|  | /* Set of hash utility functions to help maintaining the invariant that | 
|  | if a==b then hash(a)==hash(b) | 
|  |  | 
|  | All the utility functions (_Py_Hash*()) return "-1" to signify an error. | 
|  | */ | 
|  | #include "Python.h" | 
|  |  | 
|  | #ifdef __APPLE__ | 
|  | #  include <libkern/OSByteOrder.h> | 
|  | #elif defined(HAVE_LE64TOH) && defined(HAVE_ENDIAN_H) | 
|  | #  include <endian.h> | 
|  | #elif defined(HAVE_LE64TOH) && defined(HAVE_SYS_ENDIAN_H) | 
|  | #  include <sys/endian.h> | 
|  | #endif | 
|  |  | 
|  | #ifdef __cplusplus | 
|  | extern "C" { | 
|  | #endif | 
|  |  | 
|  | _Py_HashSecret_t _Py_HashSecret; | 
|  |  | 
|  | #if Py_HASH_ALGORITHM == Py_HASH_EXTERNAL | 
|  | extern PyHash_FuncDef PyHash_Func; | 
|  | #else | 
|  | static PyHash_FuncDef PyHash_Func; | 
|  | #endif | 
|  |  | 
|  | /* Count _Py_HashBytes() calls */ | 
|  | #ifdef Py_HASH_STATS | 
|  | #define Py_HASH_STATS_MAX 32 | 
|  | static Py_ssize_t hashstats[Py_HASH_STATS_MAX + 1] = {0}; | 
|  | #endif | 
|  |  | 
|  | /* For numeric types, the hash of a number x is based on the reduction | 
|  | of x modulo the prime P = 2**_PyHASH_BITS - 1.  It's designed so that | 
|  | hash(x) == hash(y) whenever x and y are numerically equal, even if | 
|  | x and y have different types. | 
|  |  | 
|  | A quick summary of the hashing strategy: | 
|  |  | 
|  | (1) First define the 'reduction of x modulo P' for any rational | 
|  | number x; this is a standard extension of the usual notion of | 
|  | reduction modulo P for integers.  If x == p/q (written in lowest | 
|  | terms), the reduction is interpreted as the reduction of p times | 
|  | the inverse of the reduction of q, all modulo P; if q is exactly | 
|  | divisible by P then define the reduction to be infinity.  So we've | 
|  | got a well-defined map | 
|  |  | 
|  | reduce : { rational numbers } -> { 0, 1, 2, ..., P-1, infinity }. | 
|  |  | 
|  | (2) Now for a rational number x, define hash(x) by: | 
|  |  | 
|  | reduce(x)   if x >= 0 | 
|  | -reduce(-x) if x < 0 | 
|  |  | 
|  | If the result of the reduction is infinity (this is impossible for | 
|  | integers, floats and Decimals) then use the predefined hash value | 
|  | _PyHASH_INF for x >= 0, or -_PyHASH_INF for x < 0, instead. | 
|  | _PyHASH_INF, -_PyHASH_INF and _PyHASH_NAN are also used for the | 
|  | hashes of float and Decimal infinities and nans. | 
|  |  | 
|  | A selling point for the above strategy is that it makes it possible | 
|  | to compute hashes of decimal and binary floating-point numbers | 
|  | efficiently, even if the exponent of the binary or decimal number | 
|  | is large.  The key point is that | 
|  |  | 
|  | reduce(x * y) == reduce(x) * reduce(y) (modulo _PyHASH_MODULUS) | 
|  |  | 
|  | provided that {reduce(x), reduce(y)} != {0, infinity}.  The reduction of a | 
|  | binary or decimal float is never infinity, since the denominator is a power | 
|  | of 2 (for binary) or a divisor of a power of 10 (for decimal).  So we have, | 
|  | for nonnegative x, | 
|  |  | 
|  | reduce(x * 2**e) == reduce(x) * reduce(2**e) % _PyHASH_MODULUS | 
|  |  | 
|  | reduce(x * 10**e) == reduce(x) * reduce(10**e) % _PyHASH_MODULUS | 
|  |  | 
|  | and reduce(10**e) can be computed efficiently by the usual modular | 
|  | exponentiation algorithm.  For reduce(2**e) it's even better: since | 
|  | P is of the form 2**n-1, reduce(2**e) is 2**(e mod n), and multiplication | 
|  | by 2**(e mod n) modulo 2**n-1 just amounts to a rotation of bits. | 
|  |  | 
|  | */ | 
|  |  | 
|  | Py_hash_t | 
|  | _Py_HashDouble(double v) | 
|  | { | 
|  | int e, sign; | 
|  | double m; | 
|  | Py_uhash_t x, y; | 
|  |  | 
|  | if (!Py_IS_FINITE(v)) { | 
|  | if (Py_IS_INFINITY(v)) | 
|  | return v > 0 ? _PyHASH_INF : -_PyHASH_INF; | 
|  | else | 
|  | return _PyHASH_NAN; | 
|  | } | 
|  |  | 
|  | m = frexp(v, &e); | 
|  |  | 
|  | sign = 1; | 
|  | if (m < 0) { | 
|  | sign = -1; | 
|  | m = -m; | 
|  | } | 
|  |  | 
|  | /* process 28 bits at a time;  this should work well both for binary | 
|  | and hexadecimal floating point. */ | 
|  | x = 0; | 
|  | while (m) { | 
|  | x = ((x << 28) & _PyHASH_MODULUS) | x >> (_PyHASH_BITS - 28); | 
|  | m *= 268435456.0;  /* 2**28 */ | 
|  | e -= 28; | 
|  | y = (Py_uhash_t)m;  /* pull out integer part */ | 
|  | m -= y; | 
|  | x += y; | 
|  | if (x >= _PyHASH_MODULUS) | 
|  | x -= _PyHASH_MODULUS; | 
|  | } | 
|  |  | 
|  | /* adjust for the exponent;  first reduce it modulo _PyHASH_BITS */ | 
|  | e = e >= 0 ? e % _PyHASH_BITS : _PyHASH_BITS-1-((-1-e) % _PyHASH_BITS); | 
|  | x = ((x << e) & _PyHASH_MODULUS) | x >> (_PyHASH_BITS - e); | 
|  |  | 
|  | x = x * sign; | 
|  | if (x == (Py_uhash_t)-1) | 
|  | x = (Py_uhash_t)-2; | 
|  | return (Py_hash_t)x; | 
|  | } | 
|  |  | 
|  | Py_hash_t | 
|  | _Py_HashPointer(void *p) | 
|  | { | 
|  | Py_hash_t x; | 
|  | size_t y = (size_t)p; | 
|  | /* bottom 3 or 4 bits are likely to be 0; rotate y by 4 to avoid | 
|  | excessive hash collisions for dicts and sets */ | 
|  | y = (y >> 4) | (y << (8 * SIZEOF_VOID_P - 4)); | 
|  | x = (Py_hash_t)y; | 
|  | if (x == -1) | 
|  | x = -2; | 
|  | return x; | 
|  | } | 
|  |  | 
|  | Py_hash_t | 
|  | _Py_HashBytes(const void *src, Py_ssize_t len) | 
|  | { | 
|  | Py_hash_t x; | 
|  | /* | 
|  | We make the hash of the empty string be 0, rather than using | 
|  | (prefix ^ suffix), since this slightly obfuscates the hash secret | 
|  | */ | 
|  | if (len == 0) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef Py_HASH_STATS | 
|  | hashstats[(len <= Py_HASH_STATS_MAX) ? len : 0]++; | 
|  | #endif | 
|  |  | 
|  | #if Py_HASH_CUTOFF > 0 | 
|  | if (len < Py_HASH_CUTOFF) { | 
|  | /* Optimize hashing of very small strings with inline DJBX33A. */ | 
|  | Py_uhash_t hash; | 
|  | const unsigned char *p = src; | 
|  | hash = 5381; /* DJBX33A starts with 5381 */ | 
|  |  | 
|  | switch(len) { | 
|  | /* ((hash << 5) + hash) + *p == hash * 33 + *p */ | 
|  | case 7: hash = ((hash << 5) + hash) + *p++; /* fallthrough */ | 
|  | case 6: hash = ((hash << 5) + hash) + *p++; /* fallthrough */ | 
|  | case 5: hash = ((hash << 5) + hash) + *p++; /* fallthrough */ | 
|  | case 4: hash = ((hash << 5) + hash) + *p++; /* fallthrough */ | 
|  | case 3: hash = ((hash << 5) + hash) + *p++; /* fallthrough */ | 
|  | case 2: hash = ((hash << 5) + hash) + *p++; /* fallthrough */ | 
|  | case 1: hash = ((hash << 5) + hash) + *p++; break; | 
|  | default: | 
|  | assert(0); | 
|  | } | 
|  | hash ^= len; | 
|  | hash ^= (Py_uhash_t) _Py_HashSecret.djbx33a.suffix; | 
|  | x = (Py_hash_t)hash; | 
|  | } | 
|  | else | 
|  | #endif /* Py_HASH_CUTOFF */ | 
|  | x = PyHash_Func.hash(src, len); | 
|  |  | 
|  | if (x == -1) | 
|  | return -2; | 
|  | return x; | 
|  | } | 
|  |  | 
|  | void | 
|  | _PyHash_Fini(void) | 
|  | { | 
|  | #ifdef Py_HASH_STATS | 
|  | int i; | 
|  | Py_ssize_t total = 0; | 
|  | char *fmt = "%2i %8" PY_FORMAT_SIZE_T "d %8" PY_FORMAT_SIZE_T "d\n"; | 
|  |  | 
|  | fprintf(stderr, "len   calls    total\n"); | 
|  | for (i = 1; i <= Py_HASH_STATS_MAX; i++) { | 
|  | total += hashstats[i]; | 
|  | fprintf(stderr, fmt, i, hashstats[i], total); | 
|  | } | 
|  | total += hashstats[0]; | 
|  | fprintf(stderr, ">  %8" PY_FORMAT_SIZE_T "d %8" PY_FORMAT_SIZE_T "d\n", | 
|  | hashstats[0], total); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | PyHash_FuncDef * | 
|  | PyHash_GetFuncDef(void) | 
|  | { | 
|  | return &PyHash_Func; | 
|  | } | 
|  |  | 
|  | /* Optimized memcpy() for Windows */ | 
|  | #ifdef _MSC_VER | 
|  | #  if SIZEOF_PY_UHASH_T == 4 | 
|  | #    define PY_UHASH_CPY(dst, src) do {                                    \ | 
|  | dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = src[3]; \ | 
|  | } while(0) | 
|  | #  elif SIZEOF_PY_UHASH_T == 8 | 
|  | #    define PY_UHASH_CPY(dst, src) do {                                    \ | 
|  | dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = src[3]; \ | 
|  | dst[4] = src[4]; dst[5] = src[5]; dst[6] = src[6]; dst[7] = src[7]; \ | 
|  | } while(0) | 
|  | #  else | 
|  | #    error SIZEOF_PY_UHASH_T must be 4 or 8 | 
|  | #  endif /* SIZEOF_PY_UHASH_T */ | 
|  | #else /* not Windows */ | 
|  | #  define PY_UHASH_CPY(dst, src) memcpy(dst, src, SIZEOF_PY_UHASH_T) | 
|  | #endif /* _MSC_VER */ | 
|  |  | 
|  |  | 
|  | #if Py_HASH_ALGORITHM == Py_HASH_FNV | 
|  | /* ************************************************************************** | 
|  | * Modified Fowler-Noll-Vo (FNV) hash function | 
|  | */ | 
|  | static Py_hash_t | 
|  | fnv(const void *src, Py_ssize_t len) | 
|  | { | 
|  | const unsigned char *p = src; | 
|  | Py_uhash_t x; | 
|  | Py_ssize_t remainder, blocks; | 
|  | union { | 
|  | Py_uhash_t value; | 
|  | unsigned char bytes[SIZEOF_PY_UHASH_T]; | 
|  | } block; | 
|  |  | 
|  | #ifdef Py_DEBUG | 
|  | assert(_Py_HashSecret_Initialized); | 
|  | #endif | 
|  | remainder = len % SIZEOF_PY_UHASH_T; | 
|  | if (remainder == 0) { | 
|  | /* Process at least one block byte by byte to reduce hash collisions | 
|  | * for strings with common prefixes. */ | 
|  | remainder = SIZEOF_PY_UHASH_T; | 
|  | } | 
|  | blocks = (len - remainder) / SIZEOF_PY_UHASH_T; | 
|  |  | 
|  | x = (Py_uhash_t) _Py_HashSecret.fnv.prefix; | 
|  | x ^= (Py_uhash_t) *p << 7; | 
|  | while (blocks--) { | 
|  | PY_UHASH_CPY(block.bytes, p); | 
|  | x = (_PyHASH_MULTIPLIER * x) ^ block.value; | 
|  | p += SIZEOF_PY_UHASH_T; | 
|  | } | 
|  | /* add remainder */ | 
|  | for (; remainder > 0; remainder--) | 
|  | x = (_PyHASH_MULTIPLIER * x) ^ (Py_uhash_t) *p++; | 
|  | x ^= (Py_uhash_t) len; | 
|  | x ^= (Py_uhash_t) _Py_HashSecret.fnv.suffix; | 
|  | if (x == -1) { | 
|  | x = -2; | 
|  | } | 
|  | return x; | 
|  | } | 
|  |  | 
|  | static PyHash_FuncDef PyHash_Func = {fnv, "fnv", 8 * SIZEOF_PY_HASH_T, | 
|  | 16 * SIZEOF_PY_HASH_T}; | 
|  |  | 
|  | #endif /* Py_HASH_ALGORITHM == Py_HASH_FNV */ | 
|  |  | 
|  |  | 
|  | #if Py_HASH_ALGORITHM == Py_HASH_SIPHASH24 | 
|  | /* ************************************************************************** | 
|  | <MIT License> | 
|  | Copyright (c) 2013  Marek Majkowski <marek@popcount.org> | 
|  |  | 
|  | Permission is hereby granted, free of charge, to any person obtaining a copy | 
|  | of this software and associated documentation files (the "Software"), to deal | 
|  | in the Software without restriction, including without limitation the rights | 
|  | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | 
|  | copies of the Software, and to permit persons to whom the Software is | 
|  | furnished to do so, subject to the following conditions: | 
|  |  | 
|  | The above copyright notice and this permission notice shall be included in | 
|  | all copies or substantial portions of the Software. | 
|  |  | 
|  | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | 
|  | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | 
|  | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | 
|  | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | 
|  | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | 
|  | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | 
|  | THE SOFTWARE. | 
|  | </MIT License> | 
|  |  | 
|  | Original location: | 
|  | https://github.com/majek/csiphash/ | 
|  |  | 
|  | Solution inspired by code from: | 
|  | Samuel Neves (supercop/crypto_auth/siphash24/little) | 
|  | djb (supercop/crypto_auth/siphash24/little2) | 
|  | Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c) | 
|  |  | 
|  | Modified for Python by Christian Heimes: | 
|  | - C89 / MSVC compatibility | 
|  | - _rotl64() on Windows | 
|  | - letoh64() fallback | 
|  | */ | 
|  |  | 
|  | /* byte swap little endian to host endian | 
|  | * Endian conversion not only ensures that the hash function returns the same | 
|  | * value on all platforms. It is also required to for a good dispersion of | 
|  | * the hash values' least significant bits. | 
|  | */ | 
|  | #if PY_LITTLE_ENDIAN | 
|  | #  define _le64toh(x) ((uint64_t)(x)) | 
|  | #elif defined(__APPLE__) | 
|  | #  define _le64toh(x) OSSwapLittleToHostInt64(x) | 
|  | #elif defined(HAVE_LETOH64) | 
|  | #  define _le64toh(x) le64toh(x) | 
|  | #else | 
|  | #  define _le64toh(x) (((uint64_t)(x) << 56) | \ | 
|  | (((uint64_t)(x) << 40) & 0xff000000000000ULL) | \ | 
|  | (((uint64_t)(x) << 24) & 0xff0000000000ULL) | \ | 
|  | (((uint64_t)(x) << 8)  & 0xff00000000ULL) | \ | 
|  | (((uint64_t)(x) >> 8)  & 0xff000000ULL) | \ | 
|  | (((uint64_t)(x) >> 24) & 0xff0000ULL) | \ | 
|  | (((uint64_t)(x) >> 40) & 0xff00ULL) | \ | 
|  | ((uint64_t)(x)  >> 56)) | 
|  | #endif | 
|  |  | 
|  |  | 
|  | #ifdef _MSC_VER | 
|  | #  define ROTATE(x, b)  _rotl64(x, b) | 
|  | #else | 
|  | #  define ROTATE(x, b) (uint64_t)( ((x) << (b)) | ( (x) >> (64 - (b))) ) | 
|  | #endif | 
|  |  | 
|  | #define HALF_ROUND(a,b,c,d,s,t)         \ | 
|  | a += b; c += d;             \ | 
|  | b = ROTATE(b, s) ^ a;           \ | 
|  | d = ROTATE(d, t) ^ c;           \ | 
|  | a = ROTATE(a, 32); | 
|  |  | 
|  | #define DOUBLE_ROUND(v0,v1,v2,v3)       \ | 
|  | HALF_ROUND(v0,v1,v2,v3,13,16);      \ | 
|  | HALF_ROUND(v2,v1,v0,v3,17,21);      \ | 
|  | HALF_ROUND(v0,v1,v2,v3,13,16);      \ | 
|  | HALF_ROUND(v2,v1,v0,v3,17,21); | 
|  |  | 
|  |  | 
|  | static Py_hash_t | 
|  | siphash24(const void *src, Py_ssize_t src_sz) { | 
|  | uint64_t k0 = _le64toh(_Py_HashSecret.siphash.k0); | 
|  | uint64_t k1 = _le64toh(_Py_HashSecret.siphash.k1); | 
|  | uint64_t b = (uint64_t)src_sz << 56; | 
|  | const uint64_t *in = (uint64_t*)src; | 
|  |  | 
|  | uint64_t v0 = k0 ^ 0x736f6d6570736575ULL; | 
|  | uint64_t v1 = k1 ^ 0x646f72616e646f6dULL; | 
|  | uint64_t v2 = k0 ^ 0x6c7967656e657261ULL; | 
|  | uint64_t v3 = k1 ^ 0x7465646279746573ULL; | 
|  |  | 
|  | uint64_t t; | 
|  | uint8_t *pt; | 
|  | uint8_t *m; | 
|  |  | 
|  | while (src_sz >= 8) { | 
|  | uint64_t mi = _le64toh(*in); | 
|  | in += 1; | 
|  | src_sz -= 8; | 
|  | v3 ^= mi; | 
|  | DOUBLE_ROUND(v0,v1,v2,v3); | 
|  | v0 ^= mi; | 
|  | } | 
|  |  | 
|  | t = 0; | 
|  | pt = (uint8_t *)&t; | 
|  | m = (uint8_t *)in; | 
|  | switch (src_sz) { | 
|  | case 7: pt[6] = m[6]; | 
|  | case 6: pt[5] = m[5]; | 
|  | case 5: pt[4] = m[4]; | 
|  | case 4: Py_MEMCPY(pt, m, sizeof(uint32_t)); break; | 
|  | case 3: pt[2] = m[2]; | 
|  | case 2: pt[1] = m[1]; | 
|  | case 1: pt[0] = m[0]; | 
|  | } | 
|  | b |= _le64toh(t); | 
|  |  | 
|  | v3 ^= b; | 
|  | DOUBLE_ROUND(v0,v1,v2,v3); | 
|  | v0 ^= b; | 
|  | v2 ^= 0xff; | 
|  | DOUBLE_ROUND(v0,v1,v2,v3); | 
|  | DOUBLE_ROUND(v0,v1,v2,v3); | 
|  |  | 
|  | /* modified */ | 
|  | t = (v0 ^ v1) ^ (v2 ^ v3); | 
|  | return (Py_hash_t)t; | 
|  | } | 
|  |  | 
|  | static PyHash_FuncDef PyHash_Func = {siphash24, "siphash24", 64, 128}; | 
|  |  | 
|  | #endif /* Py_HASH_ALGORITHM == Py_HASH_SIPHASH24 */ | 
|  |  | 
|  | #ifdef __cplusplus | 
|  | } | 
|  | #endif |