|  | /**************************************************************** | 
|  | * | 
|  | * The author of this software is David M. Gay. | 
|  | * | 
|  | * Copyright (c) 1991, 2000, 2001 by Lucent Technologies. | 
|  | * | 
|  | * Permission to use, copy, modify, and distribute this software for any | 
|  | * purpose without fee is hereby granted, provided that this entire notice | 
|  | * is included in all copies of any software which is or includes a copy | 
|  | * or modification of this software and in all copies of the supporting | 
|  | * documentation for such software. | 
|  | * | 
|  | * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED | 
|  | * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY | 
|  | * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY | 
|  | * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. | 
|  | * | 
|  | ***************************************************************/ | 
|  |  | 
|  | /**************************************************************** | 
|  | * This is dtoa.c by David M. Gay, downloaded from | 
|  | * http://www.netlib.org/fp/dtoa.c on April 15, 2009 and modified for | 
|  | * inclusion into the Python core by Mark E. T. Dickinson and Eric V. Smith. | 
|  | * | 
|  | * Please remember to check http://www.netlib.org/fp regularly (and especially | 
|  | * before any Python release) for bugfixes and updates. | 
|  | * | 
|  | * The major modifications from Gay's original code are as follows: | 
|  | * | 
|  | *  0. The original code has been specialized to Python's needs by removing | 
|  | *     many of the #ifdef'd sections.  In particular, code to support VAX and | 
|  | *     IBM floating-point formats, hex NaNs, hex floats, locale-aware | 
|  | *     treatment of the decimal point, and setting of the inexact flag have | 
|  | *     been removed. | 
|  | * | 
|  | *  1. We use PyMem_Malloc and PyMem_Free in place of malloc and free. | 
|  | * | 
|  | *  2. The public functions strtod, dtoa and freedtoa all now have | 
|  | *     a _Py_dg_ prefix. | 
|  | * | 
|  | *  3. Instead of assuming that PyMem_Malloc always succeeds, we thread | 
|  | *     PyMem_Malloc failures through the code.  The functions | 
|  | * | 
|  | *       Balloc, multadd, s2b, i2b, mult, pow5mult, lshift, diff, d2b | 
|  | * | 
|  | *     of return type *Bigint all return NULL to indicate a malloc failure. | 
|  | *     Similarly, rv_alloc and nrv_alloc (return type char *) return NULL on | 
|  | *     failure.  bigcomp now has return type int (it used to be void) and | 
|  | *     returns -1 on failure and 0 otherwise.  _Py_dg_dtoa returns NULL | 
|  | *     on failure.  _Py_dg_strtod indicates failure due to malloc failure | 
|  | *     by returning -1.0, setting errno=ENOMEM and *se to s00. | 
|  | * | 
|  | *  4. The static variable dtoa_result has been removed.  Callers of | 
|  | *     _Py_dg_dtoa are expected to call _Py_dg_freedtoa to free | 
|  | *     the memory allocated by _Py_dg_dtoa. | 
|  | * | 
|  | *  5. The code has been reformatted to better fit with Python's | 
|  | *     C style guide (PEP 7). | 
|  | * | 
|  | *  6. A bug in the memory allocation has been fixed: to avoid FREEing memory | 
|  | *     that hasn't been MALLOC'ed, private_mem should only be used when k <= | 
|  | *     Kmax. | 
|  | * | 
|  | *  7. _Py_dg_strtod has been modified so that it doesn't accept strings with | 
|  | *     leading whitespace. | 
|  | * | 
|  | ***************************************************************/ | 
|  |  | 
|  | /* Please send bug reports for the original dtoa.c code to David M. Gay (dmg | 
|  | * at acm dot org, with " at " changed at "@" and " dot " changed to "."). | 
|  | * Please report bugs for this modified version using the Python issue tracker | 
|  | * (http://bugs.python.org). */ | 
|  |  | 
|  | /* On a machine with IEEE extended-precision registers, it is | 
|  | * necessary to specify double-precision (53-bit) rounding precision | 
|  | * before invoking strtod or dtoa.  If the machine uses (the equivalent | 
|  | * of) Intel 80x87 arithmetic, the call | 
|  | *      _control87(PC_53, MCW_PC); | 
|  | * does this with many compilers.  Whether this or another call is | 
|  | * appropriate depends on the compiler; for this to work, it may be | 
|  | * necessary to #include "float.h" or another system-dependent header | 
|  | * file. | 
|  | */ | 
|  |  | 
|  | /* strtod for IEEE-, VAX-, and IBM-arithmetic machines. | 
|  | * | 
|  | * This strtod returns a nearest machine number to the input decimal | 
|  | * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are | 
|  | * broken by the IEEE round-even rule.  Otherwise ties are broken by | 
|  | * biased rounding (add half and chop). | 
|  | * | 
|  | * Inspired loosely by William D. Clinger's paper "How to Read Floating | 
|  | * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101]. | 
|  | * | 
|  | * Modifications: | 
|  | * | 
|  | *      1. We only require IEEE, IBM, or VAX double-precision | 
|  | *              arithmetic (not IEEE double-extended). | 
|  | *      2. We get by with floating-point arithmetic in a case that | 
|  | *              Clinger missed -- when we're computing d * 10^n | 
|  | *              for a small integer d and the integer n is not too | 
|  | *              much larger than 22 (the maximum integer k for which | 
|  | *              we can represent 10^k exactly), we may be able to | 
|  | *              compute (d*10^k) * 10^(e-k) with just one roundoff. | 
|  | *      3. Rather than a bit-at-a-time adjustment of the binary | 
|  | *              result in the hard case, we use floating-point | 
|  | *              arithmetic to determine the adjustment to within | 
|  | *              one bit; only in really hard cases do we need to | 
|  | *              compute a second residual. | 
|  | *      4. Because of 3., we don't need a large table of powers of 10 | 
|  | *              for ten-to-e (just some small tables, e.g. of 10^k | 
|  | *              for 0 <= k <= 22). | 
|  | */ | 
|  |  | 
|  | /* Linking of Python's #defines to Gay's #defines starts here. */ | 
|  |  | 
|  | #include "Python.h" | 
|  |  | 
|  | /* if PY_NO_SHORT_FLOAT_REPR is defined, then don't even try to compile | 
|  | the following code */ | 
|  | #ifndef PY_NO_SHORT_FLOAT_REPR | 
|  |  | 
|  | #include "float.h" | 
|  |  | 
|  | #define MALLOC PyMem_Malloc | 
|  | #define FREE PyMem_Free | 
|  |  | 
|  | /* This code should also work for ARM mixed-endian format on little-endian | 
|  | machines, where doubles have byte order 45670123 (in increasing address | 
|  | order, 0 being the least significant byte). */ | 
|  | #ifdef DOUBLE_IS_LITTLE_ENDIAN_IEEE754 | 
|  | #  define IEEE_8087 | 
|  | #endif | 
|  | #if defined(DOUBLE_IS_BIG_ENDIAN_IEEE754) ||  \ | 
|  | defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754) | 
|  | #  define IEEE_MC68k | 
|  | #endif | 
|  | #if defined(IEEE_8087) + defined(IEEE_MC68k) != 1 | 
|  | #error "Exactly one of IEEE_8087 or IEEE_MC68k should be defined." | 
|  | #endif | 
|  |  | 
|  | /* The code below assumes that the endianness of integers matches the | 
|  | endianness of the two 32-bit words of a double.  Check this. */ | 
|  | #if defined(WORDS_BIGENDIAN) && (defined(DOUBLE_IS_LITTLE_ENDIAN_IEEE754) || \ | 
|  | defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754)) | 
|  | #error "doubles and ints have incompatible endianness" | 
|  | #endif | 
|  |  | 
|  | #if !defined(WORDS_BIGENDIAN) && defined(DOUBLE_IS_BIG_ENDIAN_IEEE754) | 
|  | #error "doubles and ints have incompatible endianness" | 
|  | #endif | 
|  |  | 
|  |  | 
|  | typedef uint32_t ULong; | 
|  | typedef int32_t Long; | 
|  | typedef uint64_t ULLong; | 
|  |  | 
|  | #undef DEBUG | 
|  | #ifdef Py_DEBUG | 
|  | #define DEBUG | 
|  | #endif | 
|  |  | 
|  | /* End Python #define linking */ | 
|  |  | 
|  | #ifdef DEBUG | 
|  | #define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);} | 
|  | #endif | 
|  |  | 
|  | #ifndef PRIVATE_MEM | 
|  | #define PRIVATE_MEM 2304 | 
|  | #endif | 
|  | #define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double)) | 
|  | static double private_mem[PRIVATE_mem], *pmem_next = private_mem; | 
|  |  | 
|  | #ifdef __cplusplus | 
|  | extern "C" { | 
|  | #endif | 
|  |  | 
|  | typedef union { double d; ULong L[2]; } U; | 
|  |  | 
|  | #ifdef IEEE_8087 | 
|  | #define word0(x) (x)->L[1] | 
|  | #define word1(x) (x)->L[0] | 
|  | #else | 
|  | #define word0(x) (x)->L[0] | 
|  | #define word1(x) (x)->L[1] | 
|  | #endif | 
|  | #define dval(x) (x)->d | 
|  |  | 
|  | #ifndef STRTOD_DIGLIM | 
|  | #define STRTOD_DIGLIM 40 | 
|  | #endif | 
|  |  | 
|  | /* maximum permitted exponent value for strtod; exponents larger than | 
|  | MAX_ABS_EXP in absolute value get truncated to +-MAX_ABS_EXP.  MAX_ABS_EXP | 
|  | should fit into an int. */ | 
|  | #ifndef MAX_ABS_EXP | 
|  | #define MAX_ABS_EXP 1100000000U | 
|  | #endif | 
|  | /* Bound on length of pieces of input strings in _Py_dg_strtod; specifically, | 
|  | this is used to bound the total number of digits ignoring leading zeros and | 
|  | the number of digits that follow the decimal point.  Ideally, MAX_DIGITS | 
|  | should satisfy MAX_DIGITS + 400 < MAX_ABS_EXP; that ensures that the | 
|  | exponent clipping in _Py_dg_strtod can't affect the value of the output. */ | 
|  | #ifndef MAX_DIGITS | 
|  | #define MAX_DIGITS 1000000000U | 
|  | #endif | 
|  |  | 
|  | /* Guard against trying to use the above values on unusual platforms with ints | 
|  | * of width less than 32 bits. */ | 
|  | #if MAX_ABS_EXP > INT_MAX | 
|  | #error "MAX_ABS_EXP should fit in an int" | 
|  | #endif | 
|  | #if MAX_DIGITS > INT_MAX | 
|  | #error "MAX_DIGITS should fit in an int" | 
|  | #endif | 
|  |  | 
|  | /* The following definition of Storeinc is appropriate for MIPS processors. | 
|  | * An alternative that might be better on some machines is | 
|  | * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff) | 
|  | */ | 
|  | #if defined(IEEE_8087) | 
|  | #define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b,  \ | 
|  | ((unsigned short *)a)[0] = (unsigned short)c, a++) | 
|  | #else | 
|  | #define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b,  \ | 
|  | ((unsigned short *)a)[1] = (unsigned short)c, a++) | 
|  | #endif | 
|  |  | 
|  | /* #define P DBL_MANT_DIG */ | 
|  | /* Ten_pmax = floor(P*log(2)/log(5)) */ | 
|  | /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */ | 
|  | /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */ | 
|  | /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */ | 
|  |  | 
|  | #define Exp_shift  20 | 
|  | #define Exp_shift1 20 | 
|  | #define Exp_msk1    0x100000 | 
|  | #define Exp_msk11   0x100000 | 
|  | #define Exp_mask  0x7ff00000 | 
|  | #define P 53 | 
|  | #define Nbits 53 | 
|  | #define Bias 1023 | 
|  | #define Emax 1023 | 
|  | #define Emin (-1022) | 
|  | #define Etiny (-1074)  /* smallest denormal is 2**Etiny */ | 
|  | #define Exp_1  0x3ff00000 | 
|  | #define Exp_11 0x3ff00000 | 
|  | #define Ebits 11 | 
|  | #define Frac_mask  0xfffff | 
|  | #define Frac_mask1 0xfffff | 
|  | #define Ten_pmax 22 | 
|  | #define Bletch 0x10 | 
|  | #define Bndry_mask  0xfffff | 
|  | #define Bndry_mask1 0xfffff | 
|  | #define Sign_bit 0x80000000 | 
|  | #define Log2P 1 | 
|  | #define Tiny0 0 | 
|  | #define Tiny1 1 | 
|  | #define Quick_max 14 | 
|  | #define Int_max 14 | 
|  |  | 
|  | #ifndef Flt_Rounds | 
|  | #ifdef FLT_ROUNDS | 
|  | #define Flt_Rounds FLT_ROUNDS | 
|  | #else | 
|  | #define Flt_Rounds 1 | 
|  | #endif | 
|  | #endif /*Flt_Rounds*/ | 
|  |  | 
|  | #define Rounding Flt_Rounds | 
|  |  | 
|  | #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1)) | 
|  | #define Big1 0xffffffff | 
|  |  | 
|  | /* Standard NaN used by _Py_dg_stdnan. */ | 
|  |  | 
|  | #define NAN_WORD0 0x7ff80000 | 
|  | #define NAN_WORD1 0 | 
|  |  | 
|  | /* Bits of the representation of positive infinity. */ | 
|  |  | 
|  | #define POSINF_WORD0 0x7ff00000 | 
|  | #define POSINF_WORD1 0 | 
|  |  | 
|  | /* struct BCinfo is used to pass information from _Py_dg_strtod to bigcomp */ | 
|  |  | 
|  | typedef struct BCinfo BCinfo; | 
|  | struct | 
|  | BCinfo { | 
|  | int e0, nd, nd0, scale; | 
|  | }; | 
|  |  | 
|  | #define FFFFFFFF 0xffffffffUL | 
|  |  | 
|  | #define Kmax 7 | 
|  |  | 
|  | /* struct Bigint is used to represent arbitrary-precision integers.  These | 
|  | integers are stored in sign-magnitude format, with the magnitude stored as | 
|  | an array of base 2**32 digits.  Bigints are always normalized: if x is a | 
|  | Bigint then x->wds >= 1, and either x->wds == 1 or x[wds-1] is nonzero. | 
|  |  | 
|  | The Bigint fields are as follows: | 
|  |  | 
|  | - next is a header used by Balloc and Bfree to keep track of lists | 
|  | of freed Bigints;  it's also used for the linked list of | 
|  | powers of 5 of the form 5**2**i used by pow5mult. | 
|  | - k indicates which pool this Bigint was allocated from | 
|  | - maxwds is the maximum number of words space was allocated for | 
|  | (usually maxwds == 2**k) | 
|  | - sign is 1 for negative Bigints, 0 for positive.  The sign is unused | 
|  | (ignored on inputs, set to 0 on outputs) in almost all operations | 
|  | involving Bigints: a notable exception is the diff function, which | 
|  | ignores signs on inputs but sets the sign of the output correctly. | 
|  | - wds is the actual number of significant words | 
|  | - x contains the vector of words (digits) for this Bigint, from least | 
|  | significant (x[0]) to most significant (x[wds-1]). | 
|  | */ | 
|  |  | 
|  | struct | 
|  | Bigint { | 
|  | struct Bigint *next; | 
|  | int k, maxwds, sign, wds; | 
|  | ULong x[1]; | 
|  | }; | 
|  |  | 
|  | typedef struct Bigint Bigint; | 
|  |  | 
|  | #ifndef Py_USING_MEMORY_DEBUGGER | 
|  |  | 
|  | /* Memory management: memory is allocated from, and returned to, Kmax+1 pools | 
|  | of memory, where pool k (0 <= k <= Kmax) is for Bigints b with b->maxwds == | 
|  | 1 << k.  These pools are maintained as linked lists, with freelist[k] | 
|  | pointing to the head of the list for pool k. | 
|  |  | 
|  | On allocation, if there's no free slot in the appropriate pool, MALLOC is | 
|  | called to get more memory.  This memory is not returned to the system until | 
|  | Python quits.  There's also a private memory pool that's allocated from | 
|  | in preference to using MALLOC. | 
|  |  | 
|  | For Bigints with more than (1 << Kmax) digits (which implies at least 1233 | 
|  | decimal digits), memory is directly allocated using MALLOC, and freed using | 
|  | FREE. | 
|  |  | 
|  | XXX: it would be easy to bypass this memory-management system and | 
|  | translate each call to Balloc into a call to PyMem_Malloc, and each | 
|  | Bfree to PyMem_Free.  Investigate whether this has any significant | 
|  | performance on impact. */ | 
|  |  | 
|  | static Bigint *freelist[Kmax+1]; | 
|  |  | 
|  | /* Allocate space for a Bigint with up to 1<<k digits */ | 
|  |  | 
|  | static Bigint * | 
|  | Balloc(int k) | 
|  | { | 
|  | int x; | 
|  | Bigint *rv; | 
|  | unsigned int len; | 
|  |  | 
|  | if (k <= Kmax && (rv = freelist[k])) | 
|  | freelist[k] = rv->next; | 
|  | else { | 
|  | x = 1 << k; | 
|  | len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1) | 
|  | /sizeof(double); | 
|  | if (k <= Kmax && pmem_next - private_mem + len <= (Py_ssize_t)PRIVATE_mem) { | 
|  | rv = (Bigint*)pmem_next; | 
|  | pmem_next += len; | 
|  | } | 
|  | else { | 
|  | rv = (Bigint*)MALLOC(len*sizeof(double)); | 
|  | if (rv == NULL) | 
|  | return NULL; | 
|  | } | 
|  | rv->k = k; | 
|  | rv->maxwds = x; | 
|  | } | 
|  | rv->sign = rv->wds = 0; | 
|  | return rv; | 
|  | } | 
|  |  | 
|  | /* Free a Bigint allocated with Balloc */ | 
|  |  | 
|  | static void | 
|  | Bfree(Bigint *v) | 
|  | { | 
|  | if (v) { | 
|  | if (v->k > Kmax) | 
|  | FREE((void*)v); | 
|  | else { | 
|  | v->next = freelist[v->k]; | 
|  | freelist[v->k] = v; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | /* Alternative versions of Balloc and Bfree that use PyMem_Malloc and | 
|  | PyMem_Free directly in place of the custom memory allocation scheme above. | 
|  | These are provided for the benefit of memory debugging tools like | 
|  | Valgrind. */ | 
|  |  | 
|  | /* Allocate space for a Bigint with up to 1<<k digits */ | 
|  |  | 
|  | static Bigint * | 
|  | Balloc(int k) | 
|  | { | 
|  | int x; | 
|  | Bigint *rv; | 
|  | unsigned int len; | 
|  |  | 
|  | x = 1 << k; | 
|  | len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1) | 
|  | /sizeof(double); | 
|  |  | 
|  | rv = (Bigint*)MALLOC(len*sizeof(double)); | 
|  | if (rv == NULL) | 
|  | return NULL; | 
|  |  | 
|  | rv->k = k; | 
|  | rv->maxwds = x; | 
|  | rv->sign = rv->wds = 0; | 
|  | return rv; | 
|  | } | 
|  |  | 
|  | /* Free a Bigint allocated with Balloc */ | 
|  |  | 
|  | static void | 
|  | Bfree(Bigint *v) | 
|  | { | 
|  | if (v) { | 
|  | FREE((void*)v); | 
|  | } | 
|  | } | 
|  |  | 
|  | #endif /* Py_USING_MEMORY_DEBUGGER */ | 
|  |  | 
|  | #define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign,   \ | 
|  | y->wds*sizeof(Long) + 2*sizeof(int)) | 
|  |  | 
|  | /* Multiply a Bigint b by m and add a.  Either modifies b in place and returns | 
|  | a pointer to the modified b, or Bfrees b and returns a pointer to a copy. | 
|  | On failure, return NULL.  In this case, b will have been already freed. */ | 
|  |  | 
|  | static Bigint * | 
|  | multadd(Bigint *b, int m, int a)       /* multiply by m and add a */ | 
|  | { | 
|  | int i, wds; | 
|  | ULong *x; | 
|  | ULLong carry, y; | 
|  | Bigint *b1; | 
|  |  | 
|  | wds = b->wds; | 
|  | x = b->x; | 
|  | i = 0; | 
|  | carry = a; | 
|  | do { | 
|  | y = *x * (ULLong)m + carry; | 
|  | carry = y >> 32; | 
|  | *x++ = (ULong)(y & FFFFFFFF); | 
|  | } | 
|  | while(++i < wds); | 
|  | if (carry) { | 
|  | if (wds >= b->maxwds) { | 
|  | b1 = Balloc(b->k+1); | 
|  | if (b1 == NULL){ | 
|  | Bfree(b); | 
|  | return NULL; | 
|  | } | 
|  | Bcopy(b1, b); | 
|  | Bfree(b); | 
|  | b = b1; | 
|  | } | 
|  | b->x[wds++] = (ULong)carry; | 
|  | b->wds = wds; | 
|  | } | 
|  | return b; | 
|  | } | 
|  |  | 
|  | /* convert a string s containing nd decimal digits (possibly containing a | 
|  | decimal separator at position nd0, which is ignored) to a Bigint.  This | 
|  | function carries on where the parsing code in _Py_dg_strtod leaves off: on | 
|  | entry, y9 contains the result of converting the first 9 digits.  Returns | 
|  | NULL on failure. */ | 
|  |  | 
|  | static Bigint * | 
|  | s2b(const char *s, int nd0, int nd, ULong y9) | 
|  | { | 
|  | Bigint *b; | 
|  | int i, k; | 
|  | Long x, y; | 
|  |  | 
|  | x = (nd + 8) / 9; | 
|  | for(k = 0, y = 1; x > y; y <<= 1, k++) ; | 
|  | b = Balloc(k); | 
|  | if (b == NULL) | 
|  | return NULL; | 
|  | b->x[0] = y9; | 
|  | b->wds = 1; | 
|  |  | 
|  | if (nd <= 9) | 
|  | return b; | 
|  |  | 
|  | s += 9; | 
|  | for (i = 9; i < nd0; i++) { | 
|  | b = multadd(b, 10, *s++ - '0'); | 
|  | if (b == NULL) | 
|  | return NULL; | 
|  | } | 
|  | s++; | 
|  | for(; i < nd; i++) { | 
|  | b = multadd(b, 10, *s++ - '0'); | 
|  | if (b == NULL) | 
|  | return NULL; | 
|  | } | 
|  | return b; | 
|  | } | 
|  |  | 
|  | /* count leading 0 bits in the 32-bit integer x. */ | 
|  |  | 
|  | static int | 
|  | hi0bits(ULong x) | 
|  | { | 
|  | int k = 0; | 
|  |  | 
|  | if (!(x & 0xffff0000)) { | 
|  | k = 16; | 
|  | x <<= 16; | 
|  | } | 
|  | if (!(x & 0xff000000)) { | 
|  | k += 8; | 
|  | x <<= 8; | 
|  | } | 
|  | if (!(x & 0xf0000000)) { | 
|  | k += 4; | 
|  | x <<= 4; | 
|  | } | 
|  | if (!(x & 0xc0000000)) { | 
|  | k += 2; | 
|  | x <<= 2; | 
|  | } | 
|  | if (!(x & 0x80000000)) { | 
|  | k++; | 
|  | if (!(x & 0x40000000)) | 
|  | return 32; | 
|  | } | 
|  | return k; | 
|  | } | 
|  |  | 
|  | /* count trailing 0 bits in the 32-bit integer y, and shift y right by that | 
|  | number of bits. */ | 
|  |  | 
|  | static int | 
|  | lo0bits(ULong *y) | 
|  | { | 
|  | int k; | 
|  | ULong x = *y; | 
|  |  | 
|  | if (x & 7) { | 
|  | if (x & 1) | 
|  | return 0; | 
|  | if (x & 2) { | 
|  | *y = x >> 1; | 
|  | return 1; | 
|  | } | 
|  | *y = x >> 2; | 
|  | return 2; | 
|  | } | 
|  | k = 0; | 
|  | if (!(x & 0xffff)) { | 
|  | k = 16; | 
|  | x >>= 16; | 
|  | } | 
|  | if (!(x & 0xff)) { | 
|  | k += 8; | 
|  | x >>= 8; | 
|  | } | 
|  | if (!(x & 0xf)) { | 
|  | k += 4; | 
|  | x >>= 4; | 
|  | } | 
|  | if (!(x & 0x3)) { | 
|  | k += 2; | 
|  | x >>= 2; | 
|  | } | 
|  | if (!(x & 1)) { | 
|  | k++; | 
|  | x >>= 1; | 
|  | if (!x) | 
|  | return 32; | 
|  | } | 
|  | *y = x; | 
|  | return k; | 
|  | } | 
|  |  | 
|  | /* convert a small nonnegative integer to a Bigint */ | 
|  |  | 
|  | static Bigint * | 
|  | i2b(int i) | 
|  | { | 
|  | Bigint *b; | 
|  |  | 
|  | b = Balloc(1); | 
|  | if (b == NULL) | 
|  | return NULL; | 
|  | b->x[0] = i; | 
|  | b->wds = 1; | 
|  | return b; | 
|  | } | 
|  |  | 
|  | /* multiply two Bigints.  Returns a new Bigint, or NULL on failure.  Ignores | 
|  | the signs of a and b. */ | 
|  |  | 
|  | static Bigint * | 
|  | mult(Bigint *a, Bigint *b) | 
|  | { | 
|  | Bigint *c; | 
|  | int k, wa, wb, wc; | 
|  | ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0; | 
|  | ULong y; | 
|  | ULLong carry, z; | 
|  |  | 
|  | if ((!a->x[0] && a->wds == 1) || (!b->x[0] && b->wds == 1)) { | 
|  | c = Balloc(0); | 
|  | if (c == NULL) | 
|  | return NULL; | 
|  | c->wds = 1; | 
|  | c->x[0] = 0; | 
|  | return c; | 
|  | } | 
|  |  | 
|  | if (a->wds < b->wds) { | 
|  | c = a; | 
|  | a = b; | 
|  | b = c; | 
|  | } | 
|  | k = a->k; | 
|  | wa = a->wds; | 
|  | wb = b->wds; | 
|  | wc = wa + wb; | 
|  | if (wc > a->maxwds) | 
|  | k++; | 
|  | c = Balloc(k); | 
|  | if (c == NULL) | 
|  | return NULL; | 
|  | for(x = c->x, xa = x + wc; x < xa; x++) | 
|  | *x = 0; | 
|  | xa = a->x; | 
|  | xae = xa + wa; | 
|  | xb = b->x; | 
|  | xbe = xb + wb; | 
|  | xc0 = c->x; | 
|  | for(; xb < xbe; xc0++) { | 
|  | if ((y = *xb++)) { | 
|  | x = xa; | 
|  | xc = xc0; | 
|  | carry = 0; | 
|  | do { | 
|  | z = *x++ * (ULLong)y + *xc + carry; | 
|  | carry = z >> 32; | 
|  | *xc++ = (ULong)(z & FFFFFFFF); | 
|  | } | 
|  | while(x < xae); | 
|  | *xc = (ULong)carry; | 
|  | } | 
|  | } | 
|  | for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ; | 
|  | c->wds = wc; | 
|  | return c; | 
|  | } | 
|  |  | 
|  | #ifndef Py_USING_MEMORY_DEBUGGER | 
|  |  | 
|  | /* p5s is a linked list of powers of 5 of the form 5**(2**i), i >= 2 */ | 
|  |  | 
|  | static Bigint *p5s; | 
|  |  | 
|  | /* multiply the Bigint b by 5**k.  Returns a pointer to the result, or NULL on | 
|  | failure; if the returned pointer is distinct from b then the original | 
|  | Bigint b will have been Bfree'd.   Ignores the sign of b. */ | 
|  |  | 
|  | static Bigint * | 
|  | pow5mult(Bigint *b, int k) | 
|  | { | 
|  | Bigint *b1, *p5, *p51; | 
|  | int i; | 
|  | static const int p05[3] = { 5, 25, 125 }; | 
|  |  | 
|  | if ((i = k & 3)) { | 
|  | b = multadd(b, p05[i-1], 0); | 
|  | if (b == NULL) | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (!(k >>= 2)) | 
|  | return b; | 
|  | p5 = p5s; | 
|  | if (!p5) { | 
|  | /* first time */ | 
|  | p5 = i2b(625); | 
|  | if (p5 == NULL) { | 
|  | Bfree(b); | 
|  | return NULL; | 
|  | } | 
|  | p5s = p5; | 
|  | p5->next = 0; | 
|  | } | 
|  | for(;;) { | 
|  | if (k & 1) { | 
|  | b1 = mult(b, p5); | 
|  | Bfree(b); | 
|  | b = b1; | 
|  | if (b == NULL) | 
|  | return NULL; | 
|  | } | 
|  | if (!(k >>= 1)) | 
|  | break; | 
|  | p51 = p5->next; | 
|  | if (!p51) { | 
|  | p51 = mult(p5,p5); | 
|  | if (p51 == NULL) { | 
|  | Bfree(b); | 
|  | return NULL; | 
|  | } | 
|  | p51->next = 0; | 
|  | p5->next = p51; | 
|  | } | 
|  | p5 = p51; | 
|  | } | 
|  | return b; | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | /* Version of pow5mult that doesn't cache powers of 5. Provided for | 
|  | the benefit of memory debugging tools like Valgrind. */ | 
|  |  | 
|  | static Bigint * | 
|  | pow5mult(Bigint *b, int k) | 
|  | { | 
|  | Bigint *b1, *p5, *p51; | 
|  | int i; | 
|  | static const int p05[3] = { 5, 25, 125 }; | 
|  |  | 
|  | if ((i = k & 3)) { | 
|  | b = multadd(b, p05[i-1], 0); | 
|  | if (b == NULL) | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (!(k >>= 2)) | 
|  | return b; | 
|  | p5 = i2b(625); | 
|  | if (p5 == NULL) { | 
|  | Bfree(b); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | for(;;) { | 
|  | if (k & 1) { | 
|  | b1 = mult(b, p5); | 
|  | Bfree(b); | 
|  | b = b1; | 
|  | if (b == NULL) { | 
|  | Bfree(p5); | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  | if (!(k >>= 1)) | 
|  | break; | 
|  | p51 = mult(p5, p5); | 
|  | Bfree(p5); | 
|  | p5 = p51; | 
|  | if (p5 == NULL) { | 
|  | Bfree(b); | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  | Bfree(p5); | 
|  | return b; | 
|  | } | 
|  |  | 
|  | #endif /* Py_USING_MEMORY_DEBUGGER */ | 
|  |  | 
|  | /* shift a Bigint b left by k bits.  Return a pointer to the shifted result, | 
|  | or NULL on failure.  If the returned pointer is distinct from b then the | 
|  | original b will have been Bfree'd.   Ignores the sign of b. */ | 
|  |  | 
|  | static Bigint * | 
|  | lshift(Bigint *b, int k) | 
|  | { | 
|  | int i, k1, n, n1; | 
|  | Bigint *b1; | 
|  | ULong *x, *x1, *xe, z; | 
|  |  | 
|  | if (!k || (!b->x[0] && b->wds == 1)) | 
|  | return b; | 
|  |  | 
|  | n = k >> 5; | 
|  | k1 = b->k; | 
|  | n1 = n + b->wds + 1; | 
|  | for(i = b->maxwds; n1 > i; i <<= 1) | 
|  | k1++; | 
|  | b1 = Balloc(k1); | 
|  | if (b1 == NULL) { | 
|  | Bfree(b); | 
|  | return NULL; | 
|  | } | 
|  | x1 = b1->x; | 
|  | for(i = 0; i < n; i++) | 
|  | *x1++ = 0; | 
|  | x = b->x; | 
|  | xe = x + b->wds; | 
|  | if (k &= 0x1f) { | 
|  | k1 = 32 - k; | 
|  | z = 0; | 
|  | do { | 
|  | *x1++ = *x << k | z; | 
|  | z = *x++ >> k1; | 
|  | } | 
|  | while(x < xe); | 
|  | if ((*x1 = z)) | 
|  | ++n1; | 
|  | } | 
|  | else do | 
|  | *x1++ = *x++; | 
|  | while(x < xe); | 
|  | b1->wds = n1 - 1; | 
|  | Bfree(b); | 
|  | return b1; | 
|  | } | 
|  |  | 
|  | /* Do a three-way compare of a and b, returning -1 if a < b, 0 if a == b and | 
|  | 1 if a > b.  Ignores signs of a and b. */ | 
|  |  | 
|  | static int | 
|  | cmp(Bigint *a, Bigint *b) | 
|  | { | 
|  | ULong *xa, *xa0, *xb, *xb0; | 
|  | int i, j; | 
|  |  | 
|  | i = a->wds; | 
|  | j = b->wds; | 
|  | #ifdef DEBUG | 
|  | if (i > 1 && !a->x[i-1]) | 
|  | Bug("cmp called with a->x[a->wds-1] == 0"); | 
|  | if (j > 1 && !b->x[j-1]) | 
|  | Bug("cmp called with b->x[b->wds-1] == 0"); | 
|  | #endif | 
|  | if (i -= j) | 
|  | return i; | 
|  | xa0 = a->x; | 
|  | xa = xa0 + j; | 
|  | xb0 = b->x; | 
|  | xb = xb0 + j; | 
|  | for(;;) { | 
|  | if (*--xa != *--xb) | 
|  | return *xa < *xb ? -1 : 1; | 
|  | if (xa <= xa0) | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Take the difference of Bigints a and b, returning a new Bigint.  Returns | 
|  | NULL on failure.  The signs of a and b are ignored, but the sign of the | 
|  | result is set appropriately. */ | 
|  |  | 
|  | static Bigint * | 
|  | diff(Bigint *a, Bigint *b) | 
|  | { | 
|  | Bigint *c; | 
|  | int i, wa, wb; | 
|  | ULong *xa, *xae, *xb, *xbe, *xc; | 
|  | ULLong borrow, y; | 
|  |  | 
|  | i = cmp(a,b); | 
|  | if (!i) { | 
|  | c = Balloc(0); | 
|  | if (c == NULL) | 
|  | return NULL; | 
|  | c->wds = 1; | 
|  | c->x[0] = 0; | 
|  | return c; | 
|  | } | 
|  | if (i < 0) { | 
|  | c = a; | 
|  | a = b; | 
|  | b = c; | 
|  | i = 1; | 
|  | } | 
|  | else | 
|  | i = 0; | 
|  | c = Balloc(a->k); | 
|  | if (c == NULL) | 
|  | return NULL; | 
|  | c->sign = i; | 
|  | wa = a->wds; | 
|  | xa = a->x; | 
|  | xae = xa + wa; | 
|  | wb = b->wds; | 
|  | xb = b->x; | 
|  | xbe = xb + wb; | 
|  | xc = c->x; | 
|  | borrow = 0; | 
|  | do { | 
|  | y = (ULLong)*xa++ - *xb++ - borrow; | 
|  | borrow = y >> 32 & (ULong)1; | 
|  | *xc++ = (ULong)(y & FFFFFFFF); | 
|  | } | 
|  | while(xb < xbe); | 
|  | while(xa < xae) { | 
|  | y = *xa++ - borrow; | 
|  | borrow = y >> 32 & (ULong)1; | 
|  | *xc++ = (ULong)(y & FFFFFFFF); | 
|  | } | 
|  | while(!*--xc) | 
|  | wa--; | 
|  | c->wds = wa; | 
|  | return c; | 
|  | } | 
|  |  | 
|  | /* Given a positive normal double x, return the difference between x and the | 
|  | next double up.  Doesn't give correct results for subnormals. */ | 
|  |  | 
|  | static double | 
|  | ulp(U *x) | 
|  | { | 
|  | Long L; | 
|  | U u; | 
|  |  | 
|  | L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1; | 
|  | word0(&u) = L; | 
|  | word1(&u) = 0; | 
|  | return dval(&u); | 
|  | } | 
|  |  | 
|  | /* Convert a Bigint to a double plus an exponent */ | 
|  |  | 
|  | static double | 
|  | b2d(Bigint *a, int *e) | 
|  | { | 
|  | ULong *xa, *xa0, w, y, z; | 
|  | int k; | 
|  | U d; | 
|  |  | 
|  | xa0 = a->x; | 
|  | xa = xa0 + a->wds; | 
|  | y = *--xa; | 
|  | #ifdef DEBUG | 
|  | if (!y) Bug("zero y in b2d"); | 
|  | #endif | 
|  | k = hi0bits(y); | 
|  | *e = 32 - k; | 
|  | if (k < Ebits) { | 
|  | word0(&d) = Exp_1 | y >> (Ebits - k); | 
|  | w = xa > xa0 ? *--xa : 0; | 
|  | word1(&d) = y << ((32-Ebits) + k) | w >> (Ebits - k); | 
|  | goto ret_d; | 
|  | } | 
|  | z = xa > xa0 ? *--xa : 0; | 
|  | if (k -= Ebits) { | 
|  | word0(&d) = Exp_1 | y << k | z >> (32 - k); | 
|  | y = xa > xa0 ? *--xa : 0; | 
|  | word1(&d) = z << k | y >> (32 - k); | 
|  | } | 
|  | else { | 
|  | word0(&d) = Exp_1 | y; | 
|  | word1(&d) = z; | 
|  | } | 
|  | ret_d: | 
|  | return dval(&d); | 
|  | } | 
|  |  | 
|  | /* Convert a scaled double to a Bigint plus an exponent.  Similar to d2b, | 
|  | except that it accepts the scale parameter used in _Py_dg_strtod (which | 
|  | should be either 0 or 2*P), and the normalization for the return value is | 
|  | different (see below).  On input, d should be finite and nonnegative, and d | 
|  | / 2**scale should be exactly representable as an IEEE 754 double. | 
|  |  | 
|  | Returns a Bigint b and an integer e such that | 
|  |  | 
|  | dval(d) / 2**scale = b * 2**e. | 
|  |  | 
|  | Unlike d2b, b is not necessarily odd: b and e are normalized so | 
|  | that either 2**(P-1) <= b < 2**P and e >= Etiny, or b < 2**P | 
|  | and e == Etiny.  This applies equally to an input of 0.0: in that | 
|  | case the return values are b = 0 and e = Etiny. | 
|  |  | 
|  | The above normalization ensures that for all possible inputs d, | 
|  | 2**e gives ulp(d/2**scale). | 
|  |  | 
|  | Returns NULL on failure. | 
|  | */ | 
|  |  | 
|  | static Bigint * | 
|  | sd2b(U *d, int scale, int *e) | 
|  | { | 
|  | Bigint *b; | 
|  |  | 
|  | b = Balloc(1); | 
|  | if (b == NULL) | 
|  | return NULL; | 
|  |  | 
|  | /* First construct b and e assuming that scale == 0. */ | 
|  | b->wds = 2; | 
|  | b->x[0] = word1(d); | 
|  | b->x[1] = word0(d) & Frac_mask; | 
|  | *e = Etiny - 1 + (int)((word0(d) & Exp_mask) >> Exp_shift); | 
|  | if (*e < Etiny) | 
|  | *e = Etiny; | 
|  | else | 
|  | b->x[1] |= Exp_msk1; | 
|  |  | 
|  | /* Now adjust for scale, provided that b != 0. */ | 
|  | if (scale && (b->x[0] || b->x[1])) { | 
|  | *e -= scale; | 
|  | if (*e < Etiny) { | 
|  | scale = Etiny - *e; | 
|  | *e = Etiny; | 
|  | /* We can't shift more than P-1 bits without shifting out a 1. */ | 
|  | assert(0 < scale && scale <= P - 1); | 
|  | if (scale >= 32) { | 
|  | /* The bits shifted out should all be zero. */ | 
|  | assert(b->x[0] == 0); | 
|  | b->x[0] = b->x[1]; | 
|  | b->x[1] = 0; | 
|  | scale -= 32; | 
|  | } | 
|  | if (scale) { | 
|  | /* The bits shifted out should all be zero. */ | 
|  | assert(b->x[0] << (32 - scale) == 0); | 
|  | b->x[0] = (b->x[0] >> scale) | (b->x[1] << (32 - scale)); | 
|  | b->x[1] >>= scale; | 
|  | } | 
|  | } | 
|  | } | 
|  | /* Ensure b is normalized. */ | 
|  | if (!b->x[1]) | 
|  | b->wds = 1; | 
|  |  | 
|  | return b; | 
|  | } | 
|  |  | 
|  | /* Convert a double to a Bigint plus an exponent.  Return NULL on failure. | 
|  |  | 
|  | Given a finite nonzero double d, return an odd Bigint b and exponent *e | 
|  | such that fabs(d) = b * 2**e.  On return, *bbits gives the number of | 
|  | significant bits of b; that is, 2**(*bbits-1) <= b < 2**(*bbits). | 
|  |  | 
|  | If d is zero, then b == 0, *e == -1010, *bbits = 0. | 
|  | */ | 
|  |  | 
|  | static Bigint * | 
|  | d2b(U *d, int *e, int *bits) | 
|  | { | 
|  | Bigint *b; | 
|  | int de, k; | 
|  | ULong *x, y, z; | 
|  | int i; | 
|  |  | 
|  | b = Balloc(1); | 
|  | if (b == NULL) | 
|  | return NULL; | 
|  | x = b->x; | 
|  |  | 
|  | z = word0(d) & Frac_mask; | 
|  | word0(d) &= 0x7fffffff;   /* clear sign bit, which we ignore */ | 
|  | if ((de = (int)(word0(d) >> Exp_shift))) | 
|  | z |= Exp_msk1; | 
|  | if ((y = word1(d))) { | 
|  | if ((k = lo0bits(&y))) { | 
|  | x[0] = y | z << (32 - k); | 
|  | z >>= k; | 
|  | } | 
|  | else | 
|  | x[0] = y; | 
|  | i = | 
|  | b->wds = (x[1] = z) ? 2 : 1; | 
|  | } | 
|  | else { | 
|  | k = lo0bits(&z); | 
|  | x[0] = z; | 
|  | i = | 
|  | b->wds = 1; | 
|  | k += 32; | 
|  | } | 
|  | if (de) { | 
|  | *e = de - Bias - (P-1) + k; | 
|  | *bits = P - k; | 
|  | } | 
|  | else { | 
|  | *e = de - Bias - (P-1) + 1 + k; | 
|  | *bits = 32*i - hi0bits(x[i-1]); | 
|  | } | 
|  | return b; | 
|  | } | 
|  |  | 
|  | /* Compute the ratio of two Bigints, as a double.  The result may have an | 
|  | error of up to 2.5 ulps. */ | 
|  |  | 
|  | static double | 
|  | ratio(Bigint *a, Bigint *b) | 
|  | { | 
|  | U da, db; | 
|  | int k, ka, kb; | 
|  |  | 
|  | dval(&da) = b2d(a, &ka); | 
|  | dval(&db) = b2d(b, &kb); | 
|  | k = ka - kb + 32*(a->wds - b->wds); | 
|  | if (k > 0) | 
|  | word0(&da) += k*Exp_msk1; | 
|  | else { | 
|  | k = -k; | 
|  | word0(&db) += k*Exp_msk1; | 
|  | } | 
|  | return dval(&da) / dval(&db); | 
|  | } | 
|  |  | 
|  | static const double | 
|  | tens[] = { | 
|  | 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, | 
|  | 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, | 
|  | 1e20, 1e21, 1e22 | 
|  | }; | 
|  |  | 
|  | static const double | 
|  | bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 }; | 
|  | static const double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, | 
|  | 9007199254740992.*9007199254740992.e-256 | 
|  | /* = 2^106 * 1e-256 */ | 
|  | }; | 
|  | /* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */ | 
|  | /* flag unnecessarily.  It leads to a song and dance at the end of strtod. */ | 
|  | #define Scale_Bit 0x10 | 
|  | #define n_bigtens 5 | 
|  |  | 
|  | #define ULbits 32 | 
|  | #define kshift 5 | 
|  | #define kmask 31 | 
|  |  | 
|  |  | 
|  | static int | 
|  | dshift(Bigint *b, int p2) | 
|  | { | 
|  | int rv = hi0bits(b->x[b->wds-1]) - 4; | 
|  | if (p2 > 0) | 
|  | rv -= p2; | 
|  | return rv & kmask; | 
|  | } | 
|  |  | 
|  | /* special case of Bigint division.  The quotient is always in the range 0 <= | 
|  | quotient < 10, and on entry the divisor S is normalized so that its top 4 | 
|  | bits (28--31) are zero and bit 27 is set. */ | 
|  |  | 
|  | static int | 
|  | quorem(Bigint *b, Bigint *S) | 
|  | { | 
|  | int n; | 
|  | ULong *bx, *bxe, q, *sx, *sxe; | 
|  | ULLong borrow, carry, y, ys; | 
|  |  | 
|  | n = S->wds; | 
|  | #ifdef DEBUG | 
|  | /*debug*/ if (b->wds > n) | 
|  | /*debug*/       Bug("oversize b in quorem"); | 
|  | #endif | 
|  | if (b->wds < n) | 
|  | return 0; | 
|  | sx = S->x; | 
|  | sxe = sx + --n; | 
|  | bx = b->x; | 
|  | bxe = bx + n; | 
|  | q = *bxe / (*sxe + 1);      /* ensure q <= true quotient */ | 
|  | #ifdef DEBUG | 
|  | /*debug*/ if (q > 9) | 
|  | /*debug*/       Bug("oversized quotient in quorem"); | 
|  | #endif | 
|  | if (q) { | 
|  | borrow = 0; | 
|  | carry = 0; | 
|  | do { | 
|  | ys = *sx++ * (ULLong)q + carry; | 
|  | carry = ys >> 32; | 
|  | y = *bx - (ys & FFFFFFFF) - borrow; | 
|  | borrow = y >> 32 & (ULong)1; | 
|  | *bx++ = (ULong)(y & FFFFFFFF); | 
|  | } | 
|  | while(sx <= sxe); | 
|  | if (!*bxe) { | 
|  | bx = b->x; | 
|  | while(--bxe > bx && !*bxe) | 
|  | --n; | 
|  | b->wds = n; | 
|  | } | 
|  | } | 
|  | if (cmp(b, S) >= 0) { | 
|  | q++; | 
|  | borrow = 0; | 
|  | carry = 0; | 
|  | bx = b->x; | 
|  | sx = S->x; | 
|  | do { | 
|  | ys = *sx++ + carry; | 
|  | carry = ys >> 32; | 
|  | y = *bx - (ys & FFFFFFFF) - borrow; | 
|  | borrow = y >> 32 & (ULong)1; | 
|  | *bx++ = (ULong)(y & FFFFFFFF); | 
|  | } | 
|  | while(sx <= sxe); | 
|  | bx = b->x; | 
|  | bxe = bx + n; | 
|  | if (!*bxe) { | 
|  | while(--bxe > bx && !*bxe) | 
|  | --n; | 
|  | b->wds = n; | 
|  | } | 
|  | } | 
|  | return q; | 
|  | } | 
|  |  | 
|  | /* sulp(x) is a version of ulp(x) that takes bc.scale into account. | 
|  |  | 
|  | Assuming that x is finite and nonnegative (positive zero is fine | 
|  | here) and x / 2^bc.scale is exactly representable as a double, | 
|  | sulp(x) is equivalent to 2^bc.scale * ulp(x / 2^bc.scale). */ | 
|  |  | 
|  | static double | 
|  | sulp(U *x, BCinfo *bc) | 
|  | { | 
|  | U u; | 
|  |  | 
|  | if (bc->scale && 2*P + 1 > (int)((word0(x) & Exp_mask) >> Exp_shift)) { | 
|  | /* rv/2^bc->scale is subnormal */ | 
|  | word0(&u) = (P+2)*Exp_msk1; | 
|  | word1(&u) = 0; | 
|  | return u.d; | 
|  | } | 
|  | else { | 
|  | assert(word0(x) || word1(x)); /* x != 0.0 */ | 
|  | return ulp(x); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* The bigcomp function handles some hard cases for strtod, for inputs | 
|  | with more than STRTOD_DIGLIM digits.  It's called once an initial | 
|  | estimate for the double corresponding to the input string has | 
|  | already been obtained by the code in _Py_dg_strtod. | 
|  |  | 
|  | The bigcomp function is only called after _Py_dg_strtod has found a | 
|  | double value rv such that either rv or rv + 1ulp represents the | 
|  | correctly rounded value corresponding to the original string.  It | 
|  | determines which of these two values is the correct one by | 
|  | computing the decimal digits of rv + 0.5ulp and comparing them with | 
|  | the corresponding digits of s0. | 
|  |  | 
|  | In the following, write dv for the absolute value of the number represented | 
|  | by the input string. | 
|  |  | 
|  | Inputs: | 
|  |  | 
|  | s0 points to the first significant digit of the input string. | 
|  |  | 
|  | rv is a (possibly scaled) estimate for the closest double value to the | 
|  | value represented by the original input to _Py_dg_strtod.  If | 
|  | bc->scale is nonzero, then rv/2^(bc->scale) is the approximation to | 
|  | the input value. | 
|  |  | 
|  | bc is a struct containing information gathered during the parsing and | 
|  | estimation steps of _Py_dg_strtod.  Description of fields follows: | 
|  |  | 
|  | bc->e0 gives the exponent of the input value, such that dv = (integer | 
|  | given by the bd->nd digits of s0) * 10**e0 | 
|  |  | 
|  | bc->nd gives the total number of significant digits of s0.  It will | 
|  | be at least 1. | 
|  |  | 
|  | bc->nd0 gives the number of significant digits of s0 before the | 
|  | decimal separator.  If there's no decimal separator, bc->nd0 == | 
|  | bc->nd. | 
|  |  | 
|  | bc->scale is the value used to scale rv to avoid doing arithmetic with | 
|  | subnormal values.  It's either 0 or 2*P (=106). | 
|  |  | 
|  | Outputs: | 
|  |  | 
|  | On successful exit, rv/2^(bc->scale) is the closest double to dv. | 
|  |  | 
|  | Returns 0 on success, -1 on failure (e.g., due to a failed malloc call). */ | 
|  |  | 
|  | static int | 
|  | bigcomp(U *rv, const char *s0, BCinfo *bc) | 
|  | { | 
|  | Bigint *b, *d; | 
|  | int b2, d2, dd, i, nd, nd0, odd, p2, p5; | 
|  |  | 
|  | nd = bc->nd; | 
|  | nd0 = bc->nd0; | 
|  | p5 = nd + bc->e0; | 
|  | b = sd2b(rv, bc->scale, &p2); | 
|  | if (b == NULL) | 
|  | return -1; | 
|  |  | 
|  | /* record whether the lsb of rv/2^(bc->scale) is odd:  in the exact halfway | 
|  | case, this is used for round to even. */ | 
|  | odd = b->x[0] & 1; | 
|  |  | 
|  | /* left shift b by 1 bit and or a 1 into the least significant bit; | 
|  | this gives us b * 2**p2 = rv/2^(bc->scale) + 0.5 ulp. */ | 
|  | b = lshift(b, 1); | 
|  | if (b == NULL) | 
|  | return -1; | 
|  | b->x[0] |= 1; | 
|  | p2--; | 
|  |  | 
|  | p2 -= p5; | 
|  | d = i2b(1); | 
|  | if (d == NULL) { | 
|  | Bfree(b); | 
|  | return -1; | 
|  | } | 
|  | /* Arrange for convenient computation of quotients: | 
|  | * shift left if necessary so divisor has 4 leading 0 bits. | 
|  | */ | 
|  | if (p5 > 0) { | 
|  | d = pow5mult(d, p5); | 
|  | if (d == NULL) { | 
|  | Bfree(b); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | else if (p5 < 0) { | 
|  | b = pow5mult(b, -p5); | 
|  | if (b == NULL) { | 
|  | Bfree(d); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | if (p2 > 0) { | 
|  | b2 = p2; | 
|  | d2 = 0; | 
|  | } | 
|  | else { | 
|  | b2 = 0; | 
|  | d2 = -p2; | 
|  | } | 
|  | i = dshift(d, d2); | 
|  | if ((b2 += i) > 0) { | 
|  | b = lshift(b, b2); | 
|  | if (b == NULL) { | 
|  | Bfree(d); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | if ((d2 += i) > 0) { | 
|  | d = lshift(d, d2); | 
|  | if (d == NULL) { | 
|  | Bfree(b); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Compare s0 with b/d: set dd to -1, 0, or 1 according as s0 < b/d, s0 == | 
|  | * b/d, or s0 > b/d.  Here the digits of s0 are thought of as representing | 
|  | * a number in the range [0.1, 1). */ | 
|  | if (cmp(b, d) >= 0) | 
|  | /* b/d >= 1 */ | 
|  | dd = -1; | 
|  | else { | 
|  | i = 0; | 
|  | for(;;) { | 
|  | b = multadd(b, 10, 0); | 
|  | if (b == NULL) { | 
|  | Bfree(d); | 
|  | return -1; | 
|  | } | 
|  | dd = s0[i < nd0 ? i : i+1] - '0' - quorem(b, d); | 
|  | i++; | 
|  |  | 
|  | if (dd) | 
|  | break; | 
|  | if (!b->x[0] && b->wds == 1) { | 
|  | /* b/d == 0 */ | 
|  | dd = i < nd; | 
|  | break; | 
|  | } | 
|  | if (!(i < nd)) { | 
|  | /* b/d != 0, but digits of s0 exhausted */ | 
|  | dd = -1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | Bfree(b); | 
|  | Bfree(d); | 
|  | if (dd > 0 || (dd == 0 && odd)) | 
|  | dval(rv) += sulp(rv, bc); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Return a 'standard' NaN value. | 
|  |  | 
|  | There are exactly two quiet NaNs that don't arise by 'quieting' signaling | 
|  | NaNs (see IEEE 754-2008, section 6.2.1).  If sign == 0, return the one whose | 
|  | sign bit is cleared.  Otherwise, return the one whose sign bit is set. | 
|  | */ | 
|  |  | 
|  | double | 
|  | _Py_dg_stdnan(int sign) | 
|  | { | 
|  | U rv; | 
|  | word0(&rv) = NAN_WORD0; | 
|  | word1(&rv) = NAN_WORD1; | 
|  | if (sign) | 
|  | word0(&rv) |= Sign_bit; | 
|  | return dval(&rv); | 
|  | } | 
|  |  | 
|  | /* Return positive or negative infinity, according to the given sign (0 for | 
|  | * positive infinity, 1 for negative infinity). */ | 
|  |  | 
|  | double | 
|  | _Py_dg_infinity(int sign) | 
|  | { | 
|  | U rv; | 
|  | word0(&rv) = POSINF_WORD0; | 
|  | word1(&rv) = POSINF_WORD1; | 
|  | return sign ? -dval(&rv) : dval(&rv); | 
|  | } | 
|  |  | 
|  | double | 
|  | _Py_dg_strtod(const char *s00, char **se) | 
|  | { | 
|  | int bb2, bb5, bbe, bd2, bd5, bs2, c, dsign, e, e1, error; | 
|  | int esign, i, j, k, lz, nd, nd0, odd, sign; | 
|  | const char *s, *s0, *s1; | 
|  | double aadj, aadj1; | 
|  | U aadj2, adj, rv, rv0; | 
|  | ULong y, z, abs_exp; | 
|  | Long L; | 
|  | BCinfo bc; | 
|  | Bigint *bb = NULL, *bd = NULL, *bd0 = NULL, *bs = NULL, *delta = NULL; | 
|  | size_t ndigits, fraclen; | 
|  | double result; | 
|  |  | 
|  | dval(&rv) = 0.; | 
|  |  | 
|  | /* Start parsing. */ | 
|  | c = *(s = s00); | 
|  |  | 
|  | /* Parse optional sign, if present. */ | 
|  | sign = 0; | 
|  | switch (c) { | 
|  | case '-': | 
|  | sign = 1; | 
|  | /* fall through */ | 
|  | case '+': | 
|  | c = *++s; | 
|  | } | 
|  |  | 
|  | /* Skip leading zeros: lz is true iff there were leading zeros. */ | 
|  | s1 = s; | 
|  | while (c == '0') | 
|  | c = *++s; | 
|  | lz = s != s1; | 
|  |  | 
|  | /* Point s0 at the first nonzero digit (if any).  fraclen will be the | 
|  | number of digits between the decimal point and the end of the | 
|  | digit string.  ndigits will be the total number of digits ignoring | 
|  | leading zeros. */ | 
|  | s0 = s1 = s; | 
|  | while ('0' <= c && c <= '9') | 
|  | c = *++s; | 
|  | ndigits = s - s1; | 
|  | fraclen = 0; | 
|  |  | 
|  | /* Parse decimal point and following digits. */ | 
|  | if (c == '.') { | 
|  | c = *++s; | 
|  | if (!ndigits) { | 
|  | s1 = s; | 
|  | while (c == '0') | 
|  | c = *++s; | 
|  | lz = lz || s != s1; | 
|  | fraclen += (s - s1); | 
|  | s0 = s; | 
|  | } | 
|  | s1 = s; | 
|  | while ('0' <= c && c <= '9') | 
|  | c = *++s; | 
|  | ndigits += s - s1; | 
|  | fraclen += s - s1; | 
|  | } | 
|  |  | 
|  | /* Now lz is true if and only if there were leading zero digits, and | 
|  | ndigits gives the total number of digits ignoring leading zeros.  A | 
|  | valid input must have at least one digit. */ | 
|  | if (!ndigits && !lz) { | 
|  | if (se) | 
|  | *se = (char *)s00; | 
|  | goto parse_error; | 
|  | } | 
|  |  | 
|  | /* Range check ndigits and fraclen to make sure that they, and values | 
|  | computed with them, can safely fit in an int. */ | 
|  | if (ndigits > MAX_DIGITS || fraclen > MAX_DIGITS) { | 
|  | if (se) | 
|  | *se = (char *)s00; | 
|  | goto parse_error; | 
|  | } | 
|  | nd = (int)ndigits; | 
|  | nd0 = (int)ndigits - (int)fraclen; | 
|  |  | 
|  | /* Parse exponent. */ | 
|  | e = 0; | 
|  | if (c == 'e' || c == 'E') { | 
|  | s00 = s; | 
|  | c = *++s; | 
|  |  | 
|  | /* Exponent sign. */ | 
|  | esign = 0; | 
|  | switch (c) { | 
|  | case '-': | 
|  | esign = 1; | 
|  | /* fall through */ | 
|  | case '+': | 
|  | c = *++s; | 
|  | } | 
|  |  | 
|  | /* Skip zeros.  lz is true iff there are leading zeros. */ | 
|  | s1 = s; | 
|  | while (c == '0') | 
|  | c = *++s; | 
|  | lz = s != s1; | 
|  |  | 
|  | /* Get absolute value of the exponent. */ | 
|  | s1 = s; | 
|  | abs_exp = 0; | 
|  | while ('0' <= c && c <= '9') { | 
|  | abs_exp = 10*abs_exp + (c - '0'); | 
|  | c = *++s; | 
|  | } | 
|  |  | 
|  | /* abs_exp will be correct modulo 2**32.  But 10**9 < 2**32, so if | 
|  | there are at most 9 significant exponent digits then overflow is | 
|  | impossible. */ | 
|  | if (s - s1 > 9 || abs_exp > MAX_ABS_EXP) | 
|  | e = (int)MAX_ABS_EXP; | 
|  | else | 
|  | e = (int)abs_exp; | 
|  | if (esign) | 
|  | e = -e; | 
|  |  | 
|  | /* A valid exponent must have at least one digit. */ | 
|  | if (s == s1 && !lz) | 
|  | s = s00; | 
|  | } | 
|  |  | 
|  | /* Adjust exponent to take into account position of the point. */ | 
|  | e -= nd - nd0; | 
|  | if (nd0 <= 0) | 
|  | nd0 = nd; | 
|  |  | 
|  | /* Finished parsing.  Set se to indicate how far we parsed */ | 
|  | if (se) | 
|  | *se = (char *)s; | 
|  |  | 
|  | /* If all digits were zero, exit with return value +-0.0.  Otherwise, | 
|  | strip trailing zeros: scan back until we hit a nonzero digit. */ | 
|  | if (!nd) | 
|  | goto ret; | 
|  | for (i = nd; i > 0; ) { | 
|  | --i; | 
|  | if (s0[i < nd0 ? i : i+1] != '0') { | 
|  | ++i; | 
|  | break; | 
|  | } | 
|  | } | 
|  | e += nd - i; | 
|  | nd = i; | 
|  | if (nd0 > nd) | 
|  | nd0 = nd; | 
|  |  | 
|  | /* Summary of parsing results.  After parsing, and dealing with zero | 
|  | * inputs, we have values s0, nd0, nd, e, sign, where: | 
|  | * | 
|  | *  - s0 points to the first significant digit of the input string | 
|  | * | 
|  | *  - nd is the total number of significant digits (here, and | 
|  | *    below, 'significant digits' means the set of digits of the | 
|  | *    significand of the input that remain after ignoring leading | 
|  | *    and trailing zeros). | 
|  | * | 
|  | *  - nd0 indicates the position of the decimal point, if present; it | 
|  | *    satisfies 1 <= nd0 <= nd.  The nd significant digits are in | 
|  | *    s0[0:nd0] and s0[nd0+1:nd+1] using the usual Python half-open slice | 
|  | *    notation.  (If nd0 < nd, then s0[nd0] contains a '.'  character; if | 
|  | *    nd0 == nd, then s0[nd0] could be any non-digit character.) | 
|  | * | 
|  | *  - e is the adjusted exponent: the absolute value of the number | 
|  | *    represented by the original input string is n * 10**e, where | 
|  | *    n is the integer represented by the concatenation of | 
|  | *    s0[0:nd0] and s0[nd0+1:nd+1] | 
|  | * | 
|  | *  - sign gives the sign of the input:  1 for negative, 0 for positive | 
|  | * | 
|  | *  - the first and last significant digits are nonzero | 
|  | */ | 
|  |  | 
|  | /* put first DBL_DIG+1 digits into integer y and z. | 
|  | * | 
|  | *  - y contains the value represented by the first min(9, nd) | 
|  | *    significant digits | 
|  | * | 
|  | *  - if nd > 9, z contains the value represented by significant digits | 
|  | *    with indices in [9, min(16, nd)).  So y * 10**(min(16, nd) - 9) + z | 
|  | *    gives the value represented by the first min(16, nd) sig. digits. | 
|  | */ | 
|  |  | 
|  | bc.e0 = e1 = e; | 
|  | y = z = 0; | 
|  | for (i = 0; i < nd; i++) { | 
|  | if (i < 9) | 
|  | y = 10*y + s0[i < nd0 ? i : i+1] - '0'; | 
|  | else if (i < DBL_DIG+1) | 
|  | z = 10*z + s0[i < nd0 ? i : i+1] - '0'; | 
|  | else | 
|  | break; | 
|  | } | 
|  |  | 
|  | k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1; | 
|  | dval(&rv) = y; | 
|  | if (k > 9) { | 
|  | dval(&rv) = tens[k - 9] * dval(&rv) + z; | 
|  | } | 
|  | if (nd <= DBL_DIG | 
|  | && Flt_Rounds == 1 | 
|  | ) { | 
|  | if (!e) | 
|  | goto ret; | 
|  | if (e > 0) { | 
|  | if (e <= Ten_pmax) { | 
|  | dval(&rv) *= tens[e]; | 
|  | goto ret; | 
|  | } | 
|  | i = DBL_DIG - nd; | 
|  | if (e <= Ten_pmax + i) { | 
|  | /* A fancier test would sometimes let us do | 
|  | * this for larger i values. | 
|  | */ | 
|  | e -= i; | 
|  | dval(&rv) *= tens[i]; | 
|  | dval(&rv) *= tens[e]; | 
|  | goto ret; | 
|  | } | 
|  | } | 
|  | else if (e >= -Ten_pmax) { | 
|  | dval(&rv) /= tens[-e]; | 
|  | goto ret; | 
|  | } | 
|  | } | 
|  | e1 += nd - k; | 
|  |  | 
|  | bc.scale = 0; | 
|  |  | 
|  | /* Get starting approximation = rv * 10**e1 */ | 
|  |  | 
|  | if (e1 > 0) { | 
|  | if ((i = e1 & 15)) | 
|  | dval(&rv) *= tens[i]; | 
|  | if (e1 &= ~15) { | 
|  | if (e1 > DBL_MAX_10_EXP) | 
|  | goto ovfl; | 
|  | e1 >>= 4; | 
|  | for(j = 0; e1 > 1; j++, e1 >>= 1) | 
|  | if (e1 & 1) | 
|  | dval(&rv) *= bigtens[j]; | 
|  | /* The last multiplication could overflow. */ | 
|  | word0(&rv) -= P*Exp_msk1; | 
|  | dval(&rv) *= bigtens[j]; | 
|  | if ((z = word0(&rv) & Exp_mask) | 
|  | > Exp_msk1*(DBL_MAX_EXP+Bias-P)) | 
|  | goto ovfl; | 
|  | if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) { | 
|  | /* set to largest number */ | 
|  | /* (Can't trust DBL_MAX) */ | 
|  | word0(&rv) = Big0; | 
|  | word1(&rv) = Big1; | 
|  | } | 
|  | else | 
|  | word0(&rv) += P*Exp_msk1; | 
|  | } | 
|  | } | 
|  | else if (e1 < 0) { | 
|  | /* The input decimal value lies in [10**e1, 10**(e1+16)). | 
|  |  | 
|  | If e1 <= -512, underflow immediately. | 
|  | If e1 <= -256, set bc.scale to 2*P. | 
|  |  | 
|  | So for input value < 1e-256, bc.scale is always set; | 
|  | for input value >= 1e-240, bc.scale is never set. | 
|  | For input values in [1e-256, 1e-240), bc.scale may or may | 
|  | not be set. */ | 
|  |  | 
|  | e1 = -e1; | 
|  | if ((i = e1 & 15)) | 
|  | dval(&rv) /= tens[i]; | 
|  | if (e1 >>= 4) { | 
|  | if (e1 >= 1 << n_bigtens) | 
|  | goto undfl; | 
|  | if (e1 & Scale_Bit) | 
|  | bc.scale = 2*P; | 
|  | for(j = 0; e1 > 0; j++, e1 >>= 1) | 
|  | if (e1 & 1) | 
|  | dval(&rv) *= tinytens[j]; | 
|  | if (bc.scale && (j = 2*P + 1 - ((word0(&rv) & Exp_mask) | 
|  | >> Exp_shift)) > 0) { | 
|  | /* scaled rv is denormal; clear j low bits */ | 
|  | if (j >= 32) { | 
|  | word1(&rv) = 0; | 
|  | if (j >= 53) | 
|  | word0(&rv) = (P+2)*Exp_msk1; | 
|  | else | 
|  | word0(&rv) &= 0xffffffff << (j-32); | 
|  | } | 
|  | else | 
|  | word1(&rv) &= 0xffffffff << j; | 
|  | } | 
|  | if (!dval(&rv)) | 
|  | goto undfl; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Now the hard part -- adjusting rv to the correct value.*/ | 
|  |  | 
|  | /* Put digits into bd: true value = bd * 10^e */ | 
|  |  | 
|  | bc.nd = nd; | 
|  | bc.nd0 = nd0;       /* Only needed if nd > STRTOD_DIGLIM, but done here */ | 
|  | /* to silence an erroneous warning about bc.nd0 */ | 
|  | /* possibly not being initialized. */ | 
|  | if (nd > STRTOD_DIGLIM) { | 
|  | /* ASSERT(STRTOD_DIGLIM >= 18); 18 == one more than the */ | 
|  | /* minimum number of decimal digits to distinguish double values */ | 
|  | /* in IEEE arithmetic. */ | 
|  |  | 
|  | /* Truncate input to 18 significant digits, then discard any trailing | 
|  | zeros on the result by updating nd, nd0, e and y suitably. (There's | 
|  | no need to update z; it's not reused beyond this point.) */ | 
|  | for (i = 18; i > 0; ) { | 
|  | /* scan back until we hit a nonzero digit.  significant digit 'i' | 
|  | is s0[i] if i < nd0, s0[i+1] if i >= nd0. */ | 
|  | --i; | 
|  | if (s0[i < nd0 ? i : i+1] != '0') { | 
|  | ++i; | 
|  | break; | 
|  | } | 
|  | } | 
|  | e += nd - i; | 
|  | nd = i; | 
|  | if (nd0 > nd) | 
|  | nd0 = nd; | 
|  | if (nd < 9) { /* must recompute y */ | 
|  | y = 0; | 
|  | for(i = 0; i < nd0; ++i) | 
|  | y = 10*y + s0[i] - '0'; | 
|  | for(; i < nd; ++i) | 
|  | y = 10*y + s0[i+1] - '0'; | 
|  | } | 
|  | } | 
|  | bd0 = s2b(s0, nd0, nd, y); | 
|  | if (bd0 == NULL) | 
|  | goto failed_malloc; | 
|  |  | 
|  | /* Notation for the comments below.  Write: | 
|  |  | 
|  | - dv for the absolute value of the number represented by the original | 
|  | decimal input string. | 
|  |  | 
|  | - if we've truncated dv, write tdv for the truncated value. | 
|  | Otherwise, set tdv == dv. | 
|  |  | 
|  | - srv for the quantity rv/2^bc.scale; so srv is the current binary | 
|  | approximation to tdv (and dv).  It should be exactly representable | 
|  | in an IEEE 754 double. | 
|  | */ | 
|  |  | 
|  | for(;;) { | 
|  |  | 
|  | /* This is the main correction loop for _Py_dg_strtod. | 
|  |  | 
|  | We've got a decimal value tdv, and a floating-point approximation | 
|  | srv=rv/2^bc.scale to tdv.  The aim is to determine whether srv is | 
|  | close enough (i.e., within 0.5 ulps) to tdv, and to compute a new | 
|  | approximation if not. | 
|  |  | 
|  | To determine whether srv is close enough to tdv, compute integers | 
|  | bd, bb and bs proportional to tdv, srv and 0.5 ulp(srv) | 
|  | respectively, and then use integer arithmetic to determine whether | 
|  | |tdv - srv| is less than, equal to, or greater than 0.5 ulp(srv). | 
|  | */ | 
|  |  | 
|  | bd = Balloc(bd0->k); | 
|  | if (bd == NULL) { | 
|  | goto failed_malloc; | 
|  | } | 
|  | Bcopy(bd, bd0); | 
|  | bb = sd2b(&rv, bc.scale, &bbe);   /* srv = bb * 2^bbe */ | 
|  | if (bb == NULL) { | 
|  | goto failed_malloc; | 
|  | } | 
|  | /* Record whether lsb of bb is odd, in case we need this | 
|  | for the round-to-even step later. */ | 
|  | odd = bb->x[0] & 1; | 
|  |  | 
|  | /* tdv = bd * 10**e;  srv = bb * 2**bbe */ | 
|  | bs = i2b(1); | 
|  | if (bs == NULL) { | 
|  | goto failed_malloc; | 
|  | } | 
|  |  | 
|  | if (e >= 0) { | 
|  | bb2 = bb5 = 0; | 
|  | bd2 = bd5 = e; | 
|  | } | 
|  | else { | 
|  | bb2 = bb5 = -e; | 
|  | bd2 = bd5 = 0; | 
|  | } | 
|  | if (bbe >= 0) | 
|  | bb2 += bbe; | 
|  | else | 
|  | bd2 -= bbe; | 
|  | bs2 = bb2; | 
|  | bb2++; | 
|  | bd2++; | 
|  |  | 
|  | /* At this stage bd5 - bb5 == e == bd2 - bb2 + bbe, bb2 - bs2 == 1, | 
|  | and bs == 1, so: | 
|  |  | 
|  | tdv == bd * 10**e = bd * 2**(bbe - bb2 + bd2) * 5**(bd5 - bb5) | 
|  | srv == bb * 2**bbe = bb * 2**(bbe - bb2 + bb2) | 
|  | 0.5 ulp(srv) == 2**(bbe-1) = bs * 2**(bbe - bb2 + bs2) | 
|  |  | 
|  | It follows that: | 
|  |  | 
|  | M * tdv = bd * 2**bd2 * 5**bd5 | 
|  | M * srv = bb * 2**bb2 * 5**bb5 | 
|  | M * 0.5 ulp(srv) = bs * 2**bs2 * 5**bb5 | 
|  |  | 
|  | for some constant M.  (Actually, M == 2**(bb2 - bbe) * 5**bb5, but | 
|  | this fact is not needed below.) | 
|  | */ | 
|  |  | 
|  | /* Remove factor of 2**i, where i = min(bb2, bd2, bs2). */ | 
|  | i = bb2 < bd2 ? bb2 : bd2; | 
|  | if (i > bs2) | 
|  | i = bs2; | 
|  | if (i > 0) { | 
|  | bb2 -= i; | 
|  | bd2 -= i; | 
|  | bs2 -= i; | 
|  | } | 
|  |  | 
|  | /* Scale bb, bd, bs by the appropriate powers of 2 and 5. */ | 
|  | if (bb5 > 0) { | 
|  | bs = pow5mult(bs, bb5); | 
|  | if (bs == NULL) { | 
|  | goto failed_malloc; | 
|  | } | 
|  | Bigint *bb1 = mult(bs, bb); | 
|  | Bfree(bb); | 
|  | bb = bb1; | 
|  | if (bb == NULL) { | 
|  | goto failed_malloc; | 
|  | } | 
|  | } | 
|  | if (bb2 > 0) { | 
|  | bb = lshift(bb, bb2); | 
|  | if (bb == NULL) { | 
|  | goto failed_malloc; | 
|  | } | 
|  | } | 
|  | if (bd5 > 0) { | 
|  | bd = pow5mult(bd, bd5); | 
|  | if (bd == NULL) { | 
|  | goto failed_malloc; | 
|  | } | 
|  | } | 
|  | if (bd2 > 0) { | 
|  | bd = lshift(bd, bd2); | 
|  | if (bd == NULL) { | 
|  | goto failed_malloc; | 
|  | } | 
|  | } | 
|  | if (bs2 > 0) { | 
|  | bs = lshift(bs, bs2); | 
|  | if (bs == NULL) { | 
|  | goto failed_malloc; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Now bd, bb and bs are scaled versions of tdv, srv and 0.5 ulp(srv), | 
|  | respectively.  Compute the difference |tdv - srv|, and compare | 
|  | with 0.5 ulp(srv). */ | 
|  |  | 
|  | delta = diff(bb, bd); | 
|  | if (delta == NULL) { | 
|  | goto failed_malloc; | 
|  | } | 
|  | dsign = delta->sign; | 
|  | delta->sign = 0; | 
|  | i = cmp(delta, bs); | 
|  | if (bc.nd > nd && i <= 0) { | 
|  | if (dsign) | 
|  | break;  /* Must use bigcomp(). */ | 
|  |  | 
|  | /* Here rv overestimates the truncated decimal value by at most | 
|  | 0.5 ulp(rv).  Hence rv either overestimates the true decimal | 
|  | value by <= 0.5 ulp(rv), or underestimates it by some small | 
|  | amount (< 0.1 ulp(rv)); either way, rv is within 0.5 ulps of | 
|  | the true decimal value, so it's possible to exit. | 
|  |  | 
|  | Exception: if scaled rv is a normal exact power of 2, but not | 
|  | DBL_MIN, then rv - 0.5 ulp(rv) takes us all the way down to the | 
|  | next double, so the correctly rounded result is either rv - 0.5 | 
|  | ulp(rv) or rv; in this case, use bigcomp to distinguish. */ | 
|  |  | 
|  | if (!word1(&rv) && !(word0(&rv) & Bndry_mask)) { | 
|  | /* rv can't be 0, since it's an overestimate for some | 
|  | nonzero value.  So rv is a normal power of 2. */ | 
|  | j = (int)(word0(&rv) & Exp_mask) >> Exp_shift; | 
|  | /* rv / 2^bc.scale = 2^(j - 1023 - bc.scale); use bigcomp if | 
|  | rv / 2^bc.scale >= 2^-1021. */ | 
|  | if (j - bc.scale >= 2) { | 
|  | dval(&rv) -= 0.5 * sulp(&rv, &bc); | 
|  | break; /* Use bigcomp. */ | 
|  | } | 
|  | } | 
|  |  | 
|  | { | 
|  | bc.nd = nd; | 
|  | i = -1; /* Discarded digits make delta smaller. */ | 
|  | } | 
|  | } | 
|  |  | 
|  | if (i < 0) { | 
|  | /* Error is less than half an ulp -- check for | 
|  | * special case of mantissa a power of two. | 
|  | */ | 
|  | if (dsign || word1(&rv) || word0(&rv) & Bndry_mask | 
|  | || (word0(&rv) & Exp_mask) <= (2*P+1)*Exp_msk1 | 
|  | ) { | 
|  | break; | 
|  | } | 
|  | if (!delta->x[0] && delta->wds <= 1) { | 
|  | /* exact result */ | 
|  | break; | 
|  | } | 
|  | delta = lshift(delta,Log2P); | 
|  | if (delta == NULL) { | 
|  | goto failed_malloc; | 
|  | } | 
|  | if (cmp(delta, bs) > 0) | 
|  | goto drop_down; | 
|  | break; | 
|  | } | 
|  | if (i == 0) { | 
|  | /* exactly half-way between */ | 
|  | if (dsign) { | 
|  | if ((word0(&rv) & Bndry_mask1) == Bndry_mask1 | 
|  | &&  word1(&rv) == ( | 
|  | (bc.scale && | 
|  | (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1) ? | 
|  | (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) : | 
|  | 0xffffffff)) { | 
|  | /*boundary case -- increment exponent*/ | 
|  | word0(&rv) = (word0(&rv) & Exp_mask) | 
|  | + Exp_msk1 | 
|  | ; | 
|  | word1(&rv) = 0; | 
|  | /* dsign = 0; */ | 
|  | break; | 
|  | } | 
|  | } | 
|  | else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) { | 
|  | drop_down: | 
|  | /* boundary case -- decrement exponent */ | 
|  | if (bc.scale) { | 
|  | L = word0(&rv) & Exp_mask; | 
|  | if (L <= (2*P+1)*Exp_msk1) { | 
|  | if (L > (P+2)*Exp_msk1) | 
|  | /* round even ==> */ | 
|  | /* accept rv */ | 
|  | break; | 
|  | /* rv = smallest denormal */ | 
|  | if (bc.nd > nd) | 
|  | break; | 
|  | goto undfl; | 
|  | } | 
|  | } | 
|  | L = (word0(&rv) & Exp_mask) - Exp_msk1; | 
|  | word0(&rv) = L | Bndry_mask1; | 
|  | word1(&rv) = 0xffffffff; | 
|  | break; | 
|  | } | 
|  | if (!odd) | 
|  | break; | 
|  | if (dsign) | 
|  | dval(&rv) += sulp(&rv, &bc); | 
|  | else { | 
|  | dval(&rv) -= sulp(&rv, &bc); | 
|  | if (!dval(&rv)) { | 
|  | if (bc.nd >nd) | 
|  | break; | 
|  | goto undfl; | 
|  | } | 
|  | } | 
|  | /* dsign = 1 - dsign; */ | 
|  | break; | 
|  | } | 
|  | if ((aadj = ratio(delta, bs)) <= 2.) { | 
|  | if (dsign) | 
|  | aadj = aadj1 = 1.; | 
|  | else if (word1(&rv) || word0(&rv) & Bndry_mask) { | 
|  | if (word1(&rv) == Tiny1 && !word0(&rv)) { | 
|  | if (bc.nd >nd) | 
|  | break; | 
|  | goto undfl; | 
|  | } | 
|  | aadj = 1.; | 
|  | aadj1 = -1.; | 
|  | } | 
|  | else { | 
|  | /* special case -- power of FLT_RADIX to be */ | 
|  | /* rounded down... */ | 
|  |  | 
|  | if (aadj < 2./FLT_RADIX) | 
|  | aadj = 1./FLT_RADIX; | 
|  | else | 
|  | aadj *= 0.5; | 
|  | aadj1 = -aadj; | 
|  | } | 
|  | } | 
|  | else { | 
|  | aadj *= 0.5; | 
|  | aadj1 = dsign ? aadj : -aadj; | 
|  | if (Flt_Rounds == 0) | 
|  | aadj1 += 0.5; | 
|  | } | 
|  | y = word0(&rv) & Exp_mask; | 
|  |  | 
|  | /* Check for overflow */ | 
|  |  | 
|  | if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) { | 
|  | dval(&rv0) = dval(&rv); | 
|  | word0(&rv) -= P*Exp_msk1; | 
|  | adj.d = aadj1 * ulp(&rv); | 
|  | dval(&rv) += adj.d; | 
|  | if ((word0(&rv) & Exp_mask) >= | 
|  | Exp_msk1*(DBL_MAX_EXP+Bias-P)) { | 
|  | if (word0(&rv0) == Big0 && word1(&rv0) == Big1) { | 
|  | goto ovfl; | 
|  | } | 
|  | word0(&rv) = Big0; | 
|  | word1(&rv) = Big1; | 
|  | goto cont; | 
|  | } | 
|  | else | 
|  | word0(&rv) += P*Exp_msk1; | 
|  | } | 
|  | else { | 
|  | if (bc.scale && y <= 2*P*Exp_msk1) { | 
|  | if (aadj <= 0x7fffffff) { | 
|  | if ((z = (ULong)aadj) <= 0) | 
|  | z = 1; | 
|  | aadj = z; | 
|  | aadj1 = dsign ? aadj : -aadj; | 
|  | } | 
|  | dval(&aadj2) = aadj1; | 
|  | word0(&aadj2) += (2*P+1)*Exp_msk1 - y; | 
|  | aadj1 = dval(&aadj2); | 
|  | } | 
|  | adj.d = aadj1 * ulp(&rv); | 
|  | dval(&rv) += adj.d; | 
|  | } | 
|  | z = word0(&rv) & Exp_mask; | 
|  | if (bc.nd == nd) { | 
|  | if (!bc.scale) | 
|  | if (y == z) { | 
|  | /* Can we stop now? */ | 
|  | L = (Long)aadj; | 
|  | aadj -= L; | 
|  | /* The tolerances below are conservative. */ | 
|  | if (dsign || word1(&rv) || word0(&rv) & Bndry_mask) { | 
|  | if (aadj < .4999999 || aadj > .5000001) | 
|  | break; | 
|  | } | 
|  | else if (aadj < .4999999/FLT_RADIX) | 
|  | break; | 
|  | } | 
|  | } | 
|  | cont: | 
|  | Bfree(bb); bb = NULL; | 
|  | Bfree(bd); bd = NULL; | 
|  | Bfree(bs); bs = NULL; | 
|  | Bfree(delta); delta = NULL; | 
|  | } | 
|  | if (bc.nd > nd) { | 
|  | error = bigcomp(&rv, s0, &bc); | 
|  | if (error) | 
|  | goto failed_malloc; | 
|  | } | 
|  |  | 
|  | if (bc.scale) { | 
|  | word0(&rv0) = Exp_1 - 2*P*Exp_msk1; | 
|  | word1(&rv0) = 0; | 
|  | dval(&rv) *= dval(&rv0); | 
|  | } | 
|  |  | 
|  | ret: | 
|  | result = sign ? -dval(&rv) : dval(&rv); | 
|  | goto done; | 
|  |  | 
|  | parse_error: | 
|  | result = 0.0; | 
|  | goto done; | 
|  |  | 
|  | failed_malloc: | 
|  | errno = ENOMEM; | 
|  | result = -1.0; | 
|  | goto done; | 
|  |  | 
|  | undfl: | 
|  | result = sign ? -0.0 : 0.0; | 
|  | goto done; | 
|  |  | 
|  | ovfl: | 
|  | errno = ERANGE; | 
|  | /* Can't trust HUGE_VAL */ | 
|  | word0(&rv) = Exp_mask; | 
|  | word1(&rv) = 0; | 
|  | result = sign ? -dval(&rv) : dval(&rv); | 
|  | goto done; | 
|  |  | 
|  | done: | 
|  | Bfree(bb); | 
|  | Bfree(bd); | 
|  | Bfree(bs); | 
|  | Bfree(bd0); | 
|  | Bfree(delta); | 
|  | return result; | 
|  |  | 
|  | } | 
|  |  | 
|  | static char * | 
|  | rv_alloc(int i) | 
|  | { | 
|  | int j, k, *r; | 
|  |  | 
|  | j = sizeof(ULong); | 
|  | for(k = 0; | 
|  | sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= (unsigned)i; | 
|  | j <<= 1) | 
|  | k++; | 
|  | r = (int*)Balloc(k); | 
|  | if (r == NULL) | 
|  | return NULL; | 
|  | *r = k; | 
|  | return (char *)(r+1); | 
|  | } | 
|  |  | 
|  | static char * | 
|  | nrv_alloc(const char *s, char **rve, int n) | 
|  | { | 
|  | char *rv, *t; | 
|  |  | 
|  | rv = rv_alloc(n); | 
|  | if (rv == NULL) | 
|  | return NULL; | 
|  | t = rv; | 
|  | while((*t = *s++)) t++; | 
|  | if (rve) | 
|  | *rve = t; | 
|  | return rv; | 
|  | } | 
|  |  | 
|  | /* freedtoa(s) must be used to free values s returned by dtoa | 
|  | * when MULTIPLE_THREADS is #defined.  It should be used in all cases, | 
|  | * but for consistency with earlier versions of dtoa, it is optional | 
|  | * when MULTIPLE_THREADS is not defined. | 
|  | */ | 
|  |  | 
|  | void | 
|  | _Py_dg_freedtoa(char *s) | 
|  | { | 
|  | Bigint *b = (Bigint *)((int *)s - 1); | 
|  | b->maxwds = 1 << (b->k = *(int*)b); | 
|  | Bfree(b); | 
|  | } | 
|  |  | 
|  | /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. | 
|  | * | 
|  | * Inspired by "How to Print Floating-Point Numbers Accurately" by | 
|  | * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126]. | 
|  | * | 
|  | * Modifications: | 
|  | *      1. Rather than iterating, we use a simple numeric overestimate | 
|  | *         to determine k = floor(log10(d)).  We scale relevant | 
|  | *         quantities using O(log2(k)) rather than O(k) multiplications. | 
|  | *      2. For some modes > 2 (corresponding to ecvt and fcvt), we don't | 
|  | *         try to generate digits strictly left to right.  Instead, we | 
|  | *         compute with fewer bits and propagate the carry if necessary | 
|  | *         when rounding the final digit up.  This is often faster. | 
|  | *      3. Under the assumption that input will be rounded nearest, | 
|  | *         mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. | 
|  | *         That is, we allow equality in stopping tests when the | 
|  | *         round-nearest rule will give the same floating-point value | 
|  | *         as would satisfaction of the stopping test with strict | 
|  | *         inequality. | 
|  | *      4. We remove common factors of powers of 2 from relevant | 
|  | *         quantities. | 
|  | *      5. When converting floating-point integers less than 1e16, | 
|  | *         we use floating-point arithmetic rather than resorting | 
|  | *         to multiple-precision integers. | 
|  | *      6. When asked to produce fewer than 15 digits, we first try | 
|  | *         to get by with floating-point arithmetic; we resort to | 
|  | *         multiple-precision integer arithmetic only if we cannot | 
|  | *         guarantee that the floating-point calculation has given | 
|  | *         the correctly rounded result.  For k requested digits and | 
|  | *         "uniformly" distributed input, the probability is | 
|  | *         something like 10^(k-15) that we must resort to the Long | 
|  | *         calculation. | 
|  | */ | 
|  |  | 
|  | /* Additional notes (METD): (1) returns NULL on failure.  (2) to avoid memory | 
|  | leakage, a successful call to _Py_dg_dtoa should always be matched by a | 
|  | call to _Py_dg_freedtoa. */ | 
|  |  | 
|  | char * | 
|  | _Py_dg_dtoa(double dd, int mode, int ndigits, | 
|  | int *decpt, int *sign, char **rve) | 
|  | { | 
|  | /*  Arguments ndigits, decpt, sign are similar to those | 
|  | of ecvt and fcvt; trailing zeros are suppressed from | 
|  | the returned string.  If not null, *rve is set to point | 
|  | to the end of the return value.  If d is +-Infinity or NaN, | 
|  | then *decpt is set to 9999. | 
|  |  | 
|  | mode: | 
|  | 0 ==> shortest string that yields d when read in | 
|  | and rounded to nearest. | 
|  | 1 ==> like 0, but with Steele & White stopping rule; | 
|  | e.g. with IEEE P754 arithmetic , mode 0 gives | 
|  | 1e23 whereas mode 1 gives 9.999999999999999e22. | 
|  | 2 ==> max(1,ndigits) significant digits.  This gives a | 
|  | return value similar to that of ecvt, except | 
|  | that trailing zeros are suppressed. | 
|  | 3 ==> through ndigits past the decimal point.  This | 
|  | gives a return value similar to that from fcvt, | 
|  | except that trailing zeros are suppressed, and | 
|  | ndigits can be negative. | 
|  | 4,5 ==> similar to 2 and 3, respectively, but (in | 
|  | round-nearest mode) with the tests of mode 0 to | 
|  | possibly return a shorter string that rounds to d. | 
|  | With IEEE arithmetic and compilation with | 
|  | -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same | 
|  | as modes 2 and 3 when FLT_ROUNDS != 1. | 
|  | 6-9 ==> Debugging modes similar to mode - 4:  don't try | 
|  | fast floating-point estimate (if applicable). | 
|  |  | 
|  | Values of mode other than 0-9 are treated as mode 0. | 
|  |  | 
|  | Sufficient space is allocated to the return value | 
|  | to hold the suppressed trailing zeros. | 
|  | */ | 
|  |  | 
|  | int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1, | 
|  | j, j1, k, k0, k_check, leftright, m2, m5, s2, s5, | 
|  | spec_case, try_quick; | 
|  | Long L; | 
|  | int denorm; | 
|  | ULong x; | 
|  | Bigint *b, *b1, *delta, *mlo, *mhi, *S; | 
|  | U d2, eps, u; | 
|  | double ds; | 
|  | char *s, *s0; | 
|  |  | 
|  | /* set pointers to NULL, to silence gcc compiler warnings and make | 
|  | cleanup easier on error */ | 
|  | mlo = mhi = S = 0; | 
|  | s0 = 0; | 
|  |  | 
|  | u.d = dd; | 
|  | if (word0(&u) & Sign_bit) { | 
|  | /* set sign for everything, including 0's and NaNs */ | 
|  | *sign = 1; | 
|  | word0(&u) &= ~Sign_bit; /* clear sign bit */ | 
|  | } | 
|  | else | 
|  | *sign = 0; | 
|  |  | 
|  | /* quick return for Infinities, NaNs and zeros */ | 
|  | if ((word0(&u) & Exp_mask) == Exp_mask) | 
|  | { | 
|  | /* Infinity or NaN */ | 
|  | *decpt = 9999; | 
|  | if (!word1(&u) && !(word0(&u) & 0xfffff)) | 
|  | return nrv_alloc("Infinity", rve, 8); | 
|  | return nrv_alloc("NaN", rve, 3); | 
|  | } | 
|  | if (!dval(&u)) { | 
|  | *decpt = 1; | 
|  | return nrv_alloc("0", rve, 1); | 
|  | } | 
|  |  | 
|  | /* compute k = floor(log10(d)).  The computation may leave k | 
|  | one too large, but should never leave k too small. */ | 
|  | b = d2b(&u, &be, &bbits); | 
|  | if (b == NULL) | 
|  | goto failed_malloc; | 
|  | if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) { | 
|  | dval(&d2) = dval(&u); | 
|  | word0(&d2) &= Frac_mask1; | 
|  | word0(&d2) |= Exp_11; | 
|  |  | 
|  | /* log(x)       ~=~ log(1.5) + (x-1.5)/1.5 | 
|  | * log10(x)      =  log(x) / log(10) | 
|  | *              ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) | 
|  | * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2) | 
|  | * | 
|  | * This suggests computing an approximation k to log10(d) by | 
|  | * | 
|  | * k = (i - Bias)*0.301029995663981 | 
|  | *      + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); | 
|  | * | 
|  | * We want k to be too large rather than too small. | 
|  | * The error in the first-order Taylor series approximation | 
|  | * is in our favor, so we just round up the constant enough | 
|  | * to compensate for any error in the multiplication of | 
|  | * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, | 
|  | * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, | 
|  | * adding 1e-13 to the constant term more than suffices. | 
|  | * Hence we adjust the constant term to 0.1760912590558. | 
|  | * (We could get a more accurate k by invoking log10, | 
|  | *  but this is probably not worthwhile.) | 
|  | */ | 
|  |  | 
|  | i -= Bias; | 
|  | denorm = 0; | 
|  | } | 
|  | else { | 
|  | /* d is denormalized */ | 
|  |  | 
|  | i = bbits + be + (Bias + (P-1) - 1); | 
|  | x = i > 32  ? word0(&u) << (64 - i) | word1(&u) >> (i - 32) | 
|  | : word1(&u) << (32 - i); | 
|  | dval(&d2) = x; | 
|  | word0(&d2) -= 31*Exp_msk1; /* adjust exponent */ | 
|  | i -= (Bias + (P-1) - 1) + 1; | 
|  | denorm = 1; | 
|  | } | 
|  | ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 + | 
|  | i*0.301029995663981; | 
|  | k = (int)ds; | 
|  | if (ds < 0. && ds != k) | 
|  | k--;    /* want k = floor(ds) */ | 
|  | k_check = 1; | 
|  | if (k >= 0 && k <= Ten_pmax) { | 
|  | if (dval(&u) < tens[k]) | 
|  | k--; | 
|  | k_check = 0; | 
|  | } | 
|  | j = bbits - i - 1; | 
|  | if (j >= 0) { | 
|  | b2 = 0; | 
|  | s2 = j; | 
|  | } | 
|  | else { | 
|  | b2 = -j; | 
|  | s2 = 0; | 
|  | } | 
|  | if (k >= 0) { | 
|  | b5 = 0; | 
|  | s5 = k; | 
|  | s2 += k; | 
|  | } | 
|  | else { | 
|  | b2 -= k; | 
|  | b5 = -k; | 
|  | s5 = 0; | 
|  | } | 
|  | if (mode < 0 || mode > 9) | 
|  | mode = 0; | 
|  |  | 
|  | try_quick = 1; | 
|  |  | 
|  | if (mode > 5) { | 
|  | mode -= 4; | 
|  | try_quick = 0; | 
|  | } | 
|  | leftright = 1; | 
|  | ilim = ilim1 = -1;  /* Values for cases 0 and 1; done here to */ | 
|  | /* silence erroneous "gcc -Wall" warning. */ | 
|  | switch(mode) { | 
|  | case 0: | 
|  | case 1: | 
|  | i = 18; | 
|  | ndigits = 0; | 
|  | break; | 
|  | case 2: | 
|  | leftright = 0; | 
|  | /* fall through */ | 
|  | case 4: | 
|  | if (ndigits <= 0) | 
|  | ndigits = 1; | 
|  | ilim = ilim1 = i = ndigits; | 
|  | break; | 
|  | case 3: | 
|  | leftright = 0; | 
|  | /* fall through */ | 
|  | case 5: | 
|  | i = ndigits + k + 1; | 
|  | ilim = i; | 
|  | ilim1 = i - 1; | 
|  | if (i <= 0) | 
|  | i = 1; | 
|  | } | 
|  | s0 = rv_alloc(i); | 
|  | if (s0 == NULL) | 
|  | goto failed_malloc; | 
|  | s = s0; | 
|  |  | 
|  |  | 
|  | if (ilim >= 0 && ilim <= Quick_max && try_quick) { | 
|  |  | 
|  | /* Try to get by with floating-point arithmetic. */ | 
|  |  | 
|  | i = 0; | 
|  | dval(&d2) = dval(&u); | 
|  | k0 = k; | 
|  | ilim0 = ilim; | 
|  | ieps = 2; /* conservative */ | 
|  | if (k > 0) { | 
|  | ds = tens[k&0xf]; | 
|  | j = k >> 4; | 
|  | if (j & Bletch) { | 
|  | /* prevent overflows */ | 
|  | j &= Bletch - 1; | 
|  | dval(&u) /= bigtens[n_bigtens-1]; | 
|  | ieps++; | 
|  | } | 
|  | for(; j; j >>= 1, i++) | 
|  | if (j & 1) { | 
|  | ieps++; | 
|  | ds *= bigtens[i]; | 
|  | } | 
|  | dval(&u) /= ds; | 
|  | } | 
|  | else if ((j1 = -k)) { | 
|  | dval(&u) *= tens[j1 & 0xf]; | 
|  | for(j = j1 >> 4; j; j >>= 1, i++) | 
|  | if (j & 1) { | 
|  | ieps++; | 
|  | dval(&u) *= bigtens[i]; | 
|  | } | 
|  | } | 
|  | if (k_check && dval(&u) < 1. && ilim > 0) { | 
|  | if (ilim1 <= 0) | 
|  | goto fast_failed; | 
|  | ilim = ilim1; | 
|  | k--; | 
|  | dval(&u) *= 10.; | 
|  | ieps++; | 
|  | } | 
|  | dval(&eps) = ieps*dval(&u) + 7.; | 
|  | word0(&eps) -= (P-1)*Exp_msk1; | 
|  | if (ilim == 0) { | 
|  | S = mhi = 0; | 
|  | dval(&u) -= 5.; | 
|  | if (dval(&u) > dval(&eps)) | 
|  | goto one_digit; | 
|  | if (dval(&u) < -dval(&eps)) | 
|  | goto no_digits; | 
|  | goto fast_failed; | 
|  | } | 
|  | if (leftright) { | 
|  | /* Use Steele & White method of only | 
|  | * generating digits needed. | 
|  | */ | 
|  | dval(&eps) = 0.5/tens[ilim-1] - dval(&eps); | 
|  | for(i = 0;;) { | 
|  | L = (Long)dval(&u); | 
|  | dval(&u) -= L; | 
|  | *s++ = '0' + (int)L; | 
|  | if (dval(&u) < dval(&eps)) | 
|  | goto ret1; | 
|  | if (1. - dval(&u) < dval(&eps)) | 
|  | goto bump_up; | 
|  | if (++i >= ilim) | 
|  | break; | 
|  | dval(&eps) *= 10.; | 
|  | dval(&u) *= 10.; | 
|  | } | 
|  | } | 
|  | else { | 
|  | /* Generate ilim digits, then fix them up. */ | 
|  | dval(&eps) *= tens[ilim-1]; | 
|  | for(i = 1;; i++, dval(&u) *= 10.) { | 
|  | L = (Long)(dval(&u)); | 
|  | if (!(dval(&u) -= L)) | 
|  | ilim = i; | 
|  | *s++ = '0' + (int)L; | 
|  | if (i == ilim) { | 
|  | if (dval(&u) > 0.5 + dval(&eps)) | 
|  | goto bump_up; | 
|  | else if (dval(&u) < 0.5 - dval(&eps)) { | 
|  | while(*--s == '0'); | 
|  | s++; | 
|  | goto ret1; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | fast_failed: | 
|  | s = s0; | 
|  | dval(&u) = dval(&d2); | 
|  | k = k0; | 
|  | ilim = ilim0; | 
|  | } | 
|  |  | 
|  | /* Do we have a "small" integer? */ | 
|  |  | 
|  | if (be >= 0 && k <= Int_max) { | 
|  | /* Yes. */ | 
|  | ds = tens[k]; | 
|  | if (ndigits < 0 && ilim <= 0) { | 
|  | S = mhi = 0; | 
|  | if (ilim < 0 || dval(&u) <= 5*ds) | 
|  | goto no_digits; | 
|  | goto one_digit; | 
|  | } | 
|  | for(i = 1;; i++, dval(&u) *= 10.) { | 
|  | L = (Long)(dval(&u) / ds); | 
|  | dval(&u) -= L*ds; | 
|  | *s++ = '0' + (int)L; | 
|  | if (!dval(&u)) { | 
|  | break; | 
|  | } | 
|  | if (i == ilim) { | 
|  | dval(&u) += dval(&u); | 
|  | if (dval(&u) > ds || (dval(&u) == ds && L & 1)) { | 
|  | bump_up: | 
|  | while(*--s == '9') | 
|  | if (s == s0) { | 
|  | k++; | 
|  | *s = '0'; | 
|  | break; | 
|  | } | 
|  | ++*s++; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | goto ret1; | 
|  | } | 
|  |  | 
|  | m2 = b2; | 
|  | m5 = b5; | 
|  | if (leftright) { | 
|  | i = | 
|  | denorm ? be + (Bias + (P-1) - 1 + 1) : | 
|  | 1 + P - bbits; | 
|  | b2 += i; | 
|  | s2 += i; | 
|  | mhi = i2b(1); | 
|  | if (mhi == NULL) | 
|  | goto failed_malloc; | 
|  | } | 
|  | if (m2 > 0 && s2 > 0) { | 
|  | i = m2 < s2 ? m2 : s2; | 
|  | b2 -= i; | 
|  | m2 -= i; | 
|  | s2 -= i; | 
|  | } | 
|  | if (b5 > 0) { | 
|  | if (leftright) { | 
|  | if (m5 > 0) { | 
|  | mhi = pow5mult(mhi, m5); | 
|  | if (mhi == NULL) | 
|  | goto failed_malloc; | 
|  | b1 = mult(mhi, b); | 
|  | Bfree(b); | 
|  | b = b1; | 
|  | if (b == NULL) | 
|  | goto failed_malloc; | 
|  | } | 
|  | if ((j = b5 - m5)) { | 
|  | b = pow5mult(b, j); | 
|  | if (b == NULL) | 
|  | goto failed_malloc; | 
|  | } | 
|  | } | 
|  | else { | 
|  | b = pow5mult(b, b5); | 
|  | if (b == NULL) | 
|  | goto failed_malloc; | 
|  | } | 
|  | } | 
|  | S = i2b(1); | 
|  | if (S == NULL) | 
|  | goto failed_malloc; | 
|  | if (s5 > 0) { | 
|  | S = pow5mult(S, s5); | 
|  | if (S == NULL) | 
|  | goto failed_malloc; | 
|  | } | 
|  |  | 
|  | /* Check for special case that d is a normalized power of 2. */ | 
|  |  | 
|  | spec_case = 0; | 
|  | if ((mode < 2 || leftright) | 
|  | ) { | 
|  | if (!word1(&u) && !(word0(&u) & Bndry_mask) | 
|  | && word0(&u) & (Exp_mask & ~Exp_msk1) | 
|  | ) { | 
|  | /* The special case */ | 
|  | b2 += Log2P; | 
|  | s2 += Log2P; | 
|  | spec_case = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Arrange for convenient computation of quotients: | 
|  | * shift left if necessary so divisor has 4 leading 0 bits. | 
|  | * | 
|  | * Perhaps we should just compute leading 28 bits of S once | 
|  | * and for all and pass them and a shift to quorem, so it | 
|  | * can do shifts and ors to compute the numerator for q. | 
|  | */ | 
|  | #define iInc 28 | 
|  | i = dshift(S, s2); | 
|  | b2 += i; | 
|  | m2 += i; | 
|  | s2 += i; | 
|  | if (b2 > 0) { | 
|  | b = lshift(b, b2); | 
|  | if (b == NULL) | 
|  | goto failed_malloc; | 
|  | } | 
|  | if (s2 > 0) { | 
|  | S = lshift(S, s2); | 
|  | if (S == NULL) | 
|  | goto failed_malloc; | 
|  | } | 
|  | if (k_check) { | 
|  | if (cmp(b,S) < 0) { | 
|  | k--; | 
|  | b = multadd(b, 10, 0);      /* we botched the k estimate */ | 
|  | if (b == NULL) | 
|  | goto failed_malloc; | 
|  | if (leftright) { | 
|  | mhi = multadd(mhi, 10, 0); | 
|  | if (mhi == NULL) | 
|  | goto failed_malloc; | 
|  | } | 
|  | ilim = ilim1; | 
|  | } | 
|  | } | 
|  | if (ilim <= 0 && (mode == 3 || mode == 5)) { | 
|  | if (ilim < 0) { | 
|  | /* no digits, fcvt style */ | 
|  | no_digits: | 
|  | k = -1 - ndigits; | 
|  | goto ret; | 
|  | } | 
|  | else { | 
|  | S = multadd(S, 5, 0); | 
|  | if (S == NULL) | 
|  | goto failed_malloc; | 
|  | if (cmp(b, S) <= 0) | 
|  | goto no_digits; | 
|  | } | 
|  | one_digit: | 
|  | *s++ = '1'; | 
|  | k++; | 
|  | goto ret; | 
|  | } | 
|  | if (leftright) { | 
|  | if (m2 > 0) { | 
|  | mhi = lshift(mhi, m2); | 
|  | if (mhi == NULL) | 
|  | goto failed_malloc; | 
|  | } | 
|  |  | 
|  | /* Compute mlo -- check for special case | 
|  | * that d is a normalized power of 2. | 
|  | */ | 
|  |  | 
|  | mlo = mhi; | 
|  | if (spec_case) { | 
|  | mhi = Balloc(mhi->k); | 
|  | if (mhi == NULL) | 
|  | goto failed_malloc; | 
|  | Bcopy(mhi, mlo); | 
|  | mhi = lshift(mhi, Log2P); | 
|  | if (mhi == NULL) | 
|  | goto failed_malloc; | 
|  | } | 
|  |  | 
|  | for(i = 1;;i++) { | 
|  | dig = quorem(b,S) + '0'; | 
|  | /* Do we yet have the shortest decimal string | 
|  | * that will round to d? | 
|  | */ | 
|  | j = cmp(b, mlo); | 
|  | delta = diff(S, mhi); | 
|  | if (delta == NULL) | 
|  | goto failed_malloc; | 
|  | j1 = delta->sign ? 1 : cmp(b, delta); | 
|  | Bfree(delta); | 
|  | if (j1 == 0 && mode != 1 && !(word1(&u) & 1) | 
|  | ) { | 
|  | if (dig == '9') | 
|  | goto round_9_up; | 
|  | if (j > 0) | 
|  | dig++; | 
|  | *s++ = dig; | 
|  | goto ret; | 
|  | } | 
|  | if (j < 0 || (j == 0 && mode != 1 | 
|  | && !(word1(&u) & 1) | 
|  | )) { | 
|  | if (!b->x[0] && b->wds <= 1) { | 
|  | goto accept_dig; | 
|  | } | 
|  | if (j1 > 0) { | 
|  | b = lshift(b, 1); | 
|  | if (b == NULL) | 
|  | goto failed_malloc; | 
|  | j1 = cmp(b, S); | 
|  | if ((j1 > 0 || (j1 == 0 && dig & 1)) | 
|  | && dig++ == '9') | 
|  | goto round_9_up; | 
|  | } | 
|  | accept_dig: | 
|  | *s++ = dig; | 
|  | goto ret; | 
|  | } | 
|  | if (j1 > 0) { | 
|  | if (dig == '9') { /* possible if i == 1 */ | 
|  | round_9_up: | 
|  | *s++ = '9'; | 
|  | goto roundoff; | 
|  | } | 
|  | *s++ = dig + 1; | 
|  | goto ret; | 
|  | } | 
|  | *s++ = dig; | 
|  | if (i == ilim) | 
|  | break; | 
|  | b = multadd(b, 10, 0); | 
|  | if (b == NULL) | 
|  | goto failed_malloc; | 
|  | if (mlo == mhi) { | 
|  | mlo = mhi = multadd(mhi, 10, 0); | 
|  | if (mlo == NULL) | 
|  | goto failed_malloc; | 
|  | } | 
|  | else { | 
|  | mlo = multadd(mlo, 10, 0); | 
|  | if (mlo == NULL) | 
|  | goto failed_malloc; | 
|  | mhi = multadd(mhi, 10, 0); | 
|  | if (mhi == NULL) | 
|  | goto failed_malloc; | 
|  | } | 
|  | } | 
|  | } | 
|  | else | 
|  | for(i = 1;; i++) { | 
|  | *s++ = dig = quorem(b,S) + '0'; | 
|  | if (!b->x[0] && b->wds <= 1) { | 
|  | goto ret; | 
|  | } | 
|  | if (i >= ilim) | 
|  | break; | 
|  | b = multadd(b, 10, 0); | 
|  | if (b == NULL) | 
|  | goto failed_malloc; | 
|  | } | 
|  |  | 
|  | /* Round off last digit */ | 
|  |  | 
|  | b = lshift(b, 1); | 
|  | if (b == NULL) | 
|  | goto failed_malloc; | 
|  | j = cmp(b, S); | 
|  | if (j > 0 || (j == 0 && dig & 1)) { | 
|  | roundoff: | 
|  | while(*--s == '9') | 
|  | if (s == s0) { | 
|  | k++; | 
|  | *s++ = '1'; | 
|  | goto ret; | 
|  | } | 
|  | ++*s++; | 
|  | } | 
|  | else { | 
|  | while(*--s == '0'); | 
|  | s++; | 
|  | } | 
|  | ret: | 
|  | Bfree(S); | 
|  | if (mhi) { | 
|  | if (mlo && mlo != mhi) | 
|  | Bfree(mlo); | 
|  | Bfree(mhi); | 
|  | } | 
|  | ret1: | 
|  | Bfree(b); | 
|  | *s = 0; | 
|  | *decpt = k + 1; | 
|  | if (rve) | 
|  | *rve = s; | 
|  | return s0; | 
|  | failed_malloc: | 
|  | if (S) | 
|  | Bfree(S); | 
|  | if (mlo && mlo != mhi) | 
|  | Bfree(mlo); | 
|  | if (mhi) | 
|  | Bfree(mhi); | 
|  | if (b) | 
|  | Bfree(b); | 
|  | if (s0) | 
|  | _Py_dg_freedtoa(s0); | 
|  | return NULL; | 
|  | } | 
|  | #ifdef __cplusplus | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #endif  /* PY_NO_SHORT_FLOAT_REPR */ |