| /* math.integer module -- integer-related mathematical functions */ |
| |
| #ifndef Py_BUILD_CORE_BUILTIN |
| # define Py_BUILD_CORE_MODULE 1 |
| #endif |
| |
| #include "Python.h" |
| #include "pycore_abstract.h" // _PyNumber_Index() |
| #include "pycore_bitutils.h" // _Py_bit_length() |
| #include "pycore_long.h" // _PyLong_GetZero() |
| |
| #include "clinic/mathintegermodule.c.h" |
| |
| /*[clinic input] |
| module math |
| module math.integer |
| [clinic start generated code]*/ |
| /*[clinic end generated code: output=da39a3ee5e6b4b0d input=e3d09c1c90de7fa8]*/ |
| |
| |
| /*[clinic input] |
| math.integer.gcd |
| |
| *integers as args: array |
| |
| Greatest Common Divisor. |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| math_integer_gcd_impl(PyObject *module, PyObject * const *args, |
| Py_ssize_t args_length) |
| /*[clinic end generated code: output=8e9c5bab06bea203 input=a90cde2ac5281551]*/ |
| { |
| // Fast-path for the common case: gcd(int, int) |
| if (args_length == 2 && PyLong_CheckExact(args[0]) && PyLong_CheckExact(args[1])) |
| { |
| return _PyLong_GCD(args[0], args[1]); |
| } |
| |
| if (args_length == 0) { |
| return PyLong_FromLong(0); |
| } |
| |
| PyObject *res = PyNumber_Index(args[0]); |
| if (res == NULL) { |
| return NULL; |
| } |
| if (args_length == 1) { |
| Py_SETREF(res, PyNumber_Absolute(res)); |
| return res; |
| } |
| |
| PyObject *one = _PyLong_GetOne(); // borrowed ref |
| for (Py_ssize_t i = 1; i < args_length; i++) { |
| PyObject *x = _PyNumber_Index(args[i]); |
| if (x == NULL) { |
| Py_DECREF(res); |
| return NULL; |
| } |
| if (res == one) { |
| /* Fast path: just check arguments. |
| It is okay to use identity comparison here. */ |
| Py_DECREF(x); |
| continue; |
| } |
| Py_SETREF(res, _PyLong_GCD(res, x)); |
| Py_DECREF(x); |
| if (res == NULL) { |
| return NULL; |
| } |
| } |
| return res; |
| } |
| |
| |
| static PyObject * |
| long_lcm(PyObject *a, PyObject *b) |
| { |
| PyObject *g, *m, *f, *ab; |
| |
| if (_PyLong_IsZero((PyLongObject *)a) || _PyLong_IsZero((PyLongObject *)b)) { |
| return PyLong_FromLong(0); |
| } |
| g = _PyLong_GCD(a, b); |
| if (g == NULL) { |
| return NULL; |
| } |
| f = PyNumber_FloorDivide(a, g); |
| Py_DECREF(g); |
| if (f == NULL) { |
| return NULL; |
| } |
| m = PyNumber_Multiply(f, b); |
| Py_DECREF(f); |
| if (m == NULL) { |
| return NULL; |
| } |
| ab = PyNumber_Absolute(m); |
| Py_DECREF(m); |
| return ab; |
| } |
| |
| |
| /*[clinic input] |
| math.integer.lcm |
| |
| *integers as args: array |
| |
| Least Common Multiple. |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| math_integer_lcm_impl(PyObject *module, PyObject * const *args, |
| Py_ssize_t args_length) |
| /*[clinic end generated code: output=3e88889b866ccc28 input=261bddc85a136bdf]*/ |
| { |
| PyObject *res, *x; |
| Py_ssize_t i; |
| |
| if (args_length == 0) { |
| return PyLong_FromLong(1); |
| } |
| res = PyNumber_Index(args[0]); |
| if (res == NULL) { |
| return NULL; |
| } |
| if (args_length == 1) { |
| Py_SETREF(res, PyNumber_Absolute(res)); |
| return res; |
| } |
| |
| PyObject *zero = _PyLong_GetZero(); // borrowed ref |
| for (i = 1; i < args_length; i++) { |
| x = PyNumber_Index(args[i]); |
| if (x == NULL) { |
| Py_DECREF(res); |
| return NULL; |
| } |
| if (res == zero) { |
| /* Fast path: just check arguments. |
| It is okay to use identity comparison here. */ |
| Py_DECREF(x); |
| continue; |
| } |
| Py_SETREF(res, long_lcm(res, x)); |
| Py_DECREF(x); |
| if (res == NULL) { |
| return NULL; |
| } |
| } |
| return res; |
| } |
| |
| |
| /* Integer square root |
| |
| Given a nonnegative integer `n`, we want to compute the largest integer |
| `a` for which `a * a <= n`, or equivalently the integer part of the exact |
| square root of `n`. |
| |
| We use an adaptive-precision pure-integer version of Newton's iteration. Given |
| a positive integer `n`, the algorithm produces at each iteration an integer |
| approximation `a` to the square root of `n >> s` for some even integer `s`, |
| with `s` decreasing as the iterations progress. On the final iteration, `s` is |
| zero and we have an approximation to the square root of `n` itself. |
| |
| At every step, the approximation `a` is strictly within 1.0 of the true square |
| root, so we have |
| |
| (a - 1)**2 < (n >> s) < (a + 1)**2 |
| |
| After the final iteration, a check-and-correct step is needed to determine |
| whether `a` or `a - 1` gives the desired integer square root of `n`. |
| |
| The algorithm is remarkable in its simplicity. There's no need for a |
| per-iteration check-and-correct step, and termination is straightforward: the |
| number of iterations is known in advance (it's exactly `floor(log2(log2(n)))` |
| for `n > 1`). The only tricky part of the correctness proof is in establishing |
| that the bound `(a - 1)**2 < (n >> s) < (a + 1)**2` is maintained from one |
| iteration to the next. A sketch of the proof of this is given below. |
| |
| In addition to the proof sketch, a formal, computer-verified proof |
| of correctness (using Lean) of an equivalent recursive algorithm can be found |
| here: |
| |
| https://github.com/mdickinson/snippets/blob/master/proofs/isqrt/src/isqrt.lean |
| |
| |
| Here's Python code equivalent to the C implementation below: |
| |
| def isqrt(n): |
| """ |
| Return the integer part of the square root of the input. |
| """ |
| n = operator.index(n) |
| |
| if n < 0: |
| raise ValueError("isqrt() argument must be nonnegative") |
| if n == 0: |
| return 0 |
| |
| c = (n.bit_length() - 1) // 2 |
| a = 1 |
| d = 0 |
| for s in reversed(range(c.bit_length())): |
| # Loop invariant: (a-1)**2 < (n >> 2*(c - d)) < (a+1)**2 |
| e = d |
| d = c >> s |
| a = (a << d - e - 1) + (n >> 2*c - e - d + 1) // a |
| |
| return a - (a*a > n) |
| |
| |
| Sketch of proof of correctness |
| ------------------------------ |
| |
| The delicate part of the correctness proof is showing that the loop invariant |
| is preserved from one iteration to the next. That is, just before the line |
| |
| a = (a << d - e - 1) + (n >> 2*c - e - d + 1) // a |
| |
| is executed in the above code, we know that |
| |
| (1) (a - 1)**2 < (n >> 2*(c - e)) < (a + 1)**2. |
| |
| (since `e` is always the value of `d` from the previous iteration). We must |
| prove that after that line is executed, we have |
| |
| (a - 1)**2 < (n >> 2*(c - d)) < (a + 1)**2 |
| |
| To facilitate the proof, we make some changes of notation. Write `m` for |
| `n >> 2*(c-d)`, and write `b` for the new value of `a`, so |
| |
| b = (a << d - e - 1) + (n >> 2*c - e - d + 1) // a |
| |
| or equivalently: |
| |
| (2) b = (a << d - e - 1) + (m >> d - e + 1) // a |
| |
| Then we can rewrite (1) as: |
| |
| (3) (a - 1)**2 < (m >> 2*(d - e)) < (a + 1)**2 |
| |
| and we must show that (b - 1)**2 < m < (b + 1)**2. |
| |
| From this point on, we switch to mathematical notation, so `/` means exact |
| division rather than integer division and `^` is used for exponentiation. We |
| use the `√` symbol for the exact square root. In (3), we can remove the |
| implicit floor operation to give: |
| |
| (4) (a - 1)^2 < m / 4^(d - e) < (a + 1)^2 |
| |
| Taking square roots throughout (4), scaling by `2^(d-e)`, and rearranging gives |
| |
| (5) 0 <= | 2^(d-e)a - √m | < 2^(d-e) |
| |
| Squaring and dividing through by `2^(d-e+1) a` gives |
| |
| (6) 0 <= 2^(d-e-1) a + m / (2^(d-e+1) a) - √m < 2^(d-e-1) / a |
| |
| We'll show below that `2^(d-e-1) <= a`. Given that, we can replace the |
| right-hand side of (6) with `1`, and now replacing the central |
| term `m / (2^(d-e+1) a)` with its floor in (6) gives |
| |
| (7) -1 < 2^(d-e-1) a + m // 2^(d-e+1) a - √m < 1 |
| |
| Or equivalently, from (2): |
| |
| (7) -1 < b - √m < 1 |
| |
| and rearranging gives that `(b-1)^2 < m < (b+1)^2`, which is what we needed |
| to prove. |
| |
| We're not quite done: we still have to prove the inequality `2^(d - e - 1) <= |
| a` that was used to get line (7) above. From the definition of `c`, we have |
| `4^c <= n`, which implies |
| |
| (8) 4^d <= m |
| |
| also, since `e == d >> 1`, `d` is at most `2e + 1`, from which it follows |
| that `2d - 2e - 1 <= d` and hence that |
| |
| (9) 4^(2d - 2e - 1) <= m |
| |
| Dividing both sides by `4^(d - e)` gives |
| |
| (10) 4^(d - e - 1) <= m / 4^(d - e) |
| |
| But we know from (4) that `m / 4^(d-e) < (a + 1)^2`, hence |
| |
| (11) 4^(d - e - 1) < (a + 1)^2 |
| |
| Now taking square roots of both sides and observing that both `2^(d-e-1)` and |
| `a` are integers gives `2^(d - e - 1) <= a`, which is what we needed. This |
| completes the proof sketch. |
| |
| */ |
| |
| /* |
| The _approximate_isqrt_tab table provides approximate square roots for |
| 16-bit integers. For any n in the range 2**14 <= n < 2**16, the value |
| |
| a = _approximate_isqrt_tab[(n >> 8) - 64] |
| |
| is an approximate square root of n, satisfying (a - 1)**2 < n < (a + 1)**2. |
| |
| The table was computed in Python using the expression: |
| |
| [min(round(sqrt(256*n + 128)), 255) for n in range(64, 256)] |
| */ |
| |
| static const uint8_t _approximate_isqrt_tab[192] = { |
| 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, |
| 140, 141, 142, 143, 144, 144, 145, 146, 147, 148, 149, 150, |
| 151, 151, 152, 153, 154, 155, 156, 156, 157, 158, 159, 160, |
| 160, 161, 162, 163, 164, 164, 165, 166, 167, 167, 168, 169, |
| 170, 170, 171, 172, 173, 173, 174, 175, 176, 176, 177, 178, |
| 179, 179, 180, 181, 181, 182, 183, 183, 184, 185, 186, 186, |
| 187, 188, 188, 189, 190, 190, 191, 192, 192, 193, 194, 194, |
| 195, 196, 196, 197, 198, 198, 199, 200, 200, 201, 201, 202, |
| 203, 203, 204, 205, 205, 206, 206, 207, 208, 208, 209, 210, |
| 210, 211, 211, 212, 213, 213, 214, 214, 215, 216, 216, 217, |
| 217, 218, 219, 219, 220, 220, 221, 221, 222, 223, 223, 224, |
| 224, 225, 225, 226, 227, 227, 228, 228, 229, 229, 230, 230, |
| 231, 232, 232, 233, 233, 234, 234, 235, 235, 236, 237, 237, |
| 238, 238, 239, 239, 240, 240, 241, 241, 242, 242, 243, 243, |
| 244, 244, 245, 246, 246, 247, 247, 248, 248, 249, 249, 250, |
| 250, 251, 251, 252, 252, 253, 253, 254, 254, 255, 255, 255, |
| }; |
| |
| /* Approximate square root of a large 64-bit integer. |
| |
| Given `n` satisfying `2**62 <= n < 2**64`, return `a` |
| satisfying `(a - 1)**2 < n < (a + 1)**2`. */ |
| |
| static inline uint32_t |
| _approximate_isqrt(uint64_t n) |
| { |
| uint32_t u = _approximate_isqrt_tab[(n >> 56) - 64]; |
| u = (u << 7) + (uint32_t)(n >> 41) / u; |
| return (u << 15) + (uint32_t)((n >> 17) / u); |
| } |
| |
| /*[clinic input] |
| math.integer.isqrt |
| |
| n: object |
| / |
| |
| Return the integer part of the square root of the input. |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| math_integer_isqrt(PyObject *module, PyObject *n) |
| /*[clinic end generated code: output=551031e41a0f5d9e input=921ddd9853133d8d]*/ |
| { |
| int a_too_large, c_bit_length; |
| int64_t c, d; |
| uint64_t m; |
| uint32_t u; |
| PyObject *a = NULL, *b; |
| |
| n = _PyNumber_Index(n); |
| if (n == NULL) { |
| return NULL; |
| } |
| |
| if (_PyLong_IsNegative((PyLongObject *)n)) { |
| PyErr_SetString( |
| PyExc_ValueError, |
| "isqrt() argument must be nonnegative"); |
| goto error; |
| } |
| if (_PyLong_IsZero((PyLongObject *)n)) { |
| Py_DECREF(n); |
| return PyLong_FromLong(0); |
| } |
| |
| /* c = (n.bit_length() - 1) // 2 */ |
| c = _PyLong_NumBits(n); |
| assert(c > 0); |
| assert(!PyErr_Occurred()); |
| c = (c - 1) / 2; |
| |
| /* Fast path: if c <= 31 then n < 2**64 and we can compute directly with a |
| fast, almost branch-free algorithm. */ |
| if (c <= 31) { |
| int shift = 31 - (int)c; |
| m = (uint64_t)PyLong_AsUnsignedLongLong(n); |
| Py_DECREF(n); |
| if (m == (uint64_t)(-1) && PyErr_Occurred()) { |
| return NULL; |
| } |
| u = _approximate_isqrt(m << 2*shift) >> shift; |
| u -= (uint64_t)u * u > m; |
| return PyLong_FromUnsignedLong(u); |
| } |
| |
| /* Slow path: n >= 2**64. We perform the first five iterations in C integer |
| arithmetic, then switch to using Python long integers. */ |
| |
| /* From n >= 2**64 it follows that c.bit_length() >= 6. */ |
| c_bit_length = 6; |
| while ((c >> c_bit_length) > 0) { |
| ++c_bit_length; |
| } |
| |
| /* Initialise d and a. */ |
| d = c >> (c_bit_length - 5); |
| b = _PyLong_Rshift(n, 2*c - 62); |
| if (b == NULL) { |
| goto error; |
| } |
| m = (uint64_t)PyLong_AsUnsignedLongLong(b); |
| Py_DECREF(b); |
| if (m == (uint64_t)(-1) && PyErr_Occurred()) { |
| goto error; |
| } |
| u = _approximate_isqrt(m) >> (31U - d); |
| a = PyLong_FromUnsignedLong(u); |
| if (a == NULL) { |
| goto error; |
| } |
| |
| for (int s = c_bit_length - 6; s >= 0; --s) { |
| PyObject *q; |
| int64_t e = d; |
| |
| d = c >> s; |
| |
| /* q = (n >> 2*c - e - d + 1) // a */ |
| q = _PyLong_Rshift(n, 2*c - d - e + 1); |
| if (q == NULL) { |
| goto error; |
| } |
| Py_SETREF(q, PyNumber_FloorDivide(q, a)); |
| if (q == NULL) { |
| goto error; |
| } |
| |
| /* a = (a << d - 1 - e) + q */ |
| Py_SETREF(a, _PyLong_Lshift(a, d - 1 - e)); |
| if (a == NULL) { |
| Py_DECREF(q); |
| goto error; |
| } |
| Py_SETREF(a, PyNumber_Add(a, q)); |
| Py_DECREF(q); |
| if (a == NULL) { |
| goto error; |
| } |
| } |
| |
| /* The correct result is either a or a - 1. Figure out which, and |
| decrement a if necessary. */ |
| |
| /* a_too_large = n < a * a */ |
| b = PyNumber_Multiply(a, a); |
| if (b == NULL) { |
| goto error; |
| } |
| a_too_large = PyObject_RichCompareBool(n, b, Py_LT); |
| Py_DECREF(b); |
| if (a_too_large == -1) { |
| goto error; |
| } |
| |
| if (a_too_large) { |
| Py_SETREF(a, PyNumber_Subtract(a, _PyLong_GetOne())); |
| } |
| Py_DECREF(n); |
| return a; |
| |
| error: |
| Py_XDECREF(a); |
| Py_DECREF(n); |
| return NULL; |
| } |
| |
| |
| static unsigned long |
| count_set_bits(unsigned long n) |
| { |
| unsigned long count = 0; |
| while (n != 0) { |
| ++count; |
| n &= n - 1; /* clear least significant bit */ |
| } |
| return count; |
| } |
| |
| |
| /* Divide-and-conquer factorial algorithm |
| * |
| * Based on the formula and pseudo-code provided at: |
| * http://www.luschny.de/math/factorial/binarysplitfact.html |
| * |
| * Faster algorithms exist, but they're more complicated and depend on |
| * a fast prime factorization algorithm. |
| * |
| * Notes on the algorithm |
| * ---------------------- |
| * |
| * factorial(n) is written in the form 2**k * m, with m odd. k and m are |
| * computed separately, and then combined using a left shift. |
| * |
| * The function factorial_odd_part computes the odd part m (i.e., the greatest |
| * odd divisor) of factorial(n), using the formula: |
| * |
| * factorial_odd_part(n) = |
| * |
| * product_{i >= 0} product_{0 < j <= n / 2**i, j odd} j |
| * |
| * Example: factorial_odd_part(20) = |
| * |
| * (1) * |
| * (1) * |
| * (1 * 3 * 5) * |
| * (1 * 3 * 5 * 7 * 9) * |
| * (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19) |
| * |
| * Here i goes from large to small: the first term corresponds to i=4 (any |
| * larger i gives an empty product), and the last term corresponds to i=0. |
| * Each term can be computed from the last by multiplying by the extra odd |
| * numbers required: e.g., to get from the penultimate term to the last one, |
| * we multiply by (11 * 13 * 15 * 17 * 19). |
| * |
| * To see a hint of why this formula works, here are the same numbers as above |
| * but with the even parts (i.e., the appropriate powers of 2) included. For |
| * each subterm in the product for i, we multiply that subterm by 2**i: |
| * |
| * factorial(20) = |
| * |
| * (16) * |
| * (8) * |
| * (4 * 12 * 20) * |
| * (2 * 6 * 10 * 14 * 18) * |
| * (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19) |
| * |
| * The factorial_partial_product function computes the product of all odd j in |
| * range(start, stop) for given start and stop. It's used to compute the |
| * partial products like (11 * 13 * 15 * 17 * 19) in the example above. It |
| * operates recursively, repeatedly splitting the range into two roughly equal |
| * pieces until the subranges are small enough to be computed using only C |
| * integer arithmetic. |
| * |
| * The two-valuation k (i.e., the exponent of the largest power of 2 dividing |
| * the factorial) is computed independently in the main math_integer_factorial |
| * function. By standard results, its value is: |
| * |
| * two_valuation = n//2 + n//4 + n//8 + .... |
| * |
| * It can be shown (e.g., by complete induction on n) that two_valuation is |
| * equal to n - count_set_bits(n), where count_set_bits(n) gives the number of |
| * '1'-bits in the binary expansion of n. |
| */ |
| |
| /* factorial_partial_product: Compute product(range(start, stop, 2)) using |
| * divide and conquer. Assumes start and stop are odd and stop > start. |
| * max_bits must be >= bit_length(stop - 2). */ |
| |
| static PyObject * |
| factorial_partial_product(unsigned long start, unsigned long stop, |
| unsigned long max_bits) |
| { |
| unsigned long midpoint, num_operands; |
| PyObject *left = NULL, *right = NULL, *result = NULL; |
| |
| /* If the return value will fit an unsigned long, then we can |
| * multiply in a tight, fast loop where each multiply is O(1). |
| * Compute an upper bound on the number of bits required to store |
| * the answer. |
| * |
| * Storing some integer z requires floor(lg(z))+1 bits, which is |
| * conveniently the value returned by bit_length(z). The |
| * product x*y will require at most |
| * bit_length(x) + bit_length(y) bits to store, based |
| * on the idea that lg product = lg x + lg y. |
| * |
| * We know that stop - 2 is the largest number to be multiplied. From |
| * there, we have: bit_length(answer) <= num_operands * |
| * bit_length(stop - 2) |
| */ |
| |
| num_operands = (stop - start) / 2; |
| /* The "num_operands <= 8 * SIZEOF_LONG" check guards against the |
| * unlikely case of an overflow in num_operands * max_bits. */ |
| if (num_operands <= 8 * SIZEOF_LONG && |
| num_operands * max_bits <= 8 * SIZEOF_LONG) { |
| unsigned long j, total; |
| for (total = start, j = start + 2; j < stop; j += 2) |
| total *= j; |
| return PyLong_FromUnsignedLong(total); |
| } |
| |
| /* find midpoint of range(start, stop), rounded up to next odd number. */ |
| midpoint = (start + num_operands) | 1; |
| left = factorial_partial_product(start, midpoint, |
| _Py_bit_length(midpoint - 2)); |
| if (left == NULL) |
| goto error; |
| right = factorial_partial_product(midpoint, stop, max_bits); |
| if (right == NULL) |
| goto error; |
| result = PyNumber_Multiply(left, right); |
| |
| error: |
| Py_XDECREF(left); |
| Py_XDECREF(right); |
| return result; |
| } |
| |
| /* factorial_odd_part: compute the odd part of factorial(n). */ |
| |
| static PyObject * |
| factorial_odd_part(unsigned long n) |
| { |
| long i; |
| unsigned long v, lower, upper; |
| PyObject *partial, *tmp, *inner, *outer; |
| |
| inner = PyLong_FromLong(1); |
| if (inner == NULL) |
| return NULL; |
| outer = Py_NewRef(inner); |
| |
| upper = 3; |
| for (i = _Py_bit_length(n) - 2; i >= 0; i--) { |
| v = n >> i; |
| if (v <= 2) |
| continue; |
| lower = upper; |
| /* (v + 1) | 1 = least odd integer strictly larger than n / 2**i */ |
| upper = (v + 1) | 1; |
| /* Here inner is the product of all odd integers j in the range (0, |
| n/2**(i+1)]. The factorial_partial_product call below gives the |
| product of all odd integers j in the range (n/2**(i+1), n/2**i]. */ |
| partial = factorial_partial_product(lower, upper, _Py_bit_length(upper-2)); |
| /* inner *= partial */ |
| if (partial == NULL) |
| goto error; |
| tmp = PyNumber_Multiply(inner, partial); |
| Py_DECREF(partial); |
| if (tmp == NULL) |
| goto error; |
| Py_SETREF(inner, tmp); |
| /* Now inner is the product of all odd integers j in the range (0, |
| n/2**i], giving the inner product in the formula above. */ |
| |
| /* outer *= inner; */ |
| tmp = PyNumber_Multiply(outer, inner); |
| if (tmp == NULL) |
| goto error; |
| Py_SETREF(outer, tmp); |
| } |
| Py_DECREF(inner); |
| return outer; |
| |
| error: |
| Py_DECREF(outer); |
| Py_DECREF(inner); |
| return NULL; |
| } |
| |
| |
| /* Lookup table for small factorial values */ |
| |
| static const unsigned long SmallFactorials[] = { |
| 1, 1, 2, 6, 24, 120, 720, 5040, 40320, |
| 362880, 3628800, 39916800, 479001600, |
| #if SIZEOF_LONG >= 8 |
| 6227020800, 87178291200, 1307674368000, |
| 20922789888000, 355687428096000, 6402373705728000, |
| 121645100408832000, 2432902008176640000 |
| #endif |
| }; |
| |
| /*[clinic input] |
| math.integer.factorial |
| |
| n as arg: object |
| / |
| |
| Find n!. |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| math_integer_factorial(PyObject *module, PyObject *arg) |
| /*[clinic end generated code: output=131c23fd48650414 input=742f4dfa490a1b07]*/ |
| { |
| long x, two_valuation; |
| int overflow; |
| PyObject *result, *odd_part; |
| |
| x = PyLong_AsLongAndOverflow(arg, &overflow); |
| if (x == -1 && PyErr_Occurred()) { |
| return NULL; |
| } |
| else if (overflow == 1) { |
| PyErr_Format(PyExc_OverflowError, |
| "factorial() argument should not exceed %ld", |
| LONG_MAX); |
| return NULL; |
| } |
| else if (overflow == -1 || x < 0) { |
| PyErr_SetString(PyExc_ValueError, |
| "factorial() not defined for negative values"); |
| return NULL; |
| } |
| |
| /* use lookup table if x is small */ |
| if (x < (long)Py_ARRAY_LENGTH(SmallFactorials)) |
| return PyLong_FromUnsignedLong(SmallFactorials[x]); |
| |
| /* else express in the form odd_part * 2**two_valuation, and compute as |
| odd_part << two_valuation. */ |
| odd_part = factorial_odd_part(x); |
| if (odd_part == NULL) |
| return NULL; |
| two_valuation = x - count_set_bits(x); |
| result = _PyLong_Lshift(odd_part, two_valuation); |
| Py_DECREF(odd_part); |
| return result; |
| } |
| |
| |
| /* least significant 64 bits of the odd part of factorial(n), for n in range(128). |
| |
| Python code to generate the values: |
| |
| import math.integer |
| |
| for n in range(128): |
| fac = math.integer.factorial(n) |
| fac_odd_part = fac // (fac & -fac) |
| reduced_fac_odd_part = fac_odd_part % (2**64) |
| print(f"{reduced_fac_odd_part:#018x}u") |
| */ |
| static const uint64_t reduced_factorial_odd_part[] = { |
| 0x0000000000000001u, 0x0000000000000001u, 0x0000000000000001u, 0x0000000000000003u, |
| 0x0000000000000003u, 0x000000000000000fu, 0x000000000000002du, 0x000000000000013bu, |
| 0x000000000000013bu, 0x0000000000000b13u, 0x000000000000375fu, 0x0000000000026115u, |
| 0x000000000007233fu, 0x00000000005cca33u, 0x0000000002898765u, 0x00000000260eeeebu, |
| 0x00000000260eeeebu, 0x0000000286fddd9bu, 0x00000016beecca73u, 0x000001b02b930689u, |
| 0x00000870d9df20adu, 0x0000b141df4dae31u, 0x00079dd498567c1bu, 0x00af2e19afc5266du, |
| 0x020d8a4d0f4f7347u, 0x335281867ec241efu, 0x9b3093d46fdd5923u, 0x5e1f9767cc5866b1u, |
| 0x92dd23d6966aced7u, 0xa30d0f4f0a196e5bu, 0x8dc3e5a1977d7755u, 0x2ab8ce915831734bu, |
| 0x2ab8ce915831734bu, 0x81d2a0bc5e5fdcabu, 0x9efcac82445da75bu, 0xbc8b95cf58cde171u, |
| 0xa0e8444a1f3cecf9u, 0x4191deb683ce3ffdu, 0xddd3878bc84ebfc7u, 0xcb39a64b83ff3751u, |
| 0xf8203f7993fc1495u, 0xbd2a2a78b35f4bddu, 0x84757be6b6d13921u, 0x3fbbcfc0b524988bu, |
| 0xbd11ed47c8928df9u, 0x3c26b59e41c2f4c5u, 0x677a5137e883fdb3u, 0xff74e943b03b93ddu, |
| 0xfe5ebbcb10b2bb97u, 0xb021f1de3235e7e7u, 0x33509eb2e743a58fu, 0x390f9da41279fb7du, |
| 0xe5cb0154f031c559u, 0x93074695ba4ddb6du, 0x81c471caa636247fu, 0xe1347289b5a1d749u, |
| 0x286f21c3f76ce2ffu, 0x00be84a2173e8ac7u, 0x1595065ca215b88bu, 0xf95877595b018809u, |
| 0x9c2efe3c5516f887u, 0x373294604679382bu, 0xaf1ff7a888adcd35u, 0x18ddf279a2c5800bu, |
| 0x18ddf279a2c5800bu, 0x505a90e2542582cbu, 0x5bacad2cd8d5dc2bu, 0xfe3152bcbff89f41u, |
| 0xe1467e88bf829351u, 0xb8001adb9e31b4d5u, 0x2803ac06a0cbb91fu, 0x1904b5d698805799u, |
| 0xe12a648b5c831461u, 0x3516abbd6160cfa9u, 0xac46d25f12fe036du, 0x78bfa1da906b00efu, |
| 0xf6390338b7f111bdu, 0x0f25f80f538255d9u, 0x4ec8ca55b8db140fu, 0x4ff670740b9b30a1u, |
| 0x8fd032443a07f325u, 0x80dfe7965c83eeb5u, 0xa3dc1714d1213afdu, 0x205b7bbfcdc62007u, |
| 0xa78126bbe140a093u, 0x9de1dc61ca7550cfu, 0x84f0046d01b492c5u, 0x2d91810b945de0f3u, |
| 0xf5408b7f6008aa71u, 0x43707f4863034149u, 0xdac65fb9679279d5u, 0xc48406e7d1114eb7u, |
| 0xa7dc9ed3c88e1271u, 0xfb25b2efdb9cb30du, 0x1bebda0951c4df63u, 0x5c85e975580ee5bdu, |
| 0x1591bc60082cb137u, 0x2c38606318ef25d7u, 0x76ca72f7c5c63e27u, 0xf04a75d17baa0915u, |
| 0x77458175139ae30du, 0x0e6c1330bc1b9421u, 0xdf87d2b5797e8293u, 0xefa5c703e1e68925u, |
| 0x2b6b1b3278b4f6e1u, 0xceee27b382394249u, 0xd74e3829f5dab91du, 0xfdb17989c26b5f1fu, |
| 0xc1b7d18781530845u, 0x7b4436b2105a8561u, 0x7ba7c0418372a7d7u, 0x9dbc5c67feb6c639u, |
| 0x502686d7f6ff6b8fu, 0x6101855406be7a1fu, 0x9956afb5806930e7u, 0xe1f0ee88af40f7c5u, |
| 0x984b057bda5c1151u, 0x9a49819acc13ea05u, 0x8ef0dead0896ef27u, 0x71f7826efe292b21u, |
| 0xad80a480e46986efu, 0x01cdc0ebf5e0c6f7u, 0x6e06f839968f68dbu, 0xdd5943ab56e76139u, |
| 0xcdcf31bf8604c5e7u, 0x7e2b4a847054a1cbu, 0x0ca75697a4d3d0f5u, 0x4703f53ac514a98bu, |
| }; |
| |
| /* inverses of reduced_factorial_odd_part values modulo 2**64. |
| |
| Python code to generate the values: |
| |
| import math.integer |
| |
| for n in range(128): |
| fac = math.integer.factorial(n) |
| fac_odd_part = fac // (fac & -fac) |
| inverted_fac_odd_part = pow(fac_odd_part, -1, 2**64) |
| print(f"{inverted_fac_odd_part:#018x}u") |
| */ |
| static const uint64_t inverted_factorial_odd_part[] = { |
| 0x0000000000000001u, 0x0000000000000001u, 0x0000000000000001u, 0xaaaaaaaaaaaaaaabu, |
| 0xaaaaaaaaaaaaaaabu, 0xeeeeeeeeeeeeeeefu, 0x4fa4fa4fa4fa4fa5u, 0x2ff2ff2ff2ff2ff3u, |
| 0x2ff2ff2ff2ff2ff3u, 0x938cc70553e3771bu, 0xb71c27cddd93e49fu, 0xb38e3229fcdee63du, |
| 0xe684bb63544a4cbfu, 0xc2f684917ca340fbu, 0xf747c9cba417526du, 0xbb26eb51d7bd49c3u, |
| 0xbb26eb51d7bd49c3u, 0xb0a7efb985294093u, 0xbe4b8c69f259eabbu, 0x6854d17ed6dc4fb9u, |
| 0xe1aa904c915f4325u, 0x3b8206df131cead1u, 0x79c6009fea76fe13u, 0xd8c5d381633cd365u, |
| 0x4841f12b21144677u, 0x4a91ff68200b0d0fu, 0x8f9513a58c4f9e8bu, 0x2b3e690621a42251u, |
| 0x4f520f00e03c04e7u, 0x2edf84ee600211d3u, 0xadcaa2764aaacdfdu, 0x161f4f9033f4fe63u, |
| 0x161f4f9033f4fe63u, 0xbada2932ea4d3e03u, 0xcec189f3efaa30d3u, 0xf7475bb68330bf91u, |
| 0x37eb7bf7d5b01549u, 0x46b35660a4e91555u, 0xa567c12d81f151f7u, 0x4c724007bb2071b1u, |
| 0x0f4a0cce58a016bdu, 0xfa21068e66106475u, 0x244ab72b5a318ae1u, 0x366ce67e080d0f23u, |
| 0xd666fdae5dd2a449u, 0xd740ddd0acc06a0du, 0xb050bbbb28e6f97bu, 0x70b003fe890a5c75u, |
| 0xd03aabff83037427u, 0x13ec4ca72c783bd7u, 0x90282c06afdbd96fu, 0x4414ddb9db4a95d5u, |
| 0xa2c68735ae6832e9u, 0xbf72d71455676665u, 0xa8469fab6b759b7fu, 0xc1e55b56e606caf9u, |
| 0x40455630fc4a1cffu, 0x0120a7b0046d16f7u, 0xa7c3553b08faef23u, 0x9f0bfd1b08d48639u, |
| 0xa433ffce9a304d37u, 0xa22ad1d53915c683u, 0xcb6cbc723ba5dd1du, 0x547fb1b8ab9d0ba3u, |
| 0x547fb1b8ab9d0ba3u, 0x8f15a826498852e3u, 0x32e1a03f38880283u, 0x3de4cce63283f0c1u, |
| 0x5dfe6667e4da95b1u, 0xfda6eeeef479e47du, 0xf14de991cc7882dfu, 0xe68db79247630ca9u, |
| 0xa7d6db8207ee8fa1u, 0x255e1f0fcf034499u, 0xc9a8990e43dd7e65u, 0x3279b6f289702e0fu, |
| 0xe7b5905d9b71b195u, 0x03025ba41ff0da69u, 0xb7df3d6d3be55aefu, 0xf89b212ebff2b361u, |
| 0xfe856d095996f0adu, 0xd6e533e9fdf20f9du, 0xf8c0e84a63da3255u, 0xa677876cd91b4db7u, |
| 0x07ed4f97780d7d9bu, 0x90a8705f258db62fu, 0xa41bbb2be31b1c0du, 0x6ec28690b038383bu, |
| 0xdb860c3bb2edd691u, 0x0838286838a980f9u, 0x558417a74b36f77du, 0x71779afc3646ef07u, |
| 0x743cda377ccb6e91u, 0x7fdf9f3fe89153c5u, 0xdc97d25df49b9a4bu, 0x76321a778eb37d95u, |
| 0x7cbb5e27da3bd487u, 0x9cff4ade1a009de7u, 0x70eb166d05c15197u, 0xdcf0460b71d5fe3du, |
| 0x5ac1ee5260b6a3c5u, 0xc922dedfdd78efe1u, 0xe5d381dc3b8eeb9bu, 0xd57e5347bafc6aadu, |
| 0x86939040983acd21u, 0x395b9d69740a4ff9u, 0x1467299c8e43d135u, 0x5fe440fcad975cdfu, |
| 0xcaa9a39794a6ca8du, 0xf61dbd640868dea1u, 0xac09d98d74843be7u, 0x2b103b9e1a6b4809u, |
| 0x2ab92d16960f536fu, 0x6653323d5e3681dfu, 0xefd48c1c0624e2d7u, 0xa496fefe04816f0du, |
| 0x1754a7b07bbdd7b1u, 0x23353c829a3852cdu, 0xbf831261abd59097u, 0x57a8e656df0618e1u, |
| 0x16e9206c3100680fu, 0xadad4c6ee921dac7u, 0x635f2b3860265353u, 0xdd6d0059f44b3d09u, |
| 0xac4dd6b894447dd7u, 0x42ea183eeaa87be3u, 0x15612d1550ee5b5du, 0x226fa19d656cb623u, |
| }; |
| |
| /* exponent of the largest power of 2 dividing factorial(n), for n in range(68) |
| |
| Python code to generate the values: |
| |
| import math.integer |
| |
| for n in range(128): |
| fac = math.integer.factorial(n) |
| fac_trailing_zeros = (fac & -fac).bit_length() - 1 |
| print(fac_trailing_zeros) |
| */ |
| |
| static const uint8_t factorial_trailing_zeros[] = { |
| 0, 0, 1, 1, 3, 3, 4, 4, 7, 7, 8, 8, 10, 10, 11, 11, // 0-15 |
| 15, 15, 16, 16, 18, 18, 19, 19, 22, 22, 23, 23, 25, 25, 26, 26, // 16-31 |
| 31, 31, 32, 32, 34, 34, 35, 35, 38, 38, 39, 39, 41, 41, 42, 42, // 32-47 |
| 46, 46, 47, 47, 49, 49, 50, 50, 53, 53, 54, 54, 56, 56, 57, 57, // 48-63 |
| 63, 63, 64, 64, 66, 66, 67, 67, 70, 70, 71, 71, 73, 73, 74, 74, // 64-79 |
| 78, 78, 79, 79, 81, 81, 82, 82, 85, 85, 86, 86, 88, 88, 89, 89, // 80-95 |
| 94, 94, 95, 95, 97, 97, 98, 98, 101, 101, 102, 102, 104, 104, 105, 105, // 96-111 |
| 109, 109, 110, 110, 112, 112, 113, 113, 116, 116, 117, 117, 119, 119, 120, 120, // 112-127 |
| }; |
| |
| /* Number of permutations and combinations. |
| * P(n, k) = n! / (n-k)! |
| * C(n, k) = P(n, k) / k! |
| */ |
| |
| /* Calculate C(n, k) for n in the 63-bit range. */ |
| static PyObject * |
| perm_comb_small(unsigned long long n, unsigned long long k, int iscomb) |
| { |
| assert(k != 0); |
| |
| /* For small enough n and k the result fits in the 64-bit range and can |
| * be calculated without allocating intermediate PyLong objects. */ |
| if (iscomb) { |
| /* Maps k to the maximal n so that 2*k-1 <= n <= 127 and C(n, k) |
| * fits into a uint64_t. Exclude k = 1, because the second fast |
| * path is faster for this case.*/ |
| static const unsigned char fast_comb_limits1[] = { |
| 0, 0, 127, 127, 127, 127, 127, 127, // 0-7 |
| 127, 127, 127, 127, 127, 127, 127, 127, // 8-15 |
| 116, 105, 97, 91, 86, 82, 78, 76, // 16-23 |
| 74, 72, 71, 70, 69, 68, 68, 67, // 24-31 |
| 67, 67, 67, // 32-34 |
| }; |
| if (k < Py_ARRAY_LENGTH(fast_comb_limits1) && n <= fast_comb_limits1[k]) { |
| /* |
| comb(n, k) fits into a uint64_t. We compute it as |
| |
| comb_odd_part << shift |
| |
| where 2**shift is the largest power of two dividing comb(n, k) |
| and comb_odd_part is comb(n, k) >> shift. comb_odd_part can be |
| calculated efficiently via arithmetic modulo 2**64, using three |
| lookups and two uint64_t multiplications. |
| */ |
| uint64_t comb_odd_part = reduced_factorial_odd_part[n] |
| * inverted_factorial_odd_part[k] |
| * inverted_factorial_odd_part[n - k]; |
| int shift = factorial_trailing_zeros[n] |
| - factorial_trailing_zeros[k] |
| - factorial_trailing_zeros[n - k]; |
| return PyLong_FromUnsignedLongLong(comb_odd_part << shift); |
| } |
| |
| /* Maps k to the maximal n so that 2*k-1 <= n <= 127 and C(n, k)*k |
| * fits into a long long (which is at least 64 bit). Only contains |
| * items larger than in fast_comb_limits1. */ |
| static const unsigned long long fast_comb_limits2[] = { |
| 0, ULLONG_MAX, 4294967296ULL, 3329022, 102570, 13467, 3612, 1449, // 0-7 |
| 746, 453, 308, 227, 178, 147, // 8-13 |
| }; |
| if (k < Py_ARRAY_LENGTH(fast_comb_limits2) && n <= fast_comb_limits2[k]) { |
| /* C(n, k) = C(n, k-1) * (n-k+1) / k */ |
| unsigned long long result = n; |
| for (unsigned long long i = 1; i < k;) { |
| result *= --n; |
| result /= ++i; |
| } |
| return PyLong_FromUnsignedLongLong(result); |
| } |
| } |
| else { |
| /* Maps k to the maximal n so that k <= n and P(n, k) |
| * fits into a long long (which is at least 64 bit). */ |
| static const unsigned long long fast_perm_limits[] = { |
| 0, ULLONG_MAX, 4294967296ULL, 2642246, 65537, 7133, 1627, 568, // 0-7 |
| 259, 142, 88, 61, 45, 36, 30, 26, // 8-15 |
| 24, 22, 21, 20, 20, // 16-20 |
| }; |
| if (k < Py_ARRAY_LENGTH(fast_perm_limits) && n <= fast_perm_limits[k]) { |
| if (n <= 127) { |
| /* P(n, k) fits into a uint64_t. */ |
| uint64_t perm_odd_part = reduced_factorial_odd_part[n] |
| * inverted_factorial_odd_part[n - k]; |
| int shift = factorial_trailing_zeros[n] |
| - factorial_trailing_zeros[n - k]; |
| return PyLong_FromUnsignedLongLong(perm_odd_part << shift); |
| } |
| |
| /* P(n, k) = P(n, k-1) * (n-k+1) */ |
| unsigned long long result = n; |
| for (unsigned long long i = 1; i < k;) { |
| result *= --n; |
| ++i; |
| } |
| return PyLong_FromUnsignedLongLong(result); |
| } |
| } |
| |
| /* For larger n use recursive formulas: |
| * |
| * P(n, k) = P(n, j) * P(n-j, k-j) |
| * C(n, k) = C(n, j) * C(n-j, k-j) // C(k, j) |
| */ |
| unsigned long long j = k / 2; |
| PyObject *a, *b; |
| a = perm_comb_small(n, j, iscomb); |
| if (a == NULL) { |
| return NULL; |
| } |
| b = perm_comb_small(n - j, k - j, iscomb); |
| if (b == NULL) { |
| goto error; |
| } |
| Py_SETREF(a, PyNumber_Multiply(a, b)); |
| Py_DECREF(b); |
| if (iscomb && a != NULL) { |
| b = perm_comb_small(k, j, 1); |
| if (b == NULL) { |
| goto error; |
| } |
| Py_SETREF(a, PyNumber_FloorDivide(a, b)); |
| Py_DECREF(b); |
| } |
| return a; |
| |
| error: |
| Py_DECREF(a); |
| return NULL; |
| } |
| |
| /* Calculate P(n, k) or C(n, k) using recursive formulas. |
| * It is more efficient than sequential multiplication thanks to |
| * Karatsuba multiplication. |
| */ |
| static PyObject * |
| perm_comb(PyObject *n, unsigned long long k, int iscomb) |
| { |
| if (k == 0) { |
| return PyLong_FromLong(1); |
| } |
| if (k == 1) { |
| return Py_NewRef(n); |
| } |
| |
| /* P(n, k) = P(n, j) * P(n-j, k-j) */ |
| /* C(n, k) = C(n, j) * C(n-j, k-j) // C(k, j) */ |
| unsigned long long j = k / 2; |
| PyObject *a, *b; |
| a = perm_comb(n, j, iscomb); |
| if (a == NULL) { |
| return NULL; |
| } |
| PyObject *t = PyLong_FromUnsignedLongLong(j); |
| if (t == NULL) { |
| goto error; |
| } |
| n = PyNumber_Subtract(n, t); |
| Py_DECREF(t); |
| if (n == NULL) { |
| goto error; |
| } |
| b = perm_comb(n, k - j, iscomb); |
| Py_DECREF(n); |
| if (b == NULL) { |
| goto error; |
| } |
| Py_SETREF(a, PyNumber_Multiply(a, b)); |
| Py_DECREF(b); |
| if (iscomb && a != NULL) { |
| b = perm_comb_small(k, j, 1); |
| if (b == NULL) { |
| goto error; |
| } |
| Py_SETREF(a, PyNumber_FloorDivide(a, b)); |
| Py_DECREF(b); |
| } |
| return a; |
| |
| error: |
| Py_DECREF(a); |
| return NULL; |
| } |
| |
| /*[clinic input] |
| @permit_long_summary |
| math.integer.perm |
| |
| n: object |
| k: object = None |
| / |
| |
| Number of ways to choose k items from n items without repetition and with order. |
| |
| Evaluates to n! / (n - k)! when k <= n and evaluates |
| to zero when k > n. |
| |
| If k is not specified or is None, then k defaults to n |
| and the function returns n!. |
| |
| Raises ValueError if either of the arguments are negative. |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| math_integer_perm_impl(PyObject *module, PyObject *n, PyObject *k) |
| /*[clinic end generated code: output=9f9b96cd73a94de4 input=fd627e5a09dd5116]*/ |
| { |
| PyObject *result = NULL; |
| int overflow, cmp; |
| long long ki, ni; |
| |
| if (k == Py_None) { |
| return math_integer_factorial(module, n); |
| } |
| n = PyNumber_Index(n); |
| if (n == NULL) { |
| return NULL; |
| } |
| k = PyNumber_Index(k); |
| if (k == NULL) { |
| Py_DECREF(n); |
| return NULL; |
| } |
| assert(PyLong_CheckExact(n) && PyLong_CheckExact(k)); |
| |
| if (_PyLong_IsNegative((PyLongObject *)n)) { |
| PyErr_SetString(PyExc_ValueError, |
| "n must be a non-negative integer"); |
| goto error; |
| } |
| if (_PyLong_IsNegative((PyLongObject *)k)) { |
| PyErr_SetString(PyExc_ValueError, |
| "k must be a non-negative integer"); |
| goto error; |
| } |
| |
| cmp = PyObject_RichCompareBool(n, k, Py_LT); |
| if (cmp != 0) { |
| if (cmp > 0) { |
| result = PyLong_FromLong(0); |
| goto done; |
| } |
| goto error; |
| } |
| |
| ki = PyLong_AsLongLongAndOverflow(k, &overflow); |
| assert(overflow >= 0 && !PyErr_Occurred()); |
| if (overflow > 0) { |
| PyErr_Format(PyExc_OverflowError, |
| "k must not exceed %lld", |
| LLONG_MAX); |
| goto error; |
| } |
| assert(ki >= 0); |
| |
| ni = PyLong_AsLongLongAndOverflow(n, &overflow); |
| assert(overflow >= 0 && !PyErr_Occurred()); |
| if (!overflow && ki > 1) { |
| assert(ni >= 0); |
| result = perm_comb_small((unsigned long long)ni, |
| (unsigned long long)ki, 0); |
| } |
| else { |
| result = perm_comb(n, (unsigned long long)ki, 0); |
| } |
| |
| done: |
| Py_DECREF(n); |
| Py_DECREF(k); |
| return result; |
| |
| error: |
| Py_DECREF(n); |
| Py_DECREF(k); |
| return NULL; |
| } |
| |
| /*[clinic input] |
| @permit_long_summary |
| math.integer.comb |
| |
| n: object |
| k: object |
| / |
| |
| Number of ways to choose k items from n items without repetition and without order. |
| |
| Evaluates to n! / (k! * (n - k)!) when k <= n and evaluates |
| to zero when k > n. |
| |
| Also called the binomial coefficient because it is equivalent |
| to the coefficient of k-th term in polynomial expansion of the |
| expression (1 + x)**n. |
| |
| Raises ValueError if either of the arguments are negative. |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| math_integer_comb_impl(PyObject *module, PyObject *n, PyObject *k) |
| /*[clinic end generated code: output=c2c9cdfe0d5dd43f input=8cc12726b682c4a5]*/ |
| { |
| PyObject *result = NULL, *temp; |
| int overflow, cmp; |
| long long ki, ni; |
| |
| n = PyNumber_Index(n); |
| if (n == NULL) { |
| return NULL; |
| } |
| k = PyNumber_Index(k); |
| if (k == NULL) { |
| Py_DECREF(n); |
| return NULL; |
| } |
| assert(PyLong_CheckExact(n) && PyLong_CheckExact(k)); |
| |
| if (_PyLong_IsNegative((PyLongObject *)n)) { |
| PyErr_SetString(PyExc_ValueError, |
| "n must be a non-negative integer"); |
| goto error; |
| } |
| if (_PyLong_IsNegative((PyLongObject *)k)) { |
| PyErr_SetString(PyExc_ValueError, |
| "k must be a non-negative integer"); |
| goto error; |
| } |
| |
| ni = PyLong_AsLongLongAndOverflow(n, &overflow); |
| assert(overflow >= 0 && !PyErr_Occurred()); |
| if (!overflow) { |
| assert(ni >= 0); |
| ki = PyLong_AsLongLongAndOverflow(k, &overflow); |
| assert(overflow >= 0 && !PyErr_Occurred()); |
| if (overflow || ki > ni) { |
| result = PyLong_FromLong(0); |
| goto done; |
| } |
| assert(ki >= 0); |
| |
| ki = Py_MIN(ki, ni - ki); |
| if (ki > 1) { |
| result = perm_comb_small((unsigned long long)ni, |
| (unsigned long long)ki, 1); |
| goto done; |
| } |
| /* For k == 1 just return the original n in perm_comb(). */ |
| } |
| else { |
| /* k = min(k, n - k) */ |
| temp = PyNumber_Subtract(n, k); |
| if (temp == NULL) { |
| goto error; |
| } |
| assert(PyLong_Check(temp)); |
| if (_PyLong_IsNegative((PyLongObject *)temp)) { |
| Py_DECREF(temp); |
| result = PyLong_FromLong(0); |
| goto done; |
| } |
| cmp = PyObject_RichCompareBool(temp, k, Py_LT); |
| if (cmp > 0) { |
| Py_SETREF(k, temp); |
| } |
| else { |
| Py_DECREF(temp); |
| if (cmp < 0) { |
| goto error; |
| } |
| } |
| |
| ki = PyLong_AsLongLongAndOverflow(k, &overflow); |
| assert(overflow >= 0 && !PyErr_Occurred()); |
| if (overflow) { |
| PyErr_Format(PyExc_OverflowError, |
| "min(n - k, k) must not exceed %lld", |
| LLONG_MAX); |
| goto error; |
| } |
| assert(ki >= 0); |
| } |
| |
| result = perm_comb(n, (unsigned long long)ki, 1); |
| |
| done: |
| Py_DECREF(n); |
| Py_DECREF(k); |
| return result; |
| |
| error: |
| Py_DECREF(n); |
| Py_DECREF(k); |
| return NULL; |
| } |
| |
| |
| static PyMethodDef math_integer_methods[] = { |
| MATH_INTEGER_COMB_METHODDEF |
| MATH_INTEGER_FACTORIAL_METHODDEF |
| MATH_INTEGER_GCD_METHODDEF |
| MATH_INTEGER_ISQRT_METHODDEF |
| MATH_INTEGER_LCM_METHODDEF |
| MATH_INTEGER_PERM_METHODDEF |
| {NULL, NULL} /* sentinel */ |
| }; |
| |
| static int |
| math_integer_exec(PyObject *module) |
| { |
| /* Fix the __name__ attribute of the module and the __module__ attribute |
| * of its functions. |
| */ |
| PyObject *name = PyUnicode_FromString("math.integer"); |
| if (name == NULL) { |
| return -1; |
| } |
| if (PyObject_SetAttrString(module, "__name__", name) < 0) { |
| Py_DECREF(name); |
| return -1; |
| } |
| for (const PyMethodDef *m = math_integer_methods; m->ml_name; m++) { |
| PyObject *obj = PyObject_GetAttrString(module, m->ml_name); |
| if (obj == NULL) { |
| Py_DECREF(name); |
| return -1; |
| } |
| if (PyObject_SetAttrString(obj, "__module__", name) < 0) { |
| Py_DECREF(name); |
| Py_DECREF(obj); |
| return -1; |
| } |
| Py_DECREF(obj); |
| } |
| Py_DECREF(name); |
| return 0; |
| } |
| |
| static PyModuleDef_Slot math_integer_slots[] = { |
| {Py_mod_exec, math_integer_exec}, |
| {Py_mod_multiple_interpreters, Py_MOD_PER_INTERPRETER_GIL_SUPPORTED}, |
| {Py_mod_gil, Py_MOD_GIL_NOT_USED}, |
| {0, NULL} |
| }; |
| |
| PyDoc_STRVAR(module_doc, |
| "This module provides access to integer related mathematical functions."); |
| |
| static struct PyModuleDef math_integer_module = { |
| PyModuleDef_HEAD_INIT, |
| .m_name = "math.integer", |
| .m_doc = module_doc, |
| .m_size = 0, |
| .m_methods = math_integer_methods, |
| .m_slots = math_integer_slots, |
| }; |
| |
| PyMODINIT_FUNC |
| PyInit__math_integer(void) |
| { |
| return PyModuleDef_Init(&math_integer_module); |
| } |