|  | import unittest | 
|  | from test import support | 
|  |  | 
|  | import sys | 
|  |  | 
|  | import random | 
|  | import math | 
|  | import array | 
|  |  | 
|  | # SHIFT should match the value in longintrepr.h for best testing. | 
|  | SHIFT = sys.int_info.bits_per_digit | 
|  | BASE = 2 ** SHIFT | 
|  | MASK = BASE - 1 | 
|  | KARATSUBA_CUTOFF = 70   # from longobject.c | 
|  |  | 
|  | # Max number of base BASE digits to use in test cases.  Doubling | 
|  | # this will more than double the runtime. | 
|  | MAXDIGITS = 15 | 
|  |  | 
|  | # build some special values | 
|  | special = [0, 1, 2, BASE, BASE >> 1, 0x5555555555555555, 0xaaaaaaaaaaaaaaaa] | 
|  | #  some solid strings of one bits | 
|  | p2 = 4  # 0 and 1 already added | 
|  | for i in range(2*SHIFT): | 
|  | special.append(p2 - 1) | 
|  | p2 = p2 << 1 | 
|  | del p2 | 
|  | # add complements & negations | 
|  | special += [~x for x in special] + [-x for x in special] | 
|  |  | 
|  | DBL_MAX = sys.float_info.max | 
|  | DBL_MAX_EXP = sys.float_info.max_exp | 
|  | DBL_MIN_EXP = sys.float_info.min_exp | 
|  | DBL_MANT_DIG = sys.float_info.mant_dig | 
|  | DBL_MIN_OVERFLOW = 2**DBL_MAX_EXP - 2**(DBL_MAX_EXP - DBL_MANT_DIG - 1) | 
|  |  | 
|  |  | 
|  | # Pure Python version of correctly-rounded integer-to-float conversion. | 
|  | def int_to_float(n): | 
|  | """ | 
|  | Correctly-rounded integer-to-float conversion. | 
|  |  | 
|  | """ | 
|  | # Constants, depending only on the floating-point format in use. | 
|  | # We use an extra 2 bits of precision for rounding purposes. | 
|  | PRECISION = sys.float_info.mant_dig + 2 | 
|  | SHIFT_MAX = sys.float_info.max_exp - PRECISION | 
|  | Q_MAX = 1 << PRECISION | 
|  | ROUND_HALF_TO_EVEN_CORRECTION = [0, -1, -2, 1, 0, -1, 2, 1] | 
|  |  | 
|  | # Reduce to the case where n is positive. | 
|  | if n == 0: | 
|  | return 0.0 | 
|  | elif n < 0: | 
|  | return -int_to_float(-n) | 
|  |  | 
|  | # Convert n to a 'floating-point' number q * 2**shift, where q is an | 
|  | # integer with 'PRECISION' significant bits.  When shifting n to create q, | 
|  | # the least significant bit of q is treated as 'sticky'.  That is, the | 
|  | # least significant bit of q is set if either the corresponding bit of n | 
|  | # was already set, or any one of the bits of n lost in the shift was set. | 
|  | shift = n.bit_length() - PRECISION | 
|  | q = n << -shift if shift < 0 else (n >> shift) | bool(n & ~(-1 << shift)) | 
|  |  | 
|  | # Round half to even (actually rounds to the nearest multiple of 4, | 
|  | # rounding ties to a multiple of 8). | 
|  | q += ROUND_HALF_TO_EVEN_CORRECTION[q & 7] | 
|  |  | 
|  | # Detect overflow. | 
|  | if shift + (q == Q_MAX) > SHIFT_MAX: | 
|  | raise OverflowError("integer too large to convert to float") | 
|  |  | 
|  | # Checks: q is exactly representable, and q**2**shift doesn't overflow. | 
|  | assert q % 4 == 0 and q // 4 <= 2**(sys.float_info.mant_dig) | 
|  | assert q * 2**shift <= sys.float_info.max | 
|  |  | 
|  | # Some circularity here, since float(q) is doing an int-to-float | 
|  | # conversion.  But here q is of bounded size, and is exactly representable | 
|  | # as a float.  In a low-level C-like language, this operation would be a | 
|  | # simple cast (e.g., from unsigned long long to double). | 
|  | return math.ldexp(float(q), shift) | 
|  |  | 
|  |  | 
|  | # pure Python version of correctly-rounded true division | 
|  | def truediv(a, b): | 
|  | """Correctly-rounded true division for integers.""" | 
|  | negative = a^b < 0 | 
|  | a, b = abs(a), abs(b) | 
|  |  | 
|  | # exceptions:  division by zero, overflow | 
|  | if not b: | 
|  | raise ZeroDivisionError("division by zero") | 
|  | if a >= DBL_MIN_OVERFLOW * b: | 
|  | raise OverflowError("int/int too large to represent as a float") | 
|  |  | 
|  | # find integer d satisfying 2**(d - 1) <= a/b < 2**d | 
|  | d = a.bit_length() - b.bit_length() | 
|  | if d >= 0 and a >= 2**d * b or d < 0 and a * 2**-d >= b: | 
|  | d += 1 | 
|  |  | 
|  | # compute 2**-exp * a / b for suitable exp | 
|  | exp = max(d, DBL_MIN_EXP) - DBL_MANT_DIG | 
|  | a, b = a << max(-exp, 0), b << max(exp, 0) | 
|  | q, r = divmod(a, b) | 
|  |  | 
|  | # round-half-to-even: fractional part is r/b, which is > 0.5 iff | 
|  | # 2*r > b, and == 0.5 iff 2*r == b. | 
|  | if 2*r > b or 2*r == b and q % 2 == 1: | 
|  | q += 1 | 
|  |  | 
|  | result = math.ldexp(q, exp) | 
|  | return -result if negative else result | 
|  |  | 
|  |  | 
|  | class LongTest(unittest.TestCase): | 
|  |  | 
|  | # Get quasi-random long consisting of ndigits digits (in base BASE). | 
|  | # quasi == the most-significant digit will not be 0, and the number | 
|  | # is constructed to contain long strings of 0 and 1 bits.  These are | 
|  | # more likely than random bits to provoke digit-boundary errors. | 
|  | # The sign of the number is also random. | 
|  |  | 
|  | def getran(self, ndigits): | 
|  | self.assertGreater(ndigits, 0) | 
|  | nbits_hi = ndigits * SHIFT | 
|  | nbits_lo = nbits_hi - SHIFT + 1 | 
|  | answer = 0 | 
|  | nbits = 0 | 
|  | r = int(random.random() * (SHIFT * 2)) | 1  # force 1 bits to start | 
|  | while nbits < nbits_lo: | 
|  | bits = (r >> 1) + 1 | 
|  | bits = min(bits, nbits_hi - nbits) | 
|  | self.assertTrue(1 <= bits <= SHIFT) | 
|  | nbits = nbits + bits | 
|  | answer = answer << bits | 
|  | if r & 1: | 
|  | answer = answer | ((1 << bits) - 1) | 
|  | r = int(random.random() * (SHIFT * 2)) | 
|  | self.assertTrue(nbits_lo <= nbits <= nbits_hi) | 
|  | if random.random() < 0.5: | 
|  | answer = -answer | 
|  | return answer | 
|  |  | 
|  | # Get random long consisting of ndigits random digits (relative to base | 
|  | # BASE).  The sign bit is also random. | 
|  |  | 
|  | def getran2(ndigits): | 
|  | answer = 0 | 
|  | for i in range(ndigits): | 
|  | answer = (answer << SHIFT) | random.randint(0, MASK) | 
|  | if random.random() < 0.5: | 
|  | answer = -answer | 
|  | return answer | 
|  |  | 
|  | def check_division(self, x, y): | 
|  | eq = self.assertEqual | 
|  | with self.subTest(x=x, y=y): | 
|  | q, r = divmod(x, y) | 
|  | q2, r2 = x//y, x%y | 
|  | pab, pba = x*y, y*x | 
|  | eq(pab, pba, "multiplication does not commute") | 
|  | eq(q, q2, "divmod returns different quotient than /") | 
|  | eq(r, r2, "divmod returns different mod than %") | 
|  | eq(x, q*y + r, "x != q*y + r after divmod") | 
|  | if y > 0: | 
|  | self.assertTrue(0 <= r < y, "bad mod from divmod") | 
|  | else: | 
|  | self.assertTrue(y < r <= 0, "bad mod from divmod") | 
|  |  | 
|  | def test_division(self): | 
|  | digits = list(range(1, MAXDIGITS+1)) + list(range(KARATSUBA_CUTOFF, | 
|  | KARATSUBA_CUTOFF + 14)) | 
|  | digits.append(KARATSUBA_CUTOFF * 3) | 
|  | for lenx in digits: | 
|  | x = self.getran(lenx) | 
|  | for leny in digits: | 
|  | y = self.getran(leny) or 1 | 
|  | self.check_division(x, y) | 
|  |  | 
|  | # specific numbers chosen to exercise corner cases of the | 
|  | # current long division implementation | 
|  |  | 
|  | # 30-bit cases involving a quotient digit estimate of BASE+1 | 
|  | self.check_division(1231948412290879395966702881, | 
|  | 1147341367131428698) | 
|  | self.check_division(815427756481275430342312021515587883, | 
|  | 707270836069027745) | 
|  | self.check_division(627976073697012820849443363563599041, | 
|  | 643588798496057020) | 
|  | self.check_division(1115141373653752303710932756325578065, | 
|  | 1038556335171453937726882627) | 
|  | # 30-bit cases that require the post-subtraction correction step | 
|  | self.check_division(922498905405436751940989320930368494, | 
|  | 949985870686786135626943396) | 
|  | self.check_division(768235853328091167204009652174031844, | 
|  | 1091555541180371554426545266) | 
|  |  | 
|  | # 15-bit cases involving a quotient digit estimate of BASE+1 | 
|  | self.check_division(20172188947443, 615611397) | 
|  | self.check_division(1020908530270155025, 950795710) | 
|  | self.check_division(128589565723112408, 736393718) | 
|  | self.check_division(609919780285761575, 18613274546784) | 
|  | # 15-bit cases that require the post-subtraction correction step | 
|  | self.check_division(710031681576388032, 26769404391308) | 
|  | self.check_division(1933622614268221, 30212853348836) | 
|  |  | 
|  |  | 
|  |  | 
|  | def test_karatsuba(self): | 
|  | digits = list(range(1, 5)) + list(range(KARATSUBA_CUTOFF, | 
|  | KARATSUBA_CUTOFF + 10)) | 
|  | digits.extend([KARATSUBA_CUTOFF * 10, KARATSUBA_CUTOFF * 100]) | 
|  |  | 
|  | bits = [digit * SHIFT for digit in digits] | 
|  |  | 
|  | # Test products of long strings of 1 bits -- (2**x-1)*(2**y-1) == | 
|  | # 2**(x+y) - 2**x - 2**y + 1, so the proper result is easy to check. | 
|  | for abits in bits: | 
|  | a = (1 << abits) - 1 | 
|  | for bbits in bits: | 
|  | if bbits < abits: | 
|  | continue | 
|  | with self.subTest(abits=abits, bbits=bbits): | 
|  | b = (1 << bbits) - 1 | 
|  | x = a * b | 
|  | y = ((1 << (abits + bbits)) - | 
|  | (1 << abits) - | 
|  | (1 << bbits) + | 
|  | 1) | 
|  | self.assertEqual(x, y) | 
|  |  | 
|  | def check_bitop_identities_1(self, x): | 
|  | eq = self.assertEqual | 
|  | with self.subTest(x=x): | 
|  | eq(x & 0, 0) | 
|  | eq(x | 0, x) | 
|  | eq(x ^ 0, x) | 
|  | eq(x & -1, x) | 
|  | eq(x | -1, -1) | 
|  | eq(x ^ -1, ~x) | 
|  | eq(x, ~~x) | 
|  | eq(x & x, x) | 
|  | eq(x | x, x) | 
|  | eq(x ^ x, 0) | 
|  | eq(x & ~x, 0) | 
|  | eq(x | ~x, -1) | 
|  | eq(x ^ ~x, -1) | 
|  | eq(-x, 1 + ~x) | 
|  | eq(-x, ~(x-1)) | 
|  | for n in range(2*SHIFT): | 
|  | p2 = 2 ** n | 
|  | with self.subTest(x=x, n=n, p2=p2): | 
|  | eq(x << n >> n, x) | 
|  | eq(x // p2, x >> n) | 
|  | eq(x * p2, x << n) | 
|  | eq(x & -p2, x >> n << n) | 
|  | eq(x & -p2, x & ~(p2 - 1)) | 
|  |  | 
|  | def check_bitop_identities_2(self, x, y): | 
|  | eq = self.assertEqual | 
|  | with self.subTest(x=x, y=y): | 
|  | eq(x & y, y & x) | 
|  | eq(x | y, y | x) | 
|  | eq(x ^ y, y ^ x) | 
|  | eq(x ^ y ^ x, y) | 
|  | eq(x & y, ~(~x | ~y)) | 
|  | eq(x | y, ~(~x & ~y)) | 
|  | eq(x ^ y, (x | y) & ~(x & y)) | 
|  | eq(x ^ y, (x & ~y) | (~x & y)) | 
|  | eq(x ^ y, (x | y) & (~x | ~y)) | 
|  |  | 
|  | def check_bitop_identities_3(self, x, y, z): | 
|  | eq = self.assertEqual | 
|  | with self.subTest(x=x, y=y, z=z): | 
|  | eq((x & y) & z, x & (y & z)) | 
|  | eq((x | y) | z, x | (y | z)) | 
|  | eq((x ^ y) ^ z, x ^ (y ^ z)) | 
|  | eq(x & (y | z), (x & y) | (x & z)) | 
|  | eq(x | (y & z), (x | y) & (x | z)) | 
|  |  | 
|  | def test_bitop_identities(self): | 
|  | for x in special: | 
|  | self.check_bitop_identities_1(x) | 
|  | digits = range(1, MAXDIGITS+1) | 
|  | for lenx in digits: | 
|  | x = self.getran(lenx) | 
|  | self.check_bitop_identities_1(x) | 
|  | for leny in digits: | 
|  | y = self.getran(leny) | 
|  | self.check_bitop_identities_2(x, y) | 
|  | self.check_bitop_identities_3(x, y, self.getran((lenx + leny)//2)) | 
|  |  | 
|  | def slow_format(self, x, base): | 
|  | digits = [] | 
|  | sign = 0 | 
|  | if x < 0: | 
|  | sign, x = 1, -x | 
|  | while x: | 
|  | x, r = divmod(x, base) | 
|  | digits.append(int(r)) | 
|  | digits.reverse() | 
|  | digits = digits or [0] | 
|  | return '-'[:sign] + \ | 
|  | {2: '0b', 8: '0o', 10: '', 16: '0x'}[base] + \ | 
|  | "".join("0123456789abcdef"[i] for i in digits) | 
|  |  | 
|  | def check_format_1(self, x): | 
|  | for base, mapper in (2, bin), (8, oct), (10, str), (10, repr), (16, hex): | 
|  | got = mapper(x) | 
|  | with self.subTest(x=x, mapper=mapper.__name__): | 
|  | expected = self.slow_format(x, base) | 
|  | self.assertEqual(got, expected) | 
|  | with self.subTest(got=got): | 
|  | self.assertEqual(int(got, 0), x) | 
|  |  | 
|  | def test_format(self): | 
|  | for x in special: | 
|  | self.check_format_1(x) | 
|  | for i in range(10): | 
|  | for lenx in range(1, MAXDIGITS+1): | 
|  | x = self.getran(lenx) | 
|  | self.check_format_1(x) | 
|  |  | 
|  | def test_long(self): | 
|  | # Check conversions from string | 
|  | LL = [ | 
|  | ('1' + '0'*20, 10**20), | 
|  | ('1' + '0'*100, 10**100) | 
|  | ] | 
|  | for s, v in LL: | 
|  | for sign in "", "+", "-": | 
|  | for prefix in "", " ", "\t", "  \t\t  ": | 
|  | ss = prefix + sign + s | 
|  | vv = v | 
|  | if sign == "-" and v is not ValueError: | 
|  | vv = -v | 
|  | try: | 
|  | self.assertEqual(int(ss), vv) | 
|  | except ValueError: | 
|  | pass | 
|  |  | 
|  | # trailing L should no longer be accepted... | 
|  | self.assertRaises(ValueError, int, '123L') | 
|  | self.assertRaises(ValueError, int, '123l') | 
|  | self.assertRaises(ValueError, int, '0L') | 
|  | self.assertRaises(ValueError, int, '-37L') | 
|  | self.assertRaises(ValueError, int, '0x32L', 16) | 
|  | self.assertRaises(ValueError, int, '1L', 21) | 
|  | # ... but it's just a normal digit if base >= 22 | 
|  | self.assertEqual(int('1L', 22), 43) | 
|  |  | 
|  | # tests with base 0 | 
|  | self.assertEqual(int('000', 0), 0) | 
|  | self.assertEqual(int('0o123', 0), 83) | 
|  | self.assertEqual(int('0x123', 0), 291) | 
|  | self.assertEqual(int('0b100', 0), 4) | 
|  | self.assertEqual(int(' 0O123   ', 0), 83) | 
|  | self.assertEqual(int(' 0X123  ', 0), 291) | 
|  | self.assertEqual(int(' 0B100 ', 0), 4) | 
|  | self.assertEqual(int('0', 0), 0) | 
|  | self.assertEqual(int('+0', 0), 0) | 
|  | self.assertEqual(int('-0', 0), 0) | 
|  | self.assertEqual(int('00', 0), 0) | 
|  | self.assertRaises(ValueError, int, '08', 0) | 
|  | self.assertRaises(ValueError, int, '-012395', 0) | 
|  |  | 
|  | # invalid bases | 
|  | invalid_bases = [-909, | 
|  | 2**31-1, 2**31, -2**31, -2**31-1, | 
|  | 2**63-1, 2**63, -2**63, -2**63-1, | 
|  | 2**100, -2**100, | 
|  | ] | 
|  | for base in invalid_bases: | 
|  | self.assertRaises(ValueError, int, '42', base) | 
|  |  | 
|  | # Invalid unicode string | 
|  | # See bpo-34087 | 
|  | self.assertRaises(ValueError, int, '\u3053\u3093\u306b\u3061\u306f') | 
|  |  | 
|  |  | 
|  | def test_conversion(self): | 
|  |  | 
|  | class JustLong: | 
|  | # test that __long__ no longer used in 3.x | 
|  | def __long__(self): | 
|  | return 42 | 
|  | self.assertRaises(TypeError, int, JustLong()) | 
|  |  | 
|  | class LongTrunc: | 
|  | # __long__ should be ignored in 3.x | 
|  | def __long__(self): | 
|  | return 42 | 
|  | def __trunc__(self): | 
|  | return 1729 | 
|  | self.assertEqual(int(LongTrunc()), 1729) | 
|  |  | 
|  | def check_float_conversion(self, n): | 
|  | # Check that int -> float conversion behaviour matches | 
|  | # that of the pure Python version above. | 
|  | try: | 
|  | actual = float(n) | 
|  | except OverflowError: | 
|  | actual = 'overflow' | 
|  |  | 
|  | try: | 
|  | expected = int_to_float(n) | 
|  | except OverflowError: | 
|  | expected = 'overflow' | 
|  |  | 
|  | msg = ("Error in conversion of integer {} to float.  " | 
|  | "Got {}, expected {}.".format(n, actual, expected)) | 
|  | self.assertEqual(actual, expected, msg) | 
|  |  | 
|  | @support.requires_IEEE_754 | 
|  | def test_float_conversion(self): | 
|  |  | 
|  | exact_values = [0, 1, 2, | 
|  | 2**53-3, | 
|  | 2**53-2, | 
|  | 2**53-1, | 
|  | 2**53, | 
|  | 2**53+2, | 
|  | 2**54-4, | 
|  | 2**54-2, | 
|  | 2**54, | 
|  | 2**54+4] | 
|  | for x in exact_values: | 
|  | self.assertEqual(float(x), x) | 
|  | self.assertEqual(float(-x), -x) | 
|  |  | 
|  | # test round-half-even | 
|  | for x, y in [(1, 0), (2, 2), (3, 4), (4, 4), (5, 4), (6, 6), (7, 8)]: | 
|  | for p in range(15): | 
|  | self.assertEqual(int(float(2**p*(2**53+x))), 2**p*(2**53+y)) | 
|  |  | 
|  | for x, y in [(0, 0), (1, 0), (2, 0), (3, 4), (4, 4), (5, 4), (6, 8), | 
|  | (7, 8), (8, 8), (9, 8), (10, 8), (11, 12), (12, 12), | 
|  | (13, 12), (14, 16), (15, 16)]: | 
|  | for p in range(15): | 
|  | self.assertEqual(int(float(2**p*(2**54+x))), 2**p*(2**54+y)) | 
|  |  | 
|  | # behaviour near extremes of floating-point range | 
|  | int_dbl_max = int(DBL_MAX) | 
|  | top_power = 2**DBL_MAX_EXP | 
|  | halfway = (int_dbl_max + top_power)//2 | 
|  | self.assertEqual(float(int_dbl_max), DBL_MAX) | 
|  | self.assertEqual(float(int_dbl_max+1), DBL_MAX) | 
|  | self.assertEqual(float(halfway-1), DBL_MAX) | 
|  | self.assertRaises(OverflowError, float, halfway) | 
|  | self.assertEqual(float(1-halfway), -DBL_MAX) | 
|  | self.assertRaises(OverflowError, float, -halfway) | 
|  | self.assertRaises(OverflowError, float, top_power-1) | 
|  | self.assertRaises(OverflowError, float, top_power) | 
|  | self.assertRaises(OverflowError, float, top_power+1) | 
|  | self.assertRaises(OverflowError, float, 2*top_power-1) | 
|  | self.assertRaises(OverflowError, float, 2*top_power) | 
|  | self.assertRaises(OverflowError, float, top_power*top_power) | 
|  |  | 
|  | for p in range(100): | 
|  | x = 2**p * (2**53 + 1) + 1 | 
|  | y = 2**p * (2**53 + 2) | 
|  | self.assertEqual(int(float(x)), y) | 
|  |  | 
|  | x = 2**p * (2**53 + 1) | 
|  | y = 2**p * 2**53 | 
|  | self.assertEqual(int(float(x)), y) | 
|  |  | 
|  | # Compare builtin float conversion with pure Python int_to_float | 
|  | # function above. | 
|  | test_values = [ | 
|  | int_dbl_max-1, int_dbl_max, int_dbl_max+1, | 
|  | halfway-1, halfway, halfway + 1, | 
|  | top_power-1, top_power, top_power+1, | 
|  | 2*top_power-1, 2*top_power, top_power*top_power, | 
|  | ] | 
|  | test_values.extend(exact_values) | 
|  | for p in range(-4, 8): | 
|  | for x in range(-128, 128): | 
|  | test_values.append(2**(p+53) + x) | 
|  | for value in test_values: | 
|  | self.check_float_conversion(value) | 
|  | self.check_float_conversion(-value) | 
|  |  | 
|  | def test_float_overflow(self): | 
|  | for x in -2.0, -1.0, 0.0, 1.0, 2.0: | 
|  | self.assertEqual(float(int(x)), x) | 
|  |  | 
|  | shuge = '12345' * 120 | 
|  | huge = 1 << 30000 | 
|  | mhuge = -huge | 
|  | namespace = {'huge': huge, 'mhuge': mhuge, 'shuge': shuge, 'math': math} | 
|  | for test in ["float(huge)", "float(mhuge)", | 
|  | "complex(huge)", "complex(mhuge)", | 
|  | "complex(huge, 1)", "complex(mhuge, 1)", | 
|  | "complex(1, huge)", "complex(1, mhuge)", | 
|  | "1. + huge", "huge + 1.", "1. + mhuge", "mhuge + 1.", | 
|  | "1. - huge", "huge - 1.", "1. - mhuge", "mhuge - 1.", | 
|  | "1. * huge", "huge * 1.", "1. * mhuge", "mhuge * 1.", | 
|  | "1. // huge", "huge // 1.", "1. // mhuge", "mhuge // 1.", | 
|  | "1. / huge", "huge / 1.", "1. / mhuge", "mhuge / 1.", | 
|  | "1. ** huge", "huge ** 1.", "1. ** mhuge", "mhuge ** 1.", | 
|  | "math.sin(huge)", "math.sin(mhuge)", | 
|  | "math.sqrt(huge)", "math.sqrt(mhuge)", # should do better | 
|  | # math.floor() of an int returns an int now | 
|  | ##"math.floor(huge)", "math.floor(mhuge)", | 
|  | ]: | 
|  |  | 
|  | self.assertRaises(OverflowError, eval, test, namespace) | 
|  |  | 
|  | # XXX Perhaps float(shuge) can raise OverflowError on some box? | 
|  | # The comparison should not. | 
|  | self.assertNotEqual(float(shuge), int(shuge), | 
|  | "float(shuge) should not equal int(shuge)") | 
|  |  | 
|  | def test_logs(self): | 
|  | LOG10E = math.log10(math.e) | 
|  |  | 
|  | for exp in list(range(10)) + [100, 1000, 10000]: | 
|  | value = 10 ** exp | 
|  | log10 = math.log10(value) | 
|  | self.assertAlmostEqual(log10, exp) | 
|  |  | 
|  | # log10(value) == exp, so log(value) == log10(value)/log10(e) == | 
|  | # exp/LOG10E | 
|  | expected = exp / LOG10E | 
|  | log = math.log(value) | 
|  | self.assertAlmostEqual(log, expected) | 
|  |  | 
|  | for bad in -(1 << 10000), -2, 0: | 
|  | self.assertRaises(ValueError, math.log, bad) | 
|  | self.assertRaises(ValueError, math.log10, bad) | 
|  |  | 
|  | def test_mixed_compares(self): | 
|  | eq = self.assertEqual | 
|  |  | 
|  | # We're mostly concerned with that mixing floats and ints does the | 
|  | # right stuff, even when ints are too large to fit in a float. | 
|  | # The safest way to check the results is to use an entirely different | 
|  | # method, which we do here via a skeletal rational class (which | 
|  | # represents all Python ints and floats exactly). | 
|  | class Rat: | 
|  | def __init__(self, value): | 
|  | if isinstance(value, int): | 
|  | self.n = value | 
|  | self.d = 1 | 
|  | elif isinstance(value, float): | 
|  | # Convert to exact rational equivalent. | 
|  | f, e = math.frexp(abs(value)) | 
|  | assert f == 0 or 0.5 <= f < 1.0 | 
|  | # |value| = f * 2**e exactly | 
|  |  | 
|  | # Suck up CHUNK bits at a time; 28 is enough so that we suck | 
|  | # up all bits in 2 iterations for all known binary double- | 
|  | # precision formats, and small enough to fit in an int. | 
|  | CHUNK = 28 | 
|  | top = 0 | 
|  | # invariant: |value| = (top + f) * 2**e exactly | 
|  | while f: | 
|  | f = math.ldexp(f, CHUNK) | 
|  | digit = int(f) | 
|  | assert digit >> CHUNK == 0 | 
|  | top = (top << CHUNK) | digit | 
|  | f -= digit | 
|  | assert 0.0 <= f < 1.0 | 
|  | e -= CHUNK | 
|  |  | 
|  | # Now |value| = top * 2**e exactly. | 
|  | if e >= 0: | 
|  | n = top << e | 
|  | d = 1 | 
|  | else: | 
|  | n = top | 
|  | d = 1 << -e | 
|  | if value < 0: | 
|  | n = -n | 
|  | self.n = n | 
|  | self.d = d | 
|  | assert float(n) / float(d) == value | 
|  | else: | 
|  | raise TypeError("can't deal with %r" % value) | 
|  |  | 
|  | def _cmp__(self, other): | 
|  | if not isinstance(other, Rat): | 
|  | other = Rat(other) | 
|  | x, y = self.n * other.d, self.d * other.n | 
|  | return (x > y) - (x < y) | 
|  | def __eq__(self, other): | 
|  | return self._cmp__(other) == 0 | 
|  | def __ge__(self, other): | 
|  | return self._cmp__(other) >= 0 | 
|  | def __gt__(self, other): | 
|  | return self._cmp__(other) > 0 | 
|  | def __le__(self, other): | 
|  | return self._cmp__(other) <= 0 | 
|  | def __lt__(self, other): | 
|  | return self._cmp__(other) < 0 | 
|  |  | 
|  | cases = [0, 0.001, 0.99, 1.0, 1.5, 1e20, 1e200] | 
|  | # 2**48 is an important boundary in the internals.  2**53 is an | 
|  | # important boundary for IEEE double precision. | 
|  | for t in 2.0**48, 2.0**50, 2.0**53: | 
|  | cases.extend([t - 1.0, t - 0.3, t, t + 0.3, t + 1.0, | 
|  | int(t-1), int(t), int(t+1)]) | 
|  | cases.extend([0, 1, 2, sys.maxsize, float(sys.maxsize)]) | 
|  | # 1 << 20000 should exceed all double formats.  int(1e200) is to | 
|  | # check that we get equality with 1e200 above. | 
|  | t = int(1e200) | 
|  | cases.extend([0, 1, 2, 1 << 20000, t-1, t, t+1]) | 
|  | cases.extend([-x for x in cases]) | 
|  | for x in cases: | 
|  | Rx = Rat(x) | 
|  | for y in cases: | 
|  | Ry = Rat(y) | 
|  | Rcmp = (Rx > Ry) - (Rx < Ry) | 
|  | with self.subTest(x=x, y=y, Rcmp=Rcmp): | 
|  | xycmp = (x > y) - (x < y) | 
|  | eq(Rcmp, xycmp) | 
|  | eq(x == y, Rcmp == 0) | 
|  | eq(x != y, Rcmp != 0) | 
|  | eq(x < y, Rcmp < 0) | 
|  | eq(x <= y, Rcmp <= 0) | 
|  | eq(x > y, Rcmp > 0) | 
|  | eq(x >= y, Rcmp >= 0) | 
|  |  | 
|  | def test__format__(self): | 
|  | self.assertEqual(format(123456789, 'd'), '123456789') | 
|  | self.assertEqual(format(123456789, 'd'), '123456789') | 
|  | self.assertEqual(format(123456789, ','), '123,456,789') | 
|  | self.assertEqual(format(123456789, '_'), '123_456_789') | 
|  |  | 
|  | # sign and aligning are interdependent | 
|  | self.assertEqual(format(1, "-"), '1') | 
|  | self.assertEqual(format(-1, "-"), '-1') | 
|  | self.assertEqual(format(1, "-3"), '  1') | 
|  | self.assertEqual(format(-1, "-3"), ' -1') | 
|  | self.assertEqual(format(1, "+3"), ' +1') | 
|  | self.assertEqual(format(-1, "+3"), ' -1') | 
|  | self.assertEqual(format(1, " 3"), '  1') | 
|  | self.assertEqual(format(-1, " 3"), ' -1') | 
|  | self.assertEqual(format(1, " "), ' 1') | 
|  | self.assertEqual(format(-1, " "), '-1') | 
|  |  | 
|  | # hex | 
|  | self.assertEqual(format(3, "x"), "3") | 
|  | self.assertEqual(format(3, "X"), "3") | 
|  | self.assertEqual(format(1234, "x"), "4d2") | 
|  | self.assertEqual(format(-1234, "x"), "-4d2") | 
|  | self.assertEqual(format(1234, "8x"), "     4d2") | 
|  | self.assertEqual(format(-1234, "8x"), "    -4d2") | 
|  | self.assertEqual(format(1234, "x"), "4d2") | 
|  | self.assertEqual(format(-1234, "x"), "-4d2") | 
|  | self.assertEqual(format(-3, "x"), "-3") | 
|  | self.assertEqual(format(-3, "X"), "-3") | 
|  | self.assertEqual(format(int('be', 16), "x"), "be") | 
|  | self.assertEqual(format(int('be', 16), "X"), "BE") | 
|  | self.assertEqual(format(-int('be', 16), "x"), "-be") | 
|  | self.assertEqual(format(-int('be', 16), "X"), "-BE") | 
|  | self.assertRaises(ValueError, format, 1234567890, ',x') | 
|  | self.assertEqual(format(1234567890, '_x'), '4996_02d2') | 
|  | self.assertEqual(format(1234567890, '_X'), '4996_02D2') | 
|  |  | 
|  | # octal | 
|  | self.assertEqual(format(3, "o"), "3") | 
|  | self.assertEqual(format(-3, "o"), "-3") | 
|  | self.assertEqual(format(1234, "o"), "2322") | 
|  | self.assertEqual(format(-1234, "o"), "-2322") | 
|  | self.assertEqual(format(1234, "-o"), "2322") | 
|  | self.assertEqual(format(-1234, "-o"), "-2322") | 
|  | self.assertEqual(format(1234, " o"), " 2322") | 
|  | self.assertEqual(format(-1234, " o"), "-2322") | 
|  | self.assertEqual(format(1234, "+o"), "+2322") | 
|  | self.assertEqual(format(-1234, "+o"), "-2322") | 
|  | self.assertRaises(ValueError, format, 1234567890, ',o') | 
|  | self.assertEqual(format(1234567890, '_o'), '111_4540_1322') | 
|  |  | 
|  | # binary | 
|  | self.assertEqual(format(3, "b"), "11") | 
|  | self.assertEqual(format(-3, "b"), "-11") | 
|  | self.assertEqual(format(1234, "b"), "10011010010") | 
|  | self.assertEqual(format(-1234, "b"), "-10011010010") | 
|  | self.assertEqual(format(1234, "-b"), "10011010010") | 
|  | self.assertEqual(format(-1234, "-b"), "-10011010010") | 
|  | self.assertEqual(format(1234, " b"), " 10011010010") | 
|  | self.assertEqual(format(-1234, " b"), "-10011010010") | 
|  | self.assertEqual(format(1234, "+b"), "+10011010010") | 
|  | self.assertEqual(format(-1234, "+b"), "-10011010010") | 
|  | self.assertRaises(ValueError, format, 1234567890, ',b') | 
|  | self.assertEqual(format(12345, '_b'), '11_0000_0011_1001') | 
|  |  | 
|  | # make sure these are errors | 
|  | self.assertRaises(ValueError, format, 3, "1.3")  # precision disallowed | 
|  | self.assertRaises(ValueError, format, 3, "_c")   # underscore, | 
|  | self.assertRaises(ValueError, format, 3, ",c")   # comma, and | 
|  | self.assertRaises(ValueError, format, 3, "+c")   # sign not allowed | 
|  | # with 'c' | 
|  |  | 
|  | self.assertRaisesRegex(ValueError, 'Cannot specify both', format, 3, '_,') | 
|  | self.assertRaisesRegex(ValueError, 'Cannot specify both', format, 3, ',_') | 
|  | self.assertRaisesRegex(ValueError, 'Cannot specify both', format, 3, '_,d') | 
|  | self.assertRaisesRegex(ValueError, 'Cannot specify both', format, 3, ',_d') | 
|  |  | 
|  | self.assertRaisesRegex(ValueError, "Cannot specify ',' with 's'", format, 3, ',s') | 
|  | self.assertRaisesRegex(ValueError, "Cannot specify '_' with 's'", format, 3, '_s') | 
|  |  | 
|  | # ensure that only int and float type specifiers work | 
|  | for format_spec in ([chr(x) for x in range(ord('a'), ord('z')+1)] + | 
|  | [chr(x) for x in range(ord('A'), ord('Z')+1)]): | 
|  | if not format_spec in 'bcdoxXeEfFgGn%': | 
|  | self.assertRaises(ValueError, format, 0, format_spec) | 
|  | self.assertRaises(ValueError, format, 1, format_spec) | 
|  | self.assertRaises(ValueError, format, -1, format_spec) | 
|  | self.assertRaises(ValueError, format, 2**100, format_spec) | 
|  | self.assertRaises(ValueError, format, -(2**100), format_spec) | 
|  |  | 
|  | # ensure that float type specifiers work; format converts | 
|  | #  the int to a float | 
|  | for format_spec in 'eEfFgG%': | 
|  | for value in [0, 1, -1, 100, -100, 1234567890, -1234567890]: | 
|  | self.assertEqual(format(value, format_spec), | 
|  | format(float(value), format_spec)) | 
|  |  | 
|  | def test_nan_inf(self): | 
|  | self.assertRaises(OverflowError, int, float('inf')) | 
|  | self.assertRaises(OverflowError, int, float('-inf')) | 
|  | self.assertRaises(ValueError, int, float('nan')) | 
|  |  | 
|  | def test_mod_division(self): | 
|  | with self.assertRaises(ZeroDivisionError): | 
|  | _ = 1 % 0 | 
|  |  | 
|  | self.assertEqual(13 % 10, 3) | 
|  | self.assertEqual(-13 % 10, 7) | 
|  | self.assertEqual(13 % -10, -7) | 
|  | self.assertEqual(-13 % -10, -3) | 
|  |  | 
|  | self.assertEqual(12 % 4, 0) | 
|  | self.assertEqual(-12 % 4, 0) | 
|  | self.assertEqual(12 % -4, 0) | 
|  | self.assertEqual(-12 % -4, 0) | 
|  |  | 
|  | def test_true_division(self): | 
|  | huge = 1 << 40000 | 
|  | mhuge = -huge | 
|  | self.assertEqual(huge / huge, 1.0) | 
|  | self.assertEqual(mhuge / mhuge, 1.0) | 
|  | self.assertEqual(huge / mhuge, -1.0) | 
|  | self.assertEqual(mhuge / huge, -1.0) | 
|  | self.assertEqual(1 / huge, 0.0) | 
|  | self.assertEqual(1 / huge, 0.0) | 
|  | self.assertEqual(1 / mhuge, 0.0) | 
|  | self.assertEqual(1 / mhuge, 0.0) | 
|  | self.assertEqual((666 * huge + (huge >> 1)) / huge, 666.5) | 
|  | self.assertEqual((666 * mhuge + (mhuge >> 1)) / mhuge, 666.5) | 
|  | self.assertEqual((666 * huge + (huge >> 1)) / mhuge, -666.5) | 
|  | self.assertEqual((666 * mhuge + (mhuge >> 1)) / huge, -666.5) | 
|  | self.assertEqual(huge / (huge << 1), 0.5) | 
|  | self.assertEqual((1000000 * huge) / huge, 1000000) | 
|  |  | 
|  | namespace = {'huge': huge, 'mhuge': mhuge} | 
|  |  | 
|  | for overflow in ["float(huge)", "float(mhuge)", | 
|  | "huge / 1", "huge / 2", "huge / -1", "huge / -2", | 
|  | "mhuge / 100", "mhuge / 200"]: | 
|  | self.assertRaises(OverflowError, eval, overflow, namespace) | 
|  |  | 
|  | for underflow in ["1 / huge", "2 / huge", "-1 / huge", "-2 / huge", | 
|  | "100 / mhuge", "200 / mhuge"]: | 
|  | result = eval(underflow, namespace) | 
|  | self.assertEqual(result, 0.0, | 
|  | "expected underflow to 0 from %r" % underflow) | 
|  |  | 
|  | for zero in ["huge / 0", "mhuge / 0"]: | 
|  | self.assertRaises(ZeroDivisionError, eval, zero, namespace) | 
|  |  | 
|  | def test_floordiv(self): | 
|  | with self.assertRaises(ZeroDivisionError): | 
|  | _ = 1 // 0 | 
|  |  | 
|  | self.assertEqual(2 // 3, 0) | 
|  | self.assertEqual(2 // -3, -1) | 
|  | self.assertEqual(-2 // 3, -1) | 
|  | self.assertEqual(-2 // -3, 0) | 
|  |  | 
|  | self.assertEqual(-11 // -3, 3) | 
|  | self.assertEqual(-11 // 3, -4) | 
|  | self.assertEqual(11 // -3, -4) | 
|  | self.assertEqual(11 // 3, 3) | 
|  |  | 
|  | self.assertEqual(-12 // -3, 4) | 
|  | self.assertEqual(-12 // 3, -4) | 
|  | self.assertEqual(12 // -3, -4) | 
|  | self.assertEqual(12 // 3, 4) | 
|  |  | 
|  | def check_truediv(self, a, b, skip_small=True): | 
|  | """Verify that the result of a/b is correctly rounded, by | 
|  | comparing it with a pure Python implementation of correctly | 
|  | rounded division.  b should be nonzero.""" | 
|  |  | 
|  | # skip check for small a and b: in this case, the current | 
|  | # implementation converts the arguments to float directly and | 
|  | # then applies a float division.  This can give doubly-rounded | 
|  | # results on x87-using machines (particularly 32-bit Linux). | 
|  | if skip_small and max(abs(a), abs(b)) < 2**DBL_MANT_DIG: | 
|  | return | 
|  |  | 
|  | try: | 
|  | # use repr so that we can distinguish between -0.0 and 0.0 | 
|  | expected = repr(truediv(a, b)) | 
|  | except OverflowError: | 
|  | expected = 'overflow' | 
|  | except ZeroDivisionError: | 
|  | expected = 'zerodivision' | 
|  |  | 
|  | try: | 
|  | got = repr(a / b) | 
|  | except OverflowError: | 
|  | got = 'overflow' | 
|  | except ZeroDivisionError: | 
|  | got = 'zerodivision' | 
|  |  | 
|  | self.assertEqual(expected, got, "Incorrectly rounded division {}/{}: " | 
|  | "expected {}, got {}".format(a, b, expected, got)) | 
|  |  | 
|  | @support.requires_IEEE_754 | 
|  | def test_correctly_rounded_true_division(self): | 
|  | # more stringent tests than those above, checking that the | 
|  | # result of true division of ints is always correctly rounded. | 
|  | # This test should probably be considered CPython-specific. | 
|  |  | 
|  | # Exercise all the code paths not involving Gb-sized ints. | 
|  | # ... divisions involving zero | 
|  | self.check_truediv(123, 0) | 
|  | self.check_truediv(-456, 0) | 
|  | self.check_truediv(0, 3) | 
|  | self.check_truediv(0, -3) | 
|  | self.check_truediv(0, 0) | 
|  | # ... overflow or underflow by large margin | 
|  | self.check_truediv(671 * 12345 * 2**DBL_MAX_EXP, 12345) | 
|  | self.check_truediv(12345, 345678 * 2**(DBL_MANT_DIG - DBL_MIN_EXP)) | 
|  | # ... a much larger or smaller than b | 
|  | self.check_truediv(12345*2**100, 98765) | 
|  | self.check_truediv(12345*2**30, 98765*7**81) | 
|  | # ... a / b near a boundary: one of 1, 2**DBL_MANT_DIG, 2**DBL_MIN_EXP, | 
|  | #                 2**DBL_MAX_EXP, 2**(DBL_MIN_EXP-DBL_MANT_DIG) | 
|  | bases = (0, DBL_MANT_DIG, DBL_MIN_EXP, | 
|  | DBL_MAX_EXP, DBL_MIN_EXP - DBL_MANT_DIG) | 
|  | for base in bases: | 
|  | for exp in range(base - 15, base + 15): | 
|  | self.check_truediv(75312*2**max(exp, 0), 69187*2**max(-exp, 0)) | 
|  | self.check_truediv(69187*2**max(exp, 0), 75312*2**max(-exp, 0)) | 
|  |  | 
|  | # overflow corner case | 
|  | for m in [1, 2, 7, 17, 12345, 7**100, | 
|  | -1, -2, -5, -23, -67891, -41**50]: | 
|  | for n in range(-10, 10): | 
|  | self.check_truediv(m*DBL_MIN_OVERFLOW + n, m) | 
|  | self.check_truediv(m*DBL_MIN_OVERFLOW + n, -m) | 
|  |  | 
|  | # check detection of inexactness in shifting stage | 
|  | for n in range(250): | 
|  | # (2**DBL_MANT_DIG+1)/(2**DBL_MANT_DIG) lies halfway | 
|  | # between two representable floats, and would usually be | 
|  | # rounded down under round-half-to-even.  The tiniest of | 
|  | # additions to the numerator should cause it to be rounded | 
|  | # up instead. | 
|  | self.check_truediv((2**DBL_MANT_DIG + 1)*12345*2**200 + 2**n, | 
|  | 2**DBL_MANT_DIG*12345) | 
|  |  | 
|  | # 1/2731 is one of the smallest division cases that's subject | 
|  | # to double rounding on IEEE 754 machines working internally with | 
|  | # 64-bit precision.  On such machines, the next check would fail, | 
|  | # were it not explicitly skipped in check_truediv. | 
|  | self.check_truediv(1, 2731) | 
|  |  | 
|  | # a particularly bad case for the old algorithm:  gives an | 
|  | # error of close to 3.5 ulps. | 
|  | self.check_truediv(295147931372582273023, 295147932265116303360) | 
|  | for i in range(1000): | 
|  | self.check_truediv(10**(i+1), 10**i) | 
|  | self.check_truediv(10**i, 10**(i+1)) | 
|  |  | 
|  | # test round-half-to-even behaviour, normal result | 
|  | for m in [1, 2, 4, 7, 8, 16, 17, 32, 12345, 7**100, | 
|  | -1, -2, -5, -23, -67891, -41**50]: | 
|  | for n in range(-10, 10): | 
|  | self.check_truediv(2**DBL_MANT_DIG*m + n, m) | 
|  |  | 
|  | # test round-half-to-even, subnormal result | 
|  | for n in range(-20, 20): | 
|  | self.check_truediv(n, 2**1076) | 
|  |  | 
|  | # largeish random divisions: a/b where |a| <= |b| <= | 
|  | # 2*|a|; |ans| is between 0.5 and 1.0, so error should | 
|  | # always be bounded by 2**-54 with equality possible only | 
|  | # if the least significant bit of q=ans*2**53 is zero. | 
|  | for M in [10**10, 10**100, 10**1000]: | 
|  | for i in range(1000): | 
|  | a = random.randrange(1, M) | 
|  | b = random.randrange(a, 2*a+1) | 
|  | self.check_truediv(a, b) | 
|  | self.check_truediv(-a, b) | 
|  | self.check_truediv(a, -b) | 
|  | self.check_truediv(-a, -b) | 
|  |  | 
|  | # and some (genuinely) random tests | 
|  | for _ in range(10000): | 
|  | a_bits = random.randrange(1000) | 
|  | b_bits = random.randrange(1, 1000) | 
|  | x = random.randrange(2**a_bits) | 
|  | y = random.randrange(1, 2**b_bits) | 
|  | self.check_truediv(x, y) | 
|  | self.check_truediv(x, -y) | 
|  | self.check_truediv(-x, y) | 
|  | self.check_truediv(-x, -y) | 
|  |  | 
|  | def test_negative_shift_count(self): | 
|  | with self.assertRaises(ValueError): | 
|  | 42 << -3 | 
|  | with self.assertRaises(ValueError): | 
|  | 42 << -(1 << 1000) | 
|  | with self.assertRaises(ValueError): | 
|  | 42 >> -3 | 
|  | with self.assertRaises(ValueError): | 
|  | 42 >> -(1 << 1000) | 
|  |  | 
|  | def test_lshift_of_zero(self): | 
|  | self.assertEqual(0 << 0, 0) | 
|  | self.assertEqual(0 << 10, 0) | 
|  | with self.assertRaises(ValueError): | 
|  | 0 << -1 | 
|  | self.assertEqual(0 << (1 << 1000), 0) | 
|  | with self.assertRaises(ValueError): | 
|  | 0 << -(1 << 1000) | 
|  |  | 
|  | @support.cpython_only | 
|  | def test_huge_lshift_of_zero(self): | 
|  | # Shouldn't try to allocate memory for a huge shift. See issue #27870. | 
|  | # Other implementations may have a different boundary for overflow, | 
|  | # or not raise at all. | 
|  | self.assertEqual(0 << sys.maxsize, 0) | 
|  | self.assertEqual(0 << (sys.maxsize + 1), 0) | 
|  |  | 
|  | @support.cpython_only | 
|  | @support.bigmemtest(sys.maxsize + 1000, memuse=2/15 * 2, dry_run=False) | 
|  | def test_huge_lshift(self, size): | 
|  | self.assertEqual(1 << (sys.maxsize + 1000), 1 << 1000 << sys.maxsize) | 
|  |  | 
|  | def test_huge_rshift(self): | 
|  | self.assertEqual(42 >> (1 << 1000), 0) | 
|  | self.assertEqual((-42) >> (1 << 1000), -1) | 
|  |  | 
|  | @support.cpython_only | 
|  | @support.bigmemtest(sys.maxsize + 500, memuse=2/15, dry_run=False) | 
|  | def test_huge_rshift_of_huge(self, size): | 
|  | huge = ((1 << 500) + 11) << sys.maxsize | 
|  | self.assertEqual(huge >> (sys.maxsize + 1), (1 << 499) + 5) | 
|  | self.assertEqual(huge >> (sys.maxsize + 1000), 0) | 
|  |  | 
|  | def test_small_ints(self): | 
|  | for i in range(-5, 257): | 
|  | self.assertIs(i, i + 0) | 
|  | self.assertIs(i, i * 1) | 
|  | self.assertIs(i, i - 0) | 
|  | self.assertIs(i, i // 1) | 
|  | self.assertIs(i, i & -1) | 
|  | self.assertIs(i, i | 0) | 
|  | self.assertIs(i, i ^ 0) | 
|  | self.assertIs(i, ~~i) | 
|  | self.assertIs(i, i**1) | 
|  | self.assertIs(i, int(str(i))) | 
|  | self.assertIs(i, i<<2>>2, str(i)) | 
|  | # corner cases | 
|  | i = 1 << 70 | 
|  | self.assertIs(i - i, 0) | 
|  | self.assertIs(0 * i, 0) | 
|  |  | 
|  | def test_bit_length(self): | 
|  | tiny = 1e-10 | 
|  | for x in range(-65000, 65000): | 
|  | k = x.bit_length() | 
|  | # Check equivalence with Python version | 
|  | self.assertEqual(k, len(bin(x).lstrip('-0b'))) | 
|  | # Behaviour as specified in the docs | 
|  | if x != 0: | 
|  | self.assertTrue(2**(k-1) <= abs(x) < 2**k) | 
|  | else: | 
|  | self.assertEqual(k, 0) | 
|  | # Alternative definition: x.bit_length() == 1 + floor(log_2(x)) | 
|  | if x != 0: | 
|  | # When x is an exact power of 2, numeric errors can | 
|  | # cause floor(log(x)/log(2)) to be one too small; for | 
|  | # small x this can be fixed by adding a small quantity | 
|  | # to the quotient before taking the floor. | 
|  | self.assertEqual(k, 1 + math.floor( | 
|  | math.log(abs(x))/math.log(2) + tiny)) | 
|  |  | 
|  | self.assertEqual((0).bit_length(), 0) | 
|  | self.assertEqual((1).bit_length(), 1) | 
|  | self.assertEqual((-1).bit_length(), 1) | 
|  | self.assertEqual((2).bit_length(), 2) | 
|  | self.assertEqual((-2).bit_length(), 2) | 
|  | for i in [2, 3, 15, 16, 17, 31, 32, 33, 63, 64, 234]: | 
|  | a = 2**i | 
|  | self.assertEqual((a-1).bit_length(), i) | 
|  | self.assertEqual((1-a).bit_length(), i) | 
|  | self.assertEqual((a).bit_length(), i+1) | 
|  | self.assertEqual((-a).bit_length(), i+1) | 
|  | self.assertEqual((a+1).bit_length(), i+1) | 
|  | self.assertEqual((-a-1).bit_length(), i+1) | 
|  |  | 
|  | def test_round(self): | 
|  | # check round-half-even algorithm. For round to nearest ten; | 
|  | # rounding map is invariant under adding multiples of 20 | 
|  | test_dict = {0:0, 1:0, 2:0, 3:0, 4:0, 5:0, | 
|  | 6:10, 7:10, 8:10, 9:10, 10:10, 11:10, 12:10, 13:10, 14:10, | 
|  | 15:20, 16:20, 17:20, 18:20, 19:20} | 
|  | for offset in range(-520, 520, 20): | 
|  | for k, v in test_dict.items(): | 
|  | got = round(k+offset, -1) | 
|  | expected = v+offset | 
|  | self.assertEqual(got, expected) | 
|  | self.assertIs(type(got), int) | 
|  |  | 
|  | # larger second argument | 
|  | self.assertEqual(round(-150, -2), -200) | 
|  | self.assertEqual(round(-149, -2), -100) | 
|  | self.assertEqual(round(-51, -2), -100) | 
|  | self.assertEqual(round(-50, -2), 0) | 
|  | self.assertEqual(round(-49, -2), 0) | 
|  | self.assertEqual(round(-1, -2), 0) | 
|  | self.assertEqual(round(0, -2), 0) | 
|  | self.assertEqual(round(1, -2), 0) | 
|  | self.assertEqual(round(49, -2), 0) | 
|  | self.assertEqual(round(50, -2), 0) | 
|  | self.assertEqual(round(51, -2), 100) | 
|  | self.assertEqual(round(149, -2), 100) | 
|  | self.assertEqual(round(150, -2), 200) | 
|  | self.assertEqual(round(250, -2), 200) | 
|  | self.assertEqual(round(251, -2), 300) | 
|  | self.assertEqual(round(172500, -3), 172000) | 
|  | self.assertEqual(round(173500, -3), 174000) | 
|  | self.assertEqual(round(31415926535, -1), 31415926540) | 
|  | self.assertEqual(round(31415926535, -2), 31415926500) | 
|  | self.assertEqual(round(31415926535, -3), 31415927000) | 
|  | self.assertEqual(round(31415926535, -4), 31415930000) | 
|  | self.assertEqual(round(31415926535, -5), 31415900000) | 
|  | self.assertEqual(round(31415926535, -6), 31416000000) | 
|  | self.assertEqual(round(31415926535, -7), 31420000000) | 
|  | self.assertEqual(round(31415926535, -8), 31400000000) | 
|  | self.assertEqual(round(31415926535, -9), 31000000000) | 
|  | self.assertEqual(round(31415926535, -10), 30000000000) | 
|  | self.assertEqual(round(31415926535, -11), 0) | 
|  | self.assertEqual(round(31415926535, -12), 0) | 
|  | self.assertEqual(round(31415926535, -999), 0) | 
|  |  | 
|  | # should get correct results even for huge inputs | 
|  | for k in range(10, 100): | 
|  | got = round(10**k + 324678, -3) | 
|  | expect = 10**k + 325000 | 
|  | self.assertEqual(got, expect) | 
|  | self.assertIs(type(got), int) | 
|  |  | 
|  | # nonnegative second argument: round(x, n) should just return x | 
|  | for n in range(5): | 
|  | for i in range(100): | 
|  | x = random.randrange(-10000, 10000) | 
|  | got = round(x, n) | 
|  | self.assertEqual(got, x) | 
|  | self.assertIs(type(got), int) | 
|  | for huge_n in 2**31-1, 2**31, 2**63-1, 2**63, 2**100, 10**100: | 
|  | self.assertEqual(round(8979323, huge_n), 8979323) | 
|  |  | 
|  | # omitted second argument | 
|  | for i in range(100): | 
|  | x = random.randrange(-10000, 10000) | 
|  | got = round(x) | 
|  | self.assertEqual(got, x) | 
|  | self.assertIs(type(got), int) | 
|  |  | 
|  | # bad second argument | 
|  | bad_exponents = ('brian', 2.0, 0j) | 
|  | for e in bad_exponents: | 
|  | self.assertRaises(TypeError, round, 3, e) | 
|  |  | 
|  | def test_to_bytes(self): | 
|  | def check(tests, byteorder, signed=False): | 
|  | for test, expected in tests.items(): | 
|  | try: | 
|  | self.assertEqual( | 
|  | test.to_bytes(len(expected), byteorder, signed=signed), | 
|  | expected) | 
|  | except Exception as err: | 
|  | raise AssertionError( | 
|  | "failed to convert {0} with byteorder={1} and signed={2}" | 
|  | .format(test, byteorder, signed)) from err | 
|  |  | 
|  | # Convert integers to signed big-endian byte arrays. | 
|  | tests1 = { | 
|  | 0: b'\x00', | 
|  | 1: b'\x01', | 
|  | -1: b'\xff', | 
|  | -127: b'\x81', | 
|  | -128: b'\x80', | 
|  | -129: b'\xff\x7f', | 
|  | 127: b'\x7f', | 
|  | 129: b'\x00\x81', | 
|  | -255: b'\xff\x01', | 
|  | -256: b'\xff\x00', | 
|  | 255: b'\x00\xff', | 
|  | 256: b'\x01\x00', | 
|  | 32767: b'\x7f\xff', | 
|  | -32768: b'\xff\x80\x00', | 
|  | 65535: b'\x00\xff\xff', | 
|  | -65536: b'\xff\x00\x00', | 
|  | -8388608: b'\x80\x00\x00' | 
|  | } | 
|  | check(tests1, 'big', signed=True) | 
|  |  | 
|  | # Convert integers to signed little-endian byte arrays. | 
|  | tests2 = { | 
|  | 0: b'\x00', | 
|  | 1: b'\x01', | 
|  | -1: b'\xff', | 
|  | -127: b'\x81', | 
|  | -128: b'\x80', | 
|  | -129: b'\x7f\xff', | 
|  | 127: b'\x7f', | 
|  | 129: b'\x81\x00', | 
|  | -255: b'\x01\xff', | 
|  | -256: b'\x00\xff', | 
|  | 255: b'\xff\x00', | 
|  | 256: b'\x00\x01', | 
|  | 32767: b'\xff\x7f', | 
|  | -32768: b'\x00\x80', | 
|  | 65535: b'\xff\xff\x00', | 
|  | -65536: b'\x00\x00\xff', | 
|  | -8388608: b'\x00\x00\x80' | 
|  | } | 
|  | check(tests2, 'little', signed=True) | 
|  |  | 
|  | # Convert integers to unsigned big-endian byte arrays. | 
|  | tests3 = { | 
|  | 0: b'\x00', | 
|  | 1: b'\x01', | 
|  | 127: b'\x7f', | 
|  | 128: b'\x80', | 
|  | 255: b'\xff', | 
|  | 256: b'\x01\x00', | 
|  | 32767: b'\x7f\xff', | 
|  | 32768: b'\x80\x00', | 
|  | 65535: b'\xff\xff', | 
|  | 65536: b'\x01\x00\x00' | 
|  | } | 
|  | check(tests3, 'big', signed=False) | 
|  |  | 
|  | # Convert integers to unsigned little-endian byte arrays. | 
|  | tests4 = { | 
|  | 0: b'\x00', | 
|  | 1: b'\x01', | 
|  | 127: b'\x7f', | 
|  | 128: b'\x80', | 
|  | 255: b'\xff', | 
|  | 256: b'\x00\x01', | 
|  | 32767: b'\xff\x7f', | 
|  | 32768: b'\x00\x80', | 
|  | 65535: b'\xff\xff', | 
|  | 65536: b'\x00\x00\x01' | 
|  | } | 
|  | check(tests4, 'little', signed=False) | 
|  |  | 
|  | self.assertRaises(OverflowError, (256).to_bytes, 1, 'big', signed=False) | 
|  | self.assertRaises(OverflowError, (256).to_bytes, 1, 'big', signed=True) | 
|  | self.assertRaises(OverflowError, (256).to_bytes, 1, 'little', signed=False) | 
|  | self.assertRaises(OverflowError, (256).to_bytes, 1, 'little', signed=True) | 
|  | self.assertRaises(OverflowError, (-1).to_bytes, 2, 'big', signed=False) | 
|  | self.assertRaises(OverflowError, (-1).to_bytes, 2, 'little', signed=False) | 
|  | self.assertEqual((0).to_bytes(0, 'big'), b'') | 
|  | self.assertEqual((1).to_bytes(5, 'big'), b'\x00\x00\x00\x00\x01') | 
|  | self.assertEqual((0).to_bytes(5, 'big'), b'\x00\x00\x00\x00\x00') | 
|  | self.assertEqual((-1).to_bytes(5, 'big', signed=True), | 
|  | b'\xff\xff\xff\xff\xff') | 
|  | self.assertRaises(OverflowError, (1).to_bytes, 0, 'big') | 
|  |  | 
|  | def test_from_bytes(self): | 
|  | def check(tests, byteorder, signed=False): | 
|  | for test, expected in tests.items(): | 
|  | try: | 
|  | self.assertEqual( | 
|  | int.from_bytes(test, byteorder, signed=signed), | 
|  | expected) | 
|  | except Exception as err: | 
|  | raise AssertionError( | 
|  | "failed to convert {0} with byteorder={1!r} and signed={2}" | 
|  | .format(test, byteorder, signed)) from err | 
|  |  | 
|  | # Convert signed big-endian byte arrays to integers. | 
|  | tests1 = { | 
|  | b'': 0, | 
|  | b'\x00': 0, | 
|  | b'\x00\x00': 0, | 
|  | b'\x01': 1, | 
|  | b'\x00\x01': 1, | 
|  | b'\xff': -1, | 
|  | b'\xff\xff': -1, | 
|  | b'\x81': -127, | 
|  | b'\x80': -128, | 
|  | b'\xff\x7f': -129, | 
|  | b'\x7f': 127, | 
|  | b'\x00\x81': 129, | 
|  | b'\xff\x01': -255, | 
|  | b'\xff\x00': -256, | 
|  | b'\x00\xff': 255, | 
|  | b'\x01\x00': 256, | 
|  | b'\x7f\xff': 32767, | 
|  | b'\x80\x00': -32768, | 
|  | b'\x00\xff\xff': 65535, | 
|  | b'\xff\x00\x00': -65536, | 
|  | b'\x80\x00\x00': -8388608 | 
|  | } | 
|  | check(tests1, 'big', signed=True) | 
|  |  | 
|  | # Convert signed little-endian byte arrays to integers. | 
|  | tests2 = { | 
|  | b'': 0, | 
|  | b'\x00': 0, | 
|  | b'\x00\x00': 0, | 
|  | b'\x01': 1, | 
|  | b'\x00\x01': 256, | 
|  | b'\xff': -1, | 
|  | b'\xff\xff': -1, | 
|  | b'\x81': -127, | 
|  | b'\x80': -128, | 
|  | b'\x7f\xff': -129, | 
|  | b'\x7f': 127, | 
|  | b'\x81\x00': 129, | 
|  | b'\x01\xff': -255, | 
|  | b'\x00\xff': -256, | 
|  | b'\xff\x00': 255, | 
|  | b'\x00\x01': 256, | 
|  | b'\xff\x7f': 32767, | 
|  | b'\x00\x80': -32768, | 
|  | b'\xff\xff\x00': 65535, | 
|  | b'\x00\x00\xff': -65536, | 
|  | b'\x00\x00\x80': -8388608 | 
|  | } | 
|  | check(tests2, 'little', signed=True) | 
|  |  | 
|  | # Convert unsigned big-endian byte arrays to integers. | 
|  | tests3 = { | 
|  | b'': 0, | 
|  | b'\x00': 0, | 
|  | b'\x01': 1, | 
|  | b'\x7f': 127, | 
|  | b'\x80': 128, | 
|  | b'\xff': 255, | 
|  | b'\x01\x00': 256, | 
|  | b'\x7f\xff': 32767, | 
|  | b'\x80\x00': 32768, | 
|  | b'\xff\xff': 65535, | 
|  | b'\x01\x00\x00': 65536, | 
|  | } | 
|  | check(tests3, 'big', signed=False) | 
|  |  | 
|  | # Convert integers to unsigned little-endian byte arrays. | 
|  | tests4 = { | 
|  | b'': 0, | 
|  | b'\x00': 0, | 
|  | b'\x01': 1, | 
|  | b'\x7f': 127, | 
|  | b'\x80': 128, | 
|  | b'\xff': 255, | 
|  | b'\x00\x01': 256, | 
|  | b'\xff\x7f': 32767, | 
|  | b'\x00\x80': 32768, | 
|  | b'\xff\xff': 65535, | 
|  | b'\x00\x00\x01': 65536, | 
|  | } | 
|  | check(tests4, 'little', signed=False) | 
|  |  | 
|  | class myint(int): | 
|  | pass | 
|  |  | 
|  | self.assertIs(type(myint.from_bytes(b'\x00', 'big')), myint) | 
|  | self.assertEqual(myint.from_bytes(b'\x01', 'big'), 1) | 
|  | self.assertIs( | 
|  | type(myint.from_bytes(b'\x00', 'big', signed=False)), myint) | 
|  | self.assertEqual(myint.from_bytes(b'\x01', 'big', signed=False), 1) | 
|  | self.assertIs(type(myint.from_bytes(b'\x00', 'little')), myint) | 
|  | self.assertEqual(myint.from_bytes(b'\x01', 'little'), 1) | 
|  | self.assertIs(type(myint.from_bytes( | 
|  | b'\x00', 'little', signed=False)), myint) | 
|  | self.assertEqual(myint.from_bytes(b'\x01', 'little', signed=False), 1) | 
|  | self.assertEqual( | 
|  | int.from_bytes([255, 0, 0], 'big', signed=True), -65536) | 
|  | self.assertEqual( | 
|  | int.from_bytes((255, 0, 0), 'big', signed=True), -65536) | 
|  | self.assertEqual(int.from_bytes( | 
|  | bytearray(b'\xff\x00\x00'), 'big', signed=True), -65536) | 
|  | self.assertEqual(int.from_bytes( | 
|  | bytearray(b'\xff\x00\x00'), 'big', signed=True), -65536) | 
|  | self.assertEqual(int.from_bytes( | 
|  | array.array('B', b'\xff\x00\x00'), 'big', signed=True), -65536) | 
|  | self.assertEqual(int.from_bytes( | 
|  | memoryview(b'\xff\x00\x00'), 'big', signed=True), -65536) | 
|  | self.assertRaises(ValueError, int.from_bytes, [256], 'big') | 
|  | self.assertRaises(ValueError, int.from_bytes, [0], 'big\x00') | 
|  | self.assertRaises(ValueError, int.from_bytes, [0], 'little\x00') | 
|  | self.assertRaises(TypeError, int.from_bytes, "", 'big') | 
|  | self.assertRaises(TypeError, int.from_bytes, "\x00", 'big') | 
|  | self.assertRaises(TypeError, int.from_bytes, 0, 'big') | 
|  | self.assertRaises(TypeError, int.from_bytes, 0, 'big', True) | 
|  | self.assertRaises(TypeError, myint.from_bytes, "", 'big') | 
|  | self.assertRaises(TypeError, myint.from_bytes, "\x00", 'big') | 
|  | self.assertRaises(TypeError, myint.from_bytes, 0, 'big') | 
|  | self.assertRaises(TypeError, int.from_bytes, 0, 'big', True) | 
|  |  | 
|  | class myint2(int): | 
|  | def __new__(cls, value): | 
|  | return int.__new__(cls, value + 1) | 
|  |  | 
|  | i = myint2.from_bytes(b'\x01', 'big') | 
|  | self.assertIs(type(i), myint2) | 
|  | self.assertEqual(i, 2) | 
|  |  | 
|  | class myint3(int): | 
|  | def __init__(self, value): | 
|  | self.foo = 'bar' | 
|  |  | 
|  | i = myint3.from_bytes(b'\x01', 'big') | 
|  | self.assertIs(type(i), myint3) | 
|  | self.assertEqual(i, 1) | 
|  | self.assertEqual(getattr(i, 'foo', 'none'), 'bar') | 
|  |  | 
|  | def test_access_to_nonexistent_digit_0(self): | 
|  | # http://bugs.python.org/issue14630: A bug in _PyLong_Copy meant that | 
|  | # ob_digit[0] was being incorrectly accessed for instances of a | 
|  | # subclass of int, with value 0. | 
|  | class Integer(int): | 
|  | def __new__(cls, value=0): | 
|  | self = int.__new__(cls, value) | 
|  | self.foo = 'foo' | 
|  | return self | 
|  |  | 
|  | integers = [Integer(0) for i in range(1000)] | 
|  | for n in map(int, integers): | 
|  | self.assertEqual(n, 0) | 
|  |  | 
|  | def test_shift_bool(self): | 
|  | # Issue #21422: ensure that bool << int and bool >> int return int | 
|  | for value in (True, False): | 
|  | for shift in (0, 2): | 
|  | self.assertEqual(type(value << shift), int) | 
|  | self.assertEqual(type(value >> shift), int) | 
|  |  | 
|  | def test_as_integer_ratio(self): | 
|  | class myint(int): | 
|  | pass | 
|  | tests = [10, 0, -10, 1, sys.maxsize + 1, True, False, myint(42)] | 
|  | for value in tests: | 
|  | numerator, denominator = value.as_integer_ratio() | 
|  | self.assertEqual((numerator, denominator), (int(value), 1)) | 
|  | self.assertEqual(type(numerator), int) | 
|  | self.assertEqual(type(denominator), int) | 
|  |  | 
|  |  | 
|  | if __name__ == "__main__": | 
|  | unittest.main() |