| /* MIT License |
| * |
| * Copyright (c) 2016-2022 INRIA, CMU and Microsoft Corporation |
| * Copyright (c) 2022-2023 HACL* Contributors |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in all |
| * copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| */ |
| |
| |
| #include "internal/Hacl_Hash_Blake2s_Simd128.h" |
| |
| #include "Hacl_Streaming_Types.h" |
| #include "Hacl_Hash_Blake2b.h" |
| #include "internal/Hacl_Streaming_Types.h" |
| #include "internal/Hacl_Impl_Blake2_Constants.h" |
| #include "internal/Hacl_Hash_Blake2b.h" |
| #include "lib_memzero0.h" |
| |
| static inline void |
| update_block( |
| Lib_IntVector_Intrinsics_vec128 *wv, |
| Lib_IntVector_Intrinsics_vec128 *hash, |
| bool flag, |
| bool last_node, |
| uint64_t totlen, |
| uint8_t *d |
| ) |
| { |
| uint32_t m_w[16U] = { 0U }; |
| KRML_MAYBE_FOR16(i, |
| 0U, |
| 16U, |
| 1U, |
| uint32_t *os = m_w; |
| uint8_t *bj = d + i * 4U; |
| uint32_t u = load32_le(bj); |
| uint32_t r = u; |
| uint32_t x = r; |
| os[i] = x;); |
| Lib_IntVector_Intrinsics_vec128 mask = Lib_IntVector_Intrinsics_vec128_zero; |
| uint32_t wv_14; |
| if (flag) |
| { |
| wv_14 = 0xFFFFFFFFU; |
| } |
| else |
| { |
| wv_14 = 0U; |
| } |
| uint32_t wv_15; |
| if (last_node) |
| { |
| wv_15 = 0xFFFFFFFFU; |
| } |
| else |
| { |
| wv_15 = 0U; |
| } |
| mask = |
| Lib_IntVector_Intrinsics_vec128_load32s((uint32_t)totlen, |
| (uint32_t)(totlen >> 32U), |
| wv_14, |
| wv_15); |
| memcpy(wv, hash, 4U * sizeof (Lib_IntVector_Intrinsics_vec128)); |
| Lib_IntVector_Intrinsics_vec128 *wv3 = wv + 3U; |
| wv3[0U] = Lib_IntVector_Intrinsics_vec128_xor(wv3[0U], mask); |
| KRML_MAYBE_FOR10(i, |
| 0U, |
| 10U, |
| 1U, |
| uint32_t start_idx = i % 10U * 16U; |
| KRML_PRE_ALIGN(16) Lib_IntVector_Intrinsics_vec128 m_st[4U] KRML_POST_ALIGN(16) = { 0U }; |
| Lib_IntVector_Intrinsics_vec128 *r0 = m_st; |
| Lib_IntVector_Intrinsics_vec128 *r1 = m_st + 1U; |
| Lib_IntVector_Intrinsics_vec128 *r20 = m_st + 2U; |
| Lib_IntVector_Intrinsics_vec128 *r30 = m_st + 3U; |
| uint32_t s0 = Hacl_Hash_Blake2b_sigmaTable[start_idx + 0U]; |
| uint32_t s1 = Hacl_Hash_Blake2b_sigmaTable[start_idx + 1U]; |
| uint32_t s2 = Hacl_Hash_Blake2b_sigmaTable[start_idx + 2U]; |
| uint32_t s3 = Hacl_Hash_Blake2b_sigmaTable[start_idx + 3U]; |
| uint32_t s4 = Hacl_Hash_Blake2b_sigmaTable[start_idx + 4U]; |
| uint32_t s5 = Hacl_Hash_Blake2b_sigmaTable[start_idx + 5U]; |
| uint32_t s6 = Hacl_Hash_Blake2b_sigmaTable[start_idx + 6U]; |
| uint32_t s7 = Hacl_Hash_Blake2b_sigmaTable[start_idx + 7U]; |
| uint32_t s8 = Hacl_Hash_Blake2b_sigmaTable[start_idx + 8U]; |
| uint32_t s9 = Hacl_Hash_Blake2b_sigmaTable[start_idx + 9U]; |
| uint32_t s10 = Hacl_Hash_Blake2b_sigmaTable[start_idx + 10U]; |
| uint32_t s11 = Hacl_Hash_Blake2b_sigmaTable[start_idx + 11U]; |
| uint32_t s12 = Hacl_Hash_Blake2b_sigmaTable[start_idx + 12U]; |
| uint32_t s13 = Hacl_Hash_Blake2b_sigmaTable[start_idx + 13U]; |
| uint32_t s14 = Hacl_Hash_Blake2b_sigmaTable[start_idx + 14U]; |
| uint32_t s15 = Hacl_Hash_Blake2b_sigmaTable[start_idx + 15U]; |
| r0[0U] = Lib_IntVector_Intrinsics_vec128_load32s(m_w[s0], m_w[s2], m_w[s4], m_w[s6]); |
| r1[0U] = Lib_IntVector_Intrinsics_vec128_load32s(m_w[s1], m_w[s3], m_w[s5], m_w[s7]); |
| r20[0U] = Lib_IntVector_Intrinsics_vec128_load32s(m_w[s8], m_w[s10], m_w[s12], m_w[s14]); |
| r30[0U] = Lib_IntVector_Intrinsics_vec128_load32s(m_w[s9], m_w[s11], m_w[s13], m_w[s15]); |
| Lib_IntVector_Intrinsics_vec128 *x = m_st; |
| Lib_IntVector_Intrinsics_vec128 *y = m_st + 1U; |
| Lib_IntVector_Intrinsics_vec128 *z = m_st + 2U; |
| Lib_IntVector_Intrinsics_vec128 *w = m_st + 3U; |
| uint32_t a = 0U; |
| uint32_t b0 = 1U; |
| uint32_t c0 = 2U; |
| uint32_t d10 = 3U; |
| Lib_IntVector_Intrinsics_vec128 *wv_a0 = wv + a * 1U; |
| Lib_IntVector_Intrinsics_vec128 *wv_b0 = wv + b0 * 1U; |
| wv_a0[0U] = Lib_IntVector_Intrinsics_vec128_add32(wv_a0[0U], wv_b0[0U]); |
| wv_a0[0U] = Lib_IntVector_Intrinsics_vec128_add32(wv_a0[0U], x[0U]); |
| Lib_IntVector_Intrinsics_vec128 *wv_a1 = wv + d10 * 1U; |
| Lib_IntVector_Intrinsics_vec128 *wv_b1 = wv + a * 1U; |
| wv_a1[0U] = Lib_IntVector_Intrinsics_vec128_xor(wv_a1[0U], wv_b1[0U]); |
| wv_a1[0U] = Lib_IntVector_Intrinsics_vec128_rotate_right32(wv_a1[0U], 16U); |
| Lib_IntVector_Intrinsics_vec128 *wv_a2 = wv + c0 * 1U; |
| Lib_IntVector_Intrinsics_vec128 *wv_b2 = wv + d10 * 1U; |
| wv_a2[0U] = Lib_IntVector_Intrinsics_vec128_add32(wv_a2[0U], wv_b2[0U]); |
| Lib_IntVector_Intrinsics_vec128 *wv_a3 = wv + b0 * 1U; |
| Lib_IntVector_Intrinsics_vec128 *wv_b3 = wv + c0 * 1U; |
| wv_a3[0U] = Lib_IntVector_Intrinsics_vec128_xor(wv_a3[0U], wv_b3[0U]); |
| wv_a3[0U] = Lib_IntVector_Intrinsics_vec128_rotate_right32(wv_a3[0U], 12U); |
| Lib_IntVector_Intrinsics_vec128 *wv_a4 = wv + a * 1U; |
| Lib_IntVector_Intrinsics_vec128 *wv_b4 = wv + b0 * 1U; |
| wv_a4[0U] = Lib_IntVector_Intrinsics_vec128_add32(wv_a4[0U], wv_b4[0U]); |
| wv_a4[0U] = Lib_IntVector_Intrinsics_vec128_add32(wv_a4[0U], y[0U]); |
| Lib_IntVector_Intrinsics_vec128 *wv_a5 = wv + d10 * 1U; |
| Lib_IntVector_Intrinsics_vec128 *wv_b5 = wv + a * 1U; |
| wv_a5[0U] = Lib_IntVector_Intrinsics_vec128_xor(wv_a5[0U], wv_b5[0U]); |
| wv_a5[0U] = Lib_IntVector_Intrinsics_vec128_rotate_right32(wv_a5[0U], 8U); |
| Lib_IntVector_Intrinsics_vec128 *wv_a6 = wv + c0 * 1U; |
| Lib_IntVector_Intrinsics_vec128 *wv_b6 = wv + d10 * 1U; |
| wv_a6[0U] = Lib_IntVector_Intrinsics_vec128_add32(wv_a6[0U], wv_b6[0U]); |
| Lib_IntVector_Intrinsics_vec128 *wv_a7 = wv + b0 * 1U; |
| Lib_IntVector_Intrinsics_vec128 *wv_b7 = wv + c0 * 1U; |
| wv_a7[0U] = Lib_IntVector_Intrinsics_vec128_xor(wv_a7[0U], wv_b7[0U]); |
| wv_a7[0U] = Lib_IntVector_Intrinsics_vec128_rotate_right32(wv_a7[0U], 7U); |
| Lib_IntVector_Intrinsics_vec128 *r10 = wv + 1U; |
| Lib_IntVector_Intrinsics_vec128 *r21 = wv + 2U; |
| Lib_IntVector_Intrinsics_vec128 *r31 = wv + 3U; |
| Lib_IntVector_Intrinsics_vec128 v00 = r10[0U]; |
| Lib_IntVector_Intrinsics_vec128 |
| v1 = Lib_IntVector_Intrinsics_vec128_rotate_right_lanes32(v00, 1U); |
| r10[0U] = v1; |
| Lib_IntVector_Intrinsics_vec128 v01 = r21[0U]; |
| Lib_IntVector_Intrinsics_vec128 |
| v10 = Lib_IntVector_Intrinsics_vec128_rotate_right_lanes32(v01, 2U); |
| r21[0U] = v10; |
| Lib_IntVector_Intrinsics_vec128 v02 = r31[0U]; |
| Lib_IntVector_Intrinsics_vec128 |
| v11 = Lib_IntVector_Intrinsics_vec128_rotate_right_lanes32(v02, 3U); |
| r31[0U] = v11; |
| uint32_t a0 = 0U; |
| uint32_t b = 1U; |
| uint32_t c = 2U; |
| uint32_t d1 = 3U; |
| Lib_IntVector_Intrinsics_vec128 *wv_a = wv + a0 * 1U; |
| Lib_IntVector_Intrinsics_vec128 *wv_b8 = wv + b * 1U; |
| wv_a[0U] = Lib_IntVector_Intrinsics_vec128_add32(wv_a[0U], wv_b8[0U]); |
| wv_a[0U] = Lib_IntVector_Intrinsics_vec128_add32(wv_a[0U], z[0U]); |
| Lib_IntVector_Intrinsics_vec128 *wv_a8 = wv + d1 * 1U; |
| Lib_IntVector_Intrinsics_vec128 *wv_b9 = wv + a0 * 1U; |
| wv_a8[0U] = Lib_IntVector_Intrinsics_vec128_xor(wv_a8[0U], wv_b9[0U]); |
| wv_a8[0U] = Lib_IntVector_Intrinsics_vec128_rotate_right32(wv_a8[0U], 16U); |
| Lib_IntVector_Intrinsics_vec128 *wv_a9 = wv + c * 1U; |
| Lib_IntVector_Intrinsics_vec128 *wv_b10 = wv + d1 * 1U; |
| wv_a9[0U] = Lib_IntVector_Intrinsics_vec128_add32(wv_a9[0U], wv_b10[0U]); |
| Lib_IntVector_Intrinsics_vec128 *wv_a10 = wv + b * 1U; |
| Lib_IntVector_Intrinsics_vec128 *wv_b11 = wv + c * 1U; |
| wv_a10[0U] = Lib_IntVector_Intrinsics_vec128_xor(wv_a10[0U], wv_b11[0U]); |
| wv_a10[0U] = Lib_IntVector_Intrinsics_vec128_rotate_right32(wv_a10[0U], 12U); |
| Lib_IntVector_Intrinsics_vec128 *wv_a11 = wv + a0 * 1U; |
| Lib_IntVector_Intrinsics_vec128 *wv_b12 = wv + b * 1U; |
| wv_a11[0U] = Lib_IntVector_Intrinsics_vec128_add32(wv_a11[0U], wv_b12[0U]); |
| wv_a11[0U] = Lib_IntVector_Intrinsics_vec128_add32(wv_a11[0U], w[0U]); |
| Lib_IntVector_Intrinsics_vec128 *wv_a12 = wv + d1 * 1U; |
| Lib_IntVector_Intrinsics_vec128 *wv_b13 = wv + a0 * 1U; |
| wv_a12[0U] = Lib_IntVector_Intrinsics_vec128_xor(wv_a12[0U], wv_b13[0U]); |
| wv_a12[0U] = Lib_IntVector_Intrinsics_vec128_rotate_right32(wv_a12[0U], 8U); |
| Lib_IntVector_Intrinsics_vec128 *wv_a13 = wv + c * 1U; |
| Lib_IntVector_Intrinsics_vec128 *wv_b14 = wv + d1 * 1U; |
| wv_a13[0U] = Lib_IntVector_Intrinsics_vec128_add32(wv_a13[0U], wv_b14[0U]); |
| Lib_IntVector_Intrinsics_vec128 *wv_a14 = wv + b * 1U; |
| Lib_IntVector_Intrinsics_vec128 *wv_b = wv + c * 1U; |
| wv_a14[0U] = Lib_IntVector_Intrinsics_vec128_xor(wv_a14[0U], wv_b[0U]); |
| wv_a14[0U] = Lib_IntVector_Intrinsics_vec128_rotate_right32(wv_a14[0U], 7U); |
| Lib_IntVector_Intrinsics_vec128 *r11 = wv + 1U; |
| Lib_IntVector_Intrinsics_vec128 *r2 = wv + 2U; |
| Lib_IntVector_Intrinsics_vec128 *r3 = wv + 3U; |
| Lib_IntVector_Intrinsics_vec128 v0 = r11[0U]; |
| Lib_IntVector_Intrinsics_vec128 |
| v12 = Lib_IntVector_Intrinsics_vec128_rotate_right_lanes32(v0, 3U); |
| r11[0U] = v12; |
| Lib_IntVector_Intrinsics_vec128 v03 = r2[0U]; |
| Lib_IntVector_Intrinsics_vec128 |
| v13 = Lib_IntVector_Intrinsics_vec128_rotate_right_lanes32(v03, 2U); |
| r2[0U] = v13; |
| Lib_IntVector_Intrinsics_vec128 v04 = r3[0U]; |
| Lib_IntVector_Intrinsics_vec128 |
| v14 = Lib_IntVector_Intrinsics_vec128_rotate_right_lanes32(v04, 1U); |
| r3[0U] = v14;); |
| Lib_IntVector_Intrinsics_vec128 *s0 = hash; |
| Lib_IntVector_Intrinsics_vec128 *s1 = hash + 1U; |
| Lib_IntVector_Intrinsics_vec128 *r0 = wv; |
| Lib_IntVector_Intrinsics_vec128 *r1 = wv + 1U; |
| Lib_IntVector_Intrinsics_vec128 *r2 = wv + 2U; |
| Lib_IntVector_Intrinsics_vec128 *r3 = wv + 3U; |
| s0[0U] = Lib_IntVector_Intrinsics_vec128_xor(s0[0U], r0[0U]); |
| s0[0U] = Lib_IntVector_Intrinsics_vec128_xor(s0[0U], r2[0U]); |
| s1[0U] = Lib_IntVector_Intrinsics_vec128_xor(s1[0U], r1[0U]); |
| s1[0U] = Lib_IntVector_Intrinsics_vec128_xor(s1[0U], r3[0U]); |
| } |
| |
| void |
| Hacl_Hash_Blake2s_Simd128_init(Lib_IntVector_Intrinsics_vec128 *hash, uint32_t kk, uint32_t nn) |
| { |
| uint8_t salt[8U] = { 0U }; |
| uint8_t personal[8U] = { 0U }; |
| Hacl_Hash_Blake2b_blake2_params |
| p = |
| { |
| .digest_length = 32U, .key_length = 0U, .fanout = 1U, .depth = 1U, .leaf_length = 0U, |
| .node_offset = 0ULL, .node_depth = 0U, .inner_length = 0U, .salt = salt, .personal = personal |
| }; |
| uint32_t tmp[8U] = { 0U }; |
| Lib_IntVector_Intrinsics_vec128 *r0 = hash; |
| Lib_IntVector_Intrinsics_vec128 *r1 = hash + 1U; |
| Lib_IntVector_Intrinsics_vec128 *r2 = hash + 2U; |
| Lib_IntVector_Intrinsics_vec128 *r3 = hash + 3U; |
| uint32_t iv0 = Hacl_Hash_Blake2b_ivTable_S[0U]; |
| uint32_t iv1 = Hacl_Hash_Blake2b_ivTable_S[1U]; |
| uint32_t iv2 = Hacl_Hash_Blake2b_ivTable_S[2U]; |
| uint32_t iv3 = Hacl_Hash_Blake2b_ivTable_S[3U]; |
| uint32_t iv4 = Hacl_Hash_Blake2b_ivTable_S[4U]; |
| uint32_t iv5 = Hacl_Hash_Blake2b_ivTable_S[5U]; |
| uint32_t iv6 = Hacl_Hash_Blake2b_ivTable_S[6U]; |
| uint32_t iv7 = Hacl_Hash_Blake2b_ivTable_S[7U]; |
| r2[0U] = Lib_IntVector_Intrinsics_vec128_load32s(iv0, iv1, iv2, iv3); |
| r3[0U] = Lib_IntVector_Intrinsics_vec128_load32s(iv4, iv5, iv6, iv7); |
| KRML_MAYBE_FOR2(i, |
| 0U, |
| 2U, |
| 1U, |
| uint32_t *os = tmp + 4U; |
| uint8_t *bj = p.salt + i * 4U; |
| uint32_t u = load32_le(bj); |
| uint32_t r = u; |
| uint32_t x = r; |
| os[i] = x;); |
| KRML_MAYBE_FOR2(i, |
| 0U, |
| 2U, |
| 1U, |
| uint32_t *os = tmp + 6U; |
| uint8_t *bj = p.personal + i * 4U; |
| uint32_t u = load32_le(bj); |
| uint32_t r = u; |
| uint32_t x = r; |
| os[i] = x;); |
| tmp[0U] = |
| (uint32_t)(uint8_t)nn ^ |
| ((uint32_t)(uint8_t)kk << 8U ^ ((uint32_t)p.fanout << 16U ^ (uint32_t)p.depth << 24U)); |
| tmp[1U] = p.leaf_length; |
| tmp[2U] = (uint32_t)p.node_offset; |
| tmp[3U] = |
| (uint32_t)(p.node_offset >> 32U) ^ |
| ((uint32_t)p.node_depth << 16U ^ (uint32_t)p.inner_length << 24U); |
| uint32_t tmp0 = tmp[0U]; |
| uint32_t tmp1 = tmp[1U]; |
| uint32_t tmp2 = tmp[2U]; |
| uint32_t tmp3 = tmp[3U]; |
| uint32_t tmp4 = tmp[4U]; |
| uint32_t tmp5 = tmp[5U]; |
| uint32_t tmp6 = tmp[6U]; |
| uint32_t tmp7 = tmp[7U]; |
| uint32_t iv0_ = iv0 ^ tmp0; |
| uint32_t iv1_ = iv1 ^ tmp1; |
| uint32_t iv2_ = iv2 ^ tmp2; |
| uint32_t iv3_ = iv3 ^ tmp3; |
| uint32_t iv4_ = iv4 ^ tmp4; |
| uint32_t iv5_ = iv5 ^ tmp5; |
| uint32_t iv6_ = iv6 ^ tmp6; |
| uint32_t iv7_ = iv7 ^ tmp7; |
| r0[0U] = Lib_IntVector_Intrinsics_vec128_load32s(iv0_, iv1_, iv2_, iv3_); |
| r1[0U] = Lib_IntVector_Intrinsics_vec128_load32s(iv4_, iv5_, iv6_, iv7_); |
| } |
| |
| static void |
| update_key( |
| Lib_IntVector_Intrinsics_vec128 *wv, |
| Lib_IntVector_Intrinsics_vec128 *hash, |
| uint32_t kk, |
| uint8_t *k, |
| uint32_t ll |
| ) |
| { |
| uint64_t lb = (uint64_t)64U; |
| uint8_t b[64U] = { 0U }; |
| memcpy(b, k, kk * sizeof (uint8_t)); |
| if (ll == 0U) |
| { |
| update_block(wv, hash, true, false, lb, b); |
| } |
| else |
| { |
| update_block(wv, hash, false, false, lb, b); |
| } |
| Lib_Memzero0_memzero(b, 64U, uint8_t, void *); |
| } |
| |
| void |
| Hacl_Hash_Blake2s_Simd128_update_multi( |
| uint32_t len, |
| Lib_IntVector_Intrinsics_vec128 *wv, |
| Lib_IntVector_Intrinsics_vec128 *hash, |
| uint64_t prev, |
| uint8_t *blocks, |
| uint32_t nb |
| ) |
| { |
| KRML_MAYBE_UNUSED_VAR(len); |
| for (uint32_t i = 0U; i < nb; i++) |
| { |
| uint64_t totlen = prev + (uint64_t)((i + 1U) * 64U); |
| uint8_t *b = blocks + i * 64U; |
| update_block(wv, hash, false, false, totlen, b); |
| } |
| } |
| |
| void |
| Hacl_Hash_Blake2s_Simd128_update_last( |
| uint32_t len, |
| Lib_IntVector_Intrinsics_vec128 *wv, |
| Lib_IntVector_Intrinsics_vec128 *hash, |
| bool last_node, |
| uint64_t prev, |
| uint32_t rem, |
| uint8_t *d |
| ) |
| { |
| uint8_t b[64U] = { 0U }; |
| uint8_t *last = d + len - rem; |
| memcpy(b, last, rem * sizeof (uint8_t)); |
| uint64_t totlen = prev + (uint64_t)len; |
| update_block(wv, hash, true, last_node, totlen, b); |
| Lib_Memzero0_memzero(b, 64U, uint8_t, void *); |
| } |
| |
| static inline void |
| update_blocks( |
| uint32_t len, |
| Lib_IntVector_Intrinsics_vec128 *wv, |
| Lib_IntVector_Intrinsics_vec128 *hash, |
| uint64_t prev, |
| uint8_t *blocks |
| ) |
| { |
| uint32_t nb0 = len / 64U; |
| uint32_t rem0 = len % 64U; |
| uint32_t nb; |
| if (rem0 == 0U && nb0 > 0U) |
| { |
| nb = nb0 - 1U; |
| } |
| else |
| { |
| nb = nb0; |
| } |
| uint32_t rem; |
| if (rem0 == 0U && nb0 > 0U) |
| { |
| rem = 64U; |
| } |
| else |
| { |
| rem = rem0; |
| } |
| Hacl_Hash_Blake2s_Simd128_update_multi(len, wv, hash, prev, blocks, nb); |
| Hacl_Hash_Blake2s_Simd128_update_last(len, wv, hash, false, prev, rem, blocks); |
| } |
| |
| static inline void |
| update( |
| Lib_IntVector_Intrinsics_vec128 *wv, |
| Lib_IntVector_Intrinsics_vec128 *hash, |
| uint32_t kk, |
| uint8_t *k, |
| uint32_t ll, |
| uint8_t *d |
| ) |
| { |
| uint64_t lb = (uint64_t)64U; |
| if (kk > 0U) |
| { |
| update_key(wv, hash, kk, k, ll); |
| if (!(ll == 0U)) |
| { |
| update_blocks(ll, wv, hash, lb, d); |
| return; |
| } |
| return; |
| } |
| update_blocks(ll, wv, hash, (uint64_t)0U, d); |
| } |
| |
| void |
| Hacl_Hash_Blake2s_Simd128_finish( |
| uint32_t nn, |
| uint8_t *output, |
| Lib_IntVector_Intrinsics_vec128 *hash |
| ) |
| { |
| uint8_t b[32U] = { 0U }; |
| uint8_t *first = b; |
| uint8_t *second = b + 16U; |
| Lib_IntVector_Intrinsics_vec128 *row0 = hash; |
| Lib_IntVector_Intrinsics_vec128 *row1 = hash + 1U; |
| Lib_IntVector_Intrinsics_vec128_store32_le(first, row0[0U]); |
| Lib_IntVector_Intrinsics_vec128_store32_le(second, row1[0U]); |
| uint8_t *final = b; |
| memcpy(output, final, nn * sizeof (uint8_t)); |
| Lib_Memzero0_memzero(b, 32U, uint8_t, void *); |
| } |
| |
| void |
| Hacl_Hash_Blake2s_Simd128_store_state128s_to_state32( |
| uint32_t *st32, |
| Lib_IntVector_Intrinsics_vec128 *st |
| ) |
| { |
| Lib_IntVector_Intrinsics_vec128 *r0 = st; |
| Lib_IntVector_Intrinsics_vec128 *r1 = st + 1U; |
| Lib_IntVector_Intrinsics_vec128 *r2 = st + 2U; |
| Lib_IntVector_Intrinsics_vec128 *r3 = st + 3U; |
| uint32_t *b0 = st32; |
| uint32_t *b1 = st32 + 4U; |
| uint32_t *b2 = st32 + 8U; |
| uint32_t *b3 = st32 + 12U; |
| uint8_t b8[16U] = { 0U }; |
| Lib_IntVector_Intrinsics_vec128_store32_le(b8, r0[0U]); |
| KRML_MAYBE_FOR4(i, |
| 0U, |
| 4U, |
| 1U, |
| uint32_t *os = b0; |
| uint8_t *bj = b8 + i * 4U; |
| uint32_t u = load32_le(bj); |
| uint32_t r = u; |
| uint32_t x = r; |
| os[i] = x;); |
| uint8_t b80[16U] = { 0U }; |
| Lib_IntVector_Intrinsics_vec128_store32_le(b80, r1[0U]); |
| KRML_MAYBE_FOR4(i, |
| 0U, |
| 4U, |
| 1U, |
| uint32_t *os = b1; |
| uint8_t *bj = b80 + i * 4U; |
| uint32_t u = load32_le(bj); |
| uint32_t r = u; |
| uint32_t x = r; |
| os[i] = x;); |
| uint8_t b81[16U] = { 0U }; |
| Lib_IntVector_Intrinsics_vec128_store32_le(b81, r2[0U]); |
| KRML_MAYBE_FOR4(i, |
| 0U, |
| 4U, |
| 1U, |
| uint32_t *os = b2; |
| uint8_t *bj = b81 + i * 4U; |
| uint32_t u = load32_le(bj); |
| uint32_t r = u; |
| uint32_t x = r; |
| os[i] = x;); |
| uint8_t b82[16U] = { 0U }; |
| Lib_IntVector_Intrinsics_vec128_store32_le(b82, r3[0U]); |
| KRML_MAYBE_FOR4(i, |
| 0U, |
| 4U, |
| 1U, |
| uint32_t *os = b3; |
| uint8_t *bj = b82 + i * 4U; |
| uint32_t u = load32_le(bj); |
| uint32_t r = u; |
| uint32_t x = r; |
| os[i] = x;); |
| } |
| |
| void |
| Hacl_Hash_Blake2s_Simd128_load_state128s_from_state32( |
| Lib_IntVector_Intrinsics_vec128 *st, |
| uint32_t *st32 |
| ) |
| { |
| Lib_IntVector_Intrinsics_vec128 *r0 = st; |
| Lib_IntVector_Intrinsics_vec128 *r1 = st + 1U; |
| Lib_IntVector_Intrinsics_vec128 *r2 = st + 2U; |
| Lib_IntVector_Intrinsics_vec128 *r3 = st + 3U; |
| uint32_t *b0 = st32; |
| uint32_t *b1 = st32 + 4U; |
| uint32_t *b2 = st32 + 8U; |
| uint32_t *b3 = st32 + 12U; |
| r0[0U] = Lib_IntVector_Intrinsics_vec128_load32s(b0[0U], b0[1U], b0[2U], b0[3U]); |
| r1[0U] = Lib_IntVector_Intrinsics_vec128_load32s(b1[0U], b1[1U], b1[2U], b1[3U]); |
| r2[0U] = Lib_IntVector_Intrinsics_vec128_load32s(b2[0U], b2[1U], b2[2U], b2[3U]); |
| r3[0U] = Lib_IntVector_Intrinsics_vec128_load32s(b3[0U], b3[1U], b3[2U], b3[3U]); |
| } |
| |
| Lib_IntVector_Intrinsics_vec128 *Hacl_Hash_Blake2s_Simd128_malloc_internal_state_with_key(void) |
| { |
| Lib_IntVector_Intrinsics_vec128 |
| *buf = |
| (Lib_IntVector_Intrinsics_vec128 *)KRML_ALIGNED_MALLOC(16, |
| sizeof (Lib_IntVector_Intrinsics_vec128) * 4U); |
| if (buf != NULL) |
| { |
| memset(buf, 0U, 4U * sizeof (Lib_IntVector_Intrinsics_vec128)); |
| } |
| return buf; |
| } |
| |
| void |
| Hacl_Hash_Blake2s_Simd128_update_multi_no_inline( |
| Lib_IntVector_Intrinsics_vec128 *s, |
| uint64_t ev, |
| uint8_t *blocks, |
| uint32_t n |
| ) |
| { |
| KRML_PRE_ALIGN(16) Lib_IntVector_Intrinsics_vec128 wv[4U] KRML_POST_ALIGN(16) = { 0U }; |
| Hacl_Hash_Blake2s_Simd128_update_multi(n * 64U, wv, s, ev, blocks, n); |
| } |
| |
| void |
| Hacl_Hash_Blake2s_Simd128_update_last_no_inline( |
| Lib_IntVector_Intrinsics_vec128 *s, |
| uint64_t prev, |
| uint8_t *input, |
| uint32_t input_len |
| ) |
| { |
| KRML_PRE_ALIGN(16) Lib_IntVector_Intrinsics_vec128 wv[4U] KRML_POST_ALIGN(16) = { 0U }; |
| Hacl_Hash_Blake2s_Simd128_update_last(input_len, wv, s, false, prev, input_len, input); |
| } |
| |
| void |
| Hacl_Hash_Blake2s_Simd128_copy_internal_state( |
| Lib_IntVector_Intrinsics_vec128 *src, |
| Lib_IntVector_Intrinsics_vec128 *dst |
| ) |
| { |
| memcpy(dst, src, 4U * sizeof (Lib_IntVector_Intrinsics_vec128)); |
| } |
| |
| typedef struct |
| option___uint8_t___uint8_t___bool_____Lib_IntVector_Intrinsics_vec128_____Lib_IntVector_Intrinsics_vec128____s |
| { |
| Hacl_Streaming_Types_optional tag; |
| Hacl_Hash_Blake2s_Simd128_block_state_t v; |
| } |
| option___uint8_t___uint8_t___bool_____Lib_IntVector_Intrinsics_vec128_____Lib_IntVector_Intrinsics_vec128___; |
| |
| static Hacl_Hash_Blake2s_Simd128_state_t |
| *malloc_raw(Hacl_Hash_Blake2b_index kk, Hacl_Hash_Blake2b_params_and_key key) |
| { |
| uint8_t *buf = (uint8_t *)KRML_HOST_CALLOC(64U, sizeof (uint8_t)); |
| if (buf == NULL) |
| { |
| return NULL; |
| } |
| uint8_t *buf1 = buf; |
| Lib_IntVector_Intrinsics_vec128 |
| *wv0 = |
| (Lib_IntVector_Intrinsics_vec128 *)KRML_ALIGNED_MALLOC(16, |
| sizeof (Lib_IntVector_Intrinsics_vec128) * 4U); |
| if (wv0 != NULL) |
| { |
| memset(wv0, 0U, 4U * sizeof (Lib_IntVector_Intrinsics_vec128)); |
| } |
| option___uint8_t___uint8_t___bool_____Lib_IntVector_Intrinsics_vec128_____Lib_IntVector_Intrinsics_vec128___ |
| block_state; |
| if (wv0 == NULL) |
| { |
| block_state = |
| ( |
| (option___uint8_t___uint8_t___bool_____Lib_IntVector_Intrinsics_vec128_____Lib_IntVector_Intrinsics_vec128___){ |
| .tag = Hacl_Streaming_Types_None |
| } |
| ); |
| } |
| else |
| { |
| Lib_IntVector_Intrinsics_vec128 |
| *b = |
| (Lib_IntVector_Intrinsics_vec128 *)KRML_ALIGNED_MALLOC(16, |
| sizeof (Lib_IntVector_Intrinsics_vec128) * 4U); |
| if (b != NULL) |
| { |
| memset(b, 0U, 4U * sizeof (Lib_IntVector_Intrinsics_vec128)); |
| } |
| if (b == NULL) |
| { |
| KRML_ALIGNED_FREE(wv0); |
| block_state = |
| ( |
| (option___uint8_t___uint8_t___bool_____Lib_IntVector_Intrinsics_vec128_____Lib_IntVector_Intrinsics_vec128___){ |
| .tag = Hacl_Streaming_Types_None |
| } |
| ); |
| } |
| else |
| { |
| block_state = |
| ( |
| (option___uint8_t___uint8_t___bool_____Lib_IntVector_Intrinsics_vec128_____Lib_IntVector_Intrinsics_vec128___){ |
| .tag = Hacl_Streaming_Types_Some, |
| .v = { |
| .fst = kk.key_length, |
| .snd = kk.digest_length, |
| .thd = kk.last_node, |
| .f3 = { .fst = wv0, .snd = b } |
| } |
| } |
| ); |
| } |
| } |
| if (block_state.tag == Hacl_Streaming_Types_None) |
| { |
| KRML_HOST_FREE(buf1); |
| return NULL; |
| } |
| if (block_state.tag == Hacl_Streaming_Types_Some) |
| { |
| Hacl_Hash_Blake2s_Simd128_block_state_t block_state1 = block_state.v; |
| Hacl_Streaming_Types_optional k_ = Hacl_Streaming_Types_Some; |
| switch (k_) |
| { |
| case Hacl_Streaming_Types_None: |
| { |
| return NULL; |
| } |
| case Hacl_Streaming_Types_Some: |
| { |
| uint8_t kk10 = kk.key_length; |
| uint32_t ite; |
| if (kk10 != 0U) |
| { |
| ite = 64U; |
| } |
| else |
| { |
| ite = 0U; |
| } |
| Hacl_Hash_Blake2s_Simd128_state_t |
| s = { .block_state = block_state1, .buf = buf1, .total_len = (uint64_t)ite }; |
| Hacl_Hash_Blake2s_Simd128_state_t |
| *p = |
| (Hacl_Hash_Blake2s_Simd128_state_t *)KRML_HOST_MALLOC(sizeof ( |
| Hacl_Hash_Blake2s_Simd128_state_t |
| )); |
| if (p != NULL) |
| { |
| p[0U] = s; |
| } |
| if (p == NULL) |
| { |
| Lib_IntVector_Intrinsics_vec128 *b = block_state1.f3.snd; |
| Lib_IntVector_Intrinsics_vec128 *wv = block_state1.f3.fst; |
| KRML_ALIGNED_FREE(wv); |
| KRML_ALIGNED_FREE(b); |
| KRML_HOST_FREE(buf1); |
| return NULL; |
| } |
| Hacl_Hash_Blake2b_blake2_params *p1 = key.fst; |
| uint8_t kk1 = p1->key_length; |
| uint8_t nn = p1->digest_length; |
| bool last_node = block_state1.thd; |
| Hacl_Hash_Blake2b_index |
| i = { .key_length = kk1, .digest_length = nn, .last_node = last_node }; |
| Lib_IntVector_Intrinsics_vec128 *h = block_state1.f3.snd; |
| uint32_t kk2 = (uint32_t)i.key_length; |
| uint8_t *k_2 = key.snd; |
| if (!(kk2 == 0U)) |
| { |
| uint8_t *sub_b = buf1 + kk2; |
| memset(sub_b, 0U, (64U - kk2) * sizeof (uint8_t)); |
| memcpy(buf1, k_2, kk2 * sizeof (uint8_t)); |
| } |
| Hacl_Hash_Blake2b_blake2_params pv = p1[0U]; |
| uint32_t tmp[8U] = { 0U }; |
| Lib_IntVector_Intrinsics_vec128 *r0 = h; |
| Lib_IntVector_Intrinsics_vec128 *r1 = h + 1U; |
| Lib_IntVector_Intrinsics_vec128 *r2 = h + 2U; |
| Lib_IntVector_Intrinsics_vec128 *r3 = h + 3U; |
| uint32_t iv0 = Hacl_Hash_Blake2b_ivTable_S[0U]; |
| uint32_t iv1 = Hacl_Hash_Blake2b_ivTable_S[1U]; |
| uint32_t iv2 = Hacl_Hash_Blake2b_ivTable_S[2U]; |
| uint32_t iv3 = Hacl_Hash_Blake2b_ivTable_S[3U]; |
| uint32_t iv4 = Hacl_Hash_Blake2b_ivTable_S[4U]; |
| uint32_t iv5 = Hacl_Hash_Blake2b_ivTable_S[5U]; |
| uint32_t iv6 = Hacl_Hash_Blake2b_ivTable_S[6U]; |
| uint32_t iv7 = Hacl_Hash_Blake2b_ivTable_S[7U]; |
| r2[0U] = Lib_IntVector_Intrinsics_vec128_load32s(iv0, iv1, iv2, iv3); |
| r3[0U] = Lib_IntVector_Intrinsics_vec128_load32s(iv4, iv5, iv6, iv7); |
| KRML_MAYBE_FOR2(i0, |
| 0U, |
| 2U, |
| 1U, |
| uint32_t *os = tmp + 4U; |
| uint8_t *bj = pv.salt + i0 * 4U; |
| uint32_t u = load32_le(bj); |
| uint32_t r4 = u; |
| uint32_t x = r4; |
| os[i0] = x;); |
| KRML_MAYBE_FOR2(i0, |
| 0U, |
| 2U, |
| 1U, |
| uint32_t *os = tmp + 6U; |
| uint8_t *bj = pv.personal + i0 * 4U; |
| uint32_t u = load32_le(bj); |
| uint32_t r4 = u; |
| uint32_t x = r4; |
| os[i0] = x;); |
| tmp[0U] = |
| (uint32_t)pv.digest_length ^ |
| ((uint32_t)pv.key_length << 8U ^ |
| ((uint32_t)pv.fanout << 16U ^ (uint32_t)pv.depth << 24U)); |
| tmp[1U] = pv.leaf_length; |
| tmp[2U] = (uint32_t)pv.node_offset; |
| tmp[3U] = |
| (uint32_t)(pv.node_offset >> 32U) ^ |
| ((uint32_t)pv.node_depth << 16U ^ (uint32_t)pv.inner_length << 24U); |
| uint32_t tmp0 = tmp[0U]; |
| uint32_t tmp1 = tmp[1U]; |
| uint32_t tmp2 = tmp[2U]; |
| uint32_t tmp3 = tmp[3U]; |
| uint32_t tmp4 = tmp[4U]; |
| uint32_t tmp5 = tmp[5U]; |
| uint32_t tmp6 = tmp[6U]; |
| uint32_t tmp7 = tmp[7U]; |
| uint32_t iv0_ = iv0 ^ tmp0; |
| uint32_t iv1_ = iv1 ^ tmp1; |
| uint32_t iv2_ = iv2 ^ tmp2; |
| uint32_t iv3_ = iv3 ^ tmp3; |
| uint32_t iv4_ = iv4 ^ tmp4; |
| uint32_t iv5_ = iv5 ^ tmp5; |
| uint32_t iv6_ = iv6 ^ tmp6; |
| uint32_t iv7_ = iv7 ^ tmp7; |
| r0[0U] = Lib_IntVector_Intrinsics_vec128_load32s(iv0_, iv1_, iv2_, iv3_); |
| r1[0U] = Lib_IntVector_Intrinsics_vec128_load32s(iv4_, iv5_, iv6_, iv7_); |
| return p; |
| } |
| default: |
| { |
| KRML_HOST_EPRINTF("KaRaMeL incomplete match at %s:%d\n", __FILE__, __LINE__); |
| KRML_HOST_EXIT(253U); |
| } |
| } |
| } |
| KRML_HOST_EPRINTF("KaRaMeL abort at %s:%d\n%s\n", |
| __FILE__, |
| __LINE__, |
| "unreachable (pattern matches are exhaustive in F*)"); |
| KRML_HOST_EXIT(255U); |
| } |
| |
| /** |
| General-purpose allocation function that gives control over all |
| Blake2 parameters, including the key. Further resettings of the state SHALL be |
| done with `reset_with_params_and_key`, and SHALL feature the exact same values |
| for the `key_length` and `digest_length` fields as passed here. In other words, |
| once you commit to a digest and key length, the only way to change these |
| parameters is to allocate a new object. |
| |
| The caller must satisfy the following requirements. |
| - The length of the key k MUST match the value of the field key_length in the |
| parameters. |
| - The key_length must not exceed 128 for S, 64 for B. |
| - The digest_length must not exceed 128 for S, 64 for B. |
| |
| */ |
| Hacl_Hash_Blake2s_Simd128_state_t |
| *Hacl_Hash_Blake2s_Simd128_malloc_with_params_and_key( |
| Hacl_Hash_Blake2b_blake2_params *p, |
| bool last_node, |
| uint8_t *k |
| ) |
| { |
| Hacl_Hash_Blake2b_blake2_params pv = p[0U]; |
| Hacl_Hash_Blake2b_index |
| i1 = { .key_length = pv.key_length, .digest_length = pv.digest_length, .last_node = last_node }; |
| return malloc_raw(i1, ((Hacl_Hash_Blake2b_params_and_key){ .fst = p, .snd = k })); |
| } |
| |
| /** |
| Specialized allocation function that picks default values for all |
| parameters, except for the key_length. Further resettings of the state SHALL be |
| done with `reset_with_key`, and SHALL feature the exact same key length `kk` as |
| passed here. In other words, once you commit to a key length, the only way to |
| change this parameter is to allocate a new object. |
| |
| The caller must satisfy the following requirements. |
| - The key_length must not exceed 128 for S, 64 for B. |
| |
| */ |
| Hacl_Hash_Blake2s_Simd128_state_t |
| *Hacl_Hash_Blake2s_Simd128_malloc_with_key(uint8_t *k, uint8_t kk) |
| { |
| uint8_t nn = 32U; |
| Hacl_Hash_Blake2b_index i = { .key_length = kk, .digest_length = nn, .last_node = false }; |
| uint8_t salt[8U] = { 0U }; |
| uint8_t personal[8U] = { 0U }; |
| Hacl_Hash_Blake2b_blake2_params |
| p = |
| { |
| .digest_length = i.digest_length, .key_length = i.key_length, .fanout = 1U, .depth = 1U, |
| .leaf_length = 0U, .node_offset = 0ULL, .node_depth = 0U, .inner_length = 0U, .salt = salt, |
| .personal = personal |
| }; |
| Hacl_Hash_Blake2b_blake2_params p0 = p; |
| Hacl_Hash_Blake2s_Simd128_state_t |
| *s = Hacl_Hash_Blake2s_Simd128_malloc_with_params_and_key(&p0, false, k); |
| return s; |
| } |
| |
| /** |
| Specialized allocation function that picks default values for all |
| parameters, and has no key. Effectively, this is what you want if you intend to |
| use Blake2 as a hash function. Further resettings of the state SHALL be done with `reset`. |
| */ |
| Hacl_Hash_Blake2s_Simd128_state_t *Hacl_Hash_Blake2s_Simd128_malloc(void) |
| { |
| return Hacl_Hash_Blake2s_Simd128_malloc_with_key(NULL, 0U); |
| } |
| |
| static Hacl_Hash_Blake2b_index index_of_state(Hacl_Hash_Blake2s_Simd128_state_t *s) |
| { |
| Hacl_Hash_Blake2s_Simd128_block_state_t block_state = (*s).block_state; |
| bool last_node = block_state.thd; |
| uint8_t nn = block_state.snd; |
| uint8_t kk1 = block_state.fst; |
| return |
| ((Hacl_Hash_Blake2b_index){ .key_length = kk1, .digest_length = nn, .last_node = last_node }); |
| } |
| |
| static void |
| reset_raw(Hacl_Hash_Blake2s_Simd128_state_t *state, Hacl_Hash_Blake2b_params_and_key key) |
| { |
| Hacl_Hash_Blake2s_Simd128_state_t scrut = *state; |
| uint8_t *buf = scrut.buf; |
| Hacl_Hash_Blake2s_Simd128_block_state_t block_state = scrut.block_state; |
| bool last_node0 = block_state.thd; |
| uint8_t nn0 = block_state.snd; |
| uint8_t kk10 = block_state.fst; |
| Hacl_Hash_Blake2b_index |
| i = { .key_length = kk10, .digest_length = nn0, .last_node = last_node0 }; |
| KRML_MAYBE_UNUSED_VAR(i); |
| Hacl_Hash_Blake2b_blake2_params *p = key.fst; |
| uint8_t kk1 = p->key_length; |
| uint8_t nn = p->digest_length; |
| bool last_node = block_state.thd; |
| Hacl_Hash_Blake2b_index |
| i1 = { .key_length = kk1, .digest_length = nn, .last_node = last_node }; |
| Lib_IntVector_Intrinsics_vec128 *h = block_state.f3.snd; |
| uint32_t kk2 = (uint32_t)i1.key_length; |
| uint8_t *k_1 = key.snd; |
| if (!(kk2 == 0U)) |
| { |
| uint8_t *sub_b = buf + kk2; |
| memset(sub_b, 0U, (64U - kk2) * sizeof (uint8_t)); |
| memcpy(buf, k_1, kk2 * sizeof (uint8_t)); |
| } |
| Hacl_Hash_Blake2b_blake2_params pv = p[0U]; |
| uint32_t tmp[8U] = { 0U }; |
| Lib_IntVector_Intrinsics_vec128 *r0 = h; |
| Lib_IntVector_Intrinsics_vec128 *r1 = h + 1U; |
| Lib_IntVector_Intrinsics_vec128 *r2 = h + 2U; |
| Lib_IntVector_Intrinsics_vec128 *r3 = h + 3U; |
| uint32_t iv0 = Hacl_Hash_Blake2b_ivTable_S[0U]; |
| uint32_t iv1 = Hacl_Hash_Blake2b_ivTable_S[1U]; |
| uint32_t iv2 = Hacl_Hash_Blake2b_ivTable_S[2U]; |
| uint32_t iv3 = Hacl_Hash_Blake2b_ivTable_S[3U]; |
| uint32_t iv4 = Hacl_Hash_Blake2b_ivTable_S[4U]; |
| uint32_t iv5 = Hacl_Hash_Blake2b_ivTable_S[5U]; |
| uint32_t iv6 = Hacl_Hash_Blake2b_ivTable_S[6U]; |
| uint32_t iv7 = Hacl_Hash_Blake2b_ivTable_S[7U]; |
| r2[0U] = Lib_IntVector_Intrinsics_vec128_load32s(iv0, iv1, iv2, iv3); |
| r3[0U] = Lib_IntVector_Intrinsics_vec128_load32s(iv4, iv5, iv6, iv7); |
| KRML_MAYBE_FOR2(i0, |
| 0U, |
| 2U, |
| 1U, |
| uint32_t *os = tmp + 4U; |
| uint8_t *bj = pv.salt + i0 * 4U; |
| uint32_t u = load32_le(bj); |
| uint32_t r = u; |
| uint32_t x = r; |
| os[i0] = x;); |
| KRML_MAYBE_FOR2(i0, |
| 0U, |
| 2U, |
| 1U, |
| uint32_t *os = tmp + 6U; |
| uint8_t *bj = pv.personal + i0 * 4U; |
| uint32_t u = load32_le(bj); |
| uint32_t r = u; |
| uint32_t x = r; |
| os[i0] = x;); |
| tmp[0U] = |
| (uint32_t)pv.digest_length ^ |
| ((uint32_t)pv.key_length << 8U ^ ((uint32_t)pv.fanout << 16U ^ (uint32_t)pv.depth << 24U)); |
| tmp[1U] = pv.leaf_length; |
| tmp[2U] = (uint32_t)pv.node_offset; |
| tmp[3U] = |
| (uint32_t)(pv.node_offset >> 32U) ^ |
| ((uint32_t)pv.node_depth << 16U ^ (uint32_t)pv.inner_length << 24U); |
| uint32_t tmp0 = tmp[0U]; |
| uint32_t tmp1 = tmp[1U]; |
| uint32_t tmp2 = tmp[2U]; |
| uint32_t tmp3 = tmp[3U]; |
| uint32_t tmp4 = tmp[4U]; |
| uint32_t tmp5 = tmp[5U]; |
| uint32_t tmp6 = tmp[6U]; |
| uint32_t tmp7 = tmp[7U]; |
| uint32_t iv0_ = iv0 ^ tmp0; |
| uint32_t iv1_ = iv1 ^ tmp1; |
| uint32_t iv2_ = iv2 ^ tmp2; |
| uint32_t iv3_ = iv3 ^ tmp3; |
| uint32_t iv4_ = iv4 ^ tmp4; |
| uint32_t iv5_ = iv5 ^ tmp5; |
| uint32_t iv6_ = iv6 ^ tmp6; |
| uint32_t iv7_ = iv7 ^ tmp7; |
| r0[0U] = Lib_IntVector_Intrinsics_vec128_load32s(iv0_, iv1_, iv2_, iv3_); |
| r1[0U] = Lib_IntVector_Intrinsics_vec128_load32s(iv4_, iv5_, iv6_, iv7_); |
| uint8_t kk11 = i.key_length; |
| uint32_t ite; |
| if (kk11 != 0U) |
| { |
| ite = 64U; |
| } |
| else |
| { |
| ite = 0U; |
| } |
| Hacl_Hash_Blake2s_Simd128_state_t |
| tmp8 = { .block_state = block_state, .buf = buf, .total_len = (uint64_t)ite }; |
| state[0U] = tmp8; |
| } |
| |
| /** |
| General-purpose re-initialization function with parameters and |
| key. You cannot change digest_length, key_length, or last_node, meaning those values in |
| the parameters object must be the same as originally decided via one of the |
| malloc functions. All other values of the parameter can be changed. The behavior |
| is unspecified if you violate this precondition. |
| */ |
| void |
| Hacl_Hash_Blake2s_Simd128_reset_with_key_and_params( |
| Hacl_Hash_Blake2s_Simd128_state_t *s, |
| Hacl_Hash_Blake2b_blake2_params *p, |
| uint8_t *k |
| ) |
| { |
| Hacl_Hash_Blake2b_index i1 = index_of_state(s); |
| KRML_MAYBE_UNUSED_VAR(i1); |
| reset_raw(s, ((Hacl_Hash_Blake2b_params_and_key){ .fst = p, .snd = k })); |
| } |
| |
| /** |
| Specialized-purpose re-initialization function with no parameters, |
| and a key. The key length must be the same as originally decided via your choice |
| of malloc function. All other parameters are reset to their default values. The |
| original call to malloc MUST have set digest_length to the default value. The |
| behavior is unspecified if you violate this precondition. |
| */ |
| void Hacl_Hash_Blake2s_Simd128_reset_with_key(Hacl_Hash_Blake2s_Simd128_state_t *s, uint8_t *k) |
| { |
| Hacl_Hash_Blake2b_index idx = index_of_state(s); |
| uint8_t salt[8U] = { 0U }; |
| uint8_t personal[8U] = { 0U }; |
| Hacl_Hash_Blake2b_blake2_params |
| p = |
| { |
| .digest_length = idx.digest_length, .key_length = idx.key_length, .fanout = 1U, .depth = 1U, |
| .leaf_length = 0U, .node_offset = 0ULL, .node_depth = 0U, .inner_length = 0U, .salt = salt, |
| .personal = personal |
| }; |
| Hacl_Hash_Blake2b_blake2_params p0 = p; |
| reset_raw(s, ((Hacl_Hash_Blake2b_params_and_key){ .fst = &p0, .snd = k })); |
| } |
| |
| /** |
| Specialized-purpose re-initialization function with no parameters |
| and no key. This is what you want if you intend to use Blake2 as a hash |
| function. The key length and digest length must have been set to their |
| respective default values via your choice of malloc function (always true if you |
| used `malloc`). All other parameters are reset to their default values. The |
| behavior is unspecified if you violate this precondition. |
| */ |
| void Hacl_Hash_Blake2s_Simd128_reset(Hacl_Hash_Blake2s_Simd128_state_t *s) |
| { |
| Hacl_Hash_Blake2s_Simd128_reset_with_key(s, NULL); |
| } |
| |
| /** |
| Update function; 0 = success, 1 = max length exceeded |
| */ |
| Hacl_Streaming_Types_error_code |
| Hacl_Hash_Blake2s_Simd128_update( |
| Hacl_Hash_Blake2s_Simd128_state_t *state, |
| uint8_t *chunk, |
| uint32_t chunk_len |
| ) |
| { |
| Hacl_Hash_Blake2s_Simd128_state_t s = *state; |
| uint64_t total_len = s.total_len; |
| if ((uint64_t)chunk_len > 0xffffffffffffffffULL - total_len) |
| { |
| return Hacl_Streaming_Types_MaximumLengthExceeded; |
| } |
| uint32_t sz; |
| if (total_len % (uint64_t)64U == 0ULL && total_len > 0ULL) |
| { |
| sz = 64U; |
| } |
| else |
| { |
| sz = (uint32_t)(total_len % (uint64_t)64U); |
| } |
| if (chunk_len <= 64U - sz) |
| { |
| Hacl_Hash_Blake2s_Simd128_state_t s1 = *state; |
| Hacl_Hash_Blake2s_Simd128_block_state_t block_state1 = s1.block_state; |
| uint8_t *buf = s1.buf; |
| uint64_t total_len1 = s1.total_len; |
| uint32_t sz1; |
| if (total_len1 % (uint64_t)64U == 0ULL && total_len1 > 0ULL) |
| { |
| sz1 = 64U; |
| } |
| else |
| { |
| sz1 = (uint32_t)(total_len1 % (uint64_t)64U); |
| } |
| uint8_t *buf2 = buf + sz1; |
| memcpy(buf2, chunk, chunk_len * sizeof (uint8_t)); |
| uint64_t total_len2 = total_len1 + (uint64_t)chunk_len; |
| *state = |
| ( |
| (Hacl_Hash_Blake2s_Simd128_state_t){ |
| .block_state = block_state1, |
| .buf = buf, |
| .total_len = total_len2 |
| } |
| ); |
| } |
| else if (sz == 0U) |
| { |
| Hacl_Hash_Blake2s_Simd128_state_t s1 = *state; |
| Hacl_Hash_Blake2s_Simd128_block_state_t block_state1 = s1.block_state; |
| uint8_t *buf = s1.buf; |
| uint64_t total_len1 = s1.total_len; |
| uint32_t sz1; |
| if (total_len1 % (uint64_t)64U == 0ULL && total_len1 > 0ULL) |
| { |
| sz1 = 64U; |
| } |
| else |
| { |
| sz1 = (uint32_t)(total_len1 % (uint64_t)64U); |
| } |
| if (!(sz1 == 0U)) |
| { |
| uint64_t prevlen = total_len1 - (uint64_t)sz1; |
| Hacl_Hash_Blake2s_Simd128_two_2s_128 acc = block_state1.f3; |
| Lib_IntVector_Intrinsics_vec128 *wv = acc.fst; |
| Lib_IntVector_Intrinsics_vec128 *hash = acc.snd; |
| uint32_t nb = 1U; |
| Hacl_Hash_Blake2s_Simd128_update_multi(64U, wv, hash, prevlen, buf, nb); |
| } |
| uint32_t ite; |
| if ((uint64_t)chunk_len % (uint64_t)64U == 0ULL && (uint64_t)chunk_len > 0ULL) |
| { |
| ite = 64U; |
| } |
| else |
| { |
| ite = (uint32_t)((uint64_t)chunk_len % (uint64_t)64U); |
| } |
| uint32_t n_blocks = (chunk_len - ite) / 64U; |
| uint32_t data1_len = n_blocks * 64U; |
| uint32_t data2_len = chunk_len - data1_len; |
| uint8_t *data1 = chunk; |
| uint8_t *data2 = chunk + data1_len; |
| Hacl_Hash_Blake2s_Simd128_two_2s_128 acc = block_state1.f3; |
| Lib_IntVector_Intrinsics_vec128 *wv = acc.fst; |
| Lib_IntVector_Intrinsics_vec128 *hash = acc.snd; |
| uint32_t nb = data1_len / 64U; |
| Hacl_Hash_Blake2s_Simd128_update_multi(data1_len, wv, hash, total_len1, data1, nb); |
| uint8_t *dst = buf; |
| memcpy(dst, data2, data2_len * sizeof (uint8_t)); |
| *state = |
| ( |
| (Hacl_Hash_Blake2s_Simd128_state_t){ |
| .block_state = block_state1, |
| .buf = buf, |
| .total_len = total_len1 + (uint64_t)chunk_len |
| } |
| ); |
| } |
| else |
| { |
| uint32_t diff = 64U - sz; |
| uint8_t *chunk1 = chunk; |
| uint8_t *chunk2 = chunk + diff; |
| Hacl_Hash_Blake2s_Simd128_state_t s1 = *state; |
| Hacl_Hash_Blake2s_Simd128_block_state_t block_state10 = s1.block_state; |
| uint8_t *buf0 = s1.buf; |
| uint64_t total_len10 = s1.total_len; |
| uint32_t sz10; |
| if (total_len10 % (uint64_t)64U == 0ULL && total_len10 > 0ULL) |
| { |
| sz10 = 64U; |
| } |
| else |
| { |
| sz10 = (uint32_t)(total_len10 % (uint64_t)64U); |
| } |
| uint8_t *buf2 = buf0 + sz10; |
| memcpy(buf2, chunk1, diff * sizeof (uint8_t)); |
| uint64_t total_len2 = total_len10 + (uint64_t)diff; |
| *state = |
| ( |
| (Hacl_Hash_Blake2s_Simd128_state_t){ |
| .block_state = block_state10, |
| .buf = buf0, |
| .total_len = total_len2 |
| } |
| ); |
| Hacl_Hash_Blake2s_Simd128_state_t s10 = *state; |
| Hacl_Hash_Blake2s_Simd128_block_state_t block_state1 = s10.block_state; |
| uint8_t *buf = s10.buf; |
| uint64_t total_len1 = s10.total_len; |
| uint32_t sz1; |
| if (total_len1 % (uint64_t)64U == 0ULL && total_len1 > 0ULL) |
| { |
| sz1 = 64U; |
| } |
| else |
| { |
| sz1 = (uint32_t)(total_len1 % (uint64_t)64U); |
| } |
| if (!(sz1 == 0U)) |
| { |
| uint64_t prevlen = total_len1 - (uint64_t)sz1; |
| Hacl_Hash_Blake2s_Simd128_two_2s_128 acc = block_state1.f3; |
| Lib_IntVector_Intrinsics_vec128 *wv = acc.fst; |
| Lib_IntVector_Intrinsics_vec128 *hash = acc.snd; |
| uint32_t nb = 1U; |
| Hacl_Hash_Blake2s_Simd128_update_multi(64U, wv, hash, prevlen, buf, nb); |
| } |
| uint32_t ite; |
| if |
| ((uint64_t)(chunk_len - diff) % (uint64_t)64U == 0ULL && (uint64_t)(chunk_len - diff) > 0ULL) |
| { |
| ite = 64U; |
| } |
| else |
| { |
| ite = (uint32_t)((uint64_t)(chunk_len - diff) % (uint64_t)64U); |
| } |
| uint32_t n_blocks = (chunk_len - diff - ite) / 64U; |
| uint32_t data1_len = n_blocks * 64U; |
| uint32_t data2_len = chunk_len - diff - data1_len; |
| uint8_t *data1 = chunk2; |
| uint8_t *data2 = chunk2 + data1_len; |
| Hacl_Hash_Blake2s_Simd128_two_2s_128 acc = block_state1.f3; |
| Lib_IntVector_Intrinsics_vec128 *wv = acc.fst; |
| Lib_IntVector_Intrinsics_vec128 *hash = acc.snd; |
| uint32_t nb = data1_len / 64U; |
| Hacl_Hash_Blake2s_Simd128_update_multi(data1_len, wv, hash, total_len1, data1, nb); |
| uint8_t *dst = buf; |
| memcpy(dst, data2, data2_len * sizeof (uint8_t)); |
| *state = |
| ( |
| (Hacl_Hash_Blake2s_Simd128_state_t){ |
| .block_state = block_state1, |
| .buf = buf, |
| .total_len = total_len1 + (uint64_t)(chunk_len - diff) |
| } |
| ); |
| } |
| return Hacl_Streaming_Types_Success; |
| } |
| |
| /** |
| Digest function. This function expects the `output` array to hold |
| at least `digest_length` bytes, where `digest_length` was determined by your |
| choice of `malloc` function. Concretely, if you used `malloc` or |
| `malloc_with_key`, then the expected length is 128 for S, or 64 for B (default |
| digest length). If you used `malloc_with_params_and_key`, then the expected |
| length is whatever you chose for the `digest_length` field of your parameters. |
| For convenience, this function returns `digest_length`. When in doubt, callers |
| can pass an array of size HACL_BLAKE2S_128_OUT_BYTES, then use the return value |
| to see how many bytes were actually written. |
| */ |
| uint8_t Hacl_Hash_Blake2s_Simd128_digest(Hacl_Hash_Blake2s_Simd128_state_t *s, uint8_t *dst) |
| { |
| Hacl_Hash_Blake2s_Simd128_block_state_t block_state0 = (*s).block_state; |
| bool last_node0 = block_state0.thd; |
| uint8_t nn0 = block_state0.snd; |
| uint8_t kk0 = block_state0.fst; |
| Hacl_Hash_Blake2b_index |
| i1 = { .key_length = kk0, .digest_length = nn0, .last_node = last_node0 }; |
| Hacl_Hash_Blake2s_Simd128_state_t scrut = *s; |
| Hacl_Hash_Blake2s_Simd128_block_state_t block_state = scrut.block_state; |
| uint8_t *buf_ = scrut.buf; |
| uint64_t total_len = scrut.total_len; |
| uint32_t r; |
| if (total_len % (uint64_t)64U == 0ULL && total_len > 0ULL) |
| { |
| r = 64U; |
| } |
| else |
| { |
| r = (uint32_t)(total_len % (uint64_t)64U); |
| } |
| uint8_t *buf_1 = buf_; |
| KRML_PRE_ALIGN(16) Lib_IntVector_Intrinsics_vec128 wv0[4U] KRML_POST_ALIGN(16) = { 0U }; |
| KRML_PRE_ALIGN(16) Lib_IntVector_Intrinsics_vec128 b[4U] KRML_POST_ALIGN(16) = { 0U }; |
| Hacl_Hash_Blake2s_Simd128_block_state_t |
| tmp_block_state = |
| { |
| .fst = i1.key_length, |
| .snd = i1.digest_length, |
| .thd = i1.last_node, |
| .f3 = { .fst = wv0, .snd = b } |
| }; |
| Lib_IntVector_Intrinsics_vec128 *src_b = block_state.f3.snd; |
| Lib_IntVector_Intrinsics_vec128 *dst_b = tmp_block_state.f3.snd; |
| memcpy(dst_b, src_b, 4U * sizeof (Lib_IntVector_Intrinsics_vec128)); |
| uint64_t prev_len = total_len - (uint64_t)r; |
| uint32_t ite; |
| if (r % 64U == 0U && r > 0U) |
| { |
| ite = 64U; |
| } |
| else |
| { |
| ite = r % 64U; |
| } |
| uint8_t *buf_last = buf_1 + r - ite; |
| uint8_t *buf_multi = buf_1; |
| Hacl_Hash_Blake2s_Simd128_two_2s_128 acc0 = tmp_block_state.f3; |
| Lib_IntVector_Intrinsics_vec128 *wv1 = acc0.fst; |
| Lib_IntVector_Intrinsics_vec128 *hash0 = acc0.snd; |
| uint32_t nb = 0U; |
| Hacl_Hash_Blake2s_Simd128_update_multi(0U, wv1, hash0, prev_len, buf_multi, nb); |
| uint64_t prev_len_last = total_len - (uint64_t)r; |
| Hacl_Hash_Blake2s_Simd128_two_2s_128 acc = tmp_block_state.f3; |
| bool last_node1 = tmp_block_state.thd; |
| Lib_IntVector_Intrinsics_vec128 *wv = acc.fst; |
| Lib_IntVector_Intrinsics_vec128 *hash = acc.snd; |
| Hacl_Hash_Blake2s_Simd128_update_last(r, wv, hash, last_node1, prev_len_last, r, buf_last); |
| uint8_t nn1 = tmp_block_state.snd; |
| Hacl_Hash_Blake2s_Simd128_finish((uint32_t)nn1, dst, tmp_block_state.f3.snd); |
| Hacl_Hash_Blake2s_Simd128_block_state_t block_state1 = (*s).block_state; |
| bool last_node = block_state1.thd; |
| uint8_t nn = block_state1.snd; |
| uint8_t kk = block_state1.fst; |
| return |
| ((Hacl_Hash_Blake2b_index){ .key_length = kk, .digest_length = nn, .last_node = last_node }).digest_length; |
| } |
| |
| Hacl_Hash_Blake2b_index Hacl_Hash_Blake2s_Simd128_info(Hacl_Hash_Blake2s_Simd128_state_t *s) |
| { |
| Hacl_Hash_Blake2s_Simd128_block_state_t block_state = (*s).block_state; |
| bool last_node = block_state.thd; |
| uint8_t nn = block_state.snd; |
| uint8_t kk = block_state.fst; |
| return |
| ((Hacl_Hash_Blake2b_index){ .key_length = kk, .digest_length = nn, .last_node = last_node }); |
| } |
| |
| /** |
| Free state function when there is no key |
| */ |
| void Hacl_Hash_Blake2s_Simd128_free(Hacl_Hash_Blake2s_Simd128_state_t *state) |
| { |
| Hacl_Hash_Blake2s_Simd128_state_t scrut = *state; |
| uint8_t *buf = scrut.buf; |
| Hacl_Hash_Blake2s_Simd128_block_state_t block_state = scrut.block_state; |
| Lib_IntVector_Intrinsics_vec128 *b = block_state.f3.snd; |
| Lib_IntVector_Intrinsics_vec128 *wv = block_state.f3.fst; |
| KRML_ALIGNED_FREE(wv); |
| KRML_ALIGNED_FREE(b); |
| KRML_HOST_FREE(buf); |
| KRML_HOST_FREE(state); |
| } |
| |
| /** |
| Copying. This preserves all parameters. |
| */ |
| Hacl_Hash_Blake2s_Simd128_state_t |
| *Hacl_Hash_Blake2s_Simd128_copy(Hacl_Hash_Blake2s_Simd128_state_t *state) |
| { |
| Hacl_Hash_Blake2s_Simd128_state_t scrut = *state; |
| Hacl_Hash_Blake2s_Simd128_block_state_t block_state0 = scrut.block_state; |
| uint8_t *buf0 = scrut.buf; |
| uint64_t total_len0 = scrut.total_len; |
| bool last_node = block_state0.thd; |
| uint8_t nn = block_state0.snd; |
| uint8_t kk1 = block_state0.fst; |
| Hacl_Hash_Blake2b_index i = { .key_length = kk1, .digest_length = nn, .last_node = last_node }; |
| uint8_t *buf = (uint8_t *)KRML_HOST_CALLOC(64U, sizeof (uint8_t)); |
| if (buf == NULL) |
| { |
| return NULL; |
| } |
| memcpy(buf, buf0, 64U * sizeof (uint8_t)); |
| Lib_IntVector_Intrinsics_vec128 |
| *wv0 = |
| (Lib_IntVector_Intrinsics_vec128 *)KRML_ALIGNED_MALLOC(16, |
| sizeof (Lib_IntVector_Intrinsics_vec128) * 4U); |
| if (wv0 != NULL) |
| { |
| memset(wv0, 0U, 4U * sizeof (Lib_IntVector_Intrinsics_vec128)); |
| } |
| option___uint8_t___uint8_t___bool_____Lib_IntVector_Intrinsics_vec128_____Lib_IntVector_Intrinsics_vec128___ |
| block_state; |
| if (wv0 == NULL) |
| { |
| block_state = |
| ( |
| (option___uint8_t___uint8_t___bool_____Lib_IntVector_Intrinsics_vec128_____Lib_IntVector_Intrinsics_vec128___){ |
| .tag = Hacl_Streaming_Types_None |
| } |
| ); |
| } |
| else |
| { |
| Lib_IntVector_Intrinsics_vec128 |
| *b = |
| (Lib_IntVector_Intrinsics_vec128 *)KRML_ALIGNED_MALLOC(16, |
| sizeof (Lib_IntVector_Intrinsics_vec128) * 4U); |
| if (b != NULL) |
| { |
| memset(b, 0U, 4U * sizeof (Lib_IntVector_Intrinsics_vec128)); |
| } |
| if (b == NULL) |
| { |
| KRML_ALIGNED_FREE(wv0); |
| block_state = |
| ( |
| (option___uint8_t___uint8_t___bool_____Lib_IntVector_Intrinsics_vec128_____Lib_IntVector_Intrinsics_vec128___){ |
| .tag = Hacl_Streaming_Types_None |
| } |
| ); |
| } |
| else |
| { |
| block_state = |
| ( |
| (option___uint8_t___uint8_t___bool_____Lib_IntVector_Intrinsics_vec128_____Lib_IntVector_Intrinsics_vec128___){ |
| .tag = Hacl_Streaming_Types_Some, |
| .v = { |
| .fst = i.key_length, |
| .snd = i.digest_length, |
| .thd = i.last_node, |
| .f3 = { .fst = wv0, .snd = b } |
| } |
| } |
| ); |
| } |
| } |
| if (block_state.tag == Hacl_Streaming_Types_None) |
| { |
| KRML_HOST_FREE(buf); |
| return NULL; |
| } |
| if (block_state.tag == Hacl_Streaming_Types_Some) |
| { |
| Hacl_Hash_Blake2s_Simd128_block_state_t block_state1 = block_state.v; |
| Lib_IntVector_Intrinsics_vec128 *src_b = block_state0.f3.snd; |
| Lib_IntVector_Intrinsics_vec128 *dst_b = block_state1.f3.snd; |
| memcpy(dst_b, src_b, 4U * sizeof (Lib_IntVector_Intrinsics_vec128)); |
| Hacl_Streaming_Types_optional k_ = Hacl_Streaming_Types_Some; |
| switch (k_) |
| { |
| case Hacl_Streaming_Types_None: |
| { |
| return NULL; |
| } |
| case Hacl_Streaming_Types_Some: |
| { |
| Hacl_Hash_Blake2s_Simd128_state_t |
| s = { .block_state = block_state1, .buf = buf, .total_len = total_len0 }; |
| Hacl_Hash_Blake2s_Simd128_state_t |
| *p = |
| (Hacl_Hash_Blake2s_Simd128_state_t *)KRML_HOST_MALLOC(sizeof ( |
| Hacl_Hash_Blake2s_Simd128_state_t |
| )); |
| if (p != NULL) |
| { |
| p[0U] = s; |
| } |
| if (p == NULL) |
| { |
| Lib_IntVector_Intrinsics_vec128 *b = block_state1.f3.snd; |
| Lib_IntVector_Intrinsics_vec128 *wv = block_state1.f3.fst; |
| KRML_ALIGNED_FREE(wv); |
| KRML_ALIGNED_FREE(b); |
| KRML_HOST_FREE(buf); |
| return NULL; |
| } |
| return p; |
| } |
| default: |
| { |
| KRML_HOST_EPRINTF("KaRaMeL incomplete match at %s:%d\n", __FILE__, __LINE__); |
| KRML_HOST_EXIT(253U); |
| } |
| } |
| } |
| KRML_HOST_EPRINTF("KaRaMeL abort at %s:%d\n%s\n", |
| __FILE__, |
| __LINE__, |
| "unreachable (pattern matches are exhaustive in F*)"); |
| KRML_HOST_EXIT(255U); |
| } |
| |
| /** |
| Write the BLAKE2s digest of message `input` using key `key` into `output`. |
| |
| @param output Pointer to `output_len` bytes of memory where the digest is written to. |
| @param output_len Length of the to-be-generated digest with 1 <= `output_len` <= 64. |
| @param input Pointer to `input_len` bytes of memory where the input message is read from. |
| @param input_len Length of the input message. |
| @param key Pointer to `key_len` bytes of memory where the key is read from. |
| @param key_len Length of the key. Can be 0. |
| */ |
| void |
| Hacl_Hash_Blake2s_Simd128_hash_with_key( |
| uint8_t *output, |
| uint32_t output_len, |
| uint8_t *input, |
| uint32_t input_len, |
| uint8_t *key, |
| uint32_t key_len |
| ) |
| { |
| KRML_PRE_ALIGN(16) Lib_IntVector_Intrinsics_vec128 b[4U] KRML_POST_ALIGN(16) = { 0U }; |
| KRML_PRE_ALIGN(16) Lib_IntVector_Intrinsics_vec128 b1[4U] KRML_POST_ALIGN(16) = { 0U }; |
| Hacl_Hash_Blake2s_Simd128_init(b, key_len, output_len); |
| update(b1, b, key_len, key, input_len, input); |
| Hacl_Hash_Blake2s_Simd128_finish(output_len, output, b); |
| Lib_Memzero0_memzero(b1, 4U, Lib_IntVector_Intrinsics_vec128, void *); |
| Lib_Memzero0_memzero(b, 4U, Lib_IntVector_Intrinsics_vec128, void *); |
| } |
| |
| /** |
| Write the BLAKE2s digest of message `input` using key `key` and |
| parameters `params` into `output`. The `key` array must be of length |
| `params.key_length`. The `output` array must be of length |
| `params.digest_length`. |
| */ |
| void |
| Hacl_Hash_Blake2s_Simd128_hash_with_key_and_params( |
| uint8_t *output, |
| uint8_t *input, |
| uint32_t input_len, |
| Hacl_Hash_Blake2b_blake2_params params, |
| uint8_t *key |
| ) |
| { |
| KRML_PRE_ALIGN(16) Lib_IntVector_Intrinsics_vec128 b[4U] KRML_POST_ALIGN(16) = { 0U }; |
| KRML_PRE_ALIGN(16) Lib_IntVector_Intrinsics_vec128 b1[4U] KRML_POST_ALIGN(16) = { 0U }; |
| uint32_t tmp[8U] = { 0U }; |
| Lib_IntVector_Intrinsics_vec128 *r0 = b; |
| Lib_IntVector_Intrinsics_vec128 *r1 = b + 1U; |
| Lib_IntVector_Intrinsics_vec128 *r2 = b + 2U; |
| Lib_IntVector_Intrinsics_vec128 *r3 = b + 3U; |
| uint32_t iv0 = Hacl_Hash_Blake2b_ivTable_S[0U]; |
| uint32_t iv1 = Hacl_Hash_Blake2b_ivTable_S[1U]; |
| uint32_t iv2 = Hacl_Hash_Blake2b_ivTable_S[2U]; |
| uint32_t iv3 = Hacl_Hash_Blake2b_ivTable_S[3U]; |
| uint32_t iv4 = Hacl_Hash_Blake2b_ivTable_S[4U]; |
| uint32_t iv5 = Hacl_Hash_Blake2b_ivTable_S[5U]; |
| uint32_t iv6 = Hacl_Hash_Blake2b_ivTable_S[6U]; |
| uint32_t iv7 = Hacl_Hash_Blake2b_ivTable_S[7U]; |
| r2[0U] = Lib_IntVector_Intrinsics_vec128_load32s(iv0, iv1, iv2, iv3); |
| r3[0U] = Lib_IntVector_Intrinsics_vec128_load32s(iv4, iv5, iv6, iv7); |
| KRML_MAYBE_FOR2(i, |
| 0U, |
| 2U, |
| 1U, |
| uint32_t *os = tmp + 4U; |
| uint8_t *bj = params.salt + i * 4U; |
| uint32_t u = load32_le(bj); |
| uint32_t r = u; |
| uint32_t x = r; |
| os[i] = x;); |
| KRML_MAYBE_FOR2(i, |
| 0U, |
| 2U, |
| 1U, |
| uint32_t *os = tmp + 6U; |
| uint8_t *bj = params.personal + i * 4U; |
| uint32_t u = load32_le(bj); |
| uint32_t r = u; |
| uint32_t x = r; |
| os[i] = x;); |
| tmp[0U] = |
| (uint32_t)params.digest_length ^ |
| ((uint32_t)params.key_length << 8U ^ |
| ((uint32_t)params.fanout << 16U ^ (uint32_t)params.depth << 24U)); |
| tmp[1U] = params.leaf_length; |
| tmp[2U] = (uint32_t)params.node_offset; |
| tmp[3U] = |
| (uint32_t)(params.node_offset >> 32U) ^ |
| ((uint32_t)params.node_depth << 16U ^ (uint32_t)params.inner_length << 24U); |
| uint32_t tmp0 = tmp[0U]; |
| uint32_t tmp1 = tmp[1U]; |
| uint32_t tmp2 = tmp[2U]; |
| uint32_t tmp3 = tmp[3U]; |
| uint32_t tmp4 = tmp[4U]; |
| uint32_t tmp5 = tmp[5U]; |
| uint32_t tmp6 = tmp[6U]; |
| uint32_t tmp7 = tmp[7U]; |
| uint32_t iv0_ = iv0 ^ tmp0; |
| uint32_t iv1_ = iv1 ^ tmp1; |
| uint32_t iv2_ = iv2 ^ tmp2; |
| uint32_t iv3_ = iv3 ^ tmp3; |
| uint32_t iv4_ = iv4 ^ tmp4; |
| uint32_t iv5_ = iv5 ^ tmp5; |
| uint32_t iv6_ = iv6 ^ tmp6; |
| uint32_t iv7_ = iv7 ^ tmp7; |
| r0[0U] = Lib_IntVector_Intrinsics_vec128_load32s(iv0_, iv1_, iv2_, iv3_); |
| r1[0U] = Lib_IntVector_Intrinsics_vec128_load32s(iv4_, iv5_, iv6_, iv7_); |
| update(b1, b, (uint32_t)params.key_length, key, input_len, input); |
| Hacl_Hash_Blake2s_Simd128_finish((uint32_t)params.digest_length, output, b); |
| Lib_Memzero0_memzero(b1, 4U, Lib_IntVector_Intrinsics_vec128, void *); |
| Lib_Memzero0_memzero(b, 4U, Lib_IntVector_Intrinsics_vec128, void *); |
| } |
| |