_acc_pat2 <M4_and_xor, xor, and>;
def: T_MType_acc_pat2 <M4_or_and, and, or>;
def: T_MType_acc_pat2 <M4_and_and, and, and>;
def: T_MType_acc_pat2 <M4_xor_and, and, xor>;
def: T_MType_acc_pat2 <M4_or_or, or, or>;
def: T_MType_acc_pat2 <M4_and_or, or, and>;
def: T_MType_acc_pat2 <M4_xor_or, or, xor>;
class T_MType_acc_pat3 <InstHexagon MI, SDNode firstOp, SDNode secOp>
: Pat <(i32 (secOp IntRegs:$src1, (firstOp IntRegs:$src2,
(not IntRegs:$src3)))),
(i32 (MI IntRegs:$src1, IntRegs:$src2, IntRegs:$src3))>;
def: T_MType_acc_pat3 <M4_or_andn, and, or>;
def: T_MType_acc_pat3 <M4_and_andn, and, and>;
def: T_MType_acc_pat3 <M4_xor_andn, and, xor>;
// Compound or-or and or-and
let isExtentSigned = 1, InputType = "imm", hasNewValue = 1, isExtendable = 1,
opExtentBits = 10, opExtendable = 3 in
class T_CompOR <string mnemonic, bits<2> MajOp, SDNode OpNode>
: MInst_acc <(outs IntRegs:$Rx),
(ins IntRegs:$src1, IntRegs:$Rs, s10Ext:$s10),
"$Rx |= "#mnemonic#"($Rs, #$s10)",
[(set (i32 IntRegs:$Rx), (or (i32 IntRegs:$src1),
(OpNode (i32 IntRegs:$Rs), s32ImmPred:$s10)))],
"$src1 = $Rx", ALU64_tc_2_SLOT23>, ImmRegRel {
bits<5> Rx;
bits<5> Rs;
bits<10> s10;
let IClass = 0b1101;
let Inst{27-24} = 0b1010;
let Inst{23-22} = MajOp;
let Inst{20-16} = Rs;
let Inst{21} = s10{9};
let Inst{13-5} = s10{8-0};
let Inst{4-0} = Rx;
}
let CextOpcode = "ORr_ANDr" in
def S4_or_andi : T_CompOR <"and", 0b00, and>;
let CextOpcode = "ORr_ORr" in
def S4_or_ori : T_CompOR <"or", 0b10, or>;
// Modulo wrap
// Rd=modwrap(Rs,Rt)
// Round
// Rd=cround(Rs,#u5)
// Rd=cround(Rs,Rt)
// Rd=round(Rs,#u5)[:sat]
// Rd=round(Rs,Rt)[:sat]
// Vector reduce add unsigned halfwords
// Rd=vraddh(Rss,Rtt)
// Vector add bytes
// Rdd=vaddb(Rss,Rtt)
// Vector conditional negate
// Rdd=vcnegh(Rss,Rt)
// Rxx+=vrcnegh(Rss,Rt)
// Vector maximum bytes
// Rdd=vmaxb(Rtt,Rss)
// Vector reduce maximum halfwords
// Rxx=vrmaxh(Rss,Ru)
// Rxx=vrmaxuh(Rss,Ru)
// Vector reduce maximum words
// Rxx=vrmaxuw(Rss,Ru)
// Rxx=vrmaxw(Rss,Ru)
// Vector minimum bytes
// Rdd=vminb(Rtt,Rss)
// Vector reduce minimum halfwords
// Rxx=vrminh(Rss,Ru)
// Rxx=vrminuh(Rss,Ru)
// Vector reduce minimum words
// Rxx=vrminuw(Rss,Ru)
// Rxx=vrminw(Rss,Ru)
// Vector subtract bytes
// Rdd=vsubb(Rss,Rtt)
//===----------------------------------------------------------------------===//
// XTYPE/ALU -
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// XTYPE/BIT +
//===----------------------------------------------------------------------===//
// Bit reverse
def S2_brevp : T_S2op_3 <"brev", 0b11, 0b110>;
// Bit count
def S2_ct0p : T_COUNT_LEADING_64<"ct0", 0b111, 0b010>;
def S2_ct1p : T_COUNT_LEADING_64<"ct1", 0b111, 0b100>;
def S4_clbpnorm : T_COUNT_LEADING_64<"normamt", 0b011, 0b000>;
// Count trailing zeros: 64-bit.
def: Pat<(i32 (trunc (cttz I64:$Rss))), (S2_ct0p I64:$Rss)>;
def: Pat<(i32 (trunc (cttz_zero_undef I64:$Rss))), (S2_ct0p I64:$Rss)>;
// Count trailing ones: 64-bit.
def: Pat<(i32 (trunc (cttz (not I64:$Rss)))), (S2_ct1p I64:$Rss)>;
def: Pat<(i32 (trunc (cttz_zero_undef (not I64:$Rss)))), (S2_ct1p I64:$Rss)>;
// Define leading/trailing patterns that require zero-extensions to 64 bits.
def: Pat<(i64 (ctlz I64:$Rss)), (Zext64 (S2_cl0p I64:$Rss))>;
def: Pat<(i64 (ctlz_zero_undef I64:$Rss)), (Zext64 (S2_cl0p I64:$Rss))>;
def: Pat<(i64 (cttz I64:$Rss)), (Zext64 (S2_ct0p I64:$Rss))>;
def: Pat<(i64 (cttz_zero_undef I64:$Rss)), (Zext64 (S2_ct0p I64:$Rss))>;
def: Pat<(i64 (ctlz (not I64:$Rss))), (Zext64 (S2_cl1p I64:$Rss))>;
def: Pat<(i64 (ctlz_zero_undef (not I64:$Rss))), (Zext64 (S2_cl1p I64:$Rss))>;
def: Pat<(i64 (cttz (not I64:$Rss))), (Zext64 (S2_ct1p I64:$Rss))>;
def: Pat<(i64 (cttz_zero_undef (not I64:$Rss))), (Zext64 (S2_ct1p I64:$Rss))>;
let hasSideEffects = 0, hasNewValue = 1 in
def S4_clbaddi : SInst<(outs IntRegs:$Rd), (ins IntRegs:$Rs, s6Imm:$s6),
"$Rd = add(clb($Rs), #$s6)", [], "", S_2op_tc_2_SLOT23> {
bits<5> Rs;
bits<5> Rd;
bits<6> s6;
let IClass = 0b1000;
let Inst{27-24} = 0b1100;
let Inst{23-21} = 0b001;
let Inst{20-16} = Rs;
let Inst{13-8} = s6;
let Inst{7-5} = 0b000;
let Inst{4-0} = Rd;
}
let hasSideEffects = 0, hasNewValue = 1 in
def S4_clbpaddi : SInst<(outs IntRegs:$Rd), (ins DoubleRegs:$Rs, s6Imm:$s6),
"$Rd = add(clb($Rs), #$s6)", [], "", S_2op_tc_2_SLOT23> {
bits<5> Rs;
bits<5> Rd;
bits<6> s6;
let IClass = 0b1000;
let Inst{27-24} = 0b1000;
let Inst{23-21} = 0b011;
let Inst{20-16} = Rs;
let Inst{13-8} = s6;
let Inst{7-5} = 0b010;
let Inst{4-0} = Rd;
}
// Bit test/set/clear
def S4_ntstbit_i : T_TEST_BIT_IMM<"!tstbit", 0b001>;
def S4_ntstbit_r : T_TEST_BIT_REG<"!tstbit", 1>;
let AddedComplexity = 20 in { // Complexity greater than cmp reg-imm.
def: Pat<(i1 (seteq (and (shl 1, u5ImmPred:$u5), (i32 IntRegs:$Rs)), 0)),
(S4_ntstbit_i (i32 IntRegs:$Rs), u5ImmPred:$u5)>;
def: Pat<(i1 (seteq (and (shl 1, (i32 IntRegs:$Rt)), (i32 IntRegs:$Rs)), 0)),
(S4_ntstbit_r (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))>;
}
// Add extra complexity to prefer these instructions over bitsset/bitsclr.
// The reason is that tstbit/ntstbit can be folded into a compound instruction:
// if ([!]tstbit(...)) jump ...
let AddedComplexity = 100 in
def: Pat<(i1 (setne (and (i32 IntRegs:$Rs), (i32 Set5ImmPred:$u5)), (i32 0))),
(S2_tstbit_i (i32 IntRegs:$Rs), (BITPOS32 Set5ImmPred:$u5))>;
let AddedComplexity = 100 in
def: Pat<(i1 (seteq (and (i32 IntRegs:$Rs), (i32 Set5ImmPred:$u5)), (i32 0))),
(S4_ntstbit_i (i32 IntRegs:$Rs), (BITPOS32 Set5ImmPred:$u5))>;
def C4_nbitsset : T_TEST_BITS_REG<"!bitsset", 0b01, 1>;
def C4_nbitsclr : T_TEST_BITS_REG<"!bitsclr", 0b10, 1>;
def C4_nbitsclri : T_TEST_BITS_IMM<"!bitsclr", 0b10, 1>;
// Do not increase complexity of these patterns. In the DAG, "cmp i8" may be
// represented as a compare against "value & 0xFF", which is an exact match
// for cmpb (same for cmph). The patterns below do not contain any additional
// complexity that would make them preferable, and if they were actually used
// instead of cmpb/cmph, they would result in a compare against register that
// is loaded with the byte/half mask (i.e. 0xFF or 0xFFFF).
def: Pat<(i1 (setne (and I32:$Rs, u6ImmPred:$u6), 0)),
(C4_nbitsclri I32:$Rs, u6ImmPred:$u6)>;
def: Pat<(i1 (setne (and I32:$Rs, I32:$Rt), 0)),
(C4_nbitsclr I32:$Rs, I32:$Rt)>;
def: Pat<(i1 (setne (and I32:$Rs, I32:$Rt), I32:$Rt)),
(C4_nbitsset I32:$Rs, I32:$Rt)>;
//===----------------------------------------------------------------------===//
// XTYPE/BIT -
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// XTYPE/MPY +
//===----------------------------------------------------------------------===//
// Rd=add(#u6,mpyi(Rs,#U6)) -- Multiply by immed and add immed.
let hasNewValue = 1, isExtendable = 1, opExtentBits = 6, opExtendable = 1 in
def M4_mpyri_addi : MInst<(outs IntRegs:$Rd),
(ins u6Ext:$u6, IntRegs:$Rs, u6Imm:$U6),
"$Rd = add(#$u6, mpyi($Rs, #$U6))" ,
[(set (i32 IntRegs:$Rd),
(add (mul (i32 IntRegs:$Rs), u6ImmPred:$U6),
u32ImmPred:$u6))] ,"",ALU64_tc_3x_SLOT23> {
bits<5> Rd;
bits<6> u6;
bits<5> Rs;
bits<6> U6;
let IClass = 0b1101;
let Inst{27-24} = 0b1000;
let Inst{23} = U6{5};
let Inst{22-21} = u6{5-4};
let Inst{20-16} = Rs;
let Inst{13} = u6{3};
let Inst{12-8} = Rd;
let Inst{7-5} = u6{2-0};
let Inst{4-0} = U6{4-0};
}
// Rd=add(#u6,mpyi(Rs,Rt))
let CextOpcode = "ADD_MPY", InputType = "imm", hasNewValue = 1,
isExtendable = 1, opExtentBits = 6, opExtendable = 1 in
def M4_mpyrr_addi : MInst <(outs IntRegs:$Rd),
(ins u6Ext:$u6, IntRegs:$Rs, IntRegs:$Rt),
"$Rd = add(#$u6, mpyi($Rs, $Rt))" ,
[(set (i32 IntRegs:$Rd),
(add (mul (i32 IntRegs:$Rs), (i32 IntRegs:$Rt)), u32ImmPred:$u6))],
"", ALU64_tc_3x_SLOT23>, ImmRegRel {
bits<5> Rd;
bits<6> u6;
bits<5> Rs;
bits<5> Rt;
let IClass = 0b1101;
let Inst{27-23} = 0b01110;
let Inst{22-21} = u6{5-4};
let Inst{20-16} = Rs;
let Inst{13} = u6{3};
let Inst{12-8} = Rt;
let Inst{7-5} = u6{2-0};
let Inst{4-0} = Rd;
}
let hasNewValue = 1 in
class T_AddMpy <bit MajOp, PatLeaf ImmPred, dag ins>
: ALU64Inst <(outs IntRegs:$dst), ins,
"$dst = add($src1, mpyi("#!if(MajOp,"$src3, #$src2))",
"#$src2, $src3))"),
[(set (i32 IntRegs:$dst),
(add (i32 IntRegs:$src1), (mul (i32 IntRegs:$src3), ImmPred:$src2)))],
"", ALU64_tc_3x_SLOT23> {
bits<5> dst;
bits<5> src1;
bits<8> src2;
bits<5> src3;
let IClass = 0b1101;
bits<6> ImmValue = !if(MajOp, src2{5-0}, src2{7-2});
let Inst{27-24} = 0b1111;
let Inst{23} = MajOp;
let Inst{22-21} = ImmValue{5-4};
let Inst{20-16} = src3;
let Inst{13} = ImmValue{3};
let Inst{12-8} = dst;
let Inst{7-5} = ImmValue{2-0};
let Inst{4-0} = src1;
}
def M4_mpyri_addr_u2 : T_AddMpy<0b0, u6_2ImmPred,
(ins IntRegs:$src1, u6_2Imm:$src2, IntRegs:$src3)>;
let isExtendable = 1, opExtentBits = 6, opExtendable = 3,
CextOpcode = "ADD_MPY", InputType = "imm" in
def M4_mpyri_addr : T_AddMpy<0b1, u32ImmPred,
(ins IntRegs:$src1, IntRegs:$src3, u6Ext:$src2)>, ImmRegRel;
// Rx=add(Ru,mpyi(Rx,Rs))
let CextOpcode = "ADD_MPY", InputType = "reg", hasNewValue = 1 in
def M4_mpyrr_addr: MInst_acc <(outs IntRegs:$Rx),
(ins IntRegs:$Ru, IntRegs:$_src_, IntRegs:$Rs),
"$Rx = add($Ru, mpyi($_src_, $Rs))",
[(set (i32 IntRegs:$Rx), (add (i32 IntRegs:$Ru),
(mul (i32 IntRegs:$_src_), (i32 IntRegs:$Rs))))],
"$_src_ = $Rx", M_tc_3x_SLOT23>, ImmRegRel {
bits<5> Rx;
bits<5> Ru;
bits<5> Rs;
let IClass = 0b1110;
let Inst{27-21} = 0b0011000;
let Inst{12-8} = Rx;
let Inst{4-0} = Ru;
let Inst{20-16} = Rs;
}
// Vector reduce multiply word by signed half (32x16)
//Rdd=vrmpyweh(Rss,Rtt)[:<<1]
def M4_vrmpyeh_s0 : T_M2_vmpy<"vrmpyweh", 0b010, 0b100, 0, 0, 0>;
def M4_vrmpyeh_s1 : T_M2_vmpy<"vrmpyweh", 0b110, 0b100, 1, 0, 0>;
//Rdd=vrmpywoh(Rss,Rtt)[:<<1]
def M4_vrmpyoh_s0 : T_M2_vmpy<"vrmpywoh", 0b001, 0b010, 0, 0, 0>;
def M4_vrmpyoh_s1 : T_M2_vmpy<"vrmpywoh", 0b101, 0b010, 1, 0, 0>;
//Rdd+=vrmpyweh(Rss,Rtt)[:<<1]
def M4_vrmpyeh_acc_s0: T_M2_vmpy_acc<"vrmpyweh", 0b001, 0b110, 0, 0>;
def M4_vrmpyeh_acc_s1: T_M2_vmpy_acc<"vrmpyweh", 0b101, 0b110, 1, 0>;
//Rdd=vrmpywoh(Rss,Rtt)[:<<1]
def M4_vrmpyoh_acc_s0: T_M2_vmpy_acc<"vrmpywoh", 0b011, 0b110, 0, 0>;
def M4_vrmpyoh_acc_s1: T_M2_vmpy_acc<"vrmpywoh", 0b111, 0b110, 1, 0>;
// Vector multiply halfwords, signed by unsigned
// Rdd=vmpyhsu(Rs,Rt)[:<<]:sat
def M2_vmpy2su_s0 : T_XTYPE_mpy64 < "vmpyhsu", 0b000, 0b111, 1, 0, 0>;
def M2_vmpy2su_s1 : T_XTYPE_mpy64 < "vmpyhsu", 0b100, 0b111, 1, 1, 0>;
// Rxx+=vmpyhsu(Rs,Rt)[:<<1]:sat
def M2_vmac2su_s0 : T_XTYPE_mpy64_acc < "vmpyhsu", "+", 0b011, 0b101, 1, 0, 0>;
def M2_vmac2su_s1 : T_XTYPE_mpy64_acc < "vmpyhsu", "+", 0b111, 0b101, 1, 1, 0>;
// Vector polynomial multiply halfwords
// Rdd=vpmpyh(Rs,Rt)
def M4_vpmpyh : T_XTYPE_mpy64 < "vpmpyh", 0b110, 0b111, 0, 0, 0>;
// Rxx^=vpmpyh(Rs,Rt)
def M4_vpmpyh_acc : T_XTYPE_mpy64_acc < "vpmpyh", "^", 0b101, 0b111, 0, 0, 0>;
// Polynomial multiply words
// Rdd=pmpyw(Rs,Rt)
def M4_pmpyw : T_XTYPE_mpy64 < "pmpyw", 0b010, 0b111, 0, 0, 0>;
// Rxx^=pmpyw(Rs,Rt)
def M4_pmpyw_acc : T_XTYPE_mpy64_acc < "pmpyw", "^", 0b001, 0b111, 0, 0, 0>;
//===----------------------------------------------------------------------===//
// XTYPE/MPY -
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// ALU64/Vector compare
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Template class for vector compare
//===----------------------------------------------------------------------===//
let hasSideEffects = 0 in
class T_vcmpImm <string Str, bits<2> cmpOp, bits<2> minOp, Operand ImmOprnd>
: ALU64_rr <(outs PredRegs:$Pd),
(ins DoubleRegs:$Rss, ImmOprnd:$Imm),
"$Pd = "#Str#"($Rss, #$Imm)",
[], "", ALU64_tc_2early_SLOT23> {
bits<2> Pd;
bits<5> Rss;
bits<32> Imm;
bits<8> ImmBits;
let ImmBits{6-0} = Imm{6-0};
let ImmBits{7} = !if (!eq(cmpOp,0b10), 0b0, Imm{7}); // 0 for vcmp[bhw].gtu
let IClass = 0b1101;
let Inst{27-24} = 0b1100;
let Inst{22-21} = cmpOp;
let Inst{20-16} = Rss;
let Inst{12-5} = ImmBits;
let Inst{4-3} = minOp;
let Inst{1-0} = Pd;
}
// Vector compare bytes
def A4_vcmpbgt : T_vcmp <"vcmpb.gt", 0b1010>;
def: T_vcmp_pat<A4_vcmpbgt, setgt, v8i8>;
let AsmString = "$Pd = any8(vcmpb.eq($Rss, $Rtt))" in
def A4_vcmpbeq_any : T_vcmp <"any8(vcmpb.gt", 0b1000>;
def A4_vcmpbeqi : T_vcmpImm <"vcmpb.eq", 0b00, 0b00, u8Imm>;
def A4_vcmpbgti : T_vcmpImm <"vcmpb.gt", 0b01, 0b00, s8Imm>;
def A4_vcmpbgtui : T_vcmpImm <"vcmpb.gtu", 0b10, 0b00, u7Imm>;
// Vector compare halfwords
def A4_vcmpheqi : T_vcmpImm <"vcmph.eq", 0b00, 0b01, s8Imm>;
def A4_vcmphgti : T_vcmpImm <"vcmph.gt", 0b01, 0b01, s8Imm>;
def A4_vcmphgtui : T_vcmpImm <"vcmph.gtu", 0b10, 0b01, u7Imm>;
// Vector compare words
def A4_vcmpweqi : T_vcmpImm <"vcmpw.eq", 0b00, 0b10, s8Imm>;
def A4_vcmpwgti : T_vcmpImm <"vcmpw.gt", 0b01, 0b10, s8Imm>;
def A4_vcmpwgtui : T_vcmpImm <"vcmpw.gtu", 0b10, 0b10, u7Imm>;
//===----------------------------------------------------------------------===//
// XTYPE/SHIFT +
//===----------------------------------------------------------------------===//
// Shift by immediate and accumulate/logical.
// Rx=add(#u8,asl(Rx,#U5)) Rx=add(#u8,lsr(Rx,#U5))
// Rx=sub(#u8,asl(Rx,#U5)) Rx=sub(#u8,lsr(Rx,#U5))
// Rx=and(#u8,asl(Rx,#U5)) Rx=and(#u8,lsr(Rx,#U5))
// Rx=or(#u8,asl(Rx,#U5)) Rx=or(#u8,lsr(Rx,#U5))
let isExtendable = 1, opExtendable = 1, isExtentSigned = 0, opExtentBits = 8,
hasNewValue = 1, opNewValue = 0 in
class T_S4_ShiftOperate<string MnOp, string MnSh, SDNode Op, SDNode Sh,
bit asl_lsr, bits<2> MajOp, InstrItinClass Itin>
: MInst_acc<(outs IntRegs:$Rd), (ins u8Ext:$u8, IntRegs:$Rx, u5Imm:$U5),
"$Rd = "#MnOp#"(#$u8, "#MnSh#"($Rx, #$U5))",
[(set (i32 IntRegs:$Rd),
(Op (Sh I32:$Rx, u5ImmPred:$U5), u32ImmPred:$u8))],
"$Rd = $Rx", Itin> {
bits<5> Rd;
bits<8> u8;
bits<5> Rx;
bits<5> U5;
let IClass = 0b1101;
let Inst{27-24} = 0b1110;
let Inst{23-21} = u8{7-5};
let Inst{20-16} = Rd;
let Inst{13} = u8{4};
let Inst{12-8} = U5;
let Inst{7-5} = u8{3-1};
let Inst{4} = asl_lsr;
let Inst{3} = u8{0};
let Inst{2-1} = MajOp;
}
multiclass T_ShiftOperate<string mnemonic, SDNode Op, bits<2> MajOp,
InstrItinClass Itin> {
def _asl_ri : T_S4_ShiftOperate<mnemonic, "asl", Op, shl, 0, MajOp, Itin>;
def _lsr_ri : T_S4_ShiftOperate<mnemonic, "lsr", Op, srl, 1, MajOp, Itin>;
}
let AddedComplexity = 200 in {
defm S4_addi : T_ShiftOperate<"add", add, 0b10, ALU64_tc_2_SLOT23>;
defm S4_andi : T_ShiftOperate<"and", and, 0b00, ALU64_tc_2_SLOT23>;
}
let AddedComplexity = 30 in
defm S4_ori : T_ShiftOperate<"or", or, 0b01, ALU64_tc_1_SLOT23>;
defm S4_subi : T_ShiftOperate<"sub", sub, 0b11, ALU64_tc_1_SLOT23>;
let AddedComplexity = 200 in {
def: Pat<(add addrga:$addr, (shl I32:$src2, u5ImmPred:$src3)),
(S4_addi_asl_ri addrga:$addr, IntRegs:$src2, u5ImmPred:$src3)>;
def: Pat<(add addrga:$addr, (srl I32:$src2, u5ImmPred:$src3)),
(S4_addi_lsr_ri addrga:$addr, IntRegs:$src2, u5ImmPred:$src3)>;
def: Pat<(sub addrga:$addr, (shl I32:$src2, u5ImmPred:$src3)),
(S4_subi_asl_ri addrga:$addr, IntRegs:$src2, u5ImmPred:$src3)>;
def: Pat<(sub addrga:$addr, (srl I32:$src2, u5ImmPred:$src3)),
(S4_subi_lsr_ri addrga:$addr, IntRegs:$src2, u5ImmPred:$src3)>;
}
// Vector conditional negate
// Rdd=vcnegh(Rss,Rt)
let Defs = [USR_OVF], Itinerary = S_3op_tc_2_SLOT23 in
def S2_vcnegh : T_S3op_shiftVect < "vcnegh", 0b11, 0b01>;
// Rd=[cround|round](Rs,Rt)
let hasNewValue = 1, Itinerary = S_3op_tc_2_SLOT23 in {
def A4_cround_rr : T_S3op_3 < "cround", IntRegs, 0b11, 0b00>;
def A4_round_rr : T_S3op_3 < "round", IntRegs, 0b11, 0b10>;
}
// Rd=round(Rs,Rt):sat
let hasNewValue = 1, Defs = [USR_OVF], Itinerary = S_3op_tc_2_SLOT23 in
def A4_round_rr_sat : T_S3op_3 < "round", IntRegs, 0b11, 0b11, 1>;
// Rd=[cmpyiwh|cmpyrwh](Rss,Rt):<<1:rnd:sat
let Defs = [USR_OVF], Itinerary = S_3op_tc_3x_SLOT23 in {
def M4_cmpyi_wh : T_S3op_8<"cmpyiwh", 0b100, 1, 1, 1>;
def M4_cmpyr_wh : T_S3op_8<"cmpyrwh", 0b110, 1, 1, 1>;
}
// Rdd=[add|sub](Rss,Rtt,Px):carry
let isPredicateLate = 1, hasSideEffects = 0 in
class T_S3op_carry <string mnemonic, bits<3> MajOp>
: SInst < (outs DoubleRegs:$Rdd, PredRegs:$Px),
(ins DoubleRegs:$Rss, DoubleRegs:$Rtt, PredRegs:$Pu),
"$Rdd = "#mnemonic#"($Rss, $Rtt, $Pu):carry",
[], "$Px = $Pu", S_3op_tc_1_SLOT23 > {
bits<5> Rdd;
bits<5> Rss;
bits<5> Rtt;
bits<2> Pu;
let IClass = 0b1100;
let Inst{27-24} = 0b0010;
let Inst{23-21} = MajOp;
let Inst{20-16} = Rss;
let Inst{12-8} = Rtt;
let Inst{6-5} = Pu;
let Inst{4-0} = Rdd;
}
def A4_addp_c : T_S3op_carry < "add", 0b110 >;
def A4_subp_c : T_S3op_carry < "sub", 0b111 >;
let Itinerary = S_3op_tc_3_SLOT23, hasSideEffects = 0 in
class T_S3op_6 <string mnemonic, bits<3> MinOp, bit isUnsigned>
: SInst <(outs DoubleRegs:$Rxx),
(ins DoubleRegs:$dst2, DoubleRegs:$Rss, IntRegs:$Ru),
"$Rxx = "#mnemonic#"($Rss, $Ru)" ,
[] , "$dst2 = $Rxx"> {
bits<5> Rxx;
bits<5> Rss;
bits<5> Ru;
let IClass = 0b1100;
let Inst{27-21} = 0b1011001;
let Inst{20-16} = Rss;
let Inst{13} = isUnsigned;
let Inst{12-8} = Rxx;
let Inst{7-5} = MinOp;
let Inst{4-0} = Ru;
}
// Vector reduce maximum halfwords
// Rxx=vrmax[u]h(Rss,Ru)
def A4_vrmaxh : T_S3op_6 < "vrmaxh", 0b001, 0>;
def A4_vrmaxuh : T_S3op_6 < "vrmaxuh", 0b001, 1>;
// Vector reduce maximum words
// Rxx=vrmax[u]w(Rss,Ru)
def A4_vrmaxw : T_S3op_6 < "vrmaxw", 0b010, 0>;
def A4_vrmaxuw : T_S3op_6 < "vrmaxuw", 0b010, 1>;
// Vector reduce minimum halfwords
// Rxx=vrmin[u]h(Rss,Ru)
def A4_vrminh : T_S3op_6 < "vrminh", 0b101, 0>;
def A4_vrminuh : T_S3op_6 < "vrminuh", 0b101, 1>;
// Vector reduce minimum words
// Rxx=vrmin[u]w(Rss,Ru)
def A4_vrminw : T_S3op_6 < "vrminw", 0b110, 0>;
def A4_vrminuw : T_S3op_6 < "vrminuw", 0b110, 1>;
// Shift an immediate left by register amount.
let hasNewValue = 1, hasSideEffects = 0 in
def S4_lsli: SInst <(outs IntRegs:$Rd), (ins s6Imm:$s6, IntRegs:$Rt),
"$Rd = lsl(#$s6, $Rt)" ,
[(set (i32 IntRegs:$Rd), (shl s6ImmPred:$s6,
(i32 IntRegs:$Rt)))],
"", S_3op_tc_1_SLOT23> {
bits<5> Rd;
bits<6> s6;
bits<5> Rt;
let IClass = 0b1100;
let Inst{27-22} = 0b011010;
let Inst{20-16} = s6{5-1};
let Inst{12-8} = Rt;
let Inst{7-6} = 0b11;
let Inst{4-0} = Rd;
let Inst{5} = s6{0};
}
//===----------------------------------------------------------------------===//
// XTYPE/SHIFT -
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// MEMOP: Word, Half, Byte
//===----------------------------------------------------------------------===//
def MEMOPIMM : SDNodeXForm<imm, [{
// Call the transformation function XformM5ToU5Imm to get the negative
// immediate's positive counterpart.
int32_t imm = N->getSExtValue();
return XformM5ToU5Imm(imm, SDLoc(N));
}]>;
def MEMOPIMM_HALF : SDNodeXForm<imm, [{
// -1 .. -31 represented as 65535..65515
// assigning to a short restores our desired signed value.
// Call the transformation function XformM5ToU5Imm to get the negative
// immediate's positive counterpart.
int16_t imm = N->getSExtValue();
return XformM5ToU5Imm(imm, SDLoc(N));
}]>;
def MEMOPIMM_BYTE : SDNodeXForm<imm, [{
// -1 .. -31 represented as 255..235
// assigning to a char restores our desired signed value.
// Call the transformation function XformM5ToU5Imm to get the negative
// immediate's positive counterpart.
int8_t imm = N->getSExtValue();
return XformM5ToU5Imm(imm, SDLoc(N));
}]>;
def SETMEMIMM : SDNodeXForm<imm, [{
// Return the bit position we will set [0-31].
// As an SDNode.
int32_t imm = N->getSExtValue();
return XformMskToBitPosU5Imm(imm, SDLoc(N));
}]>;
def CLRMEMIMM : SDNodeXForm<imm, [{
// Return the bit position we will clear [0-31].
// As an SDNode.
// we bit negate the value first
int32_t imm = ~(N->getSExtValue());
return XformMskToBitPosU5Imm(imm, SDLoc(N));
}]>;
def SETMEMIMM_SHORT : SDNodeXForm<imm, [{
// Return the bit position we will set [0-15].
// As an SDNode.
int16_t imm = N->getSExtValue();
return XformMskToBitPosU4Imm(imm, SDLoc(N));
}]>;
def CLRMEMIMM_SHORT : SDNodeXForm<imm, [{
// Return the bit position we will clear [0-15].
// As an SDNode.
// we bit negate the value first
int16_t imm = ~(N->getSExtValue());
return XformMskToBitPosU4Imm(imm, SDLoc(N));
}]>;
def SETMEMIMM_BYTE : SDNodeXForm<imm, [{
// Return the bit position we will set [0-7].
// As an SDNode.
int8_t imm = N->getSExtValue();
return XformMskToBitPosU3Imm(imm, SDLoc(N));
}]>;
def CLRMEMIMM_BYTE : SDNodeXForm<imm, [{
// Return the bit position we will clear [0-7].
// As an SDNode.
// we bit negate the value first
int8_t imm = ~(N->getSExtValue());
return XformMskToBitPosU3Imm(imm, SDLoc(N));
}]>;
//===----------------------------------------------------------------------===//
// Template class for MemOp instructions with the register value.
//===----------------------------------------------------------------------===//
class MemOp_rr_base <string opc, bits<2> opcBits, Operand ImmOp,
string memOp, bits<2> memOpBits> :
MEMInst_V4<(outs),
(ins IntRegs:$base, ImmOp:$offset, IntRegs:$delta),
opc#"($base+#$offset)"#memOp#"$delta",
[]>,
Requires<[UseMEMOP]> {
bits<5> base;
bits<5> delta;
bits<32> offset;
bits<6> offsetBits; // memb - u6:0 , memh - u6:1, memw - u6:2
let offsetBits = !if (!eq(opcBits, 0b00), offset{5-0},
!if (!eq(opcBits, 0b01), offset{6-1},
!if (!eq(opcBits, 0b10), offset{7-2},0)));
let opExtentAlign = opcBits;
let IClass = 0b0011;
let Inst{27-24} = 0b1110;
let Inst{22-21} = opcBits;
let Inst{20-16} = base;
let Inst{13} = 0b0;
let Inst{12-7} = offsetBits;
let Inst{6-5} = memOpBits;
let Inst{4-0} = delta;
}
//===----------------------------------------------------------------------===//
// Template class for MemOp instructions with the immediate value.
//===----------------------------------------------------------------------===//
class MemOp_ri_base <string opc, bits<2> opcBits, Operand ImmOp,
string memOp, bits<2> memOpBits> :
MEMInst_V4 <(outs),
(ins IntRegs:$base, ImmOp:$offset, u5Imm:$delta),
opc#"($base+#$offset)"#memOp#"#$delta"
#!if(memOpBits{1},")", ""), // clrbit, setbit - include ')'
[]>,
Requires<[UseMEMOP]> {
bits<5> base;
bits<5> delta;
bits<32> offset;
bits<6> offsetBits; // memb - u6:0 , memh - u6:1, memw - u6:2
let offsetBits = !if (!eq(opcBits, 0b00), offset{5-0},
!if (!eq(opcBits, 0b01), offset{6-1},
!if (!eq(opcBits, 0b10), offset{7-2},0)));
let opExtentAlign = opcBits;
let IClass = 0b0011;
let Inst{27-24} = 0b1111;
let Inst{22-21} = opcBits;
let Inst{20-16} = base;
let Inst{13} = 0b0;
let Inst{12-7} = offsetBits;
let Inst{6-5} = memOpBits;
let Inst{4-0} = delta;
}
// multiclass to define MemOp instructions with register operand.
multiclass MemOp_rr<string opc, bits<2> opcBits, Operand ImmOp> {
def L4_add#NAME : MemOp_rr_base <opc, opcBits, ImmOp, " += ", 0b00>; // add
def L4_sub#NAME : MemOp_rr_base <opc, opcBits, ImmOp, " -= ", 0b01>; // sub
def L4_and#NAME : MemOp_rr_base <opc, opcBits, ImmOp, " &= ", 0b10>; // and
def L4_or#NAME : MemOp_rr_base <opc, opcBits, ImmOp, " |= ", 0b11>; // or
}
// multiclass to define MemOp instructions with immediate Operand.
multiclass MemOp_ri<string opc, bits<2> opcBits, Operand ImmOp> {
def L4_iadd#NAME : MemOp_ri_base <opc, opcBits, ImmOp, " += ", 0b00 >;
def L4_isub#NAME : MemOp_ri_base <opc, opcBits, ImmOp, " -= ", 0b01 >;
def L4_iand#NAME : MemOp_ri_base<opc, opcBits, ImmOp, " = clrbit(", 0b10>;
def L4_ior#NAME : MemOp_ri_base<opc, opcBits, ImmOp, " = setbit(", 0b11>;
}
multiclass MemOp_base <string opc, bits<2> opcBits, Operand ImmOp> {
defm _#NAME : MemOp_rr <opc, opcBits, ImmOp>;
defm _#NAME : MemOp_ri <opc, opcBits, ImmOp>;
}
// Define MemOp instructions.
let isExtendable = 1, opExtendable = 1, isExtentSigned = 0 in {
let opExtentBits = 6, accessSize = ByteAccess in
defm memopb_io : MemOp_base <"memb", 0b00, u6_0Ext>;
let opExtentBits = 7, accessSize = HalfWordAccess in
defm memoph_io : MemOp_base <"memh", 0b01, u6_1Ext>;
let opExtentBits = 8, accessSize = WordAccess in
defm memopw_io : MemOp_base <"memw", 0b10, u6_2Ext>;
}
//===----------------------------------------------------------------------===//
// Multiclass to define 'Def Pats' for ALU operations on the memory
// Here value used for the ALU operation is an immediate value.
// mem[bh](Rs+#0) += #U5
// mem[bh](Rs+#u6) += #U5
//===----------------------------------------------------------------------===//
multiclass MemOpi_u5Pats <PatFrag ldOp, PatFrag stOp, PatLeaf ImmPred,
InstHexagon MI, SDNode OpNode> {
let AddedComplexity = 180 in
def: Pat<(stOp (OpNode (ldOp IntRegs:$addr), u5ImmPred:$addend),
IntRegs:$addr),
(MI IntRegs:$addr, 0, u5ImmPred:$addend)>;
let AddedComplexity = 190 in
def: Pat<(stOp (OpNode (ldOp (add IntRegs:$base, ImmPred:$offset)),
u5ImmPred:$addend),
(add IntRegs:$base, ImmPred:$offset)),
(MI IntRegs:$base, ImmPred:$offset, u5ImmPred:$addend)>;
}
multiclass MemOpi_u5ALUOp<PatFrag ldOp, PatFrag stOp, PatLeaf ImmPred,
InstHexagon addMI, InstHexagon subMI> {
defm: MemOpi_u5Pats<ldOp, stOp, ImmPred, addMI, add>;
defm: MemOpi_u5Pats<ldOp, stOp, ImmPred, subMI, sub>;
}
multiclass MemOpi_u5ExtType<PatFrag ldOpByte, PatFrag ldOpHalf > {
// Half Word
defm: MemOpi_u5ALUOp <ldOpHalf, truncstorei16, u31_1ImmPred,
L4_iadd_memoph_io, L4_isub_memoph_io>;
// Byte
defm: MemOpi_u5ALUOp <ldOpByte, truncstorei8, u32ImmPred,
L4_iadd_memopb_io, L4_isub_memopb_io>;
}
let Predicates = [UseMEMOP] in {
defm: MemOpi_u5ExtType<zextloadi8, zextloadi16>; // zero extend
defm: MemOpi_u5ExtType<sextloadi8, sextloadi16>; // sign extend
defm: MemOpi_u5ExtType<extloadi8, extloadi16>; // any extend
// Word
defm: MemOpi_u5ALUOp <load, store, u30_2ImmPred, L4_iadd_memopw_io,
L4_isub_memopw_io>;
}
//===----------------------------------------------------------------------===//
// multiclass to define 'Def Pats' for ALU operations on the memory.
// Here value used for the ALU operation is a negative value.
// mem[bh](Rs+#0) += #m5
// mem[bh](Rs+#u6) += #m5
//===----------------------------------------------------------------------===//
multiclass MemOpi_m5Pats <PatFrag ldOp, PatFrag stOp, PatLeaf ImmPred,
PatLeaf immPred, SDNodeXForm xformFunc,
InstHexagon MI> {
let AddedComplexity = 190 in
def: Pat<(stOp (add (ldOp IntRegs:$addr), immPred:$subend), IntRegs:$addr),
(MI IntRegs:$addr, 0, (xformFunc immPred:$subend))>;
let AddedComplexity = 195 in
def: Pat<(stOp (add (ldOp (add IntRegs:$base, ImmPred:$offset)),
immPred:$subend),
(add IntRegs:$base, ImmPred:$offset)),
(MI IntRegs:$base, ImmPred:$offset, (xformFunc immPred:$subend))>;
}
multiclass MemOpi_m5ExtType<PatFrag ldOpByte, PatFrag ldOpHalf > {
// Half Word
defm: MemOpi_m5Pats <ldOpHalf, truncstorei16, u31_1ImmPred, m5HImmPred,
MEMOPIMM_HALF, L4_isub_memoph_io>;
// Byte
defm: MemOpi_m5Pats <ldOpByte, truncstorei8, u32ImmPred, m5BImmPred,
MEMOPIMM_BYTE, L4_isub_memopb_io>;
}
let Predicates = [UseMEMOP] in {
defm: MemOpi_m5ExtType<zextloadi8, zextloadi16>; // zero extend
defm: MemOpi_m5ExtType<sextloadi8, sextloadi16>; // sign extend
defm: MemOpi_m5ExtType<extloadi8, extloadi16>; // any extend
// Word
defm: MemOpi_m5Pats <load, store, u30_2ImmPred, m5ImmPred,
MEMOPIMM, L4_isub_memopw_io>;
}
//===----------------------------------------------------------------------===//
// Multiclass to define 'def Pats' for bit operations on the memory.
// mem[bhw](Rs+#0) = [clrbit|setbit](#U5)
// mem[bhw](Rs+#u6) = [clrbit|setbit](#U5)
//===----------------------------------------------------------------------===//
multiclass MemOpi_bitPats <PatFrag ldOp, PatFrag stOp, PatLeaf immPred,
PatLeaf extPred, SDNodeXForm xformFunc, InstHexagon MI,
SDNode OpNode> {
// mem[bhw](Rs+#u6:[012]) = [clrbit|setbit](#U5)
let AddedComplexity = 250 in
def: Pat<(stOp (OpNode (ldOp (add IntRegs:$base, extPred:$offset)),
immPred:$bitend),
(add IntRegs:$base, extPred:$offset)),
(MI IntRegs:$base, extPred:$offset, (xformFunc immPred:$bitend))>;
// mem[bhw](Rs+#0) = [clrbit|setbit](#U5)
let AddedComplexity = 225 in
def: Pat<(stOp (OpNode (ldOp IntRegs:$addr), immPred:$bitend), IntRegs:$addr),
(MI IntRegs:$addr, 0, (xformFunc immPred:$bitend))>;
}
multiclass MemOpi_bitExtType<PatFrag ldOpByte, PatFrag ldOpHalf> {
// Byte - clrbit
defm: MemOpi_bitPats<ldOpByte, truncstorei8, Clr3ImmPred, u32ImmPred,
CLRMEMIMM_BYTE, L4_iand_memopb_io, and>;
// Byte - setbit
defm: MemOpi_bitPats<ldOpByte, truncstorei8, Set3ImmPred, u32ImmPred,
SETMEMIMM_BYTE, L4_ior_memopb_io, or>;
// Half Word - clrbit
defm: MemOpi_bitPats<ldOpHalf, truncstorei16, Clr4ImmPred, u31_1ImmPred,
CLRMEMIMM_SHORT, L4_iand_memoph_io, and>;
// Half Word - setbit
defm: MemOpi_bitPats<ldOpHalf, truncstorei16, Set4ImmPred, u31_1ImmPred,
SETMEMIMM_SHORT, L4_ior_memoph_io, or>;
}
let Predicates = [UseMEMOP] in {
// mem[bh](Rs+#0) = [clrbit|setbit](#U5)
// mem[bh](Rs+#u6:[01]) = [clrbit|setbit](#U5)
defm: MemOpi_bitExtType<zextloadi8, zextloadi16>; // zero extend
defm: MemOpi_bitExtType<sextloadi8, sextloadi16>; // sign extend
defm: MemOpi_bitExtType<extloadi8, extloadi16>; // any extend
// memw(Rs+#0) = [clrbit|setbit](#U5)
// memw(Rs+#u6:2) = [clrbit|setbit](#U5)
defm: MemOpi_bitPats<load, store, Clr5ImmPred, u30_2ImmPred, CLRMEMIMM,
L4_iand_memopw_io, and>;
defm: MemOpi_bitPats<load, store, Set5ImmPred, u30_2ImmPred, SETMEMIMM,
L4_ior_memopw_io, or>;
}
//===----------------------------------------------------------------------===//
// Multiclass to define 'def Pats' for ALU operations on the memory
// where addend is a register.
// mem[bhw](Rs+#0) [+-&|]= Rt
// mem[bhw](Rs+#U6:[012]) [+-&|]= Rt
//===----------------------------------------------------------------------===//
multiclass MemOpr_Pats <PatFrag ldOp, PatFrag stOp, PatLeaf extPred,
InstHexagon MI, SDNode OpNode> {
let AddedComplexity = 141 in
// mem[bhw](Rs+#0) [+-&|]= Rt
def: Pat<(stOp (OpNode (ldOp IntRegs:$addr), (i32 IntRegs:$addend)),
IntRegs:$addr),
(MI IntRegs:$addr, 0, (i32 IntRegs:$addend))>;
// mem[bhw](Rs+#U6:[012]) [+-&|]= Rt
let AddedComplexity = 150 in
def: Pat<(stOp (OpNode (ldOp (add IntRegs:$base, extPred:$offset)),
(i32 IntRegs:$orend)),
(add IntRegs:$base, extPred:$offset)),
(MI IntRegs:$base, extPred:$offset, (i32 IntRegs:$orend))>;
}
multiclass MemOPr_ALUOp<PatFrag ldOp, PatFrag stOp, PatLeaf extPred,
InstHexagon addMI, InstHexagon subMI,
InstHexagon andMI, InstHexagon orMI> {
defm: MemOpr_Pats <ldOp, stOp, extPred, addMI, add>;
defm: MemOpr_Pats <ldOp, stOp, extPred, subMI, sub>;
defm: MemOpr_Pats <ldOp, stOp, extPred, andMI, and>;
defm: MemOpr_Pats <ldOp, stOp, extPred, orMI, or>;
}
multiclass MemOPr_ExtType<PatFrag ldOpByte, PatFrag ldOpHalf > {
// Half Word
defm: MemOPr_ALUOp <ldOpHalf, truncstorei16, u31_1ImmPred,
L4_add_memoph_io, L4_sub_memoph_io,
L4_and_memoph_io, L4_or_memoph_io>;
// Byte
defm: MemOPr_ALUOp <ldOpByte, truncstorei8, u32ImmPred,
L4_add_memopb_io, L4_sub_memopb_io,
L4_and_memopb_io, L4_or_memopb_io>;
}
// Define 'def Pats' for MemOps with register addend.
let Predicates = [UseMEMOP] in {
// Byte, Half Word
defm: MemOPr_ExtType<zextloadi8, zextloadi16>; // zero extend
defm: MemOPr_ExtType<sextloadi8, sextloadi16>; // sign extend
defm: MemOPr_ExtType<extloadi8, extloadi16>; // any extend
// Word
defm: MemOPr_ALUOp <load, store, u30_2ImmPred, L4_add_memopw_io,
L4_sub_memopw_io, L4_and_memopw_io, L4_or_memopw_io>;
}
//===----------------------------------------------------------------------===//
// XTYPE/PRED +
//===----------------------------------------------------------------------===//
// Hexagon V4 only supports these flavors of byte/half compare instructions:
// EQ/GT/GTU. Other flavors like GE/GEU/LT/LTU/LE/LEU are not supported by
// hardware. However, compiler can still implement these patterns through
// appropriate patterns combinations based on current implemented patterns.
// The implemented patterns are: EQ/GT/GTU.
// Missing patterns are: GE/GEU/LT/LTU/LE/LEU.
// Following instruction is not being extended as it results into the
// incorrect code for negative numbers.
// Pd=cmpb.eq(Rs,#u8)
// p=!cmp.eq(r1,#s10)
def C4_cmpneqi : T_CMP <"cmp.eq", 0b00, 1, s10Ext>;
def C4_cmpltei : T_CMP <"cmp.gt", 0b01, 1, s10Ext>;
def C4_cmplteui : T_CMP <"cmp.gtu", 0b10, 1, u9Ext>;
def : T_CMP_pat <C4_cmpneqi, setne, s32ImmPred>;
def : T_CMP_pat <C4_cmpltei, setle, s32ImmPred>;
def : T_CMP_pat <C4_cmplteui, setule, u9ImmPred>;
// rs <= rt -> !(rs > rt).
/*
def: Pat<(i1 (setle (i32 IntRegs:$src1), s32ImmPred:$src2)),
(C2_not (C2_cmpgti IntRegs:$src1, s32ImmPred:$src2))>;
// (C4_cmpltei IntRegs:$src1, s32ImmPred:$src2)>;
*/
// Map cmplt(Rs, Imm) -> !cmpgt(Rs, Imm-1).
def: Pat<(i1 (setlt (i32 IntRegs:$src1), s32ImmPred:$src2)),
(C4_cmpltei IntRegs:$src1, (DEC_CONST_SIGNED s32ImmPred:$src2))>;
// rs != rt -> !(rs == rt).
def: Pat<(i1 (setne (i32 IntRegs:$src1), s32ImmPred:$src2)),
(C4_cmpneqi IntRegs:$src1, s32ImmPred:$src2)>;
// SDNode for converting immediate C to C-1.
def DEC_CONST_BYTE : SDNodeXForm<imm, [{
// Return the byte immediate const-1 as an SDNode.
int32_t imm = N->getSExtValue();
return XformU7ToU7M1Imm(imm, SDLoc(N));
}]>;
// For the sequence
// zext( setult ( and(Rs, 255), u8))
// Use the isdigit transformation below
// Generate code of the form 'C2_muxii(cmpbgtui(Rdd, C-1),0,1)'
// for C code of the form r = ((c>='0') & (c<='9')) ? 1 : 0;.
// The isdigit transformation relies on two 'clever' aspects:
// 1) The data type is unsigned which allows us to eliminate a zero test after
// biasing the expression by 48. We are depending on the representation of
// the unsigned types, and semantics.
// 2) The front end has converted <= 9 into < 10 on entry to LLVM
//
// For the C code:
// retval = ((c>='0') & (c<='9')) ? 1 : 0;
// The code is transformed upstream of llvm into
// retval = (c-48) < 10 ? 1 : 0;
let AddedComplexity = 139 in
def: Pat<(i32 (zext (i1 (setult (i32 (and (i32 IntRegs:$src1), 255)),
u7StrictPosImmPred:$src2)))),
(C2_muxii (A4_cmpbgtui IntRegs:$src1,
(DEC_CONST_BYTE u7StrictPosImmPred:$src2)),
0, 1)>;
//===----------------------------------------------------------------------===//
// XTYPE/PRED -
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Multiclass for DeallocReturn
//===----------------------------------------------------------------------===//
class L4_RETURN<string mnemonic, bit isNot, bit isPredNew, bit isTak>
: LD0Inst<(outs), (ins PredRegs:$src),
!if(isNot, "if (!$src", "if ($src")#
!if(isPredNew, ".new) ", ") ")#mnemonic#
!if(isPredNew, #!if(isTak,":t", ":nt"),""),
[], "", LD_tc_3or4stall_SLOT0> {
bits<2> src;
let BaseOpcode = "L4_RETURN";
let isPredicatedFalse = isNot;
let isPredicatedNew = isPredNew;
let isTaken = isTak;
let IClass = 0b1001;
let Inst{27-16} = 0b011000011110;
let Inst{13} = isNot;
let Inst{12} = isTak;
let Inst{11} = isPredNew;
let Inst{10} = 0b0;
let Inst{9-8} = src;
let Inst{4-0} = 0b11110;
}
// Produce all predicated forms, p, !p, p.new, !p.new, :t, :nt
multiclass L4_RETURN_PRED<string mnemonic, bit PredNot> {
let isPredicated = 1 in {
def _#NAME# : L4_RETURN <mnemonic, PredNot, 0, 1>;
def _#NAME#new_pnt : L4_RETURN <mnemonic, PredNot, 1, 0>;
def _#NAME#new_pt : L4_RETURN <mnemonic, PredNot, 1, 1>;
}
}
multiclass LD_MISC_L4_RETURN<string mnemonic> {
let isBarrier = 1, isPredicable = 1 in
def NAME : LD0Inst <(outs), (ins), mnemonic, [], "",
LD_tc_3or4stall_SLOT0> {
let BaseOpcode = "L4_RETURN";
let IClass = 0b1001;
let Inst{27-16} = 0b011000011110;
let Inst{13-10} = 0b0000;
let Inst{4-0} = 0b11110;
}
defm t : L4_RETURN_PRED<mnemonic, 0 >;
defm f : L4_RETURN_PRED<mnemonic, 1 >;
}
let isReturn = 1, isTerminator = 1,
Defs = [R29, R30, R31, PC], Uses = [R30], hasSideEffects = 0 in
defm L4_return: LD_MISC_L4_RETURN <"dealloc_return">, PredNewRel;
// Restore registers and dealloc return function call.
let isCall = 1, isBarrier = 1, isReturn = 1, isTerminator = 1,
Defs = [R29, R30, R31, PC], isPredicable = 0, isAsmParserOnly = 1 in {
def RESTORE_DEALLOC_RET_JMP_V4 : T_JMP<"">;
let isExtended = 1, opExtendable = 0 in
def RESTORE_DEALLOC_RET_JMP_V4_EXT : T_JMP<"">;
}
// Restore registers and dealloc frame before a tail call.
let isCall = 1, Defs = [R29, R30, R31, PC], isAsmParserOnly = 1 in {
def RESTORE_DEALLOC_BEFORE_TAILCALL_V4 : T_Call<"">, PredRel;
let isExtended = 1, opExtendable = 0 in
def RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT : T_Call<"">, PredRel;
}
// Save registers function call.
let isCall = 1, Uses = [R29, R31], isAsmParserOnly = 1 in {
def SAVE_REGISTERS_CALL_V4 : T_Call<"">, PredRel;
let isExtended = 1, opExtendable = 0 in
def SAVE_REGISTERS_CALL_V4_EXT : T_Call<"">, PredRel;
}
//===----------------------------------------------------------------------===//
// Template class for non predicated store instructions with
// GP-Relative or absolute addressing.
//===----------------------------------------------------------------------===//
let hasSideEffects = 0, isPredicable = 1 in
class T_StoreAbsGP <string mnemonic, RegisterClass RC, Operand ImmOp,
bits<2>MajOp, bit isAbs, bit isHalf>
: STInst<(outs), (ins ImmOp:$addr, RC:$src),
mnemonic # "(#$addr) = $src"#!if(isHalf, ".h",""),
[], "", V2LDST_tc_st_SLOT01> {
bits<19> addr;
bits<5> src;
bits<16> offsetBits;
string ImmOpStr = !cast<string>(ImmOp);
let offsetBits = !if (!eq(ImmOpStr, "u16_3Imm"), addr{18-3},
!if (!eq(ImmOpStr, "u16_2Imm"), addr{17-2},
!if (!eq(ImmOpStr, "u16_1Imm"), addr{16-1},
/* u16_0Imm */ addr{15-0})));
// Store upper-half and store doubleword cannot be NV.
let isNVStorable = !if (!eq(mnemonic, "memd"), 0, !if(isHalf,0,1));
let Uses = !if (isAbs, [], [GP]);
let IClass = 0b0100;
let Inst{27} = 1;
let Inst{26-25} = offsetBits{15-14};
let Inst{24} = 0b0;
let Inst{23-22} = MajOp;
let Inst{21} = isHalf;
let Inst{20-16} = offsetBits{13-9};
let Inst{13} = offsetBits{8};
let Inst{12-8} = src;
let Inst{7-0} = offsetBits{7-0};
}
//===----------------------------------------------------------------------===//
// Template class for predicated store instructions with
// GP-Relative or absolute addressing.
//===----------------------------------------------------------------------===//
let hasSideEffects = 0, isPredicated = 1, opExtentBits = 6, opExtendable = 1 in
class T_StoreAbs_Pred <string mnemonic, RegisterClass RC, bits<2> MajOp,
bit isHalf, bit isNot, bit isNew>
: STInst<(outs), (ins PredRegs:$src1, u32MustExt:$absaddr, RC: $src2),
!if(isNot, "if (!$src1", "if ($src1")#!if(isNew, ".new) ",
") ")#mnemonic#"(#$absaddr) = $src2"#!if(isHalf, ".h",""),
[], "", ST_tc_st_SLOT01>, AddrModeRel {
bits<2> src1;
bits<6> absaddr;
bits<5> src2;
let isPredicatedNew = isNew;
let isPredicatedFalse = isNot;
// Store upper-half and store doubleword cannot be NV.
let isNVStorable = !if (!eq(mnemonic, "memd"), 0, !if(isHalf,0,1));
let IClass = 0b1010;
let Inst{27-24} = 0b1111;
let Inst{23-22} = MajOp;
let Inst{21} = isHalf;
let Inst{17-16} = absaddr{5-4};
let Inst{13} = isNew;
let Inst{12-8} = src2;
let Inst{7} = 0b1;
let Inst{6-3} = absaddr{3-0};
let Inst{2} = isNot;
let Inst{1-0} = src1;
}
//===----------------------------------------------------------------------===//
// Template class for predicated store instructions with absolute addressing.
//===----------------------------------------------------------------------===//
class T_StoreAbs <string mnemonic, RegisterClass RC, Operand ImmOp,
bits<2> MajOp, bit isHalf>
: T_StoreAbsGP <mnemonic, RC, u32MustExt, MajOp, 1, isHalf>,
AddrModeRel {
string ImmOpStr = !cast<string>(ImmOp);
let opExtentBits = !if (!eq(ImmOpStr, "u16_3Imm"), 19,
!if (!eq(ImmOpStr, "u16_2Imm"), 18,
!if (!eq(ImmOpStr, "u16_1Imm"), 17,
/* u16_0Imm */ 16)));
let opExtentAlign = !if (!eq(ImmOpStr, "u16_3Imm"), 3,
!if (!eq(ImmOpStr, "u16_2Imm"), 2,
!if (!eq(ImmOpStr, "u16_1Imm"), 1,
/* u16_0Imm */ 0)));
}
//===----------------------------------------------------------------------===//
// Multiclass for store instructions with absolute addressing.
//===----------------------------------------------------------------------===//
let addrMode = Absolute, isExtended = 1 in
multiclass ST_Abs<string mnemonic, string CextOp, RegisterClass RC,
Operand ImmOp, bits<2> MajOp, bit isHalf = 0> {
let CextOpcode = CextOp, BaseOpcode = CextOp#_abs in {
let opExtendable = 0, isPredicable = 1 in
def S2_#NAME#abs : T_StoreAbs <mnemonic, RC, ImmOp, MajOp, isHalf>;
// Predicated
def S4_p#NAME#t_abs : T_StoreAbs_Pred<mnemonic, RC, MajOp, isHalf, 0, 0>;
def S4_p#NAME#f_abs : T_StoreAbs_Pred<mnemonic, RC, MajOp, isHalf, 1, 0>;
// .new Predicated
def S4_p#NAME#tnew_abs : T_StoreAbs_Pred<mnemonic, RC, MajOp, isHalf, 0, 1>;
def S4_p#NAME#fnew_abs : T_StoreAbs_Pred<mnemonic, RC, MajOp, isHalf, 1, 1>;
}
}
//===----------------------------------------------------------------------===//
// Template class for non predicated new-value store instructions with
// GP-Relative or absolute addressing.
//===----------------------------------------------------------------------===//
let hasSideEffects = 0, isPredicable = 1, mayStore = 1, isNVStore = 1,
isNewValue = 1, opNewValue = 1 in
class T_StoreAbsGP_NV <string mnemonic, Operand ImmOp, bits<2>MajOp, bit isAbs>
: NVInst_V4<(outs), (ins u32Imm:$addr, IntRegs:$src),
mnemonic # !if(isAbs, "(##", "(#")#"$addr) = $src.new",
[], "", V2LDST_tc_st_SLOT0> {
bits<19> addr;
bits<3> src;
bits<16> offsetBits;
string ImmOpStr = !cast<string>(ImmOp);
let offsetBits = !if (!eq(ImmOpStr, "u16_3Imm"), addr{18-3},
!if (!eq(ImmOpStr, "u16_2Imm"), addr{17-2},
!if (!eq(ImmOpStr, "u16_1Imm"), addr{16-1},
/* u16_0Imm */ addr{15-0})));
let Uses = !if (isAbs, [], [GP]);
let IClass = 0b0100;
let Inst{27} = 1;
let Inst{26-25} = offsetBits{15-14};
let Inst{24-21} = 0b0101;
let Inst{20-16} = offsetBits{13-9};
let Inst{13} = offsetBits{8};
let Inst{12-11} = MajOp;
let Inst{10-8} = src;
let Inst{7-0} = offsetBits{7-0};
}
//===----------------------------------------------------------------------===//
// Template class for predicated new-value store instructions with
// absolute addressing.
//===----------------------------------------------------------------------===//
let hasSideEffects = 0, isPredicated = 1, mayStore = 1, isNVStore = 1,
isNewValue = 1, opNewValue = 2, opExtentBits = 6, opExtendable = 1 in
class T_StoreAbs_NV_Pred <string mnemonic, bits<2> MajOp, bit isNot, bit isNew>
: NVInst_V4<(outs), (ins PredRegs:$src1, u6Ext:$absaddr, IntRegs:$src2),
!if(isNot, "if (!$src1", "if ($src1")#!if(isNew, ".new) ",
") ")#mnemonic#"(#$absaddr) = $src2.new",
[], "", ST_tc_st_SLOT0>, AddrModeRel {
bits<2> src1;
bits<6> absaddr;
bits<3> src2;
let isPredicatedNew = isNew;
let isPredicatedFalse = isNot;
let IClass = 0b1010;
let Inst{27-24} = 0b1111;
let Inst{23-21} = 0b101;
let Inst{17-16} = absaddr{5-4};
let Inst{13} = isNew;
let Inst{12-11} = MajOp;
let Inst{10-8} = src2;
let Inst{7} = 0b1;
let Inst{6-3} = absaddr{3-0};
let Inst{2} = isNot;
let Inst{1-0} = src1;
}
//===----------------------------------------------------------------------===//
// Template class for non-predicated new-value store instructions with
// absolute addressing.
//===----------------------------------------------------------------------===//
class T_StoreAbs_NV <string mnemonic, Operand ImmOp, bits<2> MajOp>
: T_StoreAbsGP_NV <mnemonic, ImmOp, MajOp, 1>, AddrModeRel {
string ImmOpStr = !cast<string>(ImmOp);
let opExtentBits = !if (!eq(ImmOpStr, "u16_3Imm"), 19,
!if (!eq(ImmOpStr, "u16_2Imm"), 18,
!if (!eq(ImmOpStr, "u16_1Imm"), 17,
/* u16_0Imm */ 16)));
let opExtentAlign = !if (!eq(ImmOpStr, "u16_3Imm"), 3,
!if (!eq(ImmOpStr, "u16_2Imm"), 2,
!if (!eq(ImmOpStr, "u16_1Imm"), 1,
/* u16_0Imm */ 0)));
}
//===----------------------------------------------------------------------===//
// Multiclass for new-value store instructions with absolute addressing.
//===----------------------------------------------------------------------===//
let addrMode = Absolute, isExtended = 1 in
multiclass ST_Abs_NV <string mnemonic, string CextOp, Operand ImmOp,
bits<2> MajOp> {
let CextOpcode = CextOp, BaseOpcode = CextOp#_abs in {
let opExtendable = 0, isPredicable = 1 in
def S2_#NAME#newabs : T_StoreAbs_NV <mnemonic, ImmOp, MajOp>;
// Predicated
def S4_p#NAME#newt_abs : T_StoreAbs_NV_Pred <mnemonic, MajOp, 0, 0>;
def S4_p#NAME#newf_abs : T_StoreAbs_NV_Pred <mnemonic, MajOp, 1, 0>;
// .new Predicated
def S4_p#NAME#newtnew_abs : T_StoreAbs_NV_Pred <mnemonic, MajOp, 0, 1>;
def S4_p#NAME#newfnew_abs : T_StoreAbs_NV_Pred <mnemonic, MajOp, 1, 1>;
}
}
//===----------------------------------------------------------------------===//
// Stores with absolute addressing
//===----------------------------------------------------------------------===//
let accessSize = ByteAccess in
defm storerb : ST_Abs <"memb", "STrib", IntRegs, u16_0Imm, 0b00>,
ST_Abs_NV <"memb", "STrib", u16_0Imm, 0b00>;
let accessSize = HalfWordAccess in
defm storerh : ST_Abs <"memh", "STrih", IntRegs, u16_1Imm, 0b01>,
ST_Abs_NV <"memh", "STrih", u16_1Imm, 0b01>;
let accessSize = WordAccess in
defm storeri : ST_Abs <"memw", "STriw", IntRegs, u16_2Imm, 0b10>,
ST_Abs_NV <"memw", "STriw", u16_2Imm, 0b10>;
let isNVStorable = 0, accessSize = DoubleWordAccess in
defm storerd : ST_Abs <"memd", "STrid", DoubleRegs, u16_3Imm, 0b11>;
let isNVStorable = 0, accessSize = HalfWordAccess in
defm storerf : ST_Abs <"memh", "STrif", IntRegs, u16_1Imm, 0b01, 1>;
//===----------------------------------------------------------------------===//
// GP-relative stores.
// mem[bhwd](#global)=Rt
// Once predicated, these instructions map to absolute addressing mode.
// if ([!]Pv[.new]) mem[bhwd](##global)=Rt
//===----------------------------------------------------------------------===//
let isAsmParserOnly = 1 in
class T_StoreGP <string mnemonic, string BaseOp, RegisterClass RC,
Operand ImmOp, bits<2> MajOp, bit isHalf = 0>
: T_StoreAbsGP <mnemonic, RC, ImmOp, MajOp, 0, isHalf> {
// Set BaseOpcode same as absolute addressing instructions so that
// non-predicated GP-Rel instructions can have relate with predicated
// Absolute instruction.
let BaseOpcode = BaseOp#_abs;
}
let isAsmParserOnly = 1 in
multiclass ST_GP <string mnemonic, string BaseOp, Operand ImmOp,
bits<2> MajOp, bit isHalf = 0> {
// Set BaseOpcode same as absolute addressing instructions so that
// non-predicated GP-Rel instructions can have relate with predicated
// Absolute instruction.
let BaseOpcode = BaseOp#_abs in {
def NAME#gp : T_StoreAbsGP <mnemonic, IntRegs, ImmOp, MajOp,
0, isHalf>;
// New-value store
def NAME#newgp : T_StoreAbsGP_NV <mnemonic, ImmOp, MajOp, 0> ;
}
}
let accessSize = ByteAccess in
defm S2_storerb : ST_GP<"memb", "STrib", u16_0Imm, 0b00>, NewValueRel;
let accessSize = HalfWordAccess in
defm S2_storerh : ST_GP<"memh", "STrih", u16_1Imm, 0b01>, NewValueRel;
let accessSize = WordAccess in
defm S2_storeri : ST_GP<"memw", "STriw", u16_2Imm, 0b10>, NewValueRel;
let isNVStorable = 0, accessSize = DoubleWordAccess in
def S2_storerdgp : T_StoreGP <"memd", "STrid", DoubleRegs,
u16_3Imm, 0b11>, PredNewRel;
let isNVStorable = 0, accessSize = HalfWordAccess in
def S2_storerfgp : T_StoreGP <"memh", "STrif", IntRegs,
u16_1Imm, 0b01, 1>, PredNewRel;
class Loada_pat<PatFrag Load, ValueType VT, PatFrag Addr, InstHexagon MI>
: Pat<(VT (Load Addr:$addr)), (MI Addr:$addr)>;
class Loadam_pat<PatFrag Load, ValueType VT, PatFrag Addr, PatFrag ValueMod,
InstHexagon MI>
: Pat<(VT (Load Addr:$addr)), (ValueMod (MI Addr:$addr))>;
class Storea_pat<PatFrag Store, PatFrag Value, PatFrag Addr, InstHexagon MI>
: Pat<(Store Value:$val, Addr:$addr), (MI Addr:$addr, Value:$val)>;
class Stoream_pat<PatFrag Store, PatFrag Value, PatFrag Addr, PatFrag ValueMod,
InstHexagon MI>
: Pat<(Store Value:$val, Addr:$addr),
(MI Addr:$addr, (ValueMod Value:$val))>;
def: Storea_pat<SwapSt<atomic_store_8>, I32, addrgp, S2_storerbgp>;
def: Storea_pat<SwapSt<atomic_store_16>, I32, addrgp, S2_storerhgp>;
def: Storea_pat<SwapSt<atomic_store_32>, I32, addrgp, S2_storerigp>;
def: Storea_pat<SwapSt<atomic_store_64>, I64, addrgp, S2_storerdgp>;
let AddedComplexity = 100 in {
def: Storea_pat<truncstorei8, I32, addrgp, S2_storerbgp>;
def: Storea_pat<truncstorei16, I32, addrgp, S2_storerhgp>;
def: Storea_pat<store, I32, addrgp, S2_storerigp>;
def: Storea_pat<store, I64, addrgp, S2_storerdgp>;
// Map from "i1 = constant<-1>; memw(CONST32(#foo)) = i1"
// to "r0 = 1; memw(#foo) = r0"
let AddedComplexity = 100 in
def: Pat<(store (i1 -1), (HexagonCONST32_GP tglobaladdr:$global)),
(S2_storerbgp tglobaladdr:$global, (A2_tfrsi 1))>;
}
//===----------------------------------------------------------------------===//
// Template class for non predicated load instructions with
// absolute addressing mode.
//===----------------------------------------------------------------------===//
let isPredicable = 1, hasSideEffects = 0 in
class T_LoadAbsGP <string mnemonic, RegisterClass RC, Operand ImmOp,
bits<3> MajOp>
: LDInst <(outs RC:$dst), (ins ImmOp:$addr),
"$dst = "#mnemonic# "(#$addr)",
[], "", V2LDST_tc_ld_SLOT01> {
bits<5> dst;
bits<19> addr;
bits<16> offsetBits;
string ImmOpStr = !cast<string>(ImmOp);
let offsetBits = !if (!eq(ImmOpStr, "u16_3Imm"), addr{18-3},
!if (!eq(ImmOpStr, "u16_2Imm"), addr{17-2},
!if (!eq(ImmOpStr, "u16_1Imm"), addr{16-1},
/* u16_0Imm */ addr{15-0})));
let IClass = 0b0100;
let Inst{27} = 0b1;
let Inst{26-25} = offsetBits{15-14};
let Inst{24} = 0b1;
let Inst{23-21} = MajOp;
let Inst{20-16} = offsetBits{13-9};
let Inst{13-5} = offsetBits{8-0};
let Inst{4-0} = dst;
}
class T_LoadAbs <string mnemonic, RegisterClass RC, Operand ImmOp,
bits<3> MajOp>
: T_LoadAbsGP <mnemonic, RC, u32MustExt, MajOp>, AddrModeRel {
string ImmOpStr = !cast<string>(ImmOp);
let opExtentBits = !if (!eq(ImmOpStr, "u16_3Imm"), 19,
!if (!eq(ImmOpStr, "u16_2Imm"), 18,
!if (!eq(ImmOpStr, "u16_1Imm"), 17,
/* u16_0Imm */ 16)));
let opExtentAlign = !if (!eq(ImmOpStr, "u16_3Imm"), 3,
!if (!eq(ImmOpStr, "u16_2Imm"), 2,
!if (!eq(ImmOpStr, "u16_1Imm"), 1,
/* u16_0Imm */ 0)));
}
//===----------------------------------------------------------------------===//
// Template class for predicated load instructions with
// absolute addressing mode.
//===----------------------------------------------------------------------===//
let isPredicated = 1, hasSideEffects = 0, hasNewValue = 1, opExtentBits = 6,
opExtendable = 2 in
class T_LoadAbs_Pred <string mnemonic, RegisterClass RC, bits<3> MajOp,
bit isPredNot, bit isPredNew>
: LDInst <(outs RC:$dst), (ins PredRegs:$src1, u32MustExt:$absaddr),
!if(isPredNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
") ")#"$dst = "#mnemonic#"(#$absaddr)">, AddrModeRel {
bits<5> dst;
bits<2> src1;
bits<6> absaddr;
let isPredicatedNew = isPredNew;
let isPredicatedFalse = isPredNot;
let hasNewValue = !if (!eq(!cast<string>(RC), "DoubleRegs"), 0, 1);
let IClass = 0b1001;
let Inst{27-24} = 0b1111;
let Inst{23-21} = MajOp;
let Inst{20-16} = absaddr{5-1};
let Inst{13} = 0b1;
let Inst{12} = isPredNew;
let Inst{11} = isPredNot;
let Inst{10-9} = src1;
let Inst{8} = absaddr{0};
let Inst{7} = 0b1;
let Inst{4-0} = dst;
}
//===----------------------------------------------------------------------===//
// Multiclass for the load instructions with absolute addressing mode.
//===----------------------------------------------------------------------===//
multiclass LD_Abs_Pred<string mnemonic, RegisterClass RC, bits<3> MajOp,
bit PredNot> {
def _abs : T_LoadAbs_Pred <mnemonic, RC, MajOp, PredNot, 0>;
// Predicate new
def new_abs : T_LoadAbs_Pred <mnemonic, RC, MajOp, PredNot, 1>;
}
let addrMode = Absolute, isExtended = 1 in
multiclass LD_Abs<string mnemonic, string CextOp, RegisterClass RC,
Operand ImmOp, bits<3> MajOp> {
let CextOpcode = CextOp, BaseOpcode = CextOp#_abs in {
let opExtendable = 1, isPredicable = 1 in
def L4_#NAME#_abs: T_LoadAbs <mnemonic, RC, ImmOp, MajOp>;
// Predicated
defm L4_p#NAME#t : LD_Abs_Pred<mnemonic, RC, MajOp, 0>;
defm L4_p#NAME#f : LD_Abs_Pred<mnemonic, RC, MajOp, 1>;
}
}
let accessSize = ByteAccess, hasNewValue = 1 in {
defm loadrb : LD_Abs<"memb", "LDrib", IntRegs, u16_0Imm, 0b000>;
defm loadrub : LD_Abs<"memub", "LDriub", IntRegs, u16_0Imm, 0b001>;
}
let accessSize = HalfWordAccess, hasNewValue = 1 in {
defm loadrh : LD_Abs<"memh", "LDrih", IntRegs, u16_1Imm, 0b010>;
defm loadruh : LD_Abs<"memuh", "LDriuh", IntRegs, u16_1Imm, 0b011>;
}
let accessSize = WordAccess, hasNewValue = 1 in
defm loadri : LD_Abs<"memw", "LDriw", IntRegs, u16_2Imm, 0b100>;
let accessSize = DoubleWordAccess in
defm loadrd : LD_Abs<"memd", "LDrid", DoubleRegs, u16_3Imm, 0b110>;
//===----------------------------------------------------------------------===//
// multiclass for load instructions with GP-relative addressing mode.
// Rx=mem[bhwd](##global)
// Once predicated, these instructions map to absolute addressing mode.
// if ([!]Pv[.new]) Rx=mem[bhwd](##global)
//===----------------------------------------------------------------------===//
let isAsmParserOnly = 1, Uses = [GP] in
class T_LoadGP <string mnemonic, string BaseOp, RegisterClass RC, Operand ImmOp,
bits<3> MajOp>
: T_LoadAbsGP <mnemonic, RC, ImmOp, MajOp>, PredNewRel {
let BaseOpcode = BaseOp#_abs;
}
let accessSize = ByteAccess, hasNewValue = 1 in {
def L2_loadrbgp : T_LoadGP<"memb", "LDrib", IntRegs, u16_0Imm, 0b000>;
def L2_loadrubgp : T_LoadGP<"memub", "LDriub", IntRegs, u16_0Imm, 0b001>;
}
let accessSize = HalfWordAccess, hasNewValue = 1 in {
def L2_loadrhgp : T_LoadGP<"memh", "LDrih", IntRegs, u16_1Imm, 0b010>;
def L2_loadruhgp : T_LoadGP<"memuh", "LDriuh", IntRegs, u16_1Imm, 0b011>;
}
let accessSize = WordAccess, hasNewValue = 1 in
def L2_loadrigp : T_LoadGP<"memw", "LDriw", IntRegs, u16_2Imm, 0b100>;
let accessSize = DoubleWordAccess in
def L2_loadrdgp : T_LoadGP<"memd", "LDrid", DoubleRegs, u16_3Imm, 0b110>;
def: Loada_pat<atomic_load_8, i32, addrgp, L2_loadrubgp>;
def: Loada_pat<atomic_load_16, i32, addrgp, L2_loadruhgp>;
def: Loada_pat<atomic_load_32, i32, addrgp, L2_loadrigp>;
def: Loada_pat<atomic_load_64, i64, addrgp, L2_loadrdgp>;
// Map from Pd = load(globaladdress) -> Rd = memb(globaladdress), Pd = Rd
def: Loadam_pat<load, i1, addrga, I32toI1, L4_loadrub_abs>;
def: Loadam_pat<load, i1, addrgp, I32toI1, L2_loadrubgp>;
def: Stoream_pat<store, I1, addrga, I1toI32, S2_storerbabs>;
def: Stoream_pat<store, I1, addrgp, I1toI32, S2_storerbgp>;
// Map from load(globaladdress) -> mem[u][bhwd](#foo)
class LoadGP_pats <PatFrag ldOp, InstHexagon MI, ValueType VT = i32>
: Pat <(VT (ldOp (HexagonCONST32_GP tglobaladdr:$global))),
(VT (MI tglobaladdr:$global))>;
let AddedComplexity = 100 in {
def: LoadGP_pats <extloadi8, L2_loadrbgp>;
def: LoadGP_pats <sextloadi8, L2_loadrbgp>;
def: LoadGP_pats <zextloadi8, L2_loadrubgp>;
def: LoadGP_pats <extloadi16, L2_loadrhgp>;
def: LoadGP_pats <sextloadi16, L2_loadrhgp>;
def: LoadGP_pats <zextloadi16, L2_loadruhgp>;
def: LoadGP_pats <load, L2_loadrigp>;
def: LoadGP_pats <load, L2_loadrdgp, i64>;
}
// When the Interprocedural Global Variable optimizer realizes that a certain
// global variable takes only two constant values, it shrinks the global to
// a boolean. Catch those loads here in the following 3 patterns.
let AddedComplexity = 100 in {
def: LoadGP_pats <extloadi1, L2_loadrubgp>;
def: LoadGP_pats <zextloadi1, L2_loadrubgp>;
}
// Transfer global address into a register
def: Pat<(HexagonCONST32 tglobaladdr:$Rs), (A2_tfrsi s16Ext:$Rs)>;
def: Pat<(HexagonCONST32_GP tblockaddress:$Rs), (A2_tfrsi s16Ext:$Rs)>;
def: Pat<(HexagonCONST32_GP tglobaladdr:$Rs), (A2_tfrsi s16Ext:$Rs)>;
let AddedComplexity = 30 in {
def: Storea_pat<truncstorei8, I32, u32ImmPred, S2_storerbabs>;
def: Storea_pat<truncstorei16, I32, u32ImmPred, S2_storerhabs>;
def: Storea_pat<store, I32, u32ImmPred, S2_storeriabs>;
}
let AddedComplexity = 30 in {
def: Loada_pat<load, i32, u32ImmPred, L4_loadri_abs>;
def: Loada_pat<sextloadi8, i32, u32ImmPred, L4_loadrb_abs>;
def: Loada_pat<zextloadi8, i32, u32ImmPred, L4_loadrub_abs>;
def: Loada_pat<sextloadi16, i32, u32ImmPred, L4_loadrh_abs>;
def: Loada_pat<zextloadi16, i32, u32ImmPred, L4_loadruh_abs>;
}
// Indexed store word - global address.
// memw(Rs+#u6:2)=#S8
let AddedComplexity = 100 in
def: Storex_add_pat<store, addrga, u6_2ImmPred, S4_storeiri_io>;
// Load from a global address that has only one use in the current basic block.
let AddedComplexity = 100 in {
def: Loada_pat<extloadi8, i32, addrga, L4_loadrub_abs>;
def: Loada_pat<sextloadi8, i32, addrga, L4_loadrb_abs>;
def: Loada_pat<zextloadi8, i32, addrga, L4_loadrub_abs>;
def: Loada_pat<extloadi16, i32, addrga, L4_loadruh_abs>;
def: Loada_pat<sextloadi16, i32, addrga, L4_loadrh_abs>;
def: Loada_pat<zextloadi16, i32, addrga, L4_loadruh_abs>;
def: Loada_pat<load, i32, addrga, L4_loadri_abs>;
def: Loada_pat<load, i64, addrga, L4_loadrd_abs>;
}
// Store to a global address that has only one use in the current basic block.
let AddedComplexity = 100 in {
def: Storea_pat<truncstorei8, I32, addrga, S2_storerbabs>;
def: Storea_pat<truncstorei16, I32, addrga, S2_storerhabs>;
def: Storea_pat<store, I32, addrga, S2_storeriabs>;
def: Storea_pat<store, I64, addrga, S2_storerdabs>;
def: Stoream_pat<truncstorei32, I64, addrga, LoReg, S2_storeriabs>;
}
// i8/i16/i32 -> i64 loads
// We need a complexity of 120 here to override preceding handling of
// zextload.
let AddedComplexity = 120 in {
def: Loadam_pat<extloadi8, i64, addrga, Zext64, L4_loadrub_abs>;
def: Loadam_pat<sextloadi8, i64, addrga, Sext64, L4_loadrb_abs>;
def: Loadam_pat<zextloadi8, i64, addrga, Zext64, L4_loadrub_abs>;
def: Loadam_pat<extloadi16, i64, addrga, Zext64, L4_loadruh_abs>;
def: Loadam_pat<sextloadi16, i64, addrga, Sext64, L4_loadrh_abs>;
def: Loadam_pat<zextloadi16, i64, addrga, Zext64, L4_loadruh_abs>;
def: Loadam_pat<extloadi32, i64, addrga, Zext64, L4_loadri_abs>;
def: Loadam_pat<sextloadi32, i64, addrga, Sext64, L4_loadri_abs>;
def: Loadam_pat<zextloadi32, i64, addrga, Zext64, L4_loadri_abs>;
}
let AddedComplexity = 100 in {
def: Loada_pat<extloadi8, i32, addrgp, L4_loadrub_abs>;
def: Loada_pat<sextloadi8, i32, addrgp, L4_loadrb_abs>;
def: Loada_pat<zextloadi8, i32, addrgp, L4_loadrub_abs>;
def: Loada_pat<extloadi16, i32, addrgp, L4_loadruh_abs>;
def: Loada_pat<sextloadi16, i32, addrgp, L4_loadrh_abs>;
def: Loada_pat<zextloadi16, i32, addrgp, L4_loadruh_abs>;
def: Loada_pat<load, i32, addrgp, L4_loadri_abs>;
def: Loada_pat<load, i64, addrgp, L4_loadrd_abs>;
}
let AddedComplexity = 100 in {
def: Storea_pat<truncstorei8, I32, addrgp, S2_storerbabs>;
def: Storea_pat<truncstorei16, I32, addrgp, S2_storerhabs>;
def: Storea_pat<store, I32, addrgp, S2_storeriabs>;
def: Storea_pat<store, I64, addrgp, S2_storerdabs>;
}
def: Loada_pat<atomic_load_8, i32, addrgp, L4_loadrub_abs>;
def: Loada_pat<atomic_load_16, i32, addrgp, L4_loadruh_abs>;
def: Loada_pat<atomic_load_32, i32, addrgp, L4_loadri_abs>;
def: Loada_pat<atomic_load_64, i64, addrgp, L4_loadrd_abs>;
def: Storea_pat<SwapSt<atomic_store_8>, I32, addrgp, S2_storerbabs>;
def: Storea_pat<SwapSt<atomic_store_16>, I32, addrgp, S2_storerhabs>;
def: Storea_pat<SwapSt<atomic_store_32>, I32, addrgp, S2_storeriabs>;
def: Storea_pat<SwapSt<atomic_store_64>, I64, addrgp, S2_storerdabs>;
let Constraints = "@earlyclobber $dst" in
def Insert4 : PseudoM<(outs DoubleRegs:$dst), (ins IntRegs:$a, IntRegs:$b,
IntRegs:$c, IntRegs:$d),
".error \"Should never try to emit Insert4\"",
[(set (i64 DoubleRegs:$dst),
(or (or (or (shl (i64 (zext (i32 (and (i32 IntRegs:$b), (i32 65535))))),
(i32 16)),
(i64 (zext (i32 (and (i32 IntRegs:$a), (i32 65535)))))),
(shl (i64 (anyext (i32 (and (i32 IntRegs:$c), (i32 65535))))),
(i32 32))),
(shl (i64 (anyext (i32 IntRegs:$d))), (i32 48))))]>;
//===----------------------------------------------------------------------===//
// :raw for of boundscheck:hi:lo insns
//===----------------------------------------------------------------------===//
// A4_boundscheck_lo: Detect if a register is within bounds.
let hasSideEffects = 0 in
def A4_boundscheck_lo: ALU64Inst <
(outs PredRegs:$Pd),
(ins DoubleRegs:$Rss, DoubleRegs:$Rtt),
"$Pd = boundscheck($Rss, $Rtt):raw:lo"> {
bits<2> Pd;
bits<5> Rss;
bits<5> Rtt;
let IClass = 0b1101;
let Inst{27-23} = 0b00100;
let Inst{13} = 0b1;
let Inst{7-5} = 0b100;
let Inst{1-0} = Pd;
let Inst{20-16} = Rss;
let Inst{12-8} = Rtt;
}
// A4_boundscheck_hi: Detect if a register is within bounds.
let hasSideEffects = 0 in
def A4_boundscheck_hi: ALU64Inst <
(outs PredRegs:$Pd),
(ins DoubleRegs:$Rss, DoubleRegs:$Rtt),
"$Pd = boundscheck($Rss, $Rtt):raw:hi"> {
bits<2> Pd;
bits<5> Rss;
bits<5> Rtt;
let IClass = 0b1101;
let Inst{27-23} = 0b00100;
let Inst{13} = 0b1;
let Inst{7-5} = 0b101;
let Inst{1-0} = Pd;
let Inst{20-16} = Rss;
let Inst{12-8} = Rtt;
}
let hasSideEffects = 0, isAsmParserOnly = 1 in
def A4_boundscheck : MInst <
(outs PredRegs:$Pd), (ins IntRegs:$Rs, DoubleRegs:$Rtt),
"$Pd=boundscheck($Rs,$Rtt)">;
// A4_tlbmatch: Detect if a VA/ASID matches a TLB entry.
let isPredicateLate = 1, hasSideEffects = 0 in
def A4_tlbmatch : ALU64Inst<(outs PredRegs:$Pd),
(ins DoubleRegs:$Rs, IntRegs:$Rt),
"$Pd = tlbmatch($Rs, $Rt)",
[], "", ALU64_tc_2early_SLOT23> {
bits<2> Pd;
bits<5> Rs;
bits<5> Rt;
let IClass = 0b1101;
let Inst{27-23} = 0b00100;
let Inst{20-16} = Rs;
let Inst{13} = 0b1;
let Inst{12-8} = Rt;
let Inst{7-5} = 0b011;
let Inst{1-0} = Pd;
}
// We need custom lowering of ISD::PREFETCH into HexagonISD::DCFETCH
// because the SDNode ISD::PREFETCH has properties MayLoad and MayStore.
// We don't really want either one here.
def SDTHexagonDCFETCH : SDTypeProfile<0, 2, [SDTCisPtrTy<0>,SDTCisInt<1>]>;
def HexagonDCFETCH : SDNode<"HexagonISD::DCFETCH", SDTHexagonDCFETCH,
[SDNPHasChain]>;
// Use LD0Inst for dcfetch, but set "mayLoad" to 0 because this doesn't
// really do a load.
let hasSideEffects = 1, mayLoad = 0 in
def Y2_dcfetchbo : LD0Inst<(outs), (ins IntRegs:$Rs, u11_3Imm:$u11_3),
"dcfetch($Rs + #$u11_3)",
[(HexagonDCFETCH IntRegs:$Rs, u11_3ImmPred:$u11_3)],
"", LD_tc_ld_SLOT0> {
bits<5> Rs;
bits<14> u11_3;
let IClass = 0b1001;
let Inst{27-21} = 0b0100000;
let Inst{20-16} = Rs;
let Inst{13} = 0b0;
let Inst{10-0} = u11_3{13-3};
}
//===----------------------------------------------------------------------===//
// Compound instructions
//===----------------------------------------------------------------------===//
let isBranch = 1, hasSideEffects = 0, isExtentSigned = 1,
isPredicated = 1, isPredicatedNew = 1, isExtendable = 1,
opExtentBits = 11, opExtentAlign = 2, opExtendable = 1,
isTerminator = 1 in
class CJInst_tstbit_R0<string px, bit np, string tnt>
: InstHexagon<(outs), (ins IntRegs:$Rs, brtarget:$r9_2),
""#px#" = tstbit($Rs, #0); if ("
#!if(np, "!","")#""#px#".new) jump:"#tnt#" $r9_2",
[], "", COMPOUND, TypeCOMPOUND>, OpcodeHexagon {
bits<4> Rs;
bits<11> r9_2;
// np: !p[01]
let isPredicatedFalse = np;
// tnt: Taken/Not Taken
let isBrTaken = !if (!eq(tnt, "t"), "true", "false");
let isTaken = !if (!eq(tnt, "t"), 1, 0);
let IClass = 0b0001;
let Inst{27-26} = 0b00;
let Inst{25} = !if (!eq(px, "!p1"), 1,
!if (!eq(px, "p1"), 1, 0));
let Inst{24-23} = 0b11;
let Inst{22} = np;
let Inst{21-20} = r9_2{10-9};
let Inst{19-16} = Rs;
let Inst{13} = !if (!eq(tnt, "t"), 1, 0);
let Inst{9-8} = 0b11;
let Inst{7-1} = r9_2{8-2};
}
let Defs = [PC, P0], Uses = [P0] in {
def J4_tstbit0_tp0_jump_nt : CJInst_tstbit_R0<"p0", 0, "nt">;
def J4_tstbit0_tp0_jump_t : CJInst_tstbit_R0<"p0", 0, "t">;
def J4_tstbit0_fp0_jump_nt : CJInst_tstbit_R0<"p0", 1, "nt">;
def J4_tstbit0_fp0_jump_t : CJInst_tstbit_R0<"p0", 1, "t">;
}
let Defs = [PC, P1], Uses = [P1] in {
def J4_tstbit0_tp1_jump_nt : CJInst_tstbit_R0<"p1", 0, "nt">;
def J4_tstbit0_tp1_jump_t : CJInst_tstbit_R0<"p1", 0, "t">;
def J4_tstbit0_fp1_jump_nt : CJInst_tstbit_R0<"p1", 1, "nt">;
def J4_tstbit0_fp1_jump_t : CJInst_tstbit_R0<"p1", 1, "t">;
}
let isBranch = 1, hasSideEffects = 0,
isExtentSigned = 1, isPredicated = 1, isPredicatedNew = 1,
isExtendable = 1, opExtentBits = 11, opExtentAlign = 2,
opExtendable = 2, isTerminator = 1 in
class CJInst_RR<string px, string op, bit np, string tnt>
: InstHexagon<(outs), (ins IntRegs:$Rs, IntRegs:$Rt, brtarget:$r9_2),
""#px#" = cmp."#op#"($Rs, $Rt); if ("
#!if(np, "!","")#""#px#".new) jump:"#tnt#" $r9_2",
[], "", COMPOUND, TypeCOMPOUND>, OpcodeHexagon {
bits<4> Rs;
bits<4> Rt;
bits<11> r9_2;
// np: !p[01]
let isPredicatedFalse = np;
// tnt: Taken/Not Taken
let isBrTaken = !if (!eq(tnt, "t"), "true", "false");
let isTaken = !if (!eq(tnt, "t"), 1, 0);
let IClass = 0b0001;
let Inst{27-23} = !if (!eq(op, "eq"), 0b01000,
!if (!eq(op, "gt"), 0b01001,
!if (!eq(op, "gtu"), 0b01010, 0)));
let Inst{22} = np;
let Inst{21-20} = r9_2{10-9};
let Inst{19-16} = Rs;
let Inst{13} = !if (!eq(tnt, "t"), 1, 0);
// px: Predicate reg 0/1
let Inst{12} = !if (!eq(px, "!p1"), 1,
!if (!eq(px, "p1"), 1, 0));
let Inst{11-8} = Rt;
let Inst{7-1} = r9_2{8-2};
}
// P[10] taken/not taken.
multiclass T_tnt_CJInst_RR<string op, bit np> {
let Defs = [PC, P0], Uses = [P0] in {
def NAME#p0_jump_nt : CJInst_RR<"p0", op, np, "nt">;
def NAME#p0_jump_t : CJInst_RR<"p0", op, np, "t">;
}
let Defs = [PC, P1], Uses = [P1] in {
def NAME#p1_jump_nt : CJInst_RR<"p1", op, np, "nt">;
def NAME#p1_jump_t : CJInst_RR<"p1", op, np, "t">;
}
}
// Predicate / !Predicate
multiclass T_pnp_CJInst_RR<string op>{
defm J4_cmp#NAME#_t : T_tnt_CJInst_RR<op, 0>;
defm J4_cmp#NAME#_f : T_tnt_CJInst_RR<op, 1>;
}
// TypeCJ Instructions compare RR and jump
defm eq : T_pnp_CJInst_RR<"eq">;
defm gt : T_pnp_CJInst_RR<"gt">;
defm gtu : T_pnp_CJInst_RR<"gtu">;
let isBranch = 1, hasSideEffects = 0, isExtentSigned = 1,
isPredicated = 1, isPredicatedNew = 1, isExtendable = 1, opExtentBits = 11,
opExtentAlign = 2, opExtendable = 2, isTerminator = 1 in
class CJInst_RU5<string px, string op, bit np, string tnt>
: InstHexagon<(outs), (ins IntRegs:$Rs, u5Imm:$U5, brtarget:$r9_2),
""#px#" = cmp."#op#"($Rs, #$U5); if ("
#!if(np, "!","")#""#px#".new) jump:"#tnt#" $r9_2",
[], "", COMPOUND, TypeCOMPOUND>, OpcodeHexagon {
bits<4> Rs;
bits<5> U5;
bits<11> r9_2;
// np: !p[01]
let isPredicatedFalse = np;
// tnt: Taken/Not Taken
let isBrTaken = !if (!eq(tnt, "t"), "true", "false");
let isTaken = !if (!eq(tnt, "t"), 1, 0);
let IClass = 0b0001;
let Inst{27-26} = 0b00;
// px: Predicate reg 0/1
let Inst{25} = !if (!eq(px, "!p1"), 1,
!if (!eq(px, "p1"), 1, 0));
let Inst{24-23} = !if (!eq(op, "eq"), 0b00,
!if (!eq(op, "gt"), 0b01,
!if (!eq(op, "gtu"), 0b10, 0)));
let Inst{22} = np;
let Inst{21-20} = r9_2{10-9};
let Inst{19-16} = Rs;
let Inst{13} = !if (!eq(tnt, "t"), 1, 0);
let Inst{12-8} = U5;
let Inst{7-1} = r9_2{8-2};
}
// P[10] taken/not taken.
multiclass T_tnt_CJInst_RU5<string op, bit np> {
let Defs = [PC, P0], Uses = [P0] in {
def NAME#p0_jump_nt : CJInst_RU5<"p0", op, np, "nt">;
def NAME#p0_jump_t : CJInst_RU5<"p0", op, np, "t">;
}
let Defs = [PC, P1], Uses = [P1] in {
def NAME#p1_jump_nt : CJInst_RU5<"p1", op, np, "nt">;
def NAME#p1_jump_t : CJInst_RU5<"p1", op, np, "t">;
}
}
// Predicate / !Predicate
multiclass T_pnp_CJInst_RU5<string op>{
defm J4_cmp#NAME#i_t : T_tnt_CJInst_RU5<op, 0>;
defm J4_cmp#NAME#i_f : T_tnt_CJInst_RU5<op, 1>;
}
// TypeCJ Instructions compare RI and jump
defm eq : T_pnp_CJInst_RU5<"eq">;
defm gt : T_pnp_CJInst_RU5<"gt">;
defm gtu : T_pnp_CJInst_RU5<"gtu">;
let isBranch = 1, hasSideEffects = 0, isExtentSigned = 1,
isPredicated = 1, isPredicatedFalse = 1, isPredicatedNew = 1,
isExtendable = 1, opExtentBits = 11, opExtentAlign = 2, opExtendable = 1,
isTerminator = 1 in
class CJInst_Rn1<string px, string op, bit np, string tnt>
: InstHexagon<(outs), (ins IntRegs:$Rs, brtarget:$r9_2),
""#px#" = cmp."#op#"($Rs,#-1); if ("
#!if(np, "!","")#""#px#".new) jump:"#tnt#" $r9_2",
[], "", COMPOUND, TypeCOMPOUND>, OpcodeHexagon {
bits<4> Rs;
bits<11> r9_2;
// np: !p[01]
let isPredicatedFalse = np;
// tnt: Taken/Not Taken
let isBrTaken = !if (!eq(tnt, "t"), "true", "false");
let isTaken = !if (!eq(tnt, "t"), 1, 0);
let IClass = 0b0001;
let Inst{27-26} = 0b00;
let Inst{25} = !if (!eq(px, "!p1"), 1,
!if (!eq(px, "p1"), 1, 0));
let Inst{24-23} = 0b11;
let Inst{22} = np;
let Inst{21-20} = r9_2{10-9};
let Inst{19-16} = Rs;
let Inst{13} = !if (!eq(tnt, "t"), 1, 0);
let Inst{9-8} = !if (!eq(op, "eq"), 0b00,
!if (!eq(op, "gt"), 0b01, 0));
let Inst{7-1} = r9_2{8-2};
}
// P[10] taken/not taken.
multiclass T_tnt_CJInst_Rn1<string op, bit np> {
let Defs = [PC, P0], Uses = [P0] in {
def NAME#p0_jump_nt : CJInst_Rn1<"p0", op, np, "nt">;
def NAME#p0_jump_t : CJInst_Rn1<"p0", op, np, "t">;
}
let Defs = [PC, P1], Uses = [P1] in {
def NAME#p1_jump_nt : CJInst_Rn1<"p1", op, np, "nt">;
def NAME#p1_jump_t : CJInst_Rn1<"p1", op, np, "t">;
}
}
// Predicate / !Predicate
multiclass T_pnp_CJInst_Rn1<string op>{
defm J4_cmp#NAME#n1_t : T_tnt_CJInst_Rn1<op, 0>;
defm J4_cmp#NAME#n1_f : T_tnt_CJInst_Rn1<op, 1>;
}
// TypeCJ Instructions compare -1 and jump
defm eq : T_pnp_CJInst_Rn1<"eq">;
defm gt : T_pnp_CJInst_Rn1<"gt">;
// J4_jumpseti: Direct unconditional jump and set register to immediate.
let Defs = [PC], isBranch = 1, hasSideEffects = 0, hasNewValue = 1,
isExtentSigned = 1, opNewValue = 0, isExtendable = 1, opExtentBits = 11,
opExtentAlign = 2, opExtendable = 2 in
def J4_jumpseti: CJInst <
(outs IntRegs:$Rd),
(ins u6Imm:$U6, brtarget:$r9_2),
"$Rd = #$U6 ; jump $r9_2"> {
bits<4> Rd;
bits<6> U6;
bits<11> r9_2;
let IClass = 0b0001;
let Inst{27-24} = 0b0110;
let Inst{21-20} = r9_2{10-9};
let Inst{19-16} = Rd;
let Inst{13-8} = U6;
let Inst{7-1} = r9_2{8-2};
}
// J4_jumpsetr: Direct unconditional jump and transfer register.
let Defs = [PC], isBranch = 1, hasSideEffects = 0, hasNewValue = 1,
isExtentSigned = 1, opNewValue = 0, isExtendable = 1, opExtentBits = 11,
opExtentAlign = 2, opExtendable = 2 in
def J4_jumpsetr: CJInst <
(outs IntRegs:$Rd),
(ins IntRegs:$Rs, brtarget:$r9_2),
"$Rd = $Rs ; jump $r9_2"> {
bits<4> Rd;
bits<4> Rs;
bits<11> r9_2;
let IClass = 0b0001;
let Inst{27-24} = 0b0111;
let Inst{21-20} = r9_2{10-9};
let Inst{11-8} = Rd;
let Inst{19-16} = Rs;
let Inst{7-1} = r9_2{8-2};
}
// Duplex instructions
//===----------------------------------------------------------------------===//
include "HexagonIsetDx.td"