| #include "Python.h" |
| #include "pycore_code.h" // stats |
| #include "pycore_pystate.h" // _PyInterpreterState_GET |
| |
| #include "pycore_obmalloc.h" |
| #include "pycore_pymem.h" |
| |
| #include <stdlib.h> // malloc() |
| #include <stdbool.h> |
| |
| #undef uint |
| #define uint pymem_uint |
| |
| |
| /* Defined in tracemalloc.c */ |
| extern void _PyMem_DumpTraceback(int fd, const void *ptr); |
| |
| |
| /* Python's malloc wrappers (see pymem.h) */ |
| |
| static void _PyObject_DebugDumpAddress(const void *p); |
| static void _PyMem_DebugCheckAddress(const char *func, char api_id, const void *p); |
| |
| static void _PyMem_SetupDebugHooksDomain(PyMemAllocatorDomain domain); |
| |
| |
| /***************************************/ |
| /* low-level allocator implementations */ |
| /***************************************/ |
| |
| /* the default raw allocator (wraps malloc) */ |
| |
| void * |
| _PyMem_RawMalloc(void *Py_UNUSED(ctx), size_t size) |
| { |
| /* PyMem_RawMalloc(0) means malloc(1). Some systems would return NULL |
| for malloc(0), which would be treated as an error. Some platforms would |
| return a pointer with no memory behind it, which would break pymalloc. |
| To solve these problems, allocate an extra byte. */ |
| if (size == 0) |
| size = 1; |
| return malloc(size); |
| } |
| |
| void * |
| _PyMem_RawCalloc(void *Py_UNUSED(ctx), size_t nelem, size_t elsize) |
| { |
| /* PyMem_RawCalloc(0, 0) means calloc(1, 1). Some systems would return NULL |
| for calloc(0, 0), which would be treated as an error. Some platforms |
| would return a pointer with no memory behind it, which would break |
| pymalloc. To solve these problems, allocate an extra byte. */ |
| if (nelem == 0 || elsize == 0) { |
| nelem = 1; |
| elsize = 1; |
| } |
| return calloc(nelem, elsize); |
| } |
| |
| void * |
| _PyMem_RawRealloc(void *Py_UNUSED(ctx), void *ptr, size_t size) |
| { |
| if (size == 0) |
| size = 1; |
| return realloc(ptr, size); |
| } |
| |
| void |
| _PyMem_RawFree(void *Py_UNUSED(ctx), void *ptr) |
| { |
| free(ptr); |
| } |
| |
| #define MALLOC_ALLOC {NULL, _PyMem_RawMalloc, _PyMem_RawCalloc, _PyMem_RawRealloc, _PyMem_RawFree} |
| #define PYRAW_ALLOC MALLOC_ALLOC |
| |
| /* the default object allocator */ |
| |
| // The actual implementation is further down. |
| |
| #ifdef WITH_PYMALLOC |
| void* _PyObject_Malloc(void *ctx, size_t size); |
| void* _PyObject_Calloc(void *ctx, size_t nelem, size_t elsize); |
| void _PyObject_Free(void *ctx, void *p); |
| void* _PyObject_Realloc(void *ctx, void *ptr, size_t size); |
| # define PYMALLOC_ALLOC {NULL, _PyObject_Malloc, _PyObject_Calloc, _PyObject_Realloc, _PyObject_Free} |
| # define PYOBJ_ALLOC PYMALLOC_ALLOC |
| #else |
| # define PYOBJ_ALLOC MALLOC_ALLOC |
| #endif // WITH_PYMALLOC |
| |
| #define PYMEM_ALLOC PYOBJ_ALLOC |
| |
| /* the default debug allocators */ |
| |
| // The actual implementation is further down. |
| |
| void* _PyMem_DebugRawMalloc(void *ctx, size_t size); |
| void* _PyMem_DebugRawCalloc(void *ctx, size_t nelem, size_t elsize); |
| void* _PyMem_DebugRawRealloc(void *ctx, void *ptr, size_t size); |
| void _PyMem_DebugRawFree(void *ctx, void *ptr); |
| |
| void* _PyMem_DebugMalloc(void *ctx, size_t size); |
| void* _PyMem_DebugCalloc(void *ctx, size_t nelem, size_t elsize); |
| void* _PyMem_DebugRealloc(void *ctx, void *ptr, size_t size); |
| void _PyMem_DebugFree(void *ctx, void *p); |
| |
| #define PYDBGRAW_ALLOC \ |
| {&_PyRuntime.allocators.debug.raw, _PyMem_DebugRawMalloc, _PyMem_DebugRawCalloc, _PyMem_DebugRawRealloc, _PyMem_DebugRawFree} |
| #define PYDBGMEM_ALLOC \ |
| {&_PyRuntime.allocators.debug.mem, _PyMem_DebugMalloc, _PyMem_DebugCalloc, _PyMem_DebugRealloc, _PyMem_DebugFree} |
| #define PYDBGOBJ_ALLOC \ |
| {&_PyRuntime.allocators.debug.obj, _PyMem_DebugMalloc, _PyMem_DebugCalloc, _PyMem_DebugRealloc, _PyMem_DebugFree} |
| |
| /* the low-level virtual memory allocator */ |
| |
| #ifdef WITH_PYMALLOC |
| # ifdef MS_WINDOWS |
| # include <windows.h> |
| # elif defined(HAVE_MMAP) |
| # include <sys/mman.h> |
| # ifdef MAP_ANONYMOUS |
| # define ARENAS_USE_MMAP |
| # endif |
| # endif |
| #endif |
| |
| void * |
| _PyMem_ArenaAlloc(void *Py_UNUSED(ctx), size_t size) |
| { |
| #ifdef MS_WINDOWS |
| return VirtualAlloc(NULL, size, |
| MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE); |
| #elif defined(ARENAS_USE_MMAP) |
| void *ptr; |
| ptr = mmap(NULL, size, PROT_READ|PROT_WRITE, |
| MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); |
| if (ptr == MAP_FAILED) |
| return NULL; |
| assert(ptr != NULL); |
| return ptr; |
| #else |
| return malloc(size); |
| #endif |
| } |
| |
| void |
| _PyMem_ArenaFree(void *Py_UNUSED(ctx), void *ptr, |
| #if defined(ARENAS_USE_MMAP) |
| size_t size |
| #else |
| size_t Py_UNUSED(size) |
| #endif |
| ) |
| { |
| #ifdef MS_WINDOWS |
| VirtualFree(ptr, 0, MEM_RELEASE); |
| #elif defined(ARENAS_USE_MMAP) |
| munmap(ptr, size); |
| #else |
| free(ptr); |
| #endif |
| } |
| |
| /*******************************************/ |
| /* end low-level allocator implementations */ |
| /*******************************************/ |
| |
| |
| #if defined(__has_feature) /* Clang */ |
| # if __has_feature(address_sanitizer) /* is ASAN enabled? */ |
| # define _Py_NO_SANITIZE_ADDRESS \ |
| __attribute__((no_sanitize("address"))) |
| # endif |
| # if __has_feature(thread_sanitizer) /* is TSAN enabled? */ |
| # define _Py_NO_SANITIZE_THREAD __attribute__((no_sanitize_thread)) |
| # endif |
| # if __has_feature(memory_sanitizer) /* is MSAN enabled? */ |
| # define _Py_NO_SANITIZE_MEMORY __attribute__((no_sanitize_memory)) |
| # endif |
| #elif defined(__GNUC__) |
| # if defined(__SANITIZE_ADDRESS__) /* GCC 4.8+, is ASAN enabled? */ |
| # define _Py_NO_SANITIZE_ADDRESS \ |
| __attribute__((no_sanitize_address)) |
| # endif |
| // TSAN is supported since GCC 5.1, but __SANITIZE_THREAD__ macro |
| // is provided only since GCC 7. |
| # if __GNUC__ > 5 || (__GNUC__ == 5 && __GNUC_MINOR__ >= 1) |
| # define _Py_NO_SANITIZE_THREAD __attribute__((no_sanitize_thread)) |
| # endif |
| #endif |
| |
| #ifndef _Py_NO_SANITIZE_ADDRESS |
| # define _Py_NO_SANITIZE_ADDRESS |
| #endif |
| #ifndef _Py_NO_SANITIZE_THREAD |
| # define _Py_NO_SANITIZE_THREAD |
| #endif |
| #ifndef _Py_NO_SANITIZE_MEMORY |
| # define _Py_NO_SANITIZE_MEMORY |
| #endif |
| |
| |
| #define _PyMem_Raw (_PyRuntime.allocators.standard.raw) |
| #define _PyMem (_PyRuntime.allocators.standard.mem) |
| #define _PyObject (_PyRuntime.allocators.standard.obj) |
| #define _PyMem_Debug (_PyRuntime.allocators.debug) |
| #define _PyObject_Arena (_PyRuntime.allocators.obj_arena) |
| |
| |
| static int |
| pymem_set_default_allocator(PyMemAllocatorDomain domain, int debug, |
| PyMemAllocatorEx *old_alloc) |
| { |
| if (old_alloc != NULL) { |
| PyMem_GetAllocator(domain, old_alloc); |
| } |
| |
| |
| PyMemAllocatorEx new_alloc; |
| switch(domain) |
| { |
| case PYMEM_DOMAIN_RAW: |
| new_alloc = (PyMemAllocatorEx)PYRAW_ALLOC; |
| break; |
| case PYMEM_DOMAIN_MEM: |
| new_alloc = (PyMemAllocatorEx)PYMEM_ALLOC; |
| break; |
| case PYMEM_DOMAIN_OBJ: |
| new_alloc = (PyMemAllocatorEx)PYOBJ_ALLOC; |
| break; |
| default: |
| /* unknown domain */ |
| return -1; |
| } |
| PyMem_SetAllocator(domain, &new_alloc); |
| if (debug) { |
| _PyMem_SetupDebugHooksDomain(domain); |
| } |
| return 0; |
| } |
| |
| |
| int |
| _PyMem_SetDefaultAllocator(PyMemAllocatorDomain domain, |
| PyMemAllocatorEx *old_alloc) |
| { |
| #ifdef Py_DEBUG |
| const int debug = 1; |
| #else |
| const int debug = 0; |
| #endif |
| return pymem_set_default_allocator(domain, debug, old_alloc); |
| } |
| |
| |
| int |
| _PyMem_GetAllocatorName(const char *name, PyMemAllocatorName *allocator) |
| { |
| if (name == NULL || *name == '\0') { |
| /* PYTHONMALLOC is empty or is not set or ignored (-E/-I command line |
| nameions): use default memory allocators */ |
| *allocator = PYMEM_ALLOCATOR_DEFAULT; |
| } |
| else if (strcmp(name, "default") == 0) { |
| *allocator = PYMEM_ALLOCATOR_DEFAULT; |
| } |
| else if (strcmp(name, "debug") == 0) { |
| *allocator = PYMEM_ALLOCATOR_DEBUG; |
| } |
| #ifdef WITH_PYMALLOC |
| else if (strcmp(name, "pymalloc") == 0) { |
| *allocator = PYMEM_ALLOCATOR_PYMALLOC; |
| } |
| else if (strcmp(name, "pymalloc_debug") == 0) { |
| *allocator = PYMEM_ALLOCATOR_PYMALLOC_DEBUG; |
| } |
| #endif |
| else if (strcmp(name, "malloc") == 0) { |
| *allocator = PYMEM_ALLOCATOR_MALLOC; |
| } |
| else if (strcmp(name, "malloc_debug") == 0) { |
| *allocator = PYMEM_ALLOCATOR_MALLOC_DEBUG; |
| } |
| else { |
| /* unknown allocator */ |
| return -1; |
| } |
| return 0; |
| } |
| |
| |
| int |
| _PyMem_SetupAllocators(PyMemAllocatorName allocator) |
| { |
| switch (allocator) { |
| case PYMEM_ALLOCATOR_NOT_SET: |
| /* do nothing */ |
| break; |
| |
| case PYMEM_ALLOCATOR_DEFAULT: |
| (void)_PyMem_SetDefaultAllocator(PYMEM_DOMAIN_RAW, NULL); |
| (void)_PyMem_SetDefaultAllocator(PYMEM_DOMAIN_MEM, NULL); |
| (void)_PyMem_SetDefaultAllocator(PYMEM_DOMAIN_OBJ, NULL); |
| break; |
| |
| case PYMEM_ALLOCATOR_DEBUG: |
| (void)pymem_set_default_allocator(PYMEM_DOMAIN_RAW, 1, NULL); |
| (void)pymem_set_default_allocator(PYMEM_DOMAIN_MEM, 1, NULL); |
| (void)pymem_set_default_allocator(PYMEM_DOMAIN_OBJ, 1, NULL); |
| break; |
| |
| #ifdef WITH_PYMALLOC |
| case PYMEM_ALLOCATOR_PYMALLOC: |
| case PYMEM_ALLOCATOR_PYMALLOC_DEBUG: |
| { |
| PyMemAllocatorEx malloc_alloc = MALLOC_ALLOC; |
| PyMem_SetAllocator(PYMEM_DOMAIN_RAW, &malloc_alloc); |
| |
| PyMemAllocatorEx pymalloc = PYMALLOC_ALLOC; |
| PyMem_SetAllocator(PYMEM_DOMAIN_MEM, &pymalloc); |
| PyMem_SetAllocator(PYMEM_DOMAIN_OBJ, &pymalloc); |
| |
| if (allocator == PYMEM_ALLOCATOR_PYMALLOC_DEBUG) { |
| PyMem_SetupDebugHooks(); |
| } |
| break; |
| } |
| #endif |
| |
| case PYMEM_ALLOCATOR_MALLOC: |
| case PYMEM_ALLOCATOR_MALLOC_DEBUG: |
| { |
| PyMemAllocatorEx malloc_alloc = MALLOC_ALLOC; |
| PyMem_SetAllocator(PYMEM_DOMAIN_RAW, &malloc_alloc); |
| PyMem_SetAllocator(PYMEM_DOMAIN_MEM, &malloc_alloc); |
| PyMem_SetAllocator(PYMEM_DOMAIN_OBJ, &malloc_alloc); |
| |
| if (allocator == PYMEM_ALLOCATOR_MALLOC_DEBUG) { |
| PyMem_SetupDebugHooks(); |
| } |
| break; |
| } |
| |
| default: |
| /* unknown allocator */ |
| return -1; |
| } |
| return 0; |
| } |
| |
| |
| static int |
| pymemallocator_eq(PyMemAllocatorEx *a, PyMemAllocatorEx *b) |
| { |
| return (memcmp(a, b, sizeof(PyMemAllocatorEx)) == 0); |
| } |
| |
| |
| const char* |
| _PyMem_GetCurrentAllocatorName(void) |
| { |
| PyMemAllocatorEx malloc_alloc = MALLOC_ALLOC; |
| #ifdef WITH_PYMALLOC |
| PyMemAllocatorEx pymalloc = PYMALLOC_ALLOC; |
| #endif |
| |
| if (pymemallocator_eq(&_PyMem_Raw, &malloc_alloc) && |
| pymemallocator_eq(&_PyMem, &malloc_alloc) && |
| pymemallocator_eq(&_PyObject, &malloc_alloc)) |
| { |
| return "malloc"; |
| } |
| #ifdef WITH_PYMALLOC |
| if (pymemallocator_eq(&_PyMem_Raw, &malloc_alloc) && |
| pymemallocator_eq(&_PyMem, &pymalloc) && |
| pymemallocator_eq(&_PyObject, &pymalloc)) |
| { |
| return "pymalloc"; |
| } |
| #endif |
| |
| PyMemAllocatorEx dbg_raw = PYDBGRAW_ALLOC; |
| PyMemAllocatorEx dbg_mem = PYDBGMEM_ALLOC; |
| PyMemAllocatorEx dbg_obj = PYDBGOBJ_ALLOC; |
| |
| if (pymemallocator_eq(&_PyMem_Raw, &dbg_raw) && |
| pymemallocator_eq(&_PyMem, &dbg_mem) && |
| pymemallocator_eq(&_PyObject, &dbg_obj)) |
| { |
| /* Debug hooks installed */ |
| if (pymemallocator_eq(&_PyMem_Debug.raw.alloc, &malloc_alloc) && |
| pymemallocator_eq(&_PyMem_Debug.mem.alloc, &malloc_alloc) && |
| pymemallocator_eq(&_PyMem_Debug.obj.alloc, &malloc_alloc)) |
| { |
| return "malloc_debug"; |
| } |
| #ifdef WITH_PYMALLOC |
| if (pymemallocator_eq(&_PyMem_Debug.raw.alloc, &malloc_alloc) && |
| pymemallocator_eq(&_PyMem_Debug.mem.alloc, &pymalloc) && |
| pymemallocator_eq(&_PyMem_Debug.obj.alloc, &pymalloc)) |
| { |
| return "pymalloc_debug"; |
| } |
| #endif |
| } |
| return NULL; |
| } |
| |
| |
| #ifdef WITH_PYMALLOC |
| static int |
| _PyMem_DebugEnabled(void) |
| { |
| return (_PyObject.malloc == _PyMem_DebugMalloc); |
| } |
| |
| static int |
| _PyMem_PymallocEnabled(void) |
| { |
| if (_PyMem_DebugEnabled()) { |
| return (_PyMem_Debug.obj.alloc.malloc == _PyObject_Malloc); |
| } |
| else { |
| return (_PyObject.malloc == _PyObject_Malloc); |
| } |
| } |
| #endif |
| |
| |
| static void |
| _PyMem_SetupDebugHooksDomain(PyMemAllocatorDomain domain) |
| { |
| PyMemAllocatorEx alloc; |
| |
| if (domain == PYMEM_DOMAIN_RAW) { |
| if (_PyMem_Raw.malloc == _PyMem_DebugRawMalloc) { |
| return; |
| } |
| |
| PyMem_GetAllocator(PYMEM_DOMAIN_RAW, &_PyMem_Debug.raw.alloc); |
| alloc.ctx = &_PyMem_Debug.raw; |
| alloc.malloc = _PyMem_DebugRawMalloc; |
| alloc.calloc = _PyMem_DebugRawCalloc; |
| alloc.realloc = _PyMem_DebugRawRealloc; |
| alloc.free = _PyMem_DebugRawFree; |
| PyMem_SetAllocator(PYMEM_DOMAIN_RAW, &alloc); |
| } |
| else if (domain == PYMEM_DOMAIN_MEM) { |
| if (_PyMem.malloc == _PyMem_DebugMalloc) { |
| return; |
| } |
| |
| PyMem_GetAllocator(PYMEM_DOMAIN_MEM, &_PyMem_Debug.mem.alloc); |
| alloc.ctx = &_PyMem_Debug.mem; |
| alloc.malloc = _PyMem_DebugMalloc; |
| alloc.calloc = _PyMem_DebugCalloc; |
| alloc.realloc = _PyMem_DebugRealloc; |
| alloc.free = _PyMem_DebugFree; |
| PyMem_SetAllocator(PYMEM_DOMAIN_MEM, &alloc); |
| } |
| else if (domain == PYMEM_DOMAIN_OBJ) { |
| if (_PyObject.malloc == _PyMem_DebugMalloc) { |
| return; |
| } |
| |
| PyMem_GetAllocator(PYMEM_DOMAIN_OBJ, &_PyMem_Debug.obj.alloc); |
| alloc.ctx = &_PyMem_Debug.obj; |
| alloc.malloc = _PyMem_DebugMalloc; |
| alloc.calloc = _PyMem_DebugCalloc; |
| alloc.realloc = _PyMem_DebugRealloc; |
| alloc.free = _PyMem_DebugFree; |
| PyMem_SetAllocator(PYMEM_DOMAIN_OBJ, &alloc); |
| } |
| } |
| |
| |
| void |
| PyMem_SetupDebugHooks(void) |
| { |
| _PyMem_SetupDebugHooksDomain(PYMEM_DOMAIN_RAW); |
| _PyMem_SetupDebugHooksDomain(PYMEM_DOMAIN_MEM); |
| _PyMem_SetupDebugHooksDomain(PYMEM_DOMAIN_OBJ); |
| } |
| |
| void |
| PyMem_GetAllocator(PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator) |
| { |
| switch(domain) |
| { |
| case PYMEM_DOMAIN_RAW: *allocator = _PyMem_Raw; break; |
| case PYMEM_DOMAIN_MEM: *allocator = _PyMem; break; |
| case PYMEM_DOMAIN_OBJ: *allocator = _PyObject; break; |
| default: |
| /* unknown domain: set all attributes to NULL */ |
| allocator->ctx = NULL; |
| allocator->malloc = NULL; |
| allocator->calloc = NULL; |
| allocator->realloc = NULL; |
| allocator->free = NULL; |
| } |
| } |
| |
| void |
| PyMem_SetAllocator(PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator) |
| { |
| switch(domain) |
| { |
| case PYMEM_DOMAIN_RAW: _PyMem_Raw = *allocator; break; |
| case PYMEM_DOMAIN_MEM: _PyMem = *allocator; break; |
| case PYMEM_DOMAIN_OBJ: _PyObject = *allocator; break; |
| /* ignore unknown domain */ |
| } |
| } |
| |
| void |
| PyObject_GetArenaAllocator(PyObjectArenaAllocator *allocator) |
| { |
| *allocator = _PyObject_Arena; |
| } |
| |
| void * |
| _PyObject_VirtualAlloc(size_t size) |
| { |
| return _PyObject_Arena.alloc(_PyObject_Arena.ctx, size); |
| } |
| |
| void |
| _PyObject_VirtualFree(void *obj, size_t size) |
| { |
| _PyObject_Arena.free(_PyObject_Arena.ctx, obj, size); |
| } |
| |
| void |
| PyObject_SetArenaAllocator(PyObjectArenaAllocator *allocator) |
| { |
| _PyObject_Arena = *allocator; |
| } |
| |
| void * |
| PyMem_RawMalloc(size_t size) |
| { |
| /* |
| * Limit ourselves to PY_SSIZE_T_MAX bytes to prevent security holes. |
| * Most python internals blindly use a signed Py_ssize_t to track |
| * things without checking for overflows or negatives. |
| * As size_t is unsigned, checking for size < 0 is not required. |
| */ |
| if (size > (size_t)PY_SSIZE_T_MAX) |
| return NULL; |
| return _PyMem_Raw.malloc(_PyMem_Raw.ctx, size); |
| } |
| |
| void * |
| PyMem_RawCalloc(size_t nelem, size_t elsize) |
| { |
| /* see PyMem_RawMalloc() */ |
| if (elsize != 0 && nelem > (size_t)PY_SSIZE_T_MAX / elsize) |
| return NULL; |
| return _PyMem_Raw.calloc(_PyMem_Raw.ctx, nelem, elsize); |
| } |
| |
| void* |
| PyMem_RawRealloc(void *ptr, size_t new_size) |
| { |
| /* see PyMem_RawMalloc() */ |
| if (new_size > (size_t)PY_SSIZE_T_MAX) |
| return NULL; |
| return _PyMem_Raw.realloc(_PyMem_Raw.ctx, ptr, new_size); |
| } |
| |
| void PyMem_RawFree(void *ptr) |
| { |
| _PyMem_Raw.free(_PyMem_Raw.ctx, ptr); |
| } |
| |
| |
| void * |
| PyMem_Malloc(size_t size) |
| { |
| /* see PyMem_RawMalloc() */ |
| if (size > (size_t)PY_SSIZE_T_MAX) |
| return NULL; |
| OBJECT_STAT_INC_COND(allocations512, size < 512); |
| OBJECT_STAT_INC_COND(allocations4k, size >= 512 && size < 4094); |
| OBJECT_STAT_INC_COND(allocations_big, size >= 4094); |
| OBJECT_STAT_INC(allocations); |
| return _PyMem.malloc(_PyMem.ctx, size); |
| } |
| |
| void * |
| PyMem_Calloc(size_t nelem, size_t elsize) |
| { |
| /* see PyMem_RawMalloc() */ |
| if (elsize != 0 && nelem > (size_t)PY_SSIZE_T_MAX / elsize) |
| return NULL; |
| OBJECT_STAT_INC_COND(allocations512, elsize < 512); |
| OBJECT_STAT_INC_COND(allocations4k, elsize >= 512 && elsize < 4094); |
| OBJECT_STAT_INC_COND(allocations_big, elsize >= 4094); |
| OBJECT_STAT_INC(allocations); |
| return _PyMem.calloc(_PyMem.ctx, nelem, elsize); |
| } |
| |
| void * |
| PyMem_Realloc(void *ptr, size_t new_size) |
| { |
| /* see PyMem_RawMalloc() */ |
| if (new_size > (size_t)PY_SSIZE_T_MAX) |
| return NULL; |
| return _PyMem.realloc(_PyMem.ctx, ptr, new_size); |
| } |
| |
| void |
| PyMem_Free(void *ptr) |
| { |
| OBJECT_STAT_INC(frees); |
| _PyMem.free(_PyMem.ctx, ptr); |
| } |
| |
| |
| wchar_t* |
| _PyMem_RawWcsdup(const wchar_t *str) |
| { |
| assert(str != NULL); |
| |
| size_t len = wcslen(str); |
| if (len > (size_t)PY_SSIZE_T_MAX / sizeof(wchar_t) - 1) { |
| return NULL; |
| } |
| |
| size_t size = (len + 1) * sizeof(wchar_t); |
| wchar_t *str2 = PyMem_RawMalloc(size); |
| if (str2 == NULL) { |
| return NULL; |
| } |
| |
| memcpy(str2, str, size); |
| return str2; |
| } |
| |
| char * |
| _PyMem_RawStrdup(const char *str) |
| { |
| assert(str != NULL); |
| size_t size = strlen(str) + 1; |
| char *copy = PyMem_RawMalloc(size); |
| if (copy == NULL) { |
| return NULL; |
| } |
| memcpy(copy, str, size); |
| return copy; |
| } |
| |
| char * |
| _PyMem_Strdup(const char *str) |
| { |
| assert(str != NULL); |
| size_t size = strlen(str) + 1; |
| char *copy = PyMem_Malloc(size); |
| if (copy == NULL) { |
| return NULL; |
| } |
| memcpy(copy, str, size); |
| return copy; |
| } |
| |
| void * |
| PyObject_Malloc(size_t size) |
| { |
| /* see PyMem_RawMalloc() */ |
| if (size > (size_t)PY_SSIZE_T_MAX) |
| return NULL; |
| OBJECT_STAT_INC_COND(allocations512, size < 512); |
| OBJECT_STAT_INC_COND(allocations4k, size >= 512 && size < 4094); |
| OBJECT_STAT_INC_COND(allocations_big, size >= 4094); |
| OBJECT_STAT_INC(allocations); |
| return _PyObject.malloc(_PyObject.ctx, size); |
| } |
| |
| void * |
| PyObject_Calloc(size_t nelem, size_t elsize) |
| { |
| /* see PyMem_RawMalloc() */ |
| if (elsize != 0 && nelem > (size_t)PY_SSIZE_T_MAX / elsize) |
| return NULL; |
| OBJECT_STAT_INC_COND(allocations512, elsize < 512); |
| OBJECT_STAT_INC_COND(allocations4k, elsize >= 512 && elsize < 4094); |
| OBJECT_STAT_INC_COND(allocations_big, elsize >= 4094); |
| OBJECT_STAT_INC(allocations); |
| return _PyObject.calloc(_PyObject.ctx, nelem, elsize); |
| } |
| |
| void * |
| PyObject_Realloc(void *ptr, size_t new_size) |
| { |
| /* see PyMem_RawMalloc() */ |
| if (new_size > (size_t)PY_SSIZE_T_MAX) |
| return NULL; |
| return _PyObject.realloc(_PyObject.ctx, ptr, new_size); |
| } |
| |
| void |
| PyObject_Free(void *ptr) |
| { |
| OBJECT_STAT_INC(frees); |
| _PyObject.free(_PyObject.ctx, ptr); |
| } |
| |
| |
| /* If we're using GCC, use __builtin_expect() to reduce overhead of |
| the valgrind checks */ |
| #if defined(__GNUC__) && (__GNUC__ > 2) && defined(__OPTIMIZE__) |
| # define UNLIKELY(value) __builtin_expect((value), 0) |
| # define LIKELY(value) __builtin_expect((value), 1) |
| #else |
| # define UNLIKELY(value) (value) |
| # define LIKELY(value) (value) |
| #endif |
| |
| #ifdef WITH_PYMALLOC |
| |
| #ifdef WITH_VALGRIND |
| #include <valgrind/valgrind.h> |
| |
| /* -1 indicates that we haven't checked that we're running on valgrind yet. */ |
| static int running_on_valgrind = -1; |
| #endif |
| |
| typedef struct _obmalloc_state OMState; |
| |
| static inline int |
| has_own_state(PyInterpreterState *interp) |
| { |
| return (_Py_IsMainInterpreter(interp) || |
| !(interp->feature_flags & Py_RTFLAGS_USE_MAIN_OBMALLOC) || |
| _Py_IsMainInterpreterFinalizing(interp)); |
| } |
| |
| static inline OMState * |
| get_state(void) |
| { |
| PyInterpreterState *interp = _PyInterpreterState_GET(); |
| if (!has_own_state(interp)) { |
| interp = _PyInterpreterState_Main(); |
| } |
| return &interp->obmalloc; |
| } |
| |
| // These macros all rely on a local "state" variable. |
| #define usedpools (state->pools.used) |
| #define allarenas (state->mgmt.arenas) |
| #define maxarenas (state->mgmt.maxarenas) |
| #define unused_arena_objects (state->mgmt.unused_arena_objects) |
| #define usable_arenas (state->mgmt.usable_arenas) |
| #define nfp2lasta (state->mgmt.nfp2lasta) |
| #define narenas_currently_allocated (state->mgmt.narenas_currently_allocated) |
| #define ntimes_arena_allocated (state->mgmt.ntimes_arena_allocated) |
| #define narenas_highwater (state->mgmt.narenas_highwater) |
| #define raw_allocated_blocks (state->mgmt.raw_allocated_blocks) |
| |
| Py_ssize_t |
| _PyInterpreterState_GetAllocatedBlocks(PyInterpreterState *interp) |
| { |
| #ifdef Py_DEBUG |
| assert(has_own_state(interp)); |
| #else |
| if (!has_own_state(interp)) { |
| _Py_FatalErrorFunc(__func__, |
| "the interpreter doesn't have its own allocator"); |
| } |
| #endif |
| OMState *state = &interp->obmalloc; |
| |
| Py_ssize_t n = raw_allocated_blocks; |
| /* add up allocated blocks for used pools */ |
| for (uint i = 0; i < maxarenas; ++i) { |
| /* Skip arenas which are not allocated. */ |
| if (allarenas[i].address == 0) { |
| continue; |
| } |
| |
| uintptr_t base = (uintptr_t)_Py_ALIGN_UP(allarenas[i].address, POOL_SIZE); |
| |
| /* visit every pool in the arena */ |
| assert(base <= (uintptr_t) allarenas[i].pool_address); |
| for (; base < (uintptr_t) allarenas[i].pool_address; base += POOL_SIZE) { |
| poolp p = (poolp)base; |
| n += p->ref.count; |
| } |
| } |
| return n; |
| } |
| |
| void |
| _PyInterpreterState_FinalizeAllocatedBlocks(PyInterpreterState *interp) |
| { |
| if (has_own_state(interp)) { |
| Py_ssize_t leaked = _PyInterpreterState_GetAllocatedBlocks(interp); |
| assert(has_own_state(interp) || leaked == 0); |
| interp->runtime->obmalloc.interpreter_leaks += leaked; |
| } |
| } |
| |
| static Py_ssize_t get_num_global_allocated_blocks(_PyRuntimeState *); |
| |
| /* We preserve the number of blockss leaked during runtime finalization, |
| so they can be reported if the runtime is initialized again. */ |
| // XXX We don't lose any information by dropping this, |
| // so we should consider doing so. |
| static Py_ssize_t last_final_leaks = 0; |
| |
| void |
| _Py_FinalizeAllocatedBlocks(_PyRuntimeState *runtime) |
| { |
| last_final_leaks = get_num_global_allocated_blocks(runtime); |
| runtime->obmalloc.interpreter_leaks = 0; |
| } |
| |
| static Py_ssize_t |
| get_num_global_allocated_blocks(_PyRuntimeState *runtime) |
| { |
| Py_ssize_t total = 0; |
| if (_PyRuntimeState_GetFinalizing(runtime) != NULL) { |
| PyInterpreterState *interp = _PyInterpreterState_Main(); |
| if (interp == NULL) { |
| /* We are at the very end of runtime finalization. |
| We can't rely on finalizing->interp since that thread |
| state is probably already freed, so we don't worry |
| about it. */ |
| assert(PyInterpreterState_Head() == NULL); |
| } |
| else { |
| assert(interp != NULL); |
| /* It is probably the last interpreter but not necessarily. */ |
| assert(PyInterpreterState_Next(interp) == NULL); |
| total += _PyInterpreterState_GetAllocatedBlocks(interp); |
| } |
| } |
| else { |
| HEAD_LOCK(runtime); |
| PyInterpreterState *interp = PyInterpreterState_Head(); |
| assert(interp != NULL); |
| #ifdef Py_DEBUG |
| int got_main = 0; |
| #endif |
| for (; interp != NULL; interp = PyInterpreterState_Next(interp)) { |
| #ifdef Py_DEBUG |
| if (_Py_IsMainInterpreter(interp)) { |
| assert(!got_main); |
| got_main = 1; |
| assert(has_own_state(interp)); |
| } |
| #endif |
| if (has_own_state(interp)) { |
| total += _PyInterpreterState_GetAllocatedBlocks(interp); |
| } |
| } |
| HEAD_UNLOCK(runtime); |
| #ifdef Py_DEBUG |
| assert(got_main); |
| #endif |
| } |
| total += runtime->obmalloc.interpreter_leaks; |
| total += last_final_leaks; |
| return total; |
| } |
| |
| Py_ssize_t |
| _Py_GetGlobalAllocatedBlocks(void) |
| { |
| return get_num_global_allocated_blocks(&_PyRuntime); |
| } |
| |
| #if WITH_PYMALLOC_RADIX_TREE |
| /*==========================================================================*/ |
| /* radix tree for tracking arena usage. */ |
| |
| #define arena_map_root (state->usage.arena_map_root) |
| #ifdef USE_INTERIOR_NODES |
| #define arena_map_mid_count (state->usage.arena_map_mid_count) |
| #define arena_map_bot_count (state->usage.arena_map_bot_count) |
| #endif |
| |
| /* Return a pointer to a bottom tree node, return NULL if it doesn't exist or |
| * it cannot be created */ |
| static inline Py_ALWAYS_INLINE arena_map_bot_t * |
| arena_map_get(OMState *state, pymem_block *p, int create) |
| { |
| #ifdef USE_INTERIOR_NODES |
| /* sanity check that IGNORE_BITS is correct */ |
| assert(HIGH_BITS(p) == HIGH_BITS(&arena_map_root)); |
| int i1 = MAP_TOP_INDEX(p); |
| if (arena_map_root.ptrs[i1] == NULL) { |
| if (!create) { |
| return NULL; |
| } |
| arena_map_mid_t *n = PyMem_RawCalloc(1, sizeof(arena_map_mid_t)); |
| if (n == NULL) { |
| return NULL; |
| } |
| arena_map_root.ptrs[i1] = n; |
| arena_map_mid_count++; |
| } |
| int i2 = MAP_MID_INDEX(p); |
| if (arena_map_root.ptrs[i1]->ptrs[i2] == NULL) { |
| if (!create) { |
| return NULL; |
| } |
| arena_map_bot_t *n = PyMem_RawCalloc(1, sizeof(arena_map_bot_t)); |
| if (n == NULL) { |
| return NULL; |
| } |
| arena_map_root.ptrs[i1]->ptrs[i2] = n; |
| arena_map_bot_count++; |
| } |
| return arena_map_root.ptrs[i1]->ptrs[i2]; |
| #else |
| return &arena_map_root; |
| #endif |
| } |
| |
| |
| /* The radix tree only tracks arenas. So, for 16 MiB arenas, we throw |
| * away 24 bits of the address. That reduces the space requirement of |
| * the tree compared to similar radix tree page-map schemes. In |
| * exchange for slashing the space requirement, it needs more |
| * computation to check an address. |
| * |
| * Tracking coverage is done by "ideal" arena address. It is easier to |
| * explain in decimal so let's say that the arena size is 100 bytes. |
| * Then, ideal addresses are 100, 200, 300, etc. For checking if a |
| * pointer address is inside an actual arena, we have to check two ideal |
| * arena addresses. E.g. if pointer is 357, we need to check 200 and |
| * 300. In the rare case that an arena is aligned in the ideal way |
| * (e.g. base address of arena is 200) then we only have to check one |
| * ideal address. |
| * |
| * The tree nodes for 200 and 300 both store the address of arena. |
| * There are two cases: the arena starts at a lower ideal arena and |
| * extends to this one, or the arena starts in this arena and extends to |
| * the next ideal arena. The tail_lo and tail_hi members correspond to |
| * these two cases. |
| */ |
| |
| |
| /* mark or unmark addresses covered by arena */ |
| static int |
| arena_map_mark_used(OMState *state, uintptr_t arena_base, int is_used) |
| { |
| /* sanity check that IGNORE_BITS is correct */ |
| assert(HIGH_BITS(arena_base) == HIGH_BITS(&arena_map_root)); |
| arena_map_bot_t *n_hi = arena_map_get( |
| state, (pymem_block *)arena_base, is_used); |
| if (n_hi == NULL) { |
| assert(is_used); /* otherwise node should already exist */ |
| return 0; /* failed to allocate space for node */ |
| } |
| int i3 = MAP_BOT_INDEX((pymem_block *)arena_base); |
| int32_t tail = (int32_t)(arena_base & ARENA_SIZE_MASK); |
| if (tail == 0) { |
| /* is ideal arena address */ |
| n_hi->arenas[i3].tail_hi = is_used ? -1 : 0; |
| } |
| else { |
| /* arena_base address is not ideal (aligned to arena size) and |
| * so it potentially covers two MAP_BOT nodes. Get the MAP_BOT node |
| * for the next arena. Note that it might be in different MAP_TOP |
| * and MAP_MID nodes as well so we need to call arena_map_get() |
| * again (do the full tree traversal). |
| */ |
| n_hi->arenas[i3].tail_hi = is_used ? tail : 0; |
| uintptr_t arena_base_next = arena_base + ARENA_SIZE; |
| /* If arena_base is a legit arena address, so is arena_base_next - 1 |
| * (last address in arena). If arena_base_next overflows then it |
| * must overflow to 0. However, that would mean arena_base was |
| * "ideal" and we should not be in this case. */ |
| assert(arena_base < arena_base_next); |
| arena_map_bot_t *n_lo = arena_map_get( |
| state, (pymem_block *)arena_base_next, is_used); |
| if (n_lo == NULL) { |
| assert(is_used); /* otherwise should already exist */ |
| n_hi->arenas[i3].tail_hi = 0; |
| return 0; /* failed to allocate space for node */ |
| } |
| int i3_next = MAP_BOT_INDEX(arena_base_next); |
| n_lo->arenas[i3_next].tail_lo = is_used ? tail : 0; |
| } |
| return 1; |
| } |
| |
| /* Return true if 'p' is a pointer inside an obmalloc arena. |
| * _PyObject_Free() calls this so it needs to be very fast. */ |
| static int |
| arena_map_is_used(OMState *state, pymem_block *p) |
| { |
| arena_map_bot_t *n = arena_map_get(state, p, 0); |
| if (n == NULL) { |
| return 0; |
| } |
| int i3 = MAP_BOT_INDEX(p); |
| /* ARENA_BITS must be < 32 so that the tail is a non-negative int32_t. */ |
| int32_t hi = n->arenas[i3].tail_hi; |
| int32_t lo = n->arenas[i3].tail_lo; |
| int32_t tail = (int32_t)(AS_UINT(p) & ARENA_SIZE_MASK); |
| return (tail < lo) || (tail >= hi && hi != 0); |
| } |
| |
| /* end of radix tree logic */ |
| /*==========================================================================*/ |
| #endif /* WITH_PYMALLOC_RADIX_TREE */ |
| |
| |
| /* Allocate a new arena. If we run out of memory, return NULL. Else |
| * allocate a new arena, and return the address of an arena_object |
| * describing the new arena. It's expected that the caller will set |
| * `usable_arenas` to the return value. |
| */ |
| static struct arena_object* |
| new_arena(OMState *state) |
| { |
| struct arena_object* arenaobj; |
| uint excess; /* number of bytes above pool alignment */ |
| void *address; |
| |
| int debug_stats = _PyRuntime.obmalloc.dump_debug_stats; |
| if (debug_stats == -1) { |
| const char *opt = Py_GETENV("PYTHONMALLOCSTATS"); |
| debug_stats = (opt != NULL && *opt != '\0'); |
| _PyRuntime.obmalloc.dump_debug_stats = debug_stats; |
| } |
| if (debug_stats) { |
| _PyObject_DebugMallocStats(stderr); |
| } |
| |
| if (unused_arena_objects == NULL) { |
| uint i; |
| uint numarenas; |
| size_t nbytes; |
| |
| /* Double the number of arena objects on each allocation. |
| * Note that it's possible for `numarenas` to overflow. |
| */ |
| numarenas = maxarenas ? maxarenas << 1 : INITIAL_ARENA_OBJECTS; |
| if (numarenas <= maxarenas) |
| return NULL; /* overflow */ |
| #if SIZEOF_SIZE_T <= SIZEOF_INT |
| if (numarenas > SIZE_MAX / sizeof(*allarenas)) |
| return NULL; /* overflow */ |
| #endif |
| nbytes = numarenas * sizeof(*allarenas); |
| arenaobj = (struct arena_object *)PyMem_RawRealloc(allarenas, nbytes); |
| if (arenaobj == NULL) |
| return NULL; |
| allarenas = arenaobj; |
| |
| /* We might need to fix pointers that were copied. However, |
| * new_arena only gets called when all the pages in the |
| * previous arenas are full. Thus, there are *no* pointers |
| * into the old array. Thus, we don't have to worry about |
| * invalid pointers. Just to be sure, some asserts: |
| */ |
| assert(usable_arenas == NULL); |
| assert(unused_arena_objects == NULL); |
| |
| /* Put the new arenas on the unused_arena_objects list. */ |
| for (i = maxarenas; i < numarenas; ++i) { |
| allarenas[i].address = 0; /* mark as unassociated */ |
| allarenas[i].nextarena = i < numarenas - 1 ? |
| &allarenas[i+1] : NULL; |
| } |
| |
| /* Update globals. */ |
| unused_arena_objects = &allarenas[maxarenas]; |
| maxarenas = numarenas; |
| } |
| |
| /* Take the next available arena object off the head of the list. */ |
| assert(unused_arena_objects != NULL); |
| arenaobj = unused_arena_objects; |
| unused_arena_objects = arenaobj->nextarena; |
| assert(arenaobj->address == 0); |
| address = _PyObject_Arena.alloc(_PyObject_Arena.ctx, ARENA_SIZE); |
| #if WITH_PYMALLOC_RADIX_TREE |
| if (address != NULL) { |
| if (!arena_map_mark_used(state, (uintptr_t)address, 1)) { |
| /* marking arena in radix tree failed, abort */ |
| _PyObject_Arena.free(_PyObject_Arena.ctx, address, ARENA_SIZE); |
| address = NULL; |
| } |
| } |
| #endif |
| if (address == NULL) { |
| /* The allocation failed: return NULL after putting the |
| * arenaobj back. |
| */ |
| arenaobj->nextarena = unused_arena_objects; |
| unused_arena_objects = arenaobj; |
| return NULL; |
| } |
| arenaobj->address = (uintptr_t)address; |
| |
| ++narenas_currently_allocated; |
| ++ntimes_arena_allocated; |
| if (narenas_currently_allocated > narenas_highwater) |
| narenas_highwater = narenas_currently_allocated; |
| arenaobj->freepools = NULL; |
| /* pool_address <- first pool-aligned address in the arena |
| nfreepools <- number of whole pools that fit after alignment */ |
| arenaobj->pool_address = (pymem_block*)arenaobj->address; |
| arenaobj->nfreepools = MAX_POOLS_IN_ARENA; |
| excess = (uint)(arenaobj->address & POOL_SIZE_MASK); |
| if (excess != 0) { |
| --arenaobj->nfreepools; |
| arenaobj->pool_address += POOL_SIZE - excess; |
| } |
| arenaobj->ntotalpools = arenaobj->nfreepools; |
| |
| return arenaobj; |
| } |
| |
| |
| |
| #if WITH_PYMALLOC_RADIX_TREE |
| /* Return true if and only if P is an address that was allocated by |
| pymalloc. When the radix tree is used, 'poolp' is unused. |
| */ |
| static bool |
| address_in_range(OMState *state, void *p, poolp Py_UNUSED(pool)) |
| { |
| return arena_map_is_used(state, p); |
| } |
| #else |
| /* |
| address_in_range(P, POOL) |
| |
| Return true if and only if P is an address that was allocated by pymalloc. |
| POOL must be the pool address associated with P, i.e., POOL = POOL_ADDR(P) |
| (the caller is asked to compute this because the macro expands POOL more than |
| once, and for efficiency it's best for the caller to assign POOL_ADDR(P) to a |
| variable and pass the latter to the macro; because address_in_range is |
| called on every alloc/realloc/free, micro-efficiency is important here). |
| |
| Tricky: Let B be the arena base address associated with the pool, B = |
| arenas[(POOL)->arenaindex].address. Then P belongs to the arena if and only if |
| |
| B <= P < B + ARENA_SIZE |
| |
| Subtracting B throughout, this is true iff |
| |
| 0 <= P-B < ARENA_SIZE |
| |
| By using unsigned arithmetic, the "0 <=" half of the test can be skipped. |
| |
| Obscure: A PyMem "free memory" function can call the pymalloc free or realloc |
| before the first arena has been allocated. `arenas` is still NULL in that |
| case. We're relying on that maxarenas is also 0 in that case, so that |
| (POOL)->arenaindex < maxarenas must be false, saving us from trying to index |
| into a NULL arenas. |
| |
| Details: given P and POOL, the arena_object corresponding to P is AO = |
| arenas[(POOL)->arenaindex]. Suppose obmalloc controls P. Then (barring wild |
| stores, etc), POOL is the correct address of P's pool, AO.address is the |
| correct base address of the pool's arena, and P must be within ARENA_SIZE of |
| AO.address. In addition, AO.address is not 0 (no arena can start at address 0 |
| (NULL)). Therefore address_in_range correctly reports that obmalloc |
| controls P. |
| |
| Now suppose obmalloc does not control P (e.g., P was obtained via a direct |
| call to the system malloc() or realloc()). (POOL)->arenaindex may be anything |
| in this case -- it may even be uninitialized trash. If the trash arenaindex |
| is >= maxarenas, the macro correctly concludes at once that obmalloc doesn't |
| control P. |
| |
| Else arenaindex is < maxarena, and AO is read up. If AO corresponds to an |
| allocated arena, obmalloc controls all the memory in slice AO.address : |
| AO.address+ARENA_SIZE. By case assumption, P is not controlled by obmalloc, |
| so P doesn't lie in that slice, so the macro correctly reports that P is not |
| controlled by obmalloc. |
| |
| Finally, if P is not controlled by obmalloc and AO corresponds to an unused |
| arena_object (one not currently associated with an allocated arena), |
| AO.address is 0, and the second test in the macro reduces to: |
| |
| P < ARENA_SIZE |
| |
| If P >= ARENA_SIZE (extremely likely), the macro again correctly concludes |
| that P is not controlled by obmalloc. However, if P < ARENA_SIZE, this part |
| of the test still passes, and the third clause (AO.address != 0) is necessary |
| to get the correct result: AO.address is 0 in this case, so the macro |
| correctly reports that P is not controlled by obmalloc (despite that P lies in |
| slice AO.address : AO.address + ARENA_SIZE). |
| |
| Note: The third (AO.address != 0) clause was added in Python 2.5. Before |
| 2.5, arenas were never free()'ed, and an arenaindex < maxarena always |
| corresponded to a currently-allocated arena, so the "P is not controlled by |
| obmalloc, AO corresponds to an unused arena_object, and P < ARENA_SIZE" case |
| was impossible. |
| |
| Note that the logic is excruciating, and reading up possibly uninitialized |
| memory when P is not controlled by obmalloc (to get at (POOL)->arenaindex) |
| creates problems for some memory debuggers. The overwhelming advantage is |
| that this test determines whether an arbitrary address is controlled by |
| obmalloc in a small constant time, independent of the number of arenas |
| obmalloc controls. Since this test is needed at every entry point, it's |
| extremely desirable that it be this fast. |
| */ |
| |
| static bool _Py_NO_SANITIZE_ADDRESS |
| _Py_NO_SANITIZE_THREAD |
| _Py_NO_SANITIZE_MEMORY |
| address_in_range(OMState *state, void *p, poolp pool) |
| { |
| // Since address_in_range may be reading from memory which was not allocated |
| // by Python, it is important that pool->arenaindex is read only once, as |
| // another thread may be concurrently modifying the value without holding |
| // the GIL. The following dance forces the compiler to read pool->arenaindex |
| // only once. |
| uint arenaindex = *((volatile uint *)&pool->arenaindex); |
| return arenaindex < maxarenas && |
| (uintptr_t)p - allarenas[arenaindex].address < ARENA_SIZE && |
| allarenas[arenaindex].address != 0; |
| } |
| |
| #endif /* !WITH_PYMALLOC_RADIX_TREE */ |
| |
| /*==========================================================================*/ |
| |
| // Called when freelist is exhausted. Extend the freelist if there is |
| // space for a block. Otherwise, remove this pool from usedpools. |
| static void |
| pymalloc_pool_extend(poolp pool, uint size) |
| { |
| if (UNLIKELY(pool->nextoffset <= pool->maxnextoffset)) { |
| /* There is room for another block. */ |
| pool->freeblock = (pymem_block*)pool + pool->nextoffset; |
| pool->nextoffset += INDEX2SIZE(size); |
| *(pymem_block **)(pool->freeblock) = NULL; |
| return; |
| } |
| |
| /* Pool is full, unlink from used pools. */ |
| poolp next; |
| next = pool->nextpool; |
| pool = pool->prevpool; |
| next->prevpool = pool; |
| pool->nextpool = next; |
| } |
| |
| /* called when pymalloc_alloc can not allocate a block from usedpool. |
| * This function takes new pool and allocate a block from it. |
| */ |
| static void* |
| allocate_from_new_pool(OMState *state, uint size) |
| { |
| /* There isn't a pool of the right size class immediately |
| * available: use a free pool. |
| */ |
| if (UNLIKELY(usable_arenas == NULL)) { |
| /* No arena has a free pool: allocate a new arena. */ |
| #ifdef WITH_MEMORY_LIMITS |
| if (narenas_currently_allocated >= MAX_ARENAS) { |
| return NULL; |
| } |
| #endif |
| usable_arenas = new_arena(state); |
| if (usable_arenas == NULL) { |
| return NULL; |
| } |
| usable_arenas->nextarena = usable_arenas->prevarena = NULL; |
| assert(nfp2lasta[usable_arenas->nfreepools] == NULL); |
| nfp2lasta[usable_arenas->nfreepools] = usable_arenas; |
| } |
| assert(usable_arenas->address != 0); |
| |
| /* This arena already had the smallest nfreepools value, so decreasing |
| * nfreepools doesn't change that, and we don't need to rearrange the |
| * usable_arenas list. However, if the arena becomes wholly allocated, |
| * we need to remove its arena_object from usable_arenas. |
| */ |
| assert(usable_arenas->nfreepools > 0); |
| if (nfp2lasta[usable_arenas->nfreepools] == usable_arenas) { |
| /* It's the last of this size, so there won't be any. */ |
| nfp2lasta[usable_arenas->nfreepools] = NULL; |
| } |
| /* If any free pools will remain, it will be the new smallest. */ |
| if (usable_arenas->nfreepools > 1) { |
| assert(nfp2lasta[usable_arenas->nfreepools - 1] == NULL); |
| nfp2lasta[usable_arenas->nfreepools - 1] = usable_arenas; |
| } |
| |
| /* Try to get a cached free pool. */ |
| poolp pool = usable_arenas->freepools; |
| if (LIKELY(pool != NULL)) { |
| /* Unlink from cached pools. */ |
| usable_arenas->freepools = pool->nextpool; |
| usable_arenas->nfreepools--; |
| if (UNLIKELY(usable_arenas->nfreepools == 0)) { |
| /* Wholly allocated: remove. */ |
| assert(usable_arenas->freepools == NULL); |
| assert(usable_arenas->nextarena == NULL || |
| usable_arenas->nextarena->prevarena == |
| usable_arenas); |
| usable_arenas = usable_arenas->nextarena; |
| if (usable_arenas != NULL) { |
| usable_arenas->prevarena = NULL; |
| assert(usable_arenas->address != 0); |
| } |
| } |
| else { |
| /* nfreepools > 0: it must be that freepools |
| * isn't NULL, or that we haven't yet carved |
| * off all the arena's pools for the first |
| * time. |
| */ |
| assert(usable_arenas->freepools != NULL || |
| usable_arenas->pool_address <= |
| (pymem_block*)usable_arenas->address + |
| ARENA_SIZE - POOL_SIZE); |
| } |
| } |
| else { |
| /* Carve off a new pool. */ |
| assert(usable_arenas->nfreepools > 0); |
| assert(usable_arenas->freepools == NULL); |
| pool = (poolp)usable_arenas->pool_address; |
| assert((pymem_block*)pool <= (pymem_block*)usable_arenas->address + |
| ARENA_SIZE - POOL_SIZE); |
| pool->arenaindex = (uint)(usable_arenas - allarenas); |
| assert(&allarenas[pool->arenaindex] == usable_arenas); |
| pool->szidx = DUMMY_SIZE_IDX; |
| usable_arenas->pool_address += POOL_SIZE; |
| --usable_arenas->nfreepools; |
| |
| if (usable_arenas->nfreepools == 0) { |
| assert(usable_arenas->nextarena == NULL || |
| usable_arenas->nextarena->prevarena == |
| usable_arenas); |
| /* Unlink the arena: it is completely allocated. */ |
| usable_arenas = usable_arenas->nextarena; |
| if (usable_arenas != NULL) { |
| usable_arenas->prevarena = NULL; |
| assert(usable_arenas->address != 0); |
| } |
| } |
| } |
| |
| /* Frontlink to used pools. */ |
| pymem_block *bp; |
| poolp next = usedpools[size + size]; /* == prev */ |
| pool->nextpool = next; |
| pool->prevpool = next; |
| next->nextpool = pool; |
| next->prevpool = pool; |
| pool->ref.count = 1; |
| if (pool->szidx == size) { |
| /* Luckily, this pool last contained blocks |
| * of the same size class, so its header |
| * and free list are already initialized. |
| */ |
| bp = pool->freeblock; |
| assert(bp != NULL); |
| pool->freeblock = *(pymem_block **)bp; |
| return bp; |
| } |
| /* |
| * Initialize the pool header, set up the free list to |
| * contain just the second block, and return the first |
| * block. |
| */ |
| pool->szidx = size; |
| size = INDEX2SIZE(size); |
| bp = (pymem_block *)pool + POOL_OVERHEAD; |
| pool->nextoffset = POOL_OVERHEAD + (size << 1); |
| pool->maxnextoffset = POOL_SIZE - size; |
| pool->freeblock = bp + size; |
| *(pymem_block **)(pool->freeblock) = NULL; |
| return bp; |
| } |
| |
| /* pymalloc allocator |
| |
| Return a pointer to newly allocated memory if pymalloc allocated memory. |
| |
| Return NULL if pymalloc failed to allocate the memory block: on bigger |
| requests, on error in the code below (as a last chance to serve the request) |
| or when the max memory limit has been reached. |
| */ |
| static inline void* |
| pymalloc_alloc(OMState *state, void *Py_UNUSED(ctx), size_t nbytes) |
| { |
| #ifdef WITH_VALGRIND |
| if (UNLIKELY(running_on_valgrind == -1)) { |
| running_on_valgrind = RUNNING_ON_VALGRIND; |
| } |
| if (UNLIKELY(running_on_valgrind)) { |
| return NULL; |
| } |
| #endif |
| |
| if (UNLIKELY(nbytes == 0)) { |
| return NULL; |
| } |
| if (UNLIKELY(nbytes > SMALL_REQUEST_THRESHOLD)) { |
| return NULL; |
| } |
| |
| uint size = (uint)(nbytes - 1) >> ALIGNMENT_SHIFT; |
| poolp pool = usedpools[size + size]; |
| pymem_block *bp; |
| |
| if (LIKELY(pool != pool->nextpool)) { |
| /* |
| * There is a used pool for this size class. |
| * Pick up the head block of its free list. |
| */ |
| ++pool->ref.count; |
| bp = pool->freeblock; |
| assert(bp != NULL); |
| |
| if (UNLIKELY((pool->freeblock = *(pymem_block **)bp) == NULL)) { |
| // Reached the end of the free list, try to extend it. |
| pymalloc_pool_extend(pool, size); |
| } |
| } |
| else { |
| /* There isn't a pool of the right size class immediately |
| * available: use a free pool. |
| */ |
| bp = allocate_from_new_pool(state, size); |
| } |
| |
| return (void *)bp; |
| } |
| |
| |
| void * |
| _PyObject_Malloc(void *ctx, size_t nbytes) |
| { |
| OMState *state = get_state(); |
| void* ptr = pymalloc_alloc(state, ctx, nbytes); |
| if (LIKELY(ptr != NULL)) { |
| return ptr; |
| } |
| |
| ptr = PyMem_RawMalloc(nbytes); |
| if (ptr != NULL) { |
| raw_allocated_blocks++; |
| } |
| return ptr; |
| } |
| |
| |
| void * |
| _PyObject_Calloc(void *ctx, size_t nelem, size_t elsize) |
| { |
| assert(elsize == 0 || nelem <= (size_t)PY_SSIZE_T_MAX / elsize); |
| size_t nbytes = nelem * elsize; |
| |
| OMState *state = get_state(); |
| void* ptr = pymalloc_alloc(state, ctx, nbytes); |
| if (LIKELY(ptr != NULL)) { |
| memset(ptr, 0, nbytes); |
| return ptr; |
| } |
| |
| ptr = PyMem_RawCalloc(nelem, elsize); |
| if (ptr != NULL) { |
| raw_allocated_blocks++; |
| } |
| return ptr; |
| } |
| |
| |
| static void |
| insert_to_usedpool(OMState *state, poolp pool) |
| { |
| assert(pool->ref.count > 0); /* else the pool is empty */ |
| |
| uint size = pool->szidx; |
| poolp next = usedpools[size + size]; |
| poolp prev = next->prevpool; |
| |
| /* insert pool before next: prev <-> pool <-> next */ |
| pool->nextpool = next; |
| pool->prevpool = prev; |
| next->prevpool = pool; |
| prev->nextpool = pool; |
| } |
| |
| static void |
| insert_to_freepool(OMState *state, poolp pool) |
| { |
| poolp next = pool->nextpool; |
| poolp prev = pool->prevpool; |
| next->prevpool = prev; |
| prev->nextpool = next; |
| |
| /* Link the pool to freepools. This is a singly-linked |
| * list, and pool->prevpool isn't used there. |
| */ |
| struct arena_object *ao = &allarenas[pool->arenaindex]; |
| pool->nextpool = ao->freepools; |
| ao->freepools = pool; |
| uint nf = ao->nfreepools; |
| /* If this is the rightmost arena with this number of free pools, |
| * nfp2lasta[nf] needs to change. Caution: if nf is 0, there |
| * are no arenas in usable_arenas with that value. |
| */ |
| struct arena_object* lastnf = nfp2lasta[nf]; |
| assert((nf == 0 && lastnf == NULL) || |
| (nf > 0 && |
| lastnf != NULL && |
| lastnf->nfreepools == nf && |
| (lastnf->nextarena == NULL || |
| nf < lastnf->nextarena->nfreepools))); |
| if (lastnf == ao) { /* it is the rightmost */ |
| struct arena_object* p = ao->prevarena; |
| nfp2lasta[nf] = (p != NULL && p->nfreepools == nf) ? p : NULL; |
| } |
| ao->nfreepools = ++nf; |
| |
| /* All the rest is arena management. We just freed |
| * a pool, and there are 4 cases for arena mgmt: |
| * 1. If all the pools are free, return the arena to |
| * the system free(). Except if this is the last |
| * arena in the list, keep it to avoid thrashing: |
| * keeping one wholly free arena in the list avoids |
| * pathological cases where a simple loop would |
| * otherwise provoke needing to allocate and free an |
| * arena on every iteration. See bpo-37257. |
| * 2. If this is the only free pool in the arena, |
| * add the arena back to the `usable_arenas` list. |
| * 3. If the "next" arena has a smaller count of free |
| * pools, we have to "slide this arena right" to |
| * restore that usable_arenas is sorted in order of |
| * nfreepools. |
| * 4. Else there's nothing more to do. |
| */ |
| if (nf == ao->ntotalpools && ao->nextarena != NULL) { |
| /* Case 1. First unlink ao from usable_arenas. |
| */ |
| assert(ao->prevarena == NULL || |
| ao->prevarena->address != 0); |
| assert(ao ->nextarena == NULL || |
| ao->nextarena->address != 0); |
| |
| /* Fix the pointer in the prevarena, or the |
| * usable_arenas pointer. |
| */ |
| if (ao->prevarena == NULL) { |
| usable_arenas = ao->nextarena; |
| assert(usable_arenas == NULL || |
| usable_arenas->address != 0); |
| } |
| else { |
| assert(ao->prevarena->nextarena == ao); |
| ao->prevarena->nextarena = |
| ao->nextarena; |
| } |
| /* Fix the pointer in the nextarena. */ |
| if (ao->nextarena != NULL) { |
| assert(ao->nextarena->prevarena == ao); |
| ao->nextarena->prevarena = |
| ao->prevarena; |
| } |
| /* Record that this arena_object slot is |
| * available to be reused. |
| */ |
| ao->nextarena = unused_arena_objects; |
| unused_arena_objects = ao; |
| |
| #if WITH_PYMALLOC_RADIX_TREE |
| /* mark arena region as not under control of obmalloc */ |
| arena_map_mark_used(state, ao->address, 0); |
| #endif |
| |
| /* Free the entire arena. */ |
| _PyObject_Arena.free(_PyObject_Arena.ctx, |
| (void *)ao->address, ARENA_SIZE); |
| ao->address = 0; /* mark unassociated */ |
| --narenas_currently_allocated; |
| |
| return; |
| } |
| |
| if (nf == 1) { |
| /* Case 2. Put ao at the head of |
| * usable_arenas. Note that because |
| * ao->nfreepools was 0 before, ao isn't |
| * currently on the usable_arenas list. |
| */ |
| ao->nextarena = usable_arenas; |
| ao->prevarena = NULL; |
| if (usable_arenas) |
| usable_arenas->prevarena = ao; |
| usable_arenas = ao; |
| assert(usable_arenas->address != 0); |
| if (nfp2lasta[1] == NULL) { |
| nfp2lasta[1] = ao; |
| } |
| |
| return; |
| } |
| |
| /* If this arena is now out of order, we need to keep |
| * the list sorted. The list is kept sorted so that |
| * the "most full" arenas are used first, which allows |
| * the nearly empty arenas to be completely freed. In |
| * a few un-scientific tests, it seems like this |
| * approach allowed a lot more memory to be freed. |
| */ |
| /* If this is the only arena with nf, record that. */ |
| if (nfp2lasta[nf] == NULL) { |
| nfp2lasta[nf] = ao; |
| } /* else the rightmost with nf doesn't change */ |
| /* If this was the rightmost of the old size, it remains in place. */ |
| if (ao == lastnf) { |
| /* Case 4. Nothing to do. */ |
| return; |
| } |
| /* If ao were the only arena in the list, the last block would have |
| * gotten us out. |
| */ |
| assert(ao->nextarena != NULL); |
| |
| /* Case 3: We have to move the arena towards the end of the list, |
| * because it has more free pools than the arena to its right. It needs |
| * to move to follow lastnf. |
| * First unlink ao from usable_arenas. |
| */ |
| if (ao->prevarena != NULL) { |
| /* ao isn't at the head of the list */ |
| assert(ao->prevarena->nextarena == ao); |
| ao->prevarena->nextarena = ao->nextarena; |
| } |
| else { |
| /* ao is at the head of the list */ |
| assert(usable_arenas == ao); |
| usable_arenas = ao->nextarena; |
| } |
| ao->nextarena->prevarena = ao->prevarena; |
| /* And insert after lastnf. */ |
| ao->prevarena = lastnf; |
| ao->nextarena = lastnf->nextarena; |
| if (ao->nextarena != NULL) { |
| ao->nextarena->prevarena = ao; |
| } |
| lastnf->nextarena = ao; |
| /* Verify that the swaps worked. */ |
| assert(ao->nextarena == NULL || nf <= ao->nextarena->nfreepools); |
| assert(ao->prevarena == NULL || nf > ao->prevarena->nfreepools); |
| assert(ao->nextarena == NULL || ao->nextarena->prevarena == ao); |
| assert((usable_arenas == ao && ao->prevarena == NULL) |
| || ao->prevarena->nextarena == ao); |
| } |
| |
| /* Free a memory block allocated by pymalloc_alloc(). |
| Return 1 if it was freed. |
| Return 0 if the block was not allocated by pymalloc_alloc(). */ |
| static inline int |
| pymalloc_free(OMState *state, void *Py_UNUSED(ctx), void *p) |
| { |
| assert(p != NULL); |
| |
| #ifdef WITH_VALGRIND |
| if (UNLIKELY(running_on_valgrind > 0)) { |
| return 0; |
| } |
| #endif |
| |
| poolp pool = POOL_ADDR(p); |
| if (UNLIKELY(!address_in_range(state, p, pool))) { |
| return 0; |
| } |
| /* We allocated this address. */ |
| |
| /* Link p to the start of the pool's freeblock list. Since |
| * the pool had at least the p block outstanding, the pool |
| * wasn't empty (so it's already in a usedpools[] list, or |
| * was full and is in no list -- it's not in the freeblocks |
| * list in any case). |
| */ |
| assert(pool->ref.count > 0); /* else it was empty */ |
| pymem_block *lastfree = pool->freeblock; |
| *(pymem_block **)p = lastfree; |
| pool->freeblock = (pymem_block *)p; |
| pool->ref.count--; |
| |
| if (UNLIKELY(lastfree == NULL)) { |
| /* Pool was full, so doesn't currently live in any list: |
| * link it to the front of the appropriate usedpools[] list. |
| * This mimics LRU pool usage for new allocations and |
| * targets optimal filling when several pools contain |
| * blocks of the same size class. |
| */ |
| insert_to_usedpool(state, pool); |
| return 1; |
| } |
| |
| /* freeblock wasn't NULL, so the pool wasn't full, |
| * and the pool is in a usedpools[] list. |
| */ |
| if (LIKELY(pool->ref.count != 0)) { |
| /* pool isn't empty: leave it in usedpools */ |
| return 1; |
| } |
| |
| /* Pool is now empty: unlink from usedpools, and |
| * link to the front of freepools. This ensures that |
| * previously freed pools will be allocated later |
| * (being not referenced, they are perhaps paged out). |
| */ |
| insert_to_freepool(state, pool); |
| return 1; |
| } |
| |
| |
| void |
| _PyObject_Free(void *ctx, void *p) |
| { |
| /* PyObject_Free(NULL) has no effect */ |
| if (p == NULL) { |
| return; |
| } |
| |
| OMState *state = get_state(); |
| if (UNLIKELY(!pymalloc_free(state, ctx, p))) { |
| /* pymalloc didn't allocate this address */ |
| PyMem_RawFree(p); |
| raw_allocated_blocks--; |
| } |
| } |
| |
| |
| /* pymalloc realloc. |
| |
| If nbytes==0, then as the Python docs promise, we do not treat this like |
| free(p), and return a non-NULL result. |
| |
| Return 1 if pymalloc reallocated memory and wrote the new pointer into |
| newptr_p. |
| |
| Return 0 if pymalloc didn't allocated p. */ |
| static int |
| pymalloc_realloc(OMState *state, void *ctx, |
| void **newptr_p, void *p, size_t nbytes) |
| { |
| void *bp; |
| poolp pool; |
| size_t size; |
| |
| assert(p != NULL); |
| |
| #ifdef WITH_VALGRIND |
| /* Treat running_on_valgrind == -1 the same as 0 */ |
| if (UNLIKELY(running_on_valgrind > 0)) { |
| return 0; |
| } |
| #endif |
| |
| pool = POOL_ADDR(p); |
| if (!address_in_range(state, p, pool)) { |
| /* pymalloc is not managing this block. |
| |
| If nbytes <= SMALL_REQUEST_THRESHOLD, it's tempting to try to take |
| over this block. However, if we do, we need to copy the valid data |
| from the C-managed block to one of our blocks, and there's no |
| portable way to know how much of the memory space starting at p is |
| valid. |
| |
| As bug 1185883 pointed out the hard way, it's possible that the |
| C-managed block is "at the end" of allocated VM space, so that a |
| memory fault can occur if we try to copy nbytes bytes starting at p. |
| Instead we punt: let C continue to manage this block. */ |
| return 0; |
| } |
| |
| /* pymalloc is in charge of this block */ |
| size = INDEX2SIZE(pool->szidx); |
| if (nbytes <= size) { |
| /* The block is staying the same or shrinking. |
| |
| If it's shrinking, there's a tradeoff: it costs cycles to copy the |
| block to a smaller size class, but it wastes memory not to copy it. |
| |
| The compromise here is to copy on shrink only if at least 25% of |
| size can be shaved off. */ |
| if (4 * nbytes > 3 * size) { |
| /* It's the same, or shrinking and new/old > 3/4. */ |
| *newptr_p = p; |
| return 1; |
| } |
| size = nbytes; |
| } |
| |
| bp = _PyObject_Malloc(ctx, nbytes); |
| if (bp != NULL) { |
| memcpy(bp, p, size); |
| _PyObject_Free(ctx, p); |
| } |
| *newptr_p = bp; |
| return 1; |
| } |
| |
| |
| void * |
| _PyObject_Realloc(void *ctx, void *ptr, size_t nbytes) |
| { |
| void *ptr2; |
| |
| if (ptr == NULL) { |
| return _PyObject_Malloc(ctx, nbytes); |
| } |
| |
| OMState *state = get_state(); |
| if (pymalloc_realloc(state, ctx, &ptr2, ptr, nbytes)) { |
| return ptr2; |
| } |
| |
| return PyMem_RawRealloc(ptr, nbytes); |
| } |
| |
| #else /* ! WITH_PYMALLOC */ |
| |
| /*==========================================================================*/ |
| /* pymalloc not enabled: Redirect the entry points to malloc. These will |
| * only be used by extensions that are compiled with pymalloc enabled. */ |
| |
| Py_ssize_t |
| _PyInterpreterState_GetAllocatedBlocks(PyInterpreterState *Py_UNUSED(interp)) |
| { |
| return 0; |
| } |
| |
| Py_ssize_t |
| _Py_GetGlobalAllocatedBlocks(void) |
| { |
| return 0; |
| } |
| |
| void |
| _PyInterpreterState_FinalizeAllocatedBlocks(PyInterpreterState *Py_UNUSED(interp)) |
| { |
| return; |
| } |
| |
| void |
| _Py_FinalizeAllocatedBlocks(_PyRuntimeState *Py_UNUSED(runtime)) |
| { |
| return; |
| } |
| |
| #endif /* WITH_PYMALLOC */ |
| |
| |
| /*==========================================================================*/ |
| /* A x-platform debugging allocator. This doesn't manage memory directly, |
| * it wraps a real allocator, adding extra debugging info to the memory blocks. |
| */ |
| |
| /* Uncomment this define to add the "serialno" field */ |
| /* #define PYMEM_DEBUG_SERIALNO */ |
| |
| #ifdef PYMEM_DEBUG_SERIALNO |
| static size_t serialno = 0; /* incremented on each debug {m,re}alloc */ |
| |
| /* serialno is always incremented via calling this routine. The point is |
| * to supply a single place to set a breakpoint. |
| */ |
| static void |
| bumpserialno(void) |
| { |
| ++serialno; |
| } |
| #endif |
| |
| #define SST SIZEOF_SIZE_T |
| |
| #ifdef PYMEM_DEBUG_SERIALNO |
| # define PYMEM_DEBUG_EXTRA_BYTES 4 * SST |
| #else |
| # define PYMEM_DEBUG_EXTRA_BYTES 3 * SST |
| #endif |
| |
| /* Read sizeof(size_t) bytes at p as a big-endian size_t. */ |
| static size_t |
| read_size_t(const void *p) |
| { |
| const uint8_t *q = (const uint8_t *)p; |
| size_t result = *q++; |
| int i; |
| |
| for (i = SST; --i > 0; ++q) |
| result = (result << 8) | *q; |
| return result; |
| } |
| |
| /* Write n as a big-endian size_t, MSB at address p, LSB at |
| * p + sizeof(size_t) - 1. |
| */ |
| static void |
| write_size_t(void *p, size_t n) |
| { |
| uint8_t *q = (uint8_t *)p + SST - 1; |
| int i; |
| |
| for (i = SST; --i >= 0; --q) { |
| *q = (uint8_t)(n & 0xff); |
| n >>= 8; |
| } |
| } |
| |
| /* Let S = sizeof(size_t). The debug malloc asks for 4 * S extra bytes and |
| fills them with useful stuff, here calling the underlying malloc's result p: |
| |
| p[0: S] |
| Number of bytes originally asked for. This is a size_t, big-endian (easier |
| to read in a memory dump). |
| p[S] |
| API ID. See PEP 445. This is a character, but seems undocumented. |
| p[S+1: 2*S] |
| Copies of PYMEM_FORBIDDENBYTE. Used to catch under- writes and reads. |
| p[2*S: 2*S+n] |
| The requested memory, filled with copies of PYMEM_CLEANBYTE. |
| Used to catch reference to uninitialized memory. |
| &p[2*S] is returned. Note that this is 8-byte aligned if pymalloc |
| handled the request itself. |
| p[2*S+n: 2*S+n+S] |
| Copies of PYMEM_FORBIDDENBYTE. Used to catch over- writes and reads. |
| p[2*S+n+S: 2*S+n+2*S] |
| A serial number, incremented by 1 on each call to _PyMem_DebugMalloc |
| and _PyMem_DebugRealloc. |
| This is a big-endian size_t. |
| If "bad memory" is detected later, the serial number gives an |
| excellent way to set a breakpoint on the next run, to capture the |
| instant at which this block was passed out. |
| |
| If PYMEM_DEBUG_SERIALNO is not defined (default), the debug malloc only asks |
| for 3 * S extra bytes, and omits the last serialno field. |
| */ |
| |
| static void * |
| _PyMem_DebugRawAlloc(int use_calloc, void *ctx, size_t nbytes) |
| { |
| debug_alloc_api_t *api = (debug_alloc_api_t *)ctx; |
| uint8_t *p; /* base address of malloc'ed pad block */ |
| uint8_t *data; /* p + 2*SST == pointer to data bytes */ |
| uint8_t *tail; /* data + nbytes == pointer to tail pad bytes */ |
| size_t total; /* nbytes + PYMEM_DEBUG_EXTRA_BYTES */ |
| |
| if (nbytes > (size_t)PY_SSIZE_T_MAX - PYMEM_DEBUG_EXTRA_BYTES) { |
| /* integer overflow: can't represent total as a Py_ssize_t */ |
| return NULL; |
| } |
| total = nbytes + PYMEM_DEBUG_EXTRA_BYTES; |
| |
| /* Layout: [SSSS IFFF CCCC...CCCC FFFF NNNN] |
| ^--- p ^--- data ^--- tail |
| S: nbytes stored as size_t |
| I: API identifier (1 byte) |
| F: Forbidden bytes (size_t - 1 bytes before, size_t bytes after) |
| C: Clean bytes used later to store actual data |
| N: Serial number stored as size_t |
| |
| If PYMEM_DEBUG_SERIALNO is not defined (default), the last NNNN field |
| is omitted. */ |
| |
| if (use_calloc) { |
| p = (uint8_t *)api->alloc.calloc(api->alloc.ctx, 1, total); |
| } |
| else { |
| p = (uint8_t *)api->alloc.malloc(api->alloc.ctx, total); |
| } |
| if (p == NULL) { |
| return NULL; |
| } |
| data = p + 2*SST; |
| |
| #ifdef PYMEM_DEBUG_SERIALNO |
| bumpserialno(); |
| #endif |
| |
| /* at p, write size (SST bytes), id (1 byte), pad (SST-1 bytes) */ |
| write_size_t(p, nbytes); |
| p[SST] = (uint8_t)api->api_id; |
| memset(p + SST + 1, PYMEM_FORBIDDENBYTE, SST-1); |
| |
| if (nbytes > 0 && !use_calloc) { |
| memset(data, PYMEM_CLEANBYTE, nbytes); |
| } |
| |
| /* at tail, write pad (SST bytes) and serialno (SST bytes) */ |
| tail = data + nbytes; |
| memset(tail, PYMEM_FORBIDDENBYTE, SST); |
| #ifdef PYMEM_DEBUG_SERIALNO |
| write_size_t(tail + SST, serialno); |
| #endif |
| |
| return data; |
| } |
| |
| void * |
| _PyMem_DebugRawMalloc(void *ctx, size_t nbytes) |
| { |
| return _PyMem_DebugRawAlloc(0, ctx, nbytes); |
| } |
| |
| void * |
| _PyMem_DebugRawCalloc(void *ctx, size_t nelem, size_t elsize) |
| { |
| size_t nbytes; |
| assert(elsize == 0 || nelem <= (size_t)PY_SSIZE_T_MAX / elsize); |
| nbytes = nelem * elsize; |
| return _PyMem_DebugRawAlloc(1, ctx, nbytes); |
| } |
| |
| |
| /* The debug free first checks the 2*SST bytes on each end for sanity (in |
| particular, that the FORBIDDENBYTEs with the api ID are still intact). |
| Then fills the original bytes with PYMEM_DEADBYTE. |
| Then calls the underlying free. |
| */ |
| void |
| _PyMem_DebugRawFree(void *ctx, void *p) |
| { |
| /* PyMem_Free(NULL) has no effect */ |
| if (p == NULL) { |
| return; |
| } |
| |
| debug_alloc_api_t *api = (debug_alloc_api_t *)ctx; |
| uint8_t *q = (uint8_t *)p - 2*SST; /* address returned from malloc */ |
| size_t nbytes; |
| |
| _PyMem_DebugCheckAddress(__func__, api->api_id, p); |
| nbytes = read_size_t(q); |
| nbytes += PYMEM_DEBUG_EXTRA_BYTES; |
| memset(q, PYMEM_DEADBYTE, nbytes); |
| api->alloc.free(api->alloc.ctx, q); |
| } |
| |
| |
| void * |
| _PyMem_DebugRawRealloc(void *ctx, void *p, size_t nbytes) |
| { |
| if (p == NULL) { |
| return _PyMem_DebugRawAlloc(0, ctx, nbytes); |
| } |
| |
| debug_alloc_api_t *api = (debug_alloc_api_t *)ctx; |
| uint8_t *head; /* base address of malloc'ed pad block */ |
| uint8_t *data; /* pointer to data bytes */ |
| uint8_t *r; |
| uint8_t *tail; /* data + nbytes == pointer to tail pad bytes */ |
| size_t total; /* 2 * SST + nbytes + 2 * SST */ |
| size_t original_nbytes; |
| #define ERASED_SIZE 64 |
| uint8_t save[2*ERASED_SIZE]; /* A copy of erased bytes. */ |
| |
| _PyMem_DebugCheckAddress(__func__, api->api_id, p); |
| |
| data = (uint8_t *)p; |
| head = data - 2*SST; |
| original_nbytes = read_size_t(head); |
| if (nbytes > (size_t)PY_SSIZE_T_MAX - PYMEM_DEBUG_EXTRA_BYTES) { |
| /* integer overflow: can't represent total as a Py_ssize_t */ |
| return NULL; |
| } |
| total = nbytes + PYMEM_DEBUG_EXTRA_BYTES; |
| |
| tail = data + original_nbytes; |
| #ifdef PYMEM_DEBUG_SERIALNO |
| size_t block_serialno = read_size_t(tail + SST); |
| #endif |
| /* Mark the header, the trailer, ERASED_SIZE bytes at the begin and |
| ERASED_SIZE bytes at the end as dead and save the copy of erased bytes. |
| */ |
| if (original_nbytes <= sizeof(save)) { |
| memcpy(save, data, original_nbytes); |
| memset(data - 2 * SST, PYMEM_DEADBYTE, |
| original_nbytes + PYMEM_DEBUG_EXTRA_BYTES); |
| } |
| else { |
| memcpy(save, data, ERASED_SIZE); |
| memset(head, PYMEM_DEADBYTE, ERASED_SIZE + 2 * SST); |
| memcpy(&save[ERASED_SIZE], tail - ERASED_SIZE, ERASED_SIZE); |
| memset(tail - ERASED_SIZE, PYMEM_DEADBYTE, |
| ERASED_SIZE + PYMEM_DEBUG_EXTRA_BYTES - 2 * SST); |
| } |
| |
| /* Resize and add decorations. */ |
| r = (uint8_t *)api->alloc.realloc(api->alloc.ctx, head, total); |
| if (r == NULL) { |
| /* if realloc() failed: rewrite header and footer which have |
| just been erased */ |
| nbytes = original_nbytes; |
| } |
| else { |
| head = r; |
| #ifdef PYMEM_DEBUG_SERIALNO |
| bumpserialno(); |
| block_serialno = serialno; |
| #endif |
| } |
| data = head + 2*SST; |
| |
| write_size_t(head, nbytes); |
| head[SST] = (uint8_t)api->api_id; |
| memset(head + SST + 1, PYMEM_FORBIDDENBYTE, SST-1); |
| |
| tail = data + nbytes; |
| memset(tail, PYMEM_FORBIDDENBYTE, SST); |
| #ifdef PYMEM_DEBUG_SERIALNO |
| write_size_t(tail + SST, block_serialno); |
| #endif |
| |
| /* Restore saved bytes. */ |
| if (original_nbytes <= sizeof(save)) { |
| memcpy(data, save, Py_MIN(nbytes, original_nbytes)); |
| } |
| else { |
| size_t i = original_nbytes - ERASED_SIZE; |
| memcpy(data, save, Py_MIN(nbytes, ERASED_SIZE)); |
| if (nbytes > i) { |
| memcpy(data + i, &save[ERASED_SIZE], |
| Py_MIN(nbytes - i, ERASED_SIZE)); |
| } |
| } |
| |
| if (r == NULL) { |
| return NULL; |
| } |
| |
| if (nbytes > original_nbytes) { |
| /* growing: mark new extra memory clean */ |
| memset(data + original_nbytes, PYMEM_CLEANBYTE, |
| nbytes - original_nbytes); |
| } |
| |
| return data; |
| } |
| |
| static inline void |
| _PyMem_DebugCheckGIL(const char *func) |
| { |
| if (!PyGILState_Check()) { |
| _Py_FatalErrorFunc(func, |
| "Python memory allocator called " |
| "without holding the GIL"); |
| } |
| } |
| |
| void * |
| _PyMem_DebugMalloc(void *ctx, size_t nbytes) |
| { |
| _PyMem_DebugCheckGIL(__func__); |
| return _PyMem_DebugRawMalloc(ctx, nbytes); |
| } |
| |
| void * |
| _PyMem_DebugCalloc(void *ctx, size_t nelem, size_t elsize) |
| { |
| _PyMem_DebugCheckGIL(__func__); |
| return _PyMem_DebugRawCalloc(ctx, nelem, elsize); |
| } |
| |
| |
| void |
| _PyMem_DebugFree(void *ctx, void *ptr) |
| { |
| _PyMem_DebugCheckGIL(__func__); |
| _PyMem_DebugRawFree(ctx, ptr); |
| } |
| |
| |
| void * |
| _PyMem_DebugRealloc(void *ctx, void *ptr, size_t nbytes) |
| { |
| _PyMem_DebugCheckGIL(__func__); |
| return _PyMem_DebugRawRealloc(ctx, ptr, nbytes); |
| } |
| |
| /* Check the forbidden bytes on both ends of the memory allocated for p. |
| * If anything is wrong, print info to stderr via _PyObject_DebugDumpAddress, |
| * and call Py_FatalError to kill the program. |
| * The API id, is also checked. |
| */ |
| static void |
| _PyMem_DebugCheckAddress(const char *func, char api, const void *p) |
| { |
| assert(p != NULL); |
| |
| const uint8_t *q = (const uint8_t *)p; |
| size_t nbytes; |
| const uint8_t *tail; |
| int i; |
| char id; |
| |
| /* Check the API id */ |
| id = (char)q[-SST]; |
| if (id != api) { |
| _PyObject_DebugDumpAddress(p); |
| _Py_FatalErrorFormat(func, |
| "bad ID: Allocated using API '%c', " |
| "verified using API '%c'", |
| id, api); |
| } |
| |
| /* Check the stuff at the start of p first: if there's underwrite |
| * corruption, the number-of-bytes field may be nuts, and checking |
| * the tail could lead to a segfault then. |
| */ |
| for (i = SST-1; i >= 1; --i) { |
| if (*(q-i) != PYMEM_FORBIDDENBYTE) { |
| _PyObject_DebugDumpAddress(p); |
| _Py_FatalErrorFunc(func, "bad leading pad byte"); |
| } |
| } |
| |
| nbytes = read_size_t(q - 2*SST); |
| tail = q + nbytes; |
| for (i = 0; i < SST; ++i) { |
| if (tail[i] != PYMEM_FORBIDDENBYTE) { |
| _PyObject_DebugDumpAddress(p); |
| _Py_FatalErrorFunc(func, "bad trailing pad byte"); |
| } |
| } |
| } |
| |
| /* Display info to stderr about the memory block at p. */ |
| static void |
| _PyObject_DebugDumpAddress(const void *p) |
| { |
| const uint8_t *q = (const uint8_t *)p; |
| const uint8_t *tail; |
| size_t nbytes; |
| int i; |
| int ok; |
| char id; |
| |
| fprintf(stderr, "Debug memory block at address p=%p:", p); |
| if (p == NULL) { |
| fprintf(stderr, "\n"); |
| return; |
| } |
| id = (char)q[-SST]; |
| fprintf(stderr, " API '%c'\n", id); |
| |
| nbytes = read_size_t(q - 2*SST); |
| fprintf(stderr, " %zu bytes originally requested\n", nbytes); |
| |
| /* In case this is nuts, check the leading pad bytes first. */ |
| fprintf(stderr, " The %d pad bytes at p-%d are ", SST-1, SST-1); |
| ok = 1; |
| for (i = 1; i <= SST-1; ++i) { |
| if (*(q-i) != PYMEM_FORBIDDENBYTE) { |
| ok = 0; |
| break; |
| } |
| } |
| if (ok) |
| fputs("FORBIDDENBYTE, as expected.\n", stderr); |
| else { |
| fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n", |
| PYMEM_FORBIDDENBYTE); |
| for (i = SST-1; i >= 1; --i) { |
| const uint8_t byte = *(q-i); |
| fprintf(stderr, " at p-%d: 0x%02x", i, byte); |
| if (byte != PYMEM_FORBIDDENBYTE) |
| fputs(" *** OUCH", stderr); |
| fputc('\n', stderr); |
| } |
| |
| fputs(" Because memory is corrupted at the start, the " |
| "count of bytes requested\n" |
| " may be bogus, and checking the trailing pad " |
| "bytes may segfault.\n", stderr); |
| } |
| |
| tail = q + nbytes; |
| fprintf(stderr, " The %d pad bytes at tail=%p are ", SST, (void *)tail); |
| ok = 1; |
| for (i = 0; i < SST; ++i) { |
| if (tail[i] != PYMEM_FORBIDDENBYTE) { |
| ok = 0; |
| break; |
| } |
| } |
| if (ok) |
| fputs("FORBIDDENBYTE, as expected.\n", stderr); |
| else { |
| fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n", |
| PYMEM_FORBIDDENBYTE); |
| for (i = 0; i < SST; ++i) { |
| const uint8_t byte = tail[i]; |
| fprintf(stderr, " at tail+%d: 0x%02x", |
| i, byte); |
| if (byte != PYMEM_FORBIDDENBYTE) |
| fputs(" *** OUCH", stderr); |
| fputc('\n', stderr); |
| } |
| } |
| |
| #ifdef PYMEM_DEBUG_SERIALNO |
| size_t serial = read_size_t(tail + SST); |
| fprintf(stderr, |
| " The block was made by call #%zu to debug malloc/realloc.\n", |
| serial); |
| #endif |
| |
| if (nbytes > 0) { |
| i = 0; |
| fputs(" Data at p:", stderr); |
| /* print up to 8 bytes at the start */ |
| while (q < tail && i < 8) { |
| fprintf(stderr, " %02x", *q); |
| ++i; |
| ++q; |
| } |
| /* and up to 8 at the end */ |
| if (q < tail) { |
| if (tail - q > 8) { |
| fputs(" ...", stderr); |
| q = tail - 8; |
| } |
| while (q < tail) { |
| fprintf(stderr, " %02x", *q); |
| ++q; |
| } |
| } |
| fputc('\n', stderr); |
| } |
| fputc('\n', stderr); |
| |
| fflush(stderr); |
| _PyMem_DumpTraceback(fileno(stderr), p); |
| } |
| |
| |
| static size_t |
| printone(FILE *out, const char* msg, size_t value) |
| { |
| int i, k; |
| char buf[100]; |
| size_t origvalue = value; |
| |
| fputs(msg, out); |
| for (i = (int)strlen(msg); i < 35; ++i) |
| fputc(' ', out); |
| fputc('=', out); |
| |
| /* Write the value with commas. */ |
| i = 22; |
| buf[i--] = '\0'; |
| buf[i--] = '\n'; |
| k = 3; |
| do { |
| size_t nextvalue = value / 10; |
| unsigned int digit = (unsigned int)(value - nextvalue * 10); |
| value = nextvalue; |
| buf[i--] = (char)(digit + '0'); |
| --k; |
| if (k == 0 && value && i >= 0) { |
| k = 3; |
| buf[i--] = ','; |
| } |
| } while (value && i >= 0); |
| |
| while (i >= 0) |
| buf[i--] = ' '; |
| fputs(buf, out); |
| |
| return origvalue; |
| } |
| |
| void |
| _PyDebugAllocatorStats(FILE *out, |
| const char *block_name, int num_blocks, size_t sizeof_block) |
| { |
| char buf1[128]; |
| char buf2[128]; |
| PyOS_snprintf(buf1, sizeof(buf1), |
| "%d %ss * %zd bytes each", |
| num_blocks, block_name, sizeof_block); |
| PyOS_snprintf(buf2, sizeof(buf2), |
| "%48s ", buf1); |
| (void)printone(out, buf2, num_blocks * sizeof_block); |
| } |
| |
| |
| #ifdef WITH_PYMALLOC |
| |
| #ifdef Py_DEBUG |
| /* Is target in the list? The list is traversed via the nextpool pointers. |
| * The list may be NULL-terminated, or circular. Return 1 if target is in |
| * list, else 0. |
| */ |
| static int |
| pool_is_in_list(const poolp target, poolp list) |
| { |
| poolp origlist = list; |
| assert(target != NULL); |
| if (list == NULL) |
| return 0; |
| do { |
| if (target == list) |
| return 1; |
| list = list->nextpool; |
| } while (list != NULL && list != origlist); |
| return 0; |
| } |
| #endif |
| |
| /* Print summary info to "out" about the state of pymalloc's structures. |
| * In Py_DEBUG mode, also perform some expensive internal consistency |
| * checks. |
| * |
| * Return 0 if the memory debug hooks are not installed or no statistics was |
| * written into out, return 1 otherwise. |
| */ |
| int |
| _PyObject_DebugMallocStats(FILE *out) |
| { |
| if (!_PyMem_PymallocEnabled()) { |
| return 0; |
| } |
| OMState *state = get_state(); |
| |
| uint i; |
| const uint numclasses = SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT; |
| /* # of pools, allocated blocks, and free blocks per class index */ |
| size_t numpools[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT]; |
| size_t numblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT]; |
| size_t numfreeblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT]; |
| /* total # of allocated bytes in used and full pools */ |
| size_t allocated_bytes = 0; |
| /* total # of available bytes in used pools */ |
| size_t available_bytes = 0; |
| /* # of free pools + pools not yet carved out of current arena */ |
| uint numfreepools = 0; |
| /* # of bytes for arena alignment padding */ |
| size_t arena_alignment = 0; |
| /* # of bytes in used and full pools used for pool_headers */ |
| size_t pool_header_bytes = 0; |
| /* # of bytes in used and full pools wasted due to quantization, |
| * i.e. the necessarily leftover space at the ends of used and |
| * full pools. |
| */ |
| size_t quantization = 0; |
| /* # of arenas actually allocated. */ |
| size_t narenas = 0; |
| /* running total -- should equal narenas * ARENA_SIZE */ |
| size_t total; |
| char buf[128]; |
| |
| fprintf(out, "Small block threshold = %d, in %u size classes.\n", |
| SMALL_REQUEST_THRESHOLD, numclasses); |
| |
| for (i = 0; i < numclasses; ++i) |
| numpools[i] = numblocks[i] = numfreeblocks[i] = 0; |
| |
| /* Because full pools aren't linked to from anything, it's easiest |
| * to march over all the arenas. If we're lucky, most of the memory |
| * will be living in full pools -- would be a shame to miss them. |
| */ |
| for (i = 0; i < maxarenas; ++i) { |
| uintptr_t base = allarenas[i].address; |
| |
| /* Skip arenas which are not allocated. */ |
| if (allarenas[i].address == (uintptr_t)NULL) |
| continue; |
| narenas += 1; |
| |
| numfreepools += allarenas[i].nfreepools; |
| |
| /* round up to pool alignment */ |
| if (base & (uintptr_t)POOL_SIZE_MASK) { |
| arena_alignment += POOL_SIZE; |
| base &= ~(uintptr_t)POOL_SIZE_MASK; |
| base += POOL_SIZE; |
| } |
| |
| /* visit every pool in the arena */ |
| assert(base <= (uintptr_t) allarenas[i].pool_address); |
| for (; base < (uintptr_t) allarenas[i].pool_address; base += POOL_SIZE) { |
| poolp p = (poolp)base; |
| const uint sz = p->szidx; |
| uint freeblocks; |
| |
| if (p->ref.count == 0) { |
| /* currently unused */ |
| #ifdef Py_DEBUG |
| assert(pool_is_in_list(p, allarenas[i].freepools)); |
| #endif |
| continue; |
| } |
| ++numpools[sz]; |
| numblocks[sz] += p->ref.count; |
| freeblocks = NUMBLOCKS(sz) - p->ref.count; |
| numfreeblocks[sz] += freeblocks; |
| #ifdef Py_DEBUG |
| if (freeblocks > 0) |
| assert(pool_is_in_list(p, usedpools[sz + sz])); |
| #endif |
| } |
| } |
| assert(narenas == narenas_currently_allocated); |
| |
| fputc('\n', out); |
| fputs("class size num pools blocks in use avail blocks\n" |
| "----- ---- --------- ------------- ------------\n", |
| out); |
| |
| for (i = 0; i < numclasses; ++i) { |
| size_t p = numpools[i]; |
| size_t b = numblocks[i]; |
| size_t f = numfreeblocks[i]; |
| uint size = INDEX2SIZE(i); |
| if (p == 0) { |
| assert(b == 0 && f == 0); |
| continue; |
| } |
| fprintf(out, "%5u %6u %11zu %15zu %13zu\n", |
| i, size, p, b, f); |
| allocated_bytes += b * size; |
| available_bytes += f * size; |
| pool_header_bytes += p * POOL_OVERHEAD; |
| quantization += p * ((POOL_SIZE - POOL_OVERHEAD) % size); |
| } |
| fputc('\n', out); |
| #ifdef PYMEM_DEBUG_SERIALNO |
| if (_PyMem_DebugEnabled()) { |
| (void)printone(out, "# times object malloc called", serialno); |
| } |
| #endif |
| (void)printone(out, "# arenas allocated total", ntimes_arena_allocated); |
| (void)printone(out, "# arenas reclaimed", ntimes_arena_allocated - narenas); |
| (void)printone(out, "# arenas highwater mark", narenas_highwater); |
| (void)printone(out, "# arenas allocated current", narenas); |
| |
| PyOS_snprintf(buf, sizeof(buf), |
| "%zu arenas * %d bytes/arena", |
| narenas, ARENA_SIZE); |
| (void)printone(out, buf, narenas * ARENA_SIZE); |
| |
| fputc('\n', out); |
| |
| /* Account for what all of those arena bytes are being used for. */ |
| total = printone(out, "# bytes in allocated blocks", allocated_bytes); |
| total += printone(out, "# bytes in available blocks", available_bytes); |
| |
| PyOS_snprintf(buf, sizeof(buf), |
| "%u unused pools * %d bytes", numfreepools, POOL_SIZE); |
| total += printone(out, buf, (size_t)numfreepools * POOL_SIZE); |
| |
| total += printone(out, "# bytes lost to pool headers", pool_header_bytes); |
| total += printone(out, "# bytes lost to quantization", quantization); |
| total += printone(out, "# bytes lost to arena alignment", arena_alignment); |
| (void)printone(out, "Total", total); |
| assert(narenas * ARENA_SIZE == total); |
| |
| #if WITH_PYMALLOC_RADIX_TREE |
| fputs("\narena map counts\n", out); |
| #ifdef USE_INTERIOR_NODES |
| (void)printone(out, "# arena map mid nodes", arena_map_mid_count); |
| (void)printone(out, "# arena map bot nodes", arena_map_bot_count); |
| fputc('\n', out); |
| #endif |
| total = printone(out, "# bytes lost to arena map root", sizeof(arena_map_root)); |
| #ifdef USE_INTERIOR_NODES |
| total += printone(out, "# bytes lost to arena map mid", |
| sizeof(arena_map_mid_t) * arena_map_mid_count); |
| total += printone(out, "# bytes lost to arena map bot", |
| sizeof(arena_map_bot_t) * arena_map_bot_count); |
| (void)printone(out, "Total", total); |
| #endif |
| #endif |
| |
| return 1; |
| } |
| |
| #endif /* #ifdef WITH_PYMALLOC */ |