|  | /* | 
|  | * Implementation of the Global Interpreter Lock (GIL). | 
|  | */ | 
|  |  | 
|  | #include <stdlib.h> | 
|  | #include <errno.h> | 
|  |  | 
|  | #include "pycore_atomic.h" | 
|  |  | 
|  |  | 
|  | /* | 
|  | Notes about the implementation: | 
|  |  | 
|  | - The GIL is just a boolean variable (locked) whose access is protected | 
|  | by a mutex (gil_mutex), and whose changes are signalled by a condition | 
|  | variable (gil_cond). gil_mutex is taken for short periods of time, | 
|  | and therefore mostly uncontended. | 
|  |  | 
|  | - In the GIL-holding thread, the main loop (PyEval_EvalFrameEx) must be | 
|  | able to release the GIL on demand by another thread. A volatile boolean | 
|  | variable (gil_drop_request) is used for that purpose, which is checked | 
|  | at every turn of the eval loop. That variable is set after a wait of | 
|  | `interval` microseconds on `gil_cond` has timed out. | 
|  |  | 
|  | [Actually, another volatile boolean variable (eval_breaker) is used | 
|  | which ORs several conditions into one. Volatile booleans are | 
|  | sufficient as inter-thread signalling means since Python is run | 
|  | on cache-coherent architectures only.] | 
|  |  | 
|  | - A thread wanting to take the GIL will first let pass a given amount of | 
|  | time (`interval` microseconds) before setting gil_drop_request. This | 
|  | encourages a defined switching period, but doesn't enforce it since | 
|  | opcodes can take an arbitrary time to execute. | 
|  |  | 
|  | The `interval` value is available for the user to read and modify | 
|  | using the Python API `sys.{get,set}switchinterval()`. | 
|  |  | 
|  | - When a thread releases the GIL and gil_drop_request is set, that thread | 
|  | ensures that another GIL-awaiting thread gets scheduled. | 
|  | It does so by waiting on a condition variable (switch_cond) until | 
|  | the value of last_holder is changed to something else than its | 
|  | own thread state pointer, indicating that another thread was able to | 
|  | take the GIL. | 
|  |  | 
|  | This is meant to prohibit the latency-adverse behaviour on multi-core | 
|  | machines where one thread would speculatively release the GIL, but still | 
|  | run and end up being the first to re-acquire it, making the "timeslices" | 
|  | much longer than expected. | 
|  | (Note: this mechanism is enabled with FORCE_SWITCHING above) | 
|  | */ | 
|  |  | 
|  | #include "condvar.h" | 
|  |  | 
|  | #define MUTEX_INIT(mut) \ | 
|  | if (PyMUTEX_INIT(&(mut))) { \ | 
|  | Py_FatalError("PyMUTEX_INIT(" #mut ") failed"); }; | 
|  | #define MUTEX_FINI(mut) \ | 
|  | if (PyMUTEX_FINI(&(mut))) { \ | 
|  | Py_FatalError("PyMUTEX_FINI(" #mut ") failed"); }; | 
|  | #define MUTEX_LOCK(mut) \ | 
|  | if (PyMUTEX_LOCK(&(mut))) { \ | 
|  | Py_FatalError("PyMUTEX_LOCK(" #mut ") failed"); }; | 
|  | #define MUTEX_UNLOCK(mut) \ | 
|  | if (PyMUTEX_UNLOCK(&(mut))) { \ | 
|  | Py_FatalError("PyMUTEX_UNLOCK(" #mut ") failed"); }; | 
|  |  | 
|  | #define COND_INIT(cond) \ | 
|  | if (PyCOND_INIT(&(cond))) { \ | 
|  | Py_FatalError("PyCOND_INIT(" #cond ") failed"); }; | 
|  | #define COND_FINI(cond) \ | 
|  | if (PyCOND_FINI(&(cond))) { \ | 
|  | Py_FatalError("PyCOND_FINI(" #cond ") failed"); }; | 
|  | #define COND_SIGNAL(cond) \ | 
|  | if (PyCOND_SIGNAL(&(cond))) { \ | 
|  | Py_FatalError("PyCOND_SIGNAL(" #cond ") failed"); }; | 
|  | #define COND_WAIT(cond, mut) \ | 
|  | if (PyCOND_WAIT(&(cond), &(mut))) { \ | 
|  | Py_FatalError("PyCOND_WAIT(" #cond ") failed"); }; | 
|  | #define COND_TIMED_WAIT(cond, mut, microseconds, timeout_result) \ | 
|  | { \ | 
|  | int r = PyCOND_TIMEDWAIT(&(cond), &(mut), (microseconds)); \ | 
|  | if (r < 0) \ | 
|  | Py_FatalError("PyCOND_WAIT(" #cond ") failed"); \ | 
|  | if (r) /* 1 == timeout, 2 == impl. can't say, so assume timeout */ \ | 
|  | timeout_result = 1; \ | 
|  | else \ | 
|  | timeout_result = 0; \ | 
|  | } \ | 
|  |  | 
|  |  | 
|  | #define DEFAULT_INTERVAL 5000 | 
|  |  | 
|  | static void _gil_initialize(struct _gil_runtime_state *gil) | 
|  | { | 
|  | _Py_atomic_int uninitialized = {-1}; | 
|  | gil->locked = uninitialized; | 
|  | gil->interval = DEFAULT_INTERVAL; | 
|  | } | 
|  |  | 
|  | static int gil_created(struct _gil_runtime_state *gil) | 
|  | { | 
|  | return (_Py_atomic_load_explicit(&gil->locked, _Py_memory_order_acquire) >= 0); | 
|  | } | 
|  |  | 
|  | static void create_gil(struct _gil_runtime_state *gil) | 
|  | { | 
|  | MUTEX_INIT(gil->mutex); | 
|  | #ifdef FORCE_SWITCHING | 
|  | MUTEX_INIT(gil->switch_mutex); | 
|  | #endif | 
|  | COND_INIT(gil->cond); | 
|  | #ifdef FORCE_SWITCHING | 
|  | COND_INIT(gil->switch_cond); | 
|  | #endif | 
|  | _Py_atomic_store_relaxed(&gil->last_holder, 0); | 
|  | _Py_ANNOTATE_RWLOCK_CREATE(&gil->locked); | 
|  | _Py_atomic_store_explicit(&gil->locked, 0, _Py_memory_order_release); | 
|  | } | 
|  |  | 
|  | static void destroy_gil(struct _gil_runtime_state *gil) | 
|  | { | 
|  | /* some pthread-like implementations tie the mutex to the cond | 
|  | * and must have the cond destroyed first. | 
|  | */ | 
|  | COND_FINI(gil->cond); | 
|  | MUTEX_FINI(gil->mutex); | 
|  | #ifdef FORCE_SWITCHING | 
|  | COND_FINI(gil->switch_cond); | 
|  | MUTEX_FINI(gil->switch_mutex); | 
|  | #endif | 
|  | _Py_atomic_store_explicit(&gil->locked, -1, | 
|  | _Py_memory_order_release); | 
|  | _Py_ANNOTATE_RWLOCK_DESTROY(&gil->locked); | 
|  | } | 
|  |  | 
|  | static void recreate_gil(struct _gil_runtime_state *gil) | 
|  | { | 
|  | _Py_ANNOTATE_RWLOCK_DESTROY(&gil->locked); | 
|  | /* XXX should we destroy the old OS resources here? */ | 
|  | create_gil(gil); | 
|  | } | 
|  |  | 
|  | static void | 
|  | drop_gil(struct _ceval_runtime_state *ceval, struct _ceval_state *ceval2, | 
|  | PyThreadState *tstate) | 
|  | { | 
|  | #ifdef EXPERIMENTAL_ISOLATED_SUBINTERPRETERS | 
|  | struct _gil_runtime_state *gil = &ceval2->gil; | 
|  | #else | 
|  | struct _gil_runtime_state *gil = &ceval->gil; | 
|  | #endif | 
|  | if (!_Py_atomic_load_relaxed(&gil->locked)) { | 
|  | Py_FatalError("drop_gil: GIL is not locked"); | 
|  | } | 
|  |  | 
|  | /* tstate is allowed to be NULL (early interpreter init) */ | 
|  | if (tstate != NULL) { | 
|  | /* Sub-interpreter support: threads might have been switched | 
|  | under our feet using PyThreadState_Swap(). Fix the GIL last | 
|  | holder variable so that our heuristics work. */ | 
|  | _Py_atomic_store_relaxed(&gil->last_holder, (uintptr_t)tstate); | 
|  | } | 
|  |  | 
|  | MUTEX_LOCK(gil->mutex); | 
|  | _Py_ANNOTATE_RWLOCK_RELEASED(&gil->locked, /*is_write=*/1); | 
|  | _Py_atomic_store_relaxed(&gil->locked, 0); | 
|  | COND_SIGNAL(gil->cond); | 
|  | MUTEX_UNLOCK(gil->mutex); | 
|  |  | 
|  | #ifdef FORCE_SWITCHING | 
|  | if (_Py_atomic_load_relaxed(&ceval2->gil_drop_request) && tstate != NULL) { | 
|  | MUTEX_LOCK(gil->switch_mutex); | 
|  | /* Not switched yet => wait */ | 
|  | if (((PyThreadState*)_Py_atomic_load_relaxed(&gil->last_holder)) == tstate) | 
|  | { | 
|  | assert(is_tstate_valid(tstate)); | 
|  | RESET_GIL_DROP_REQUEST(tstate->interp); | 
|  | /* NOTE: if COND_WAIT does not atomically start waiting when | 
|  | releasing the mutex, another thread can run through, take | 
|  | the GIL and drop it again, and reset the condition | 
|  | before we even had a chance to wait for it. */ | 
|  | COND_WAIT(gil->switch_cond, gil->switch_mutex); | 
|  | } | 
|  | MUTEX_UNLOCK(gil->switch_mutex); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Check if a Python thread must exit immediately, rather than taking the GIL | 
|  | if Py_Finalize() has been called. | 
|  |  | 
|  | When this function is called by a daemon thread after Py_Finalize() has been | 
|  | called, the GIL does no longer exist. | 
|  |  | 
|  | tstate must be non-NULL. */ | 
|  | static inline int | 
|  | tstate_must_exit(PyThreadState *tstate) | 
|  | { | 
|  | /* bpo-39877: Access _PyRuntime directly rather than using | 
|  | tstate->interp->runtime to support calls from Python daemon threads. | 
|  | After Py_Finalize() has been called, tstate can be a dangling pointer: | 
|  | point to PyThreadState freed memory. */ | 
|  | PyThreadState *finalizing = _PyRuntimeState_GetFinalizing(&_PyRuntime); | 
|  | return (finalizing != NULL && finalizing != tstate); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Take the GIL. | 
|  |  | 
|  | The function saves errno at entry and restores its value at exit. | 
|  |  | 
|  | tstate must be non-NULL. */ | 
|  | static void | 
|  | take_gil(PyThreadState *tstate) | 
|  | { | 
|  | int err = errno; | 
|  |  | 
|  | assert(tstate != NULL); | 
|  |  | 
|  | if (tstate_must_exit(tstate)) { | 
|  | /* bpo-39877: If Py_Finalize() has been called and tstate is not the | 
|  | thread which called Py_Finalize(), exit immediately the thread. | 
|  |  | 
|  | This code path can be reached by a daemon thread after Py_Finalize() | 
|  | completes. In this case, tstate is a dangling pointer: points to | 
|  | PyThreadState freed memory. */ | 
|  | PyThread_exit_thread(); | 
|  | } | 
|  |  | 
|  | assert(is_tstate_valid(tstate)); | 
|  | PyInterpreterState *interp = tstate->interp; | 
|  | struct _ceval_runtime_state *ceval = &interp->runtime->ceval; | 
|  | struct _ceval_state *ceval2 = &interp->ceval; | 
|  | #ifdef EXPERIMENTAL_ISOLATED_SUBINTERPRETERS | 
|  | struct _gil_runtime_state *gil = &ceval2->gil; | 
|  | #else | 
|  | struct _gil_runtime_state *gil = &ceval->gil; | 
|  | #endif | 
|  |  | 
|  | /* Check that _PyEval_InitThreads() was called to create the lock */ | 
|  | assert(gil_created(gil)); | 
|  |  | 
|  | MUTEX_LOCK(gil->mutex); | 
|  |  | 
|  | if (!_Py_atomic_load_relaxed(&gil->locked)) { | 
|  | goto _ready; | 
|  | } | 
|  |  | 
|  | while (_Py_atomic_load_relaxed(&gil->locked)) { | 
|  | unsigned long saved_switchnum = gil->switch_number; | 
|  |  | 
|  | unsigned long interval = (gil->interval >= 1 ? gil->interval : 1); | 
|  | int timed_out = 0; | 
|  | COND_TIMED_WAIT(gil->cond, gil->mutex, interval, timed_out); | 
|  |  | 
|  | /* If we timed out and no switch occurred in the meantime, it is time | 
|  | to ask the GIL-holding thread to drop it. */ | 
|  | if (timed_out && | 
|  | _Py_atomic_load_relaxed(&gil->locked) && | 
|  | gil->switch_number == saved_switchnum) | 
|  | { | 
|  | if (tstate_must_exit(tstate)) { | 
|  | MUTEX_UNLOCK(gil->mutex); | 
|  | PyThread_exit_thread(); | 
|  | } | 
|  | assert(is_tstate_valid(tstate)); | 
|  |  | 
|  | SET_GIL_DROP_REQUEST(interp); | 
|  | } | 
|  | } | 
|  |  | 
|  | _ready: | 
|  | #ifdef FORCE_SWITCHING | 
|  | /* This mutex must be taken before modifying gil->last_holder: | 
|  | see drop_gil(). */ | 
|  | MUTEX_LOCK(gil->switch_mutex); | 
|  | #endif | 
|  | /* We now hold the GIL */ | 
|  | _Py_atomic_store_relaxed(&gil->locked, 1); | 
|  | _Py_ANNOTATE_RWLOCK_ACQUIRED(&gil->locked, /*is_write=*/1); | 
|  |  | 
|  | if (tstate != (PyThreadState*)_Py_atomic_load_relaxed(&gil->last_holder)) { | 
|  | _Py_atomic_store_relaxed(&gil->last_holder, (uintptr_t)tstate); | 
|  | ++gil->switch_number; | 
|  | } | 
|  |  | 
|  | #ifdef FORCE_SWITCHING | 
|  | COND_SIGNAL(gil->switch_cond); | 
|  | MUTEX_UNLOCK(gil->switch_mutex); | 
|  | #endif | 
|  |  | 
|  | if (tstate_must_exit(tstate)) { | 
|  | /* bpo-36475: If Py_Finalize() has been called and tstate is not | 
|  | the thread which called Py_Finalize(), exit immediately the | 
|  | thread. | 
|  |  | 
|  | This code path can be reached by a daemon thread which was waiting | 
|  | in take_gil() while the main thread called | 
|  | wait_for_thread_shutdown() from Py_Finalize(). */ | 
|  | MUTEX_UNLOCK(gil->mutex); | 
|  | drop_gil(ceval, ceval2, tstate); | 
|  | PyThread_exit_thread(); | 
|  | } | 
|  | assert(is_tstate_valid(tstate)); | 
|  |  | 
|  | if (_Py_atomic_load_relaxed(&ceval2->gil_drop_request)) { | 
|  | RESET_GIL_DROP_REQUEST(interp); | 
|  | } | 
|  | else { | 
|  | /* bpo-40010: eval_breaker should be recomputed to be set to 1 if there | 
|  | is a pending signal: signal received by another thread which cannot | 
|  | handle signals. | 
|  |  | 
|  | Note: RESET_GIL_DROP_REQUEST() calls COMPUTE_EVAL_BREAKER(). */ | 
|  | COMPUTE_EVAL_BREAKER(interp, ceval, ceval2); | 
|  | } | 
|  |  | 
|  | /* Don't access tstate if the thread must exit */ | 
|  | if (tstate->async_exc != NULL) { | 
|  | _PyEval_SignalAsyncExc(tstate->interp); | 
|  | } | 
|  |  | 
|  | MUTEX_UNLOCK(gil->mutex); | 
|  |  | 
|  | errno = err; | 
|  | } | 
|  |  | 
|  | void _PyEval_SetSwitchInterval(unsigned long microseconds) | 
|  | { | 
|  | #ifdef EXPERIMENTAL_ISOLATED_SUBINTERPRETERS | 
|  | PyInterpreterState *interp = PyInterpreterState_Get(); | 
|  | struct _gil_runtime_state *gil = &interp->ceval.gil; | 
|  | #else | 
|  | struct _gil_runtime_state *gil = &_PyRuntime.ceval.gil; | 
|  | #endif | 
|  | gil->interval = microseconds; | 
|  | } | 
|  |  | 
|  | unsigned long _PyEval_GetSwitchInterval() | 
|  | { | 
|  | #ifdef EXPERIMENTAL_ISOLATED_SUBINTERPRETERS | 
|  | PyInterpreterState *interp = PyInterpreterState_Get(); | 
|  | struct _gil_runtime_state *gil = &interp->ceval.gil; | 
|  | #else | 
|  | struct _gil_runtime_state *gil = &_PyRuntime.ceval.gil; | 
|  | #endif | 
|  | return gil->interval; | 
|  | } |