|  | #include "Python.h" | 
|  | #ifdef MS_WINDOWS | 
|  | #  include <winsock2.h>           // struct timeval | 
|  | #endif | 
|  |  | 
|  | #if defined(__APPLE__) | 
|  | #  include <mach/mach_time.h>     // mach_absolute_time(), mach_timebase_info() | 
|  |  | 
|  | #if defined(__APPLE__) && defined(__has_builtin) | 
|  | #  if __has_builtin(__builtin_available) | 
|  | #    define HAVE_CLOCK_GETTIME_RUNTIME __builtin_available(macOS 10.12, iOS 10.0, tvOS 10.0, watchOS 3.0, *) | 
|  | #  endif | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | /* To millisecond (10^-3) */ | 
|  | #define SEC_TO_MS 1000 | 
|  |  | 
|  | /* To microseconds (10^-6) */ | 
|  | #define MS_TO_US 1000 | 
|  | #define SEC_TO_US (SEC_TO_MS * MS_TO_US) | 
|  |  | 
|  | /* To nanoseconds (10^-9) */ | 
|  | #define US_TO_NS 1000 | 
|  | #define MS_TO_NS (MS_TO_US * US_TO_NS) | 
|  | #define SEC_TO_NS (SEC_TO_MS * MS_TO_NS) | 
|  |  | 
|  | /* Conversion from nanoseconds */ | 
|  | #define NS_TO_MS (1000 * 1000) | 
|  | #define NS_TO_US (1000) | 
|  | #define NS_TO_100NS (100) | 
|  |  | 
|  | #if SIZEOF_TIME_T == SIZEOF_LONG_LONG | 
|  | #  define PY_TIME_T_MAX LLONG_MAX | 
|  | #  define PY_TIME_T_MIN LLONG_MIN | 
|  | #elif SIZEOF_TIME_T == SIZEOF_LONG | 
|  | #  define PY_TIME_T_MAX LONG_MAX | 
|  | #  define PY_TIME_T_MIN LONG_MIN | 
|  | #else | 
|  | #  error "unsupported time_t size" | 
|  | #endif | 
|  |  | 
|  | #if PY_TIME_T_MAX + PY_TIME_T_MIN != -1 | 
|  | #  error "time_t is not a two's complement integer type" | 
|  | #endif | 
|  |  | 
|  | #if _PyTime_MIN + _PyTime_MAX != -1 | 
|  | #  error "_PyTime_t is not a two's complement integer type" | 
|  | #endif | 
|  |  | 
|  |  | 
|  | static void | 
|  | pytime_time_t_overflow(void) | 
|  | { | 
|  | PyErr_SetString(PyExc_OverflowError, | 
|  | "timestamp out of range for platform time_t"); | 
|  | } | 
|  |  | 
|  |  | 
|  | static void | 
|  | pytime_overflow(void) | 
|  | { | 
|  | PyErr_SetString(PyExc_OverflowError, | 
|  | "timestamp too large to convert to C _PyTime_t"); | 
|  | } | 
|  |  | 
|  |  | 
|  | static inline _PyTime_t | 
|  | pytime_from_nanoseconds(_PyTime_t t) | 
|  | { | 
|  | // _PyTime_t is a number of nanoseconds | 
|  | return t; | 
|  | } | 
|  |  | 
|  |  | 
|  | static inline _PyTime_t | 
|  | pytime_as_nanoseconds(_PyTime_t t) | 
|  | { | 
|  | // _PyTime_t is a number of nanoseconds: see pytime_from_nanoseconds() | 
|  | return t; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Compute t1 + t2. Clamp to [_PyTime_MIN; _PyTime_MAX] on overflow. | 
|  | static inline int | 
|  | pytime_add(_PyTime_t *t1, _PyTime_t t2) | 
|  | { | 
|  | if (t2 > 0 && *t1 > _PyTime_MAX - t2) { | 
|  | *t1 = _PyTime_MAX; | 
|  | return -1; | 
|  | } | 
|  | else if (t2 < 0 && *t1 < _PyTime_MIN - t2) { | 
|  | *t1 = _PyTime_MIN; | 
|  | return -1; | 
|  | } | 
|  | else { | 
|  | *t1 += t2; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | _PyTime_t | 
|  | _PyTime_Add(_PyTime_t t1, _PyTime_t t2) | 
|  | { | 
|  | (void)pytime_add(&t1, t2); | 
|  | return t1; | 
|  | } | 
|  |  | 
|  |  | 
|  | static inline int | 
|  | pytime_mul_check_overflow(_PyTime_t a, _PyTime_t b) | 
|  | { | 
|  | if (b != 0) { | 
|  | assert(b > 0); | 
|  | return ((a < _PyTime_MIN / b) || (_PyTime_MAX / b < a)); | 
|  | } | 
|  | else { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // Compute t * k. Clamp to [_PyTime_MIN; _PyTime_MAX] on overflow. | 
|  | static inline int | 
|  | pytime_mul(_PyTime_t *t, _PyTime_t k) | 
|  | { | 
|  | assert(k >= 0); | 
|  | if (pytime_mul_check_overflow(*t, k)) { | 
|  | *t = (*t >= 0) ? _PyTime_MAX : _PyTime_MIN; | 
|  | return -1; | 
|  | } | 
|  | else { | 
|  | *t *= k; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // Compute t * k. Clamp to [_PyTime_MIN; _PyTime_MAX] on overflow. | 
|  | static inline _PyTime_t | 
|  | _PyTime_Mul(_PyTime_t t, _PyTime_t k) | 
|  | { | 
|  | (void)pytime_mul(&t, k); | 
|  | return t; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  | _PyTime_t | 
|  | _PyTime_MulDiv(_PyTime_t ticks, _PyTime_t mul, _PyTime_t div) | 
|  | { | 
|  | /* Compute (ticks * mul / div) in two parts to reduce the risk of integer | 
|  | overflow: compute the integer part, and then the remaining part. | 
|  |  | 
|  | (ticks * mul) / div == (ticks / div) * mul + (ticks % div) * mul / div | 
|  | */ | 
|  | _PyTime_t intpart, remaining; | 
|  | intpart = ticks / div; | 
|  | ticks %= div; | 
|  | remaining = _PyTime_Mul(ticks, mul) / div; | 
|  | // intpart * mul + remaining | 
|  | return _PyTime_Add(_PyTime_Mul(intpart, mul), remaining); | 
|  | } | 
|  |  | 
|  |  | 
|  | time_t | 
|  | _PyLong_AsTime_t(PyObject *obj) | 
|  | { | 
|  | #if SIZEOF_TIME_T == SIZEOF_LONG_LONG | 
|  | long long val = PyLong_AsLongLong(obj); | 
|  | #elif SIZEOF_TIME_T <= SIZEOF_LONG | 
|  | long val = PyLong_AsLong(obj); | 
|  | #else | 
|  | #   error "unsupported time_t size" | 
|  | #endif | 
|  | if (val == -1 && PyErr_Occurred()) { | 
|  | if (PyErr_ExceptionMatches(PyExc_OverflowError)) { | 
|  | pytime_time_t_overflow(); | 
|  | } | 
|  | return -1; | 
|  | } | 
|  | return (time_t)val; | 
|  | } | 
|  |  | 
|  |  | 
|  | PyObject * | 
|  | _PyLong_FromTime_t(time_t t) | 
|  | { | 
|  | #if SIZEOF_TIME_T == SIZEOF_LONG_LONG | 
|  | return PyLong_FromLongLong((long long)t); | 
|  | #elif SIZEOF_TIME_T <= SIZEOF_LONG | 
|  | return PyLong_FromLong((long)t); | 
|  | #else | 
|  | #   error "unsupported time_t size" | 
|  | #endif | 
|  | } | 
|  |  | 
|  |  | 
|  | // Convert _PyTime_t to time_t. | 
|  | // Return 0 on success. Return -1 and clamp the value on overflow. | 
|  | static int | 
|  | _PyTime_AsTime_t(_PyTime_t t, time_t *t2) | 
|  | { | 
|  | #if SIZEOF_TIME_T < _SIZEOF_PYTIME_T | 
|  | if ((_PyTime_t)PY_TIME_T_MAX < t) { | 
|  | *t2 = PY_TIME_T_MAX; | 
|  | return -1; | 
|  | } | 
|  | if (t < (_PyTime_t)PY_TIME_T_MIN) { | 
|  | *t2 = PY_TIME_T_MIN; | 
|  | return -1; | 
|  | } | 
|  | #endif | 
|  | *t2 = (time_t)t; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | #ifdef MS_WINDOWS | 
|  | // Convert _PyTime_t to long. | 
|  | // Return 0 on success. Return -1 and clamp the value on overflow. | 
|  | static int | 
|  | _PyTime_AsLong(_PyTime_t t, long *t2) | 
|  | { | 
|  | #if SIZEOF_LONG < _SIZEOF_PYTIME_T | 
|  | if ((_PyTime_t)LONG_MAX < t) { | 
|  | *t2 = LONG_MAX; | 
|  | return -1; | 
|  | } | 
|  | if (t < (_PyTime_t)LONG_MIN) { | 
|  | *t2 = LONG_MIN; | 
|  | return -1; | 
|  | } | 
|  | #endif | 
|  | *t2 = (long)t; | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /* Round to nearest with ties going to nearest even integer | 
|  | (_PyTime_ROUND_HALF_EVEN) */ | 
|  | static double | 
|  | pytime_round_half_even(double x) | 
|  | { | 
|  | double rounded = round(x); | 
|  | if (fabs(x-rounded) == 0.5) { | 
|  | /* halfway case: round to even */ | 
|  | rounded = 2.0 * round(x / 2.0); | 
|  | } | 
|  | return rounded; | 
|  | } | 
|  |  | 
|  |  | 
|  | static double | 
|  | pytime_round(double x, _PyTime_round_t round) | 
|  | { | 
|  | /* volatile avoids optimization changing how numbers are rounded */ | 
|  | volatile double d; | 
|  |  | 
|  | d = x; | 
|  | if (round == _PyTime_ROUND_HALF_EVEN) { | 
|  | d = pytime_round_half_even(d); | 
|  | } | 
|  | else if (round == _PyTime_ROUND_CEILING) { | 
|  | d = ceil(d); | 
|  | } | 
|  | else if (round == _PyTime_ROUND_FLOOR) { | 
|  | d = floor(d); | 
|  | } | 
|  | else { | 
|  | assert(round == _PyTime_ROUND_UP); | 
|  | d = (d >= 0.0) ? ceil(d) : floor(d); | 
|  | } | 
|  | return d; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int | 
|  | pytime_double_to_denominator(double d, time_t *sec, long *numerator, | 
|  | long idenominator, _PyTime_round_t round) | 
|  | { | 
|  | double denominator = (double)idenominator; | 
|  | double intpart; | 
|  | /* volatile avoids optimization changing how numbers are rounded */ | 
|  | volatile double floatpart; | 
|  |  | 
|  | floatpart = modf(d, &intpart); | 
|  |  | 
|  | floatpart *= denominator; | 
|  | floatpart = pytime_round(floatpart, round); | 
|  | if (floatpart >= denominator) { | 
|  | floatpart -= denominator; | 
|  | intpart += 1.0; | 
|  | } | 
|  | else if (floatpart < 0) { | 
|  | floatpart += denominator; | 
|  | intpart -= 1.0; | 
|  | } | 
|  | assert(0.0 <= floatpart && floatpart < denominator); | 
|  |  | 
|  | /* | 
|  | Conversion of an out-of-range value to time_t gives undefined behaviour | 
|  | (C99 §6.3.1.4p1), so we must guard against it. However, checking that | 
|  | `intpart` is in range is delicate: the obvious expression `intpart <= | 
|  | PY_TIME_T_MAX` will first convert the value `PY_TIME_T_MAX` to a double, | 
|  | potentially changing its value and leading to us failing to catch some | 
|  | UB-inducing values. The code below works correctly under the mild | 
|  | assumption that time_t is a two's complement integer type with no trap | 
|  | representation, and that `PY_TIME_T_MIN` is within the representable | 
|  | range of a C double. | 
|  |  | 
|  | Note: we want the `if` condition below to be true for NaNs; therefore, | 
|  | resist any temptation to simplify by applying De Morgan's laws. | 
|  | */ | 
|  | if (!((double)PY_TIME_T_MIN <= intpart && intpart < -(double)PY_TIME_T_MIN)) { | 
|  | pytime_time_t_overflow(); | 
|  | return -1; | 
|  | } | 
|  | *sec = (time_t)intpart; | 
|  | *numerator = (long)floatpart; | 
|  | assert(0 <= *numerator && *numerator < idenominator); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int | 
|  | pytime_object_to_denominator(PyObject *obj, time_t *sec, long *numerator, | 
|  | long denominator, _PyTime_round_t round) | 
|  | { | 
|  | assert(denominator >= 1); | 
|  |  | 
|  | if (PyFloat_Check(obj)) { | 
|  | double d = PyFloat_AsDouble(obj); | 
|  | if (Py_IS_NAN(d)) { | 
|  | *numerator = 0; | 
|  | PyErr_SetString(PyExc_ValueError, "Invalid value NaN (not a number)"); | 
|  | return -1; | 
|  | } | 
|  | return pytime_double_to_denominator(d, sec, numerator, | 
|  | denominator, round); | 
|  | } | 
|  | else { | 
|  | *sec = _PyLong_AsTime_t(obj); | 
|  | *numerator = 0; | 
|  | if (*sec == (time_t)-1 && PyErr_Occurred()) { | 
|  | return -1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | int | 
|  | _PyTime_ObjectToTime_t(PyObject *obj, time_t *sec, _PyTime_round_t round) | 
|  | { | 
|  | if (PyFloat_Check(obj)) { | 
|  | double intpart; | 
|  | /* volatile avoids optimization changing how numbers are rounded */ | 
|  | volatile double d; | 
|  |  | 
|  | d = PyFloat_AsDouble(obj); | 
|  | if (Py_IS_NAN(d)) { | 
|  | PyErr_SetString(PyExc_ValueError, "Invalid value NaN (not a number)"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | d = pytime_round(d, round); | 
|  | (void)modf(d, &intpart); | 
|  |  | 
|  | /* See comments in pytime_double_to_denominator */ | 
|  | if (!((double)PY_TIME_T_MIN <= intpart && intpart < -(double)PY_TIME_T_MIN)) { | 
|  | pytime_time_t_overflow(); | 
|  | return -1; | 
|  | } | 
|  | *sec = (time_t)intpart; | 
|  | return 0; | 
|  | } | 
|  | else { | 
|  | *sec = _PyLong_AsTime_t(obj); | 
|  | if (*sec == (time_t)-1 && PyErr_Occurred()) { | 
|  | return -1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | int | 
|  | _PyTime_ObjectToTimespec(PyObject *obj, time_t *sec, long *nsec, | 
|  | _PyTime_round_t round) | 
|  | { | 
|  | return pytime_object_to_denominator(obj, sec, nsec, SEC_TO_NS, round); | 
|  | } | 
|  |  | 
|  |  | 
|  | int | 
|  | _PyTime_ObjectToTimeval(PyObject *obj, time_t *sec, long *usec, | 
|  | _PyTime_round_t round) | 
|  | { | 
|  | return pytime_object_to_denominator(obj, sec, usec, SEC_TO_US, round); | 
|  | } | 
|  |  | 
|  |  | 
|  | _PyTime_t | 
|  | _PyTime_FromSeconds(int seconds) | 
|  | { | 
|  | /* ensure that integer overflow cannot happen, int type should have 32 | 
|  | bits, whereas _PyTime_t type has at least 64 bits (SEC_TO_NS takes 30 | 
|  | bits). */ | 
|  | static_assert(INT_MAX <= _PyTime_MAX / SEC_TO_NS, "_PyTime_t overflow"); | 
|  | static_assert(INT_MIN >= _PyTime_MIN / SEC_TO_NS, "_PyTime_t underflow"); | 
|  |  | 
|  | _PyTime_t t = (_PyTime_t)seconds; | 
|  | assert((t >= 0 && t <= _PyTime_MAX / SEC_TO_NS) | 
|  | || (t < 0 && t >= _PyTime_MIN / SEC_TO_NS)); | 
|  | t *= SEC_TO_NS; | 
|  | return pytime_from_nanoseconds(t); | 
|  | } | 
|  |  | 
|  |  | 
|  | _PyTime_t | 
|  | _PyTime_FromNanoseconds(_PyTime_t ns) | 
|  | { | 
|  | return pytime_from_nanoseconds(ns); | 
|  | } | 
|  |  | 
|  |  | 
|  | int | 
|  | _PyTime_FromNanosecondsObject(_PyTime_t *tp, PyObject *obj) | 
|  | { | 
|  |  | 
|  | if (!PyLong_Check(obj)) { | 
|  | PyErr_Format(PyExc_TypeError, "expect int, got %s", | 
|  | Py_TYPE(obj)->tp_name); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static_assert(sizeof(long long) == sizeof(_PyTime_t), | 
|  | "_PyTime_t is not long long"); | 
|  | long long nsec = PyLong_AsLongLong(obj); | 
|  | if (nsec == -1 && PyErr_Occurred()) { | 
|  | if (PyErr_ExceptionMatches(PyExc_OverflowError)) { | 
|  | pytime_overflow(); | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | _PyTime_t t = (_PyTime_t)nsec; | 
|  | *tp = pytime_from_nanoseconds(t); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | #ifdef HAVE_CLOCK_GETTIME | 
|  | static int | 
|  | pytime_fromtimespec(_PyTime_t *tp, struct timespec *ts, int raise_exc) | 
|  | { | 
|  | _PyTime_t t, tv_nsec; | 
|  |  | 
|  | static_assert(sizeof(ts->tv_sec) <= sizeof(_PyTime_t), | 
|  | "timespec.tv_sec is larger than _PyTime_t"); | 
|  | t = (_PyTime_t)ts->tv_sec; | 
|  |  | 
|  | int res1 = pytime_mul(&t, SEC_TO_NS); | 
|  |  | 
|  | tv_nsec = ts->tv_nsec; | 
|  | int res2 = pytime_add(&t, tv_nsec); | 
|  |  | 
|  | *tp = pytime_from_nanoseconds(t); | 
|  |  | 
|  | if (raise_exc && (res1 < 0 || res2 < 0)) { | 
|  | pytime_overflow(); | 
|  | return -1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int | 
|  | _PyTime_FromTimespec(_PyTime_t *tp, struct timespec *ts) | 
|  | { | 
|  | return pytime_fromtimespec(tp, ts, 1); | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | #ifndef MS_WINDOWS | 
|  | static int | 
|  | pytime_fromtimeval(_PyTime_t *tp, struct timeval *tv, int raise_exc) | 
|  | { | 
|  | static_assert(sizeof(tv->tv_sec) <= sizeof(_PyTime_t), | 
|  | "timeval.tv_sec is larger than _PyTime_t"); | 
|  | _PyTime_t t = (_PyTime_t)tv->tv_sec; | 
|  |  | 
|  | int res1 = pytime_mul(&t, SEC_TO_NS); | 
|  |  | 
|  | _PyTime_t usec = (_PyTime_t)tv->tv_usec * US_TO_NS; | 
|  | int res2 = pytime_add(&t, usec); | 
|  |  | 
|  | *tp = pytime_from_nanoseconds(t); | 
|  |  | 
|  | if (raise_exc && (res1 < 0 || res2 < 0)) { | 
|  | pytime_overflow(); | 
|  | return -1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | int | 
|  | _PyTime_FromTimeval(_PyTime_t *tp, struct timeval *tv) | 
|  | { | 
|  | return pytime_fromtimeval(tp, tv, 1); | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | static int | 
|  | pytime_from_double(_PyTime_t *tp, double value, _PyTime_round_t round, | 
|  | long unit_to_ns) | 
|  | { | 
|  | /* volatile avoids optimization changing how numbers are rounded */ | 
|  | volatile double d; | 
|  |  | 
|  | /* convert to a number of nanoseconds */ | 
|  | d = value; | 
|  | d *= (double)unit_to_ns; | 
|  | d = pytime_round(d, round); | 
|  |  | 
|  | /* See comments in pytime_double_to_denominator */ | 
|  | if (!((double)_PyTime_MIN <= d && d < -(double)_PyTime_MIN)) { | 
|  | pytime_time_t_overflow(); | 
|  | return -1; | 
|  | } | 
|  | _PyTime_t ns = (_PyTime_t)d; | 
|  |  | 
|  | *tp = pytime_from_nanoseconds(ns); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int | 
|  | pytime_from_object(_PyTime_t *tp, PyObject *obj, _PyTime_round_t round, | 
|  | long unit_to_ns) | 
|  | { | 
|  | if (PyFloat_Check(obj)) { | 
|  | double d; | 
|  | d = PyFloat_AsDouble(obj); | 
|  | if (Py_IS_NAN(d)) { | 
|  | PyErr_SetString(PyExc_ValueError, "Invalid value NaN (not a number)"); | 
|  | return -1; | 
|  | } | 
|  | return pytime_from_double(tp, d, round, unit_to_ns); | 
|  | } | 
|  | else { | 
|  | long long sec = PyLong_AsLongLong(obj); | 
|  | if (sec == -1 && PyErr_Occurred()) { | 
|  | if (PyErr_ExceptionMatches(PyExc_OverflowError)) { | 
|  | pytime_overflow(); | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static_assert(sizeof(long long) <= sizeof(_PyTime_t), | 
|  | "_PyTime_t is smaller than long long"); | 
|  | _PyTime_t ns = (_PyTime_t)sec; | 
|  | if (pytime_mul(&ns, unit_to_ns) < 0) { | 
|  | pytime_overflow(); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | *tp = pytime_from_nanoseconds(ns); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | int | 
|  | _PyTime_FromSecondsObject(_PyTime_t *tp, PyObject *obj, _PyTime_round_t round) | 
|  | { | 
|  | return pytime_from_object(tp, obj, round, SEC_TO_NS); | 
|  | } | 
|  |  | 
|  |  | 
|  | int | 
|  | _PyTime_FromMillisecondsObject(_PyTime_t *tp, PyObject *obj, _PyTime_round_t round) | 
|  | { | 
|  | return pytime_from_object(tp, obj, round, MS_TO_NS); | 
|  | } | 
|  |  | 
|  |  | 
|  | double | 
|  | _PyTime_AsSecondsDouble(_PyTime_t t) | 
|  | { | 
|  | /* volatile avoids optimization changing how numbers are rounded */ | 
|  | volatile double d; | 
|  |  | 
|  | _PyTime_t ns = pytime_as_nanoseconds(t); | 
|  | if (ns % SEC_TO_NS == 0) { | 
|  | /* Divide using integers to avoid rounding issues on the integer part. | 
|  | 1e-9 cannot be stored exactly in IEEE 64-bit. */ | 
|  | _PyTime_t secs = ns / SEC_TO_NS; | 
|  | d = (double)secs; | 
|  | } | 
|  | else { | 
|  | d = (double)ns; | 
|  | d /= 1e9; | 
|  | } | 
|  | return d; | 
|  | } | 
|  |  | 
|  |  | 
|  | PyObject * | 
|  | _PyTime_AsNanosecondsObject(_PyTime_t t) | 
|  | { | 
|  | _PyTime_t ns =  pytime_as_nanoseconds(t); | 
|  | static_assert(sizeof(long long) >= sizeof(_PyTime_t), | 
|  | "_PyTime_t is larger than long long"); | 
|  | return PyLong_FromLongLong((long long)ns); | 
|  | } | 
|  |  | 
|  |  | 
|  | static _PyTime_t | 
|  | pytime_divide_round_up(const _PyTime_t t, const _PyTime_t k) | 
|  | { | 
|  | assert(k > 1); | 
|  | if (t >= 0) { | 
|  | // Don't use (t + k - 1) / k to avoid integer overflow | 
|  | // if t is equal to _PyTime_MAX | 
|  | _PyTime_t q = t / k; | 
|  | if (t % k) { | 
|  | q += 1; | 
|  | } | 
|  | return q; | 
|  | } | 
|  | else { | 
|  | // Don't use (t - (k - 1)) / k to avoid integer overflow | 
|  | // if t is equals to _PyTime_MIN. | 
|  | _PyTime_t q = t / k; | 
|  | if (t % k) { | 
|  | q -= 1; | 
|  | } | 
|  | return q; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static _PyTime_t | 
|  | pytime_divide(const _PyTime_t t, const _PyTime_t k, | 
|  | const _PyTime_round_t round) | 
|  | { | 
|  | assert(k > 1); | 
|  | if (round == _PyTime_ROUND_HALF_EVEN) { | 
|  | _PyTime_t x = t / k; | 
|  | _PyTime_t r = t % k; | 
|  | _PyTime_t abs_r = Py_ABS(r); | 
|  | if (abs_r > k / 2 || (abs_r == k / 2 && (Py_ABS(x) & 1))) { | 
|  | if (t >= 0) { | 
|  | x++; | 
|  | } | 
|  | else { | 
|  | x--; | 
|  | } | 
|  | } | 
|  | return x; | 
|  | } | 
|  | else if (round == _PyTime_ROUND_CEILING) { | 
|  | if (t >= 0) { | 
|  | return pytime_divide_round_up(t, k); | 
|  | } | 
|  | else { | 
|  | return t / k; | 
|  | } | 
|  | } | 
|  | else if (round == _PyTime_ROUND_FLOOR){ | 
|  | if (t >= 0) { | 
|  | return t / k; | 
|  | } | 
|  | else { | 
|  | return pytime_divide_round_up(t, k); | 
|  | } | 
|  | } | 
|  | else { | 
|  | assert(round == _PyTime_ROUND_UP); | 
|  | return pytime_divide_round_up(t, k); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // Compute (t / k, t % k) in (pq, pr). | 
|  | // Make sure that 0 <= pr < k. | 
|  | // Return 0 on success. | 
|  | // Return -1 on underflow and store (_PyTime_MIN, 0) in (pq, pr). | 
|  | static int | 
|  | pytime_divmod(const _PyTime_t t, const _PyTime_t k, | 
|  | _PyTime_t *pq, _PyTime_t *pr) | 
|  | { | 
|  | assert(k > 1); | 
|  | _PyTime_t q = t / k; | 
|  | _PyTime_t r = t % k; | 
|  | if (r < 0) { | 
|  | if (q == _PyTime_MIN) { | 
|  | *pq = _PyTime_MIN; | 
|  | *pr = 0; | 
|  | return -1; | 
|  | } | 
|  | r += k; | 
|  | q -= 1; | 
|  | } | 
|  | assert(0 <= r && r < k); | 
|  |  | 
|  | *pq = q; | 
|  | *pr = r; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | _PyTime_t | 
|  | _PyTime_AsNanoseconds(_PyTime_t t) | 
|  | { | 
|  | return pytime_as_nanoseconds(t); | 
|  | } | 
|  |  | 
|  |  | 
|  | #ifdef MS_WINDOWS | 
|  | _PyTime_t | 
|  | _PyTime_As100Nanoseconds(_PyTime_t t, _PyTime_round_t round) | 
|  | { | 
|  | _PyTime_t ns = pytime_as_nanoseconds(t); | 
|  | return pytime_divide(ns, NS_TO_100NS, round); | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | _PyTime_t | 
|  | _PyTime_AsMicroseconds(_PyTime_t t, _PyTime_round_t round) | 
|  | { | 
|  | _PyTime_t ns = pytime_as_nanoseconds(t); | 
|  | return pytime_divide(ns, NS_TO_US, round); | 
|  | } | 
|  |  | 
|  |  | 
|  | _PyTime_t | 
|  | _PyTime_AsMilliseconds(_PyTime_t t, _PyTime_round_t round) | 
|  | { | 
|  | _PyTime_t ns = pytime_as_nanoseconds(t); | 
|  | return pytime_divide(ns, NS_TO_MS, round); | 
|  | } | 
|  |  | 
|  |  | 
|  | static int | 
|  | pytime_as_timeval(_PyTime_t t, _PyTime_t *ptv_sec, int *ptv_usec, | 
|  | _PyTime_round_t round) | 
|  | { | 
|  | _PyTime_t ns = pytime_as_nanoseconds(t); | 
|  | _PyTime_t us = pytime_divide(ns, US_TO_NS, round); | 
|  |  | 
|  | _PyTime_t tv_sec, tv_usec; | 
|  | int res = pytime_divmod(us, SEC_TO_US, &tv_sec, &tv_usec); | 
|  | *ptv_sec = tv_sec; | 
|  | *ptv_usec = (int)tv_usec; | 
|  | return res; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int | 
|  | pytime_as_timeval_struct(_PyTime_t t, struct timeval *tv, | 
|  | _PyTime_round_t round, int raise_exc) | 
|  | { | 
|  | _PyTime_t tv_sec; | 
|  | int tv_usec; | 
|  | int res = pytime_as_timeval(t, &tv_sec, &tv_usec, round); | 
|  | int res2; | 
|  | #ifdef MS_WINDOWS | 
|  | // On Windows, timeval.tv_sec type is long | 
|  | res2 = _PyTime_AsLong(tv_sec, &tv->tv_sec); | 
|  | #else | 
|  | res2 = _PyTime_AsTime_t(tv_sec, &tv->tv_sec); | 
|  | #endif | 
|  | if (res2 < 0) { | 
|  | tv_usec = 0; | 
|  | } | 
|  | tv->tv_usec = tv_usec; | 
|  |  | 
|  | if (raise_exc && (res < 0 || res2 < 0)) { | 
|  | pytime_time_t_overflow(); | 
|  | return -1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | int | 
|  | _PyTime_AsTimeval(_PyTime_t t, struct timeval *tv, _PyTime_round_t round) | 
|  | { | 
|  | return pytime_as_timeval_struct(t, tv, round, 1); | 
|  | } | 
|  |  | 
|  |  | 
|  | void | 
|  | _PyTime_AsTimeval_clamp(_PyTime_t t, struct timeval *tv, _PyTime_round_t round) | 
|  | { | 
|  | (void)pytime_as_timeval_struct(t, tv, round, 0); | 
|  | } | 
|  |  | 
|  |  | 
|  | int | 
|  | _PyTime_AsTimevalTime_t(_PyTime_t t, time_t *p_secs, int *us, | 
|  | _PyTime_round_t round) | 
|  | { | 
|  | _PyTime_t secs; | 
|  | if (pytime_as_timeval(t, &secs, us, round) < 0) { | 
|  | pytime_time_t_overflow(); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (_PyTime_AsTime_t(secs, p_secs) < 0) { | 
|  | pytime_time_t_overflow(); | 
|  | return -1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | #if defined(HAVE_CLOCK_GETTIME) || defined(HAVE_KQUEUE) | 
|  | static int | 
|  | pytime_as_timespec(_PyTime_t t, struct timespec *ts, int raise_exc) | 
|  | { | 
|  | _PyTime_t ns = pytime_as_nanoseconds(t); | 
|  | _PyTime_t tv_sec, tv_nsec; | 
|  | int res = pytime_divmod(ns, SEC_TO_NS, &tv_sec, &tv_nsec); | 
|  |  | 
|  | int res2 = _PyTime_AsTime_t(tv_sec, &ts->tv_sec); | 
|  | if (res2 < 0) { | 
|  | tv_nsec = 0; | 
|  | } | 
|  | ts->tv_nsec = tv_nsec; | 
|  |  | 
|  | if (raise_exc && (res < 0 || res2 < 0)) { | 
|  | pytime_time_t_overflow(); | 
|  | return -1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void | 
|  | _PyTime_AsTimespec_clamp(_PyTime_t t, struct timespec *ts) | 
|  | { | 
|  | (void)pytime_as_timespec(t, ts, 0); | 
|  | } | 
|  |  | 
|  | int | 
|  | _PyTime_AsTimespec(_PyTime_t t, struct timespec *ts) | 
|  | { | 
|  | return pytime_as_timespec(t, ts, 1); | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | static int | 
|  | py_get_system_clock(_PyTime_t *tp, _Py_clock_info_t *info, int raise_exc) | 
|  | { | 
|  | assert(info == NULL || raise_exc); | 
|  |  | 
|  | #ifdef MS_WINDOWS | 
|  | FILETIME system_time; | 
|  | ULARGE_INTEGER large; | 
|  |  | 
|  | GetSystemTimeAsFileTime(&system_time); | 
|  | large.u.LowPart = system_time.dwLowDateTime; | 
|  | large.u.HighPart = system_time.dwHighDateTime; | 
|  | /* 11,644,473,600,000,000,000: number of nanoseconds between | 
|  | the 1st january 1601 and the 1st january 1970 (369 years + 89 leap | 
|  | days). */ | 
|  | _PyTime_t ns = large.QuadPart * 100 - 11644473600000000000; | 
|  | *tp = pytime_from_nanoseconds(ns); | 
|  | if (info) { | 
|  | DWORD timeAdjustment, timeIncrement; | 
|  | BOOL isTimeAdjustmentDisabled, ok; | 
|  |  | 
|  | info->implementation = "GetSystemTimeAsFileTime()"; | 
|  | info->monotonic = 0; | 
|  | ok = GetSystemTimeAdjustment(&timeAdjustment, &timeIncrement, | 
|  | &isTimeAdjustmentDisabled); | 
|  | if (!ok) { | 
|  | PyErr_SetFromWindowsErr(0); | 
|  | return -1; | 
|  | } | 
|  | info->resolution = timeIncrement * 1e-7; | 
|  | info->adjustable = 1; | 
|  | } | 
|  |  | 
|  | #else   /* MS_WINDOWS */ | 
|  | int err; | 
|  | #if defined(HAVE_CLOCK_GETTIME) | 
|  | struct timespec ts; | 
|  | #endif | 
|  |  | 
|  | #if !defined(HAVE_CLOCK_GETTIME) || defined(__APPLE__) | 
|  | struct timeval tv; | 
|  | #endif | 
|  |  | 
|  | #ifdef HAVE_CLOCK_GETTIME | 
|  |  | 
|  | #ifdef HAVE_CLOCK_GETTIME_RUNTIME | 
|  | if (HAVE_CLOCK_GETTIME_RUNTIME) { | 
|  | #endif | 
|  |  | 
|  | err = clock_gettime(CLOCK_REALTIME, &ts); | 
|  | if (err) { | 
|  | if (raise_exc) { | 
|  | PyErr_SetFromErrno(PyExc_OSError); | 
|  | } | 
|  | return -1; | 
|  | } | 
|  | if (pytime_fromtimespec(tp, &ts, raise_exc) < 0) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (info) { | 
|  | struct timespec res; | 
|  | info->implementation = "clock_gettime(CLOCK_REALTIME)"; | 
|  | info->monotonic = 0; | 
|  | info->adjustable = 1; | 
|  | if (clock_getres(CLOCK_REALTIME, &res) == 0) { | 
|  | info->resolution = (double)res.tv_sec + (double)res.tv_nsec * 1e-9; | 
|  | } | 
|  | else { | 
|  | info->resolution = 1e-9; | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef HAVE_CLOCK_GETTIME_RUNTIME | 
|  | } | 
|  | else { | 
|  | #endif | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #if !defined(HAVE_CLOCK_GETTIME) || defined(HAVE_CLOCK_GETTIME_RUNTIME) | 
|  |  | 
|  | /* test gettimeofday() */ | 
|  | err = gettimeofday(&tv, (struct timezone *)NULL); | 
|  | if (err) { | 
|  | if (raise_exc) { | 
|  | PyErr_SetFromErrno(PyExc_OSError); | 
|  | } | 
|  | return -1; | 
|  | } | 
|  | if (pytime_fromtimeval(tp, &tv, raise_exc) < 0) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (info) { | 
|  | info->implementation = "gettimeofday()"; | 
|  | info->resolution = 1e-6; | 
|  | info->monotonic = 0; | 
|  | info->adjustable = 1; | 
|  | } | 
|  |  | 
|  | #if defined(HAVE_CLOCK_GETTIME_RUNTIME) && defined(HAVE_CLOCK_GETTIME) | 
|  | } /* end of availibity block */ | 
|  | #endif | 
|  |  | 
|  | #endif   /* !HAVE_CLOCK_GETTIME */ | 
|  | #endif   /* !MS_WINDOWS */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | _PyTime_t | 
|  | _PyTime_GetSystemClock(void) | 
|  | { | 
|  | _PyTime_t t; | 
|  | if (py_get_system_clock(&t, NULL, 0) < 0) { | 
|  | // If clock_gettime(CLOCK_REALTIME) or gettimeofday() fails: | 
|  | // silently ignore the failure and return 0. | 
|  | t = 0; | 
|  | } | 
|  | return t; | 
|  | } | 
|  |  | 
|  |  | 
|  | int | 
|  | _PyTime_GetSystemClockWithInfo(_PyTime_t *t, _Py_clock_info_t *info) | 
|  | { | 
|  | return py_get_system_clock(t, info, 1); | 
|  | } | 
|  |  | 
|  |  | 
|  | #ifdef __APPLE__ | 
|  | static int | 
|  | py_mach_timebase_info(_PyTime_t *pnumer, _PyTime_t *pdenom, int raise) | 
|  | { | 
|  | static mach_timebase_info_data_t timebase; | 
|  | /* According to the Technical Q&A QA1398, mach_timebase_info() cannot | 
|  | fail: https://developer.apple.com/library/mac/#qa/qa1398/ */ | 
|  | (void)mach_timebase_info(&timebase); | 
|  |  | 
|  | /* Sanity check: should never occur in practice */ | 
|  | if (timebase.numer < 1 || timebase.denom < 1) { | 
|  | if (raise) { | 
|  | PyErr_SetString(PyExc_RuntimeError, | 
|  | "invalid mach_timebase_info"); | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Check that timebase.numer and timebase.denom can be casted to | 
|  | _PyTime_t. In practice, timebase uses uint32_t, so casting cannot | 
|  | overflow. At the end, only make sure that the type is uint32_t | 
|  | (_PyTime_t is 64-bit long). */ | 
|  | static_assert(sizeof(timebase.numer) <= sizeof(_PyTime_t), | 
|  | "timebase.numer is larger than _PyTime_t"); | 
|  | static_assert(sizeof(timebase.denom) <= sizeof(_PyTime_t), | 
|  | "timebase.denom is larger than _PyTime_t"); | 
|  |  | 
|  | /* Make sure that _PyTime_MulDiv(ticks, timebase_numer, timebase_denom) | 
|  | cannot overflow. | 
|  |  | 
|  | Known time bases: | 
|  |  | 
|  | * (1, 1) on Intel | 
|  | * (1000000000, 33333335) or (1000000000, 25000000) on PowerPC | 
|  |  | 
|  | None of these time bases can overflow with 64-bit _PyTime_t, but | 
|  | check for overflow, just in case. */ | 
|  | if ((_PyTime_t)timebase.numer > _PyTime_MAX / (_PyTime_t)timebase.denom) { | 
|  | if (raise) { | 
|  | PyErr_SetString(PyExc_OverflowError, | 
|  | "mach_timebase_info is too large"); | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | *pnumer = (_PyTime_t)timebase.numer; | 
|  | *pdenom = (_PyTime_t)timebase.denom; | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | static int | 
|  | py_get_monotonic_clock(_PyTime_t *tp, _Py_clock_info_t *info, int raise_exc) | 
|  | { | 
|  | assert(info == NULL || raise_exc); | 
|  |  | 
|  | #if defined(MS_WINDOWS) | 
|  | ULONGLONG ticks = GetTickCount64(); | 
|  | static_assert(sizeof(ticks) <= sizeof(_PyTime_t), | 
|  | "ULONGLONG is larger than _PyTime_t"); | 
|  | _PyTime_t t; | 
|  | if (ticks <= (ULONGLONG)_PyTime_MAX) { | 
|  | t = (_PyTime_t)ticks; | 
|  | } | 
|  | else { | 
|  | // GetTickCount64() maximum is larger than _PyTime_t maximum: | 
|  | // ULONGLONG is unsigned, whereas _PyTime_t is signed. | 
|  | t = _PyTime_MAX; | 
|  | } | 
|  |  | 
|  | int res = pytime_mul(&t, MS_TO_NS); | 
|  | *tp = t; | 
|  |  | 
|  | if (raise_exc && res < 0) { | 
|  | pytime_overflow(); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (info) { | 
|  | DWORD timeAdjustment, timeIncrement; | 
|  | BOOL isTimeAdjustmentDisabled, ok; | 
|  | info->implementation = "GetTickCount64()"; | 
|  | info->monotonic = 1; | 
|  | ok = GetSystemTimeAdjustment(&timeAdjustment, &timeIncrement, | 
|  | &isTimeAdjustmentDisabled); | 
|  | if (!ok) { | 
|  | PyErr_SetFromWindowsErr(0); | 
|  | return -1; | 
|  | } | 
|  | info->resolution = timeIncrement * 1e-7; | 
|  | info->adjustable = 0; | 
|  | } | 
|  |  | 
|  | #elif defined(__APPLE__) | 
|  | static _PyTime_t timebase_numer = 0; | 
|  | static _PyTime_t timebase_denom = 0; | 
|  | if (timebase_denom == 0) { | 
|  | if (py_mach_timebase_info(&timebase_numer, &timebase_denom, raise_exc) < 0) { | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (info) { | 
|  | info->implementation = "mach_absolute_time()"; | 
|  | info->resolution = (double)timebase_numer / (double)timebase_denom * 1e-9; | 
|  | info->monotonic = 1; | 
|  | info->adjustable = 0; | 
|  | } | 
|  |  | 
|  | uint64_t uticks = mach_absolute_time(); | 
|  | // unsigned => signed | 
|  | assert(uticks <= (uint64_t)_PyTime_MAX); | 
|  | _PyTime_t ticks = (_PyTime_t)uticks; | 
|  |  | 
|  | _PyTime_t ns = _PyTime_MulDiv(ticks, timebase_numer, timebase_denom); | 
|  | *tp = pytime_from_nanoseconds(ns); | 
|  |  | 
|  | #elif defined(__hpux) | 
|  | hrtime_t time; | 
|  |  | 
|  | time = gethrtime(); | 
|  | if (time == -1) { | 
|  | if (raise_exc) { | 
|  | PyErr_SetFromErrno(PyExc_OSError); | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | *tp = pytime_from_nanoseconds(time); | 
|  |  | 
|  | if (info) { | 
|  | info->implementation = "gethrtime()"; | 
|  | info->resolution = 1e-9; | 
|  | info->monotonic = 1; | 
|  | info->adjustable = 0; | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | #ifdef CLOCK_HIGHRES | 
|  | const clockid_t clk_id = CLOCK_HIGHRES; | 
|  | const char *implementation = "clock_gettime(CLOCK_HIGHRES)"; | 
|  | #else | 
|  | const clockid_t clk_id = CLOCK_MONOTONIC; | 
|  | const char *implementation = "clock_gettime(CLOCK_MONOTONIC)"; | 
|  | #endif | 
|  |  | 
|  | struct timespec ts; | 
|  | if (clock_gettime(clk_id, &ts) != 0) { | 
|  | if (raise_exc) { | 
|  | PyErr_SetFromErrno(PyExc_OSError); | 
|  | return -1; | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (pytime_fromtimespec(tp, &ts, raise_exc) < 0) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (info) { | 
|  | info->monotonic = 1; | 
|  | info->implementation = implementation; | 
|  | info->adjustable = 0; | 
|  | struct timespec res; | 
|  | if (clock_getres(clk_id, &res) != 0) { | 
|  | PyErr_SetFromErrno(PyExc_OSError); | 
|  | return -1; | 
|  | } | 
|  | info->resolution = res.tv_sec + res.tv_nsec * 1e-9; | 
|  | } | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | _PyTime_t | 
|  | _PyTime_GetMonotonicClock(void) | 
|  | { | 
|  | _PyTime_t t; | 
|  | if (py_get_monotonic_clock(&t, NULL, 0) < 0) { | 
|  | // If mach_timebase_info(), clock_gettime() or gethrtime() fails: | 
|  | // silently ignore the failure and return 0. | 
|  | t = 0; | 
|  | } | 
|  | return t; | 
|  | } | 
|  |  | 
|  |  | 
|  | int | 
|  | _PyTime_GetMonotonicClockWithInfo(_PyTime_t *tp, _Py_clock_info_t *info) | 
|  | { | 
|  | return py_get_monotonic_clock(tp, info, 1); | 
|  | } | 
|  |  | 
|  |  | 
|  | #ifdef MS_WINDOWS | 
|  | static int | 
|  | py_win_perf_counter_frequency(LONGLONG *pfrequency, int raise) | 
|  | { | 
|  | LONGLONG frequency; | 
|  |  | 
|  | LARGE_INTEGER freq; | 
|  | // Since Windows XP, the function cannot fail. | 
|  | (void)QueryPerformanceFrequency(&freq); | 
|  | frequency = freq.QuadPart; | 
|  |  | 
|  | // Since Windows XP, frequency cannot be zero. | 
|  | assert(frequency >= 1); | 
|  |  | 
|  | /* Make also sure that (ticks * SEC_TO_NS) cannot overflow in | 
|  | _PyTime_MulDiv(), with ticks < frequency. | 
|  |  | 
|  | Known QueryPerformanceFrequency() values: | 
|  |  | 
|  | * 10,000,000 (10 MHz): 100 ns resolution | 
|  | * 3,579,545 Hz (3.6 MHz): 279 ns resolution | 
|  |  | 
|  | None of these frequencies can overflow with 64-bit _PyTime_t, but | 
|  | check for integer overflow just in case. */ | 
|  | if (frequency > _PyTime_MAX / SEC_TO_NS) { | 
|  | if (raise) { | 
|  | PyErr_SetString(PyExc_OverflowError, | 
|  | "QueryPerformanceFrequency is too large"); | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | *pfrequency = frequency; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int | 
|  | py_get_win_perf_counter(_PyTime_t *tp, _Py_clock_info_t *info, int raise_exc) | 
|  | { | 
|  | assert(info == NULL || raise_exc); | 
|  |  | 
|  | static LONGLONG frequency = 0; | 
|  | if (frequency == 0) { | 
|  | if (py_win_perf_counter_frequency(&frequency, raise_exc) < 0) { | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (info) { | 
|  | info->implementation = "QueryPerformanceCounter()"; | 
|  | info->resolution = 1.0 / (double)frequency; | 
|  | info->monotonic = 1; | 
|  | info->adjustable = 0; | 
|  | } | 
|  |  | 
|  | LARGE_INTEGER now; | 
|  | QueryPerformanceCounter(&now); | 
|  | LONGLONG ticksll = now.QuadPart; | 
|  |  | 
|  | /* Make sure that casting LONGLONG to _PyTime_t cannot overflow, | 
|  | both types are signed */ | 
|  | _PyTime_t ticks; | 
|  | static_assert(sizeof(ticksll) <= sizeof(ticks), | 
|  | "LONGLONG is larger than _PyTime_t"); | 
|  | ticks = (_PyTime_t)ticksll; | 
|  |  | 
|  | _PyTime_t ns = _PyTime_MulDiv(ticks, SEC_TO_NS, (_PyTime_t)frequency); | 
|  | *tp = pytime_from_nanoseconds(ns); | 
|  | return 0; | 
|  | } | 
|  | #endif  // MS_WINDOWS | 
|  |  | 
|  |  | 
|  | int | 
|  | _PyTime_GetPerfCounterWithInfo(_PyTime_t *t, _Py_clock_info_t *info) | 
|  | { | 
|  | #ifdef MS_WINDOWS | 
|  | return py_get_win_perf_counter(t, info, 1); | 
|  | #else | 
|  | return _PyTime_GetMonotonicClockWithInfo(t, info); | 
|  | #endif | 
|  | } | 
|  |  | 
|  |  | 
|  | _PyTime_t | 
|  | _PyTime_GetPerfCounter(void) | 
|  | { | 
|  | _PyTime_t t; | 
|  | int res; | 
|  | #ifdef MS_WINDOWS | 
|  | res = py_get_win_perf_counter(&t, NULL, 0); | 
|  | #else | 
|  | res = py_get_monotonic_clock(&t, NULL, 0); | 
|  | #endif | 
|  | if (res  < 0) { | 
|  | // If py_win_perf_counter_frequency() or py_get_monotonic_clock() | 
|  | // fails: silently ignore the failure and return 0. | 
|  | t = 0; | 
|  | } | 
|  | return t; | 
|  | } | 
|  |  | 
|  |  | 
|  | int | 
|  | _PyTime_localtime(time_t t, struct tm *tm) | 
|  | { | 
|  | #ifdef MS_WINDOWS | 
|  | int error; | 
|  |  | 
|  | error = localtime_s(tm, &t); | 
|  | if (error != 0) { | 
|  | errno = error; | 
|  | PyErr_SetFromErrno(PyExc_OSError); | 
|  | return -1; | 
|  | } | 
|  | return 0; | 
|  | #else /* !MS_WINDOWS */ | 
|  |  | 
|  | #if defined(_AIX) && (SIZEOF_TIME_T < 8) | 
|  | /* bpo-34373: AIX does not return NULL if t is too small or too large */ | 
|  | if (t < -2145916800 /* 1902-01-01 */ | 
|  | || t > 2145916800 /* 2038-01-01 */) { | 
|  | errno = EINVAL; | 
|  | PyErr_SetString(PyExc_OverflowError, | 
|  | "localtime argument out of range"); | 
|  | return -1; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | errno = 0; | 
|  | if (localtime_r(&t, tm) == NULL) { | 
|  | if (errno == 0) { | 
|  | errno = EINVAL; | 
|  | } | 
|  | PyErr_SetFromErrno(PyExc_OSError); | 
|  | return -1; | 
|  | } | 
|  | return 0; | 
|  | #endif /* MS_WINDOWS */ | 
|  | } | 
|  |  | 
|  |  | 
|  | int | 
|  | _PyTime_gmtime(time_t t, struct tm *tm) | 
|  | { | 
|  | #ifdef MS_WINDOWS | 
|  | int error; | 
|  |  | 
|  | error = gmtime_s(tm, &t); | 
|  | if (error != 0) { | 
|  | errno = error; | 
|  | PyErr_SetFromErrno(PyExc_OSError); | 
|  | return -1; | 
|  | } | 
|  | return 0; | 
|  | #else /* !MS_WINDOWS */ | 
|  | if (gmtime_r(&t, tm) == NULL) { | 
|  | #ifdef EINVAL | 
|  | if (errno == 0) { | 
|  | errno = EINVAL; | 
|  | } | 
|  | #endif | 
|  | PyErr_SetFromErrno(PyExc_OSError); | 
|  | return -1; | 
|  | } | 
|  | return 0; | 
|  | #endif /* MS_WINDOWS */ | 
|  | } | 
|  |  | 
|  |  | 
|  | _PyTime_t | 
|  | _PyDeadline_Init(_PyTime_t timeout) | 
|  | { | 
|  | _PyTime_t now = _PyTime_GetMonotonicClock(); | 
|  | return _PyTime_Add(now, timeout); | 
|  | } | 
|  |  | 
|  |  | 
|  | _PyTime_t | 
|  | _PyDeadline_Get(_PyTime_t deadline) | 
|  | { | 
|  | _PyTime_t now = _PyTime_GetMonotonicClock(); | 
|  | return deadline - now; | 
|  | } |