blob: 9f4ef6be0e1f2a5e8ce44575916797e61c573ded [file] [log] [blame]
/* Execute compiled code */
/* XXX TO DO:
XXX speed up searching for keywords by using a dictionary
XXX document it!
*/
/* enable more aggressive intra-module optimizations, where available */
/* affects both release and debug builds - see bpo-43271 */
#define PY_LOCAL_AGGRESSIVE
#include "Python.h"
#include "pycore_abstract.h" // _PyIndex_Check()
#include "pycore_call.h" // _PyObject_FastCallDictTstate()
#include "pycore_ceval.h" // _PyEval_SignalAsyncExc()
#include "pycore_code.h" // _PyCode_InitOpcache()
#include "pycore_initconfig.h" // _PyStatus_OK()
#include "pycore_object.h" // _PyObject_GC_TRACK()
#include "pycore_pyerrors.h" // _PyErr_Fetch()
#include "pycore_pylifecycle.h" // _PyErr_Print()
#include "pycore_pymem.h" // _PyMem_IsPtrFreed()
#include "pycore_pystate.h" // _PyInterpreterState_GET()
#include "pycore_sysmodule.h" // _PySys_Audit()
#include "pycore_tuple.h" // _PyTuple_ITEMS()
#include "code.h"
#include "dictobject.h"
#include "frameobject.h"
#include "opcode.h"
#include "pydtrace.h"
#include "setobject.h"
#include "structmember.h" // struct PyMemberDef, T_OFFSET_EX
#include <ctype.h>
typedef struct {
PyCodeObject *code; // The code object for the bounds. May be NULL.
PyCodeAddressRange bounds; // Only valid if code != NULL.
CFrame cframe;
} PyTraceInfo;
#ifdef Py_DEBUG
/* For debugging the interpreter: */
#define LLTRACE 1 /* Low-level trace feature */
#define CHECKEXC 1 /* Double-check exception checking */
#endif
#if !defined(Py_BUILD_CORE)
# error "ceval.c must be build with Py_BUILD_CORE define for best performance"
#endif
_Py_IDENTIFIER(__name__);
/* Forward declarations */
Py_LOCAL_INLINE(PyObject *) call_function(
PyThreadState *tstate, PyTraceInfo *, PyObject ***pp_stack,
Py_ssize_t oparg, PyObject *kwnames);
static PyObject * do_call_core(
PyThreadState *tstate, PyTraceInfo *, PyObject *func,
PyObject *callargs, PyObject *kwdict);
#ifdef LLTRACE
static int lltrace;
static int prtrace(PyThreadState *, PyObject *, const char *);
#endif
static int call_trace(Py_tracefunc, PyObject *,
PyThreadState *, PyFrameObject *,
PyTraceInfo *,
int, PyObject *);
static int call_trace_protected(Py_tracefunc, PyObject *,
PyThreadState *, PyFrameObject *,
PyTraceInfo *,
int, PyObject *);
static void call_exc_trace(Py_tracefunc, PyObject *,
PyThreadState *, PyFrameObject *,
PyTraceInfo *trace_info);
static int maybe_call_line_trace(Py_tracefunc, PyObject *,
PyThreadState *, PyFrameObject *,
PyTraceInfo *, int);
static void maybe_dtrace_line(PyFrameObject *, PyTraceInfo *, int);
static void dtrace_function_entry(PyFrameObject *);
static void dtrace_function_return(PyFrameObject *);
static PyObject * import_name(PyThreadState *, PyFrameObject *,
PyObject *, PyObject *, PyObject *);
static PyObject * import_from(PyThreadState *, PyObject *, PyObject *);
static int import_all_from(PyThreadState *, PyObject *, PyObject *);
static void format_exc_check_arg(PyThreadState *, PyObject *, const char *, PyObject *);
static void format_exc_unbound(PyThreadState *tstate, PyCodeObject *co, int oparg);
static PyObject * unicode_concatenate(PyThreadState *, PyObject *, PyObject *,
PyFrameObject *, const _Py_CODEUNIT *);
static PyObject * special_lookup(PyThreadState *, PyObject *, _Py_Identifier *);
static int check_args_iterable(PyThreadState *, PyObject *func, PyObject *vararg);
static void format_kwargs_error(PyThreadState *, PyObject *func, PyObject *kwargs);
static void format_awaitable_error(PyThreadState *, PyTypeObject *, int, int);
#define NAME_ERROR_MSG \
"name '%.200s' is not defined"
#define UNBOUNDLOCAL_ERROR_MSG \
"local variable '%.200s' referenced before assignment"
#define UNBOUNDFREE_ERROR_MSG \
"free variable '%.200s' referenced before assignment" \
" in enclosing scope"
/* Dynamic execution profile */
#ifdef DYNAMIC_EXECUTION_PROFILE
#ifdef DXPAIRS
static long dxpairs[257][256];
#define dxp dxpairs[256]
#else
static long dxp[256];
#endif
#endif
/* per opcode cache */
static int opcache_min_runs = 1024; /* create opcache when code executed this many times */
#define OPCODE_CACHE_MAX_TRIES 20
#define OPCACHE_STATS 0 /* Enable stats */
// This function allows to deactivate the opcode cache. As different cache mechanisms may hold
// references, this can mess with the reference leak detector functionality so the cache needs
// to be deactivated in such scenarios to avoid false positives. See bpo-3714 for more information.
void
_PyEval_DeactivateOpCache(void)
{
opcache_min_runs = 0;
}
#if OPCACHE_STATS
static size_t opcache_code_objects = 0;
static size_t opcache_code_objects_extra_mem = 0;
static size_t opcache_global_opts = 0;
static size_t opcache_global_hits = 0;
static size_t opcache_global_misses = 0;
static size_t opcache_attr_opts = 0;
static size_t opcache_attr_hits = 0;
static size_t opcache_attr_misses = 0;
static size_t opcache_attr_deopts = 0;
static size_t opcache_attr_total = 0;
#endif
#ifndef NDEBUG
/* Ensure that tstate is valid: sanity check for PyEval_AcquireThread() and
PyEval_RestoreThread(). Detect if tstate memory was freed. It can happen
when a thread continues to run after Python finalization, especially
daemon threads. */
static int
is_tstate_valid(PyThreadState *tstate)
{
assert(!_PyMem_IsPtrFreed(tstate));
assert(!_PyMem_IsPtrFreed(tstate->interp));
return 1;
}
#endif
/* This can set eval_breaker to 0 even though gil_drop_request became
1. We believe this is all right because the eval loop will release
the GIL eventually anyway. */
static inline void
COMPUTE_EVAL_BREAKER(PyInterpreterState *interp,
struct _ceval_runtime_state *ceval,
struct _ceval_state *ceval2)
{
_Py_atomic_store_relaxed(&ceval2->eval_breaker,
_Py_atomic_load_relaxed(&ceval2->gil_drop_request)
| (_Py_atomic_load_relaxed(&ceval->signals_pending)
&& _Py_ThreadCanHandleSignals(interp))
| (_Py_atomic_load_relaxed(&ceval2->pending.calls_to_do)
&& _Py_ThreadCanHandlePendingCalls())
| ceval2->pending.async_exc);
}
static inline void
SET_GIL_DROP_REQUEST(PyInterpreterState *interp)
{
struct _ceval_state *ceval2 = &interp->ceval;
_Py_atomic_store_relaxed(&ceval2->gil_drop_request, 1);
_Py_atomic_store_relaxed(&ceval2->eval_breaker, 1);
}
static inline void
RESET_GIL_DROP_REQUEST(PyInterpreterState *interp)
{
struct _ceval_runtime_state *ceval = &interp->runtime->ceval;
struct _ceval_state *ceval2 = &interp->ceval;
_Py_atomic_store_relaxed(&ceval2->gil_drop_request, 0);
COMPUTE_EVAL_BREAKER(interp, ceval, ceval2);
}
static inline void
SIGNAL_PENDING_CALLS(PyInterpreterState *interp)
{
struct _ceval_runtime_state *ceval = &interp->runtime->ceval;
struct _ceval_state *ceval2 = &interp->ceval;
_Py_atomic_store_relaxed(&ceval2->pending.calls_to_do, 1);
COMPUTE_EVAL_BREAKER(interp, ceval, ceval2);
}
static inline void
UNSIGNAL_PENDING_CALLS(PyInterpreterState *interp)
{
struct _ceval_runtime_state *ceval = &interp->runtime->ceval;
struct _ceval_state *ceval2 = &interp->ceval;
_Py_atomic_store_relaxed(&ceval2->pending.calls_to_do, 0);
COMPUTE_EVAL_BREAKER(interp, ceval, ceval2);
}
static inline void
SIGNAL_PENDING_SIGNALS(PyInterpreterState *interp, int force)
{
struct _ceval_runtime_state *ceval = &interp->runtime->ceval;
struct _ceval_state *ceval2 = &interp->ceval;
_Py_atomic_store_relaxed(&ceval->signals_pending, 1);
if (force) {
_Py_atomic_store_relaxed(&ceval2->eval_breaker, 1);
}
else {
/* eval_breaker is not set to 1 if thread_can_handle_signals() is false */
COMPUTE_EVAL_BREAKER(interp, ceval, ceval2);
}
}
static inline void
UNSIGNAL_PENDING_SIGNALS(PyInterpreterState *interp)
{
struct _ceval_runtime_state *ceval = &interp->runtime->ceval;
struct _ceval_state *ceval2 = &interp->ceval;
_Py_atomic_store_relaxed(&ceval->signals_pending, 0);
COMPUTE_EVAL_BREAKER(interp, ceval, ceval2);
}
static inline void
SIGNAL_ASYNC_EXC(PyInterpreterState *interp)
{
struct _ceval_state *ceval2 = &interp->ceval;
ceval2->pending.async_exc = 1;
_Py_atomic_store_relaxed(&ceval2->eval_breaker, 1);
}
static inline void
UNSIGNAL_ASYNC_EXC(PyInterpreterState *interp)
{
struct _ceval_runtime_state *ceval = &interp->runtime->ceval;
struct _ceval_state *ceval2 = &interp->ceval;
ceval2->pending.async_exc = 0;
COMPUTE_EVAL_BREAKER(interp, ceval, ceval2);
}
#ifdef HAVE_ERRNO_H
#include <errno.h>
#endif
#include "ceval_gil.h"
void _Py_NO_RETURN
_Py_FatalError_TstateNULL(const char *func)
{
_Py_FatalErrorFunc(func,
"the function must be called with the GIL held, "
"but the GIL is released "
"(the current Python thread state is NULL)");
}
#ifdef EXPERIMENTAL_ISOLATED_SUBINTERPRETERS
int
_PyEval_ThreadsInitialized(PyInterpreterState *interp)
{
return gil_created(&interp->ceval.gil);
}
int
PyEval_ThreadsInitialized(void)
{
// Fatal error if there is no current interpreter
PyInterpreterState *interp = PyInterpreterState_Get();
return _PyEval_ThreadsInitialized(interp);
}
#else
int
_PyEval_ThreadsInitialized(_PyRuntimeState *runtime)
{
return gil_created(&runtime->ceval.gil);
}
int
PyEval_ThreadsInitialized(void)
{
_PyRuntimeState *runtime = &_PyRuntime;
return _PyEval_ThreadsInitialized(runtime);
}
#endif
PyStatus
_PyEval_InitGIL(PyThreadState *tstate)
{
#ifndef EXPERIMENTAL_ISOLATED_SUBINTERPRETERS
if (!_Py_IsMainInterpreter(tstate->interp)) {
/* Currently, the GIL is shared by all interpreters,
and only the main interpreter is responsible to create
and destroy it. */
return _PyStatus_OK();
}
#endif
#ifdef EXPERIMENTAL_ISOLATED_SUBINTERPRETERS
struct _gil_runtime_state *gil = &tstate->interp->ceval.gil;
#else
struct _gil_runtime_state *gil = &tstate->interp->runtime->ceval.gil;
#endif
assert(!gil_created(gil));
PyThread_init_thread();
create_gil(gil);
take_gil(tstate);
assert(gil_created(gil));
return _PyStatus_OK();
}
void
_PyEval_FiniGIL(PyInterpreterState *interp)
{
#ifndef EXPERIMENTAL_ISOLATED_SUBINTERPRETERS
if (!_Py_IsMainInterpreter(interp)) {
/* Currently, the GIL is shared by all interpreters,
and only the main interpreter is responsible to create
and destroy it. */
return;
}
#endif
#ifdef EXPERIMENTAL_ISOLATED_SUBINTERPRETERS
struct _gil_runtime_state *gil = &interp->ceval.gil;
#else
struct _gil_runtime_state *gil = &interp->runtime->ceval.gil;
#endif
if (!gil_created(gil)) {
/* First Py_InitializeFromConfig() call: the GIL doesn't exist
yet: do nothing. */
return;
}
destroy_gil(gil);
assert(!gil_created(gil));
}
void
PyEval_InitThreads(void)
{
/* Do nothing: kept for backward compatibility */
}
void
_PyEval_Fini(void)
{
#if OPCACHE_STATS
fprintf(stderr, "-- Opcode cache number of objects = %zd\n",
opcache_code_objects);
fprintf(stderr, "-- Opcode cache total extra mem = %zd\n",
opcache_code_objects_extra_mem);
fprintf(stderr, "\n");
fprintf(stderr, "-- Opcode cache LOAD_GLOBAL hits = %zd (%d%%)\n",
opcache_global_hits,
(int) (100.0 * opcache_global_hits /
(opcache_global_hits + opcache_global_misses)));
fprintf(stderr, "-- Opcode cache LOAD_GLOBAL misses = %zd (%d%%)\n",
opcache_global_misses,
(int) (100.0 * opcache_global_misses /
(opcache_global_hits + opcache_global_misses)));
fprintf(stderr, "-- Opcode cache LOAD_GLOBAL opts = %zd\n",
opcache_global_opts);
fprintf(stderr, "\n");
fprintf(stderr, "-- Opcode cache LOAD_ATTR hits = %zd (%d%%)\n",
opcache_attr_hits,
(int) (100.0 * opcache_attr_hits /
opcache_attr_total));
fprintf(stderr, "-- Opcode cache LOAD_ATTR misses = %zd (%d%%)\n",
opcache_attr_misses,
(int) (100.0 * opcache_attr_misses /
opcache_attr_total));
fprintf(stderr, "-- Opcode cache LOAD_ATTR opts = %zd\n",
opcache_attr_opts);
fprintf(stderr, "-- Opcode cache LOAD_ATTR deopts = %zd\n",
opcache_attr_deopts);
fprintf(stderr, "-- Opcode cache LOAD_ATTR total = %zd\n",
opcache_attr_total);
#endif
}
void
PyEval_AcquireLock(void)
{
_PyRuntimeState *runtime = &_PyRuntime;
PyThreadState *tstate = _PyRuntimeState_GetThreadState(runtime);
_Py_EnsureTstateNotNULL(tstate);
take_gil(tstate);
}
void
PyEval_ReleaseLock(void)
{
_PyRuntimeState *runtime = &_PyRuntime;
PyThreadState *tstate = _PyRuntimeState_GetThreadState(runtime);
/* This function must succeed when the current thread state is NULL.
We therefore avoid PyThreadState_Get() which dumps a fatal error
in debug mode. */
struct _ceval_runtime_state *ceval = &runtime->ceval;
struct _ceval_state *ceval2 = &tstate->interp->ceval;
drop_gil(ceval, ceval2, tstate);
}
void
_PyEval_ReleaseLock(PyThreadState *tstate)
{
struct _ceval_runtime_state *ceval = &tstate->interp->runtime->ceval;
struct _ceval_state *ceval2 = &tstate->interp->ceval;
drop_gil(ceval, ceval2, tstate);
}
void
PyEval_AcquireThread(PyThreadState *tstate)
{
_Py_EnsureTstateNotNULL(tstate);
take_gil(tstate);
struct _gilstate_runtime_state *gilstate = &tstate->interp->runtime->gilstate;
#ifdef EXPERIMENTAL_ISOLATED_SUBINTERPRETERS
(void)_PyThreadState_Swap(gilstate, tstate);
#else
if (_PyThreadState_Swap(gilstate, tstate) != NULL) {
Py_FatalError("non-NULL old thread state");
}
#endif
}
void
PyEval_ReleaseThread(PyThreadState *tstate)
{
assert(is_tstate_valid(tstate));
_PyRuntimeState *runtime = tstate->interp->runtime;
PyThreadState *new_tstate = _PyThreadState_Swap(&runtime->gilstate, NULL);
if (new_tstate != tstate) {
Py_FatalError("wrong thread state");
}
struct _ceval_runtime_state *ceval = &runtime->ceval;
struct _ceval_state *ceval2 = &tstate->interp->ceval;
drop_gil(ceval, ceval2, tstate);
}
#ifdef HAVE_FORK
/* This function is called from PyOS_AfterFork_Child to destroy all threads
which are not running in the child process, and clear internal locks
which might be held by those threads. */
PyStatus
_PyEval_ReInitThreads(PyThreadState *tstate)
{
_PyRuntimeState *runtime = tstate->interp->runtime;
#ifdef EXPERIMENTAL_ISOLATED_SUBINTERPRETERS
struct _gil_runtime_state *gil = &tstate->interp->ceval.gil;
#else
struct _gil_runtime_state *gil = &runtime->ceval.gil;
#endif
if (!gil_created(gil)) {
return _PyStatus_OK();
}
recreate_gil(gil);
take_gil(tstate);
struct _pending_calls *pending = &tstate->interp->ceval.pending;
if (_PyThread_at_fork_reinit(&pending->lock) < 0) {
return _PyStatus_ERR("Can't reinitialize pending calls lock");
}
/* Destroy all threads except the current one */
_PyThreadState_DeleteExcept(runtime, tstate);
return _PyStatus_OK();
}
#endif
/* This function is used to signal that async exceptions are waiting to be
raised. */
void
_PyEval_SignalAsyncExc(PyInterpreterState *interp)
{
SIGNAL_ASYNC_EXC(interp);
}
PyThreadState *
PyEval_SaveThread(void)
{
_PyRuntimeState *runtime = &_PyRuntime;
#ifdef EXPERIMENTAL_ISOLATED_SUBINTERPRETERS
PyThreadState *old_tstate = _PyThreadState_GET();
PyThreadState *tstate = _PyThreadState_Swap(&runtime->gilstate, old_tstate);
#else
PyThreadState *tstate = _PyThreadState_Swap(&runtime->gilstate, NULL);
#endif
_Py_EnsureTstateNotNULL(tstate);
struct _ceval_runtime_state *ceval = &runtime->ceval;
struct _ceval_state *ceval2 = &tstate->interp->ceval;
#ifdef EXPERIMENTAL_ISOLATED_SUBINTERPRETERS
assert(gil_created(&ceval2->gil));
#else
assert(gil_created(&ceval->gil));
#endif
drop_gil(ceval, ceval2, tstate);
return tstate;
}
void
PyEval_RestoreThread(PyThreadState *tstate)
{
_Py_EnsureTstateNotNULL(tstate);
take_gil(tstate);
struct _gilstate_runtime_state *gilstate = &tstate->interp->runtime->gilstate;
_PyThreadState_Swap(gilstate, tstate);
}
/* Mechanism whereby asynchronously executing callbacks (e.g. UNIX
signal handlers or Mac I/O completion routines) can schedule calls
to a function to be called synchronously.
The synchronous function is called with one void* argument.
It should return 0 for success or -1 for failure -- failure should
be accompanied by an exception.
If registry succeeds, the registry function returns 0; if it fails
(e.g. due to too many pending calls) it returns -1 (without setting
an exception condition).
Note that because registry may occur from within signal handlers,
or other asynchronous events, calling malloc() is unsafe!
Any thread can schedule pending calls, but only the main thread
will execute them.
There is no facility to schedule calls to a particular thread, but
that should be easy to change, should that ever be required. In
that case, the static variables here should go into the python
threadstate.
*/
void
_PyEval_SignalReceived(PyInterpreterState *interp)
{
#ifdef MS_WINDOWS
// bpo-42296: On Windows, _PyEval_SignalReceived() is called from a signal
// handler which can run in a thread different than the Python thread, in
// which case _Py_ThreadCanHandleSignals() is wrong. Ignore
// _Py_ThreadCanHandleSignals() and always set eval_breaker to 1.
//
// The next eval_frame_handle_pending() call will call
// _Py_ThreadCanHandleSignals() to recompute eval_breaker.
int force = 1;
#else
int force = 0;
#endif
/* bpo-30703: Function called when the C signal handler of Python gets a
signal. We cannot queue a callback using _PyEval_AddPendingCall() since
that function is not async-signal-safe. */
SIGNAL_PENDING_SIGNALS(interp, force);
}
/* Push one item onto the queue while holding the lock. */
static int
_push_pending_call(struct _pending_calls *pending,
int (*func)(void *), void *arg)
{
int i = pending->last;
int j = (i + 1) % NPENDINGCALLS;
if (j == pending->first) {
return -1; /* Queue full */
}
pending->calls[i].func = func;
pending->calls[i].arg = arg;
pending->last = j;
return 0;
}
/* Pop one item off the queue while holding the lock. */
static void
_pop_pending_call(struct _pending_calls *pending,
int (**func)(void *), void **arg)
{
int i = pending->first;
if (i == pending->last) {
return; /* Queue empty */
}
*func = pending->calls[i].func;
*arg = pending->calls[i].arg;
pending->first = (i + 1) % NPENDINGCALLS;
}
/* This implementation is thread-safe. It allows
scheduling to be made from any thread, and even from an executing
callback.
*/
int
_PyEval_AddPendingCall(PyInterpreterState *interp,
int (*func)(void *), void *arg)
{
struct _pending_calls *pending = &interp->ceval.pending;
/* Ensure that _PyEval_InitPendingCalls() was called
and that _PyEval_FiniPendingCalls() is not called yet. */
assert(pending->lock != NULL);
PyThread_acquire_lock(pending->lock, WAIT_LOCK);
int result = _push_pending_call(pending, func, arg);
PyThread_release_lock(pending->lock);
/* signal main loop */
SIGNAL_PENDING_CALLS(interp);
return result;
}
int
Py_AddPendingCall(int (*func)(void *), void *arg)
{
/* Best-effort to support subinterpreters and calls with the GIL released.
First attempt _PyThreadState_GET() since it supports subinterpreters.
If the GIL is released, _PyThreadState_GET() returns NULL . In this
case, use PyGILState_GetThisThreadState() which works even if the GIL
is released.
Sadly, PyGILState_GetThisThreadState() doesn't support subinterpreters:
see bpo-10915 and bpo-15751.
Py_AddPendingCall() doesn't require the caller to hold the GIL. */
PyThreadState *tstate = _PyThreadState_GET();
if (tstate == NULL) {
tstate = PyGILState_GetThisThreadState();
}
PyInterpreterState *interp;
if (tstate != NULL) {
interp = tstate->interp;
}
else {
/* Last resort: use the main interpreter */
interp = _PyRuntime.interpreters.main;
}
return _PyEval_AddPendingCall(interp, func, arg);
}
static int
handle_signals(PyThreadState *tstate)
{
assert(is_tstate_valid(tstate));
if (!_Py_ThreadCanHandleSignals(tstate->interp)) {
return 0;
}
UNSIGNAL_PENDING_SIGNALS(tstate->interp);
if (_PyErr_CheckSignalsTstate(tstate) < 0) {
/* On failure, re-schedule a call to handle_signals(). */
SIGNAL_PENDING_SIGNALS(tstate->interp, 0);
return -1;
}
return 0;
}
static int
make_pending_calls(PyInterpreterState *interp)
{
/* only execute pending calls on main thread */
if (!_Py_ThreadCanHandlePendingCalls()) {
return 0;
}
/* don't perform recursive pending calls */
static int busy = 0;
if (busy) {
return 0;
}
busy = 1;
/* unsignal before starting to call callbacks, so that any callback
added in-between re-signals */
UNSIGNAL_PENDING_CALLS(interp);
int res = 0;
/* perform a bounded number of calls, in case of recursion */
struct _pending_calls *pending = &interp->ceval.pending;
for (int i=0; i<NPENDINGCALLS; i++) {
int (*func)(void *) = NULL;
void *arg = NULL;
/* pop one item off the queue while holding the lock */
PyThread_acquire_lock(pending->lock, WAIT_LOCK);
_pop_pending_call(pending, &func, &arg);
PyThread_release_lock(pending->lock);
/* having released the lock, perform the callback */
if (func == NULL) {
break;
}
res = func(arg);
if (res) {
goto error;
}
}
busy = 0;
return res;
error:
busy = 0;
SIGNAL_PENDING_CALLS(interp);
return res;
}
void
_Py_FinishPendingCalls(PyThreadState *tstate)
{
assert(PyGILState_Check());
assert(is_tstate_valid(tstate));
struct _pending_calls *pending = &tstate->interp->ceval.pending;
if (!_Py_atomic_load_relaxed(&(pending->calls_to_do))) {
return;
}
if (make_pending_calls(tstate->interp) < 0) {
PyObject *exc, *val, *tb;
_PyErr_Fetch(tstate, &exc, &val, &tb);
PyErr_BadInternalCall();
_PyErr_ChainExceptions(exc, val, tb);
_PyErr_Print(tstate);
}
}
/* Py_MakePendingCalls() is a simple wrapper for the sake
of backward-compatibility. */
int
Py_MakePendingCalls(void)
{
assert(PyGILState_Check());
PyThreadState *tstate = _PyThreadState_GET();
assert(is_tstate_valid(tstate));
/* Python signal handler doesn't really queue a callback: it only signals
that a signal was received, see _PyEval_SignalReceived(). */
int res = handle_signals(tstate);
if (res != 0) {
return res;
}
res = make_pending_calls(tstate->interp);
if (res != 0) {
return res;
}
return 0;
}
/* The interpreter's recursion limit */
#ifndef Py_DEFAULT_RECURSION_LIMIT
# define Py_DEFAULT_RECURSION_LIMIT 1000
#endif
void
_PyEval_InitRuntimeState(struct _ceval_runtime_state *ceval)
{
#ifndef EXPERIMENTAL_ISOLATED_SUBINTERPRETERS
_gil_initialize(&ceval->gil);
#endif
}
int
_PyEval_InitState(struct _ceval_state *ceval)
{
ceval->recursion_limit = Py_DEFAULT_RECURSION_LIMIT;
struct _pending_calls *pending = &ceval->pending;
assert(pending->lock == NULL);
pending->lock = PyThread_allocate_lock();
if (pending->lock == NULL) {
return -1;
}
#ifdef EXPERIMENTAL_ISOLATED_SUBINTERPRETERS
_gil_initialize(&ceval->gil);
#endif
return 0;
}
void
_PyEval_FiniState(struct _ceval_state *ceval)
{
struct _pending_calls *pending = &ceval->pending;
if (pending->lock != NULL) {
PyThread_free_lock(pending->lock);
pending->lock = NULL;
}
}
int
Py_GetRecursionLimit(void)
{
PyInterpreterState *interp = _PyInterpreterState_GET();
return interp->ceval.recursion_limit;
}
void
Py_SetRecursionLimit(int new_limit)
{
PyThreadState *tstate = _PyThreadState_GET();
tstate->interp->ceval.recursion_limit = new_limit;
}
/* The function _Py_EnterRecursiveCall() only calls _Py_CheckRecursiveCall()
if the recursion_depth reaches recursion_limit.
If USE_STACKCHECK, the macro decrements recursion_limit
to guarantee that _Py_CheckRecursiveCall() is regularly called.
Without USE_STACKCHECK, there is no need for this. */
int
_Py_CheckRecursiveCall(PyThreadState *tstate, const char *where)
{
int recursion_limit = tstate->interp->ceval.recursion_limit;
#ifdef USE_STACKCHECK
tstate->stackcheck_counter = 0;
if (PyOS_CheckStack()) {
--tstate->recursion_depth;
_PyErr_SetString(tstate, PyExc_MemoryError, "Stack overflow");
return -1;
}
#endif
if (tstate->recursion_headroom) {
if (tstate->recursion_depth > recursion_limit + 50) {
/* Overflowing while handling an overflow. Give up. */
Py_FatalError("Cannot recover from stack overflow.");
}
}
else {
if (tstate->recursion_depth > recursion_limit) {
tstate->recursion_headroom++;
_PyErr_Format(tstate, PyExc_RecursionError,
"maximum recursion depth exceeded%s",
where);
tstate->recursion_headroom--;
--tstate->recursion_depth;
return -1;
}
}
return 0;
}
// PEP 634: Structural Pattern Matching
// Return a tuple of values corresponding to keys, with error checks for
// duplicate/missing keys.
static PyObject*
match_keys(PyThreadState *tstate, PyObject *map, PyObject *keys)
{
assert(PyTuple_CheckExact(keys));
Py_ssize_t nkeys = PyTuple_GET_SIZE(keys);
if (!nkeys) {
// No keys means no items.
return PyTuple_New(0);
}
PyObject *seen = NULL;
PyObject *dummy = NULL;
PyObject *values = NULL;
// We use the two argument form of map.get(key, default) for two reasons:
// - Atomically check for a key and get its value without error handling.
// - Don't cause key creation or resizing in dict subclasses like
// collections.defaultdict that define __missing__ (or similar).
_Py_IDENTIFIER(get);
PyObject *get = _PyObject_GetAttrId(map, &PyId_get);
if (get == NULL) {
goto fail;
}
seen = PySet_New(NULL);
if (seen == NULL) {
goto fail;
}
// dummy = object()
dummy = _PyObject_CallNoArg((PyObject *)&PyBaseObject_Type);
if (dummy == NULL) {
goto fail;
}
values = PyList_New(0);
if (values == NULL) {
goto fail;
}
for (Py_ssize_t i = 0; i < nkeys; i++) {
PyObject *key = PyTuple_GET_ITEM(keys, i);
if (PySet_Contains(seen, key) || PySet_Add(seen, key)) {
if (!_PyErr_Occurred(tstate)) {
// Seen it before!
_PyErr_Format(tstate, PyExc_ValueError,
"mapping pattern checks duplicate key (%R)", key);
}
goto fail;
}
PyObject *value = PyObject_CallFunctionObjArgs(get, key, dummy, NULL);
if (value == NULL) {
goto fail;
}
if (value == dummy) {
// key not in map!
Py_DECREF(value);
Py_DECREF(values);
// Return None:
Py_INCREF(Py_None);
values = Py_None;
goto done;
}
PyList_Append(values, value);
Py_DECREF(value);
}
Py_SETREF(values, PyList_AsTuple(values));
// Success:
done:
Py_DECREF(get);
Py_DECREF(seen);
Py_DECREF(dummy);
return values;
fail:
Py_XDECREF(get);
Py_XDECREF(seen);
Py_XDECREF(dummy);
Py_XDECREF(values);
return NULL;
}
// Extract a named attribute from the subject, with additional bookkeeping to
// raise TypeErrors for repeated lookups. On failure, return NULL (with no
// error set). Use _PyErr_Occurred(tstate) to disambiguate.
static PyObject*
match_class_attr(PyThreadState *tstate, PyObject *subject, PyObject *type,
PyObject *name, PyObject *seen)
{
assert(PyUnicode_CheckExact(name));
assert(PySet_CheckExact(seen));
if (PySet_Contains(seen, name) || PySet_Add(seen, name)) {
if (!_PyErr_Occurred(tstate)) {
// Seen it before!
_PyErr_Format(tstate, PyExc_TypeError,
"%s() got multiple sub-patterns for attribute %R",
((PyTypeObject*)type)->tp_name, name);
}
return NULL;
}
PyObject *attr = PyObject_GetAttr(subject, name);
if (attr == NULL && _PyErr_ExceptionMatches(tstate, PyExc_AttributeError)) {
_PyErr_Clear(tstate);
}
return attr;
}
// On success (match), return a tuple of extracted attributes. On failure (no
// match), return NULL. Use _PyErr_Occurred(tstate) to disambiguate.
static PyObject*
match_class(PyThreadState *tstate, PyObject *subject, PyObject *type,
Py_ssize_t nargs, PyObject *kwargs)
{
if (!PyType_Check(type)) {
const char *e = "called match pattern must be a type";
_PyErr_Format(tstate, PyExc_TypeError, e);
return NULL;
}
assert(PyTuple_CheckExact(kwargs));
// First, an isinstance check:
if (PyObject_IsInstance(subject, type) <= 0) {
return NULL;
}
// So far so good:
PyObject *seen = PySet_New(NULL);
if (seen == NULL) {
return NULL;
}
PyObject *attrs = PyList_New(0);
if (attrs == NULL) {
Py_DECREF(seen);
return NULL;
}
// NOTE: From this point on, goto fail on failure:
PyObject *match_args = NULL;
// First, the positional subpatterns:
if (nargs) {
int match_self = 0;
match_args = PyObject_GetAttrString(type, "__match_args__");
if (match_args) {
if (!PyTuple_CheckExact(match_args)) {
const char *e = "%s.__match_args__ must be a tuple (got %s)";
_PyErr_Format(tstate, PyExc_TypeError, e,
((PyTypeObject *)type)->tp_name,
Py_TYPE(match_args)->tp_name);
goto fail;
}
}
else if (_PyErr_ExceptionMatches(tstate, PyExc_AttributeError)) {
_PyErr_Clear(tstate);
// _Py_TPFLAGS_MATCH_SELF is only acknowledged if the type does not
// define __match_args__. This is natural behavior for subclasses:
// it's as if __match_args__ is some "magic" value that is lost as
// soon as they redefine it.
match_args = PyTuple_New(0);
match_self = PyType_HasFeature((PyTypeObject*)type,
_Py_TPFLAGS_MATCH_SELF);
}
else {
goto fail;
}
assert(PyTuple_CheckExact(match_args));
Py_ssize_t allowed = match_self ? 1 : PyTuple_GET_SIZE(match_args);
if (allowed < nargs) {
const char *plural = (allowed == 1) ? "" : "s";
_PyErr_Format(tstate, PyExc_TypeError,
"%s() accepts %d positional sub-pattern%s (%d given)",
((PyTypeObject*)type)->tp_name,
allowed, plural, nargs);
goto fail;
}
if (match_self) {
// Easy. Copy the subject itself, and move on to kwargs.
PyList_Append(attrs, subject);
}
else {
for (Py_ssize_t i = 0; i < nargs; i++) {
PyObject *name = PyTuple_GET_ITEM(match_args, i);
if (!PyUnicode_CheckExact(name)) {
_PyErr_Format(tstate, PyExc_TypeError,
"__match_args__ elements must be strings "
"(got %s)", Py_TYPE(name)->tp_name);
goto fail;
}
PyObject *attr = match_class_attr(tstate, subject, type, name,
seen);
if (attr == NULL) {
goto fail;
}
PyList_Append(attrs, attr);
Py_DECREF(attr);
}
}
Py_CLEAR(match_args);
}
// Finally, the keyword subpatterns:
for (Py_ssize_t i = 0; i < PyTuple_GET_SIZE(kwargs); i++) {
PyObject *name = PyTuple_GET_ITEM(kwargs, i);
PyObject *attr = match_class_attr(tstate, subject, type, name, seen);
if (attr == NULL) {
goto fail;
}
PyList_Append(attrs, attr);
Py_DECREF(attr);
}
Py_SETREF(attrs, PyList_AsTuple(attrs));
Py_DECREF(seen);
return attrs;
fail:
// We really don't care whether an error was raised or not... that's our
// caller's problem. All we know is that the match failed.
Py_XDECREF(match_args);
Py_DECREF(seen);
Py_DECREF(attrs);
return NULL;
}
static int do_raise(PyThreadState *tstate, PyObject *exc, PyObject *cause);
static int unpack_iterable(PyThreadState *, PyObject *, int, int, PyObject **);
PyObject *
PyEval_EvalCode(PyObject *co, PyObject *globals, PyObject *locals)
{
PyThreadState *tstate = PyThreadState_GET();
if (locals == NULL) {
locals = globals;
}
PyObject *builtins = _PyEval_BuiltinsFromGlobals(tstate, globals); // borrowed ref
if (builtins == NULL) {
return NULL;
}
PyFrameConstructor desc = {
.fc_globals = globals,
.fc_builtins = builtins,
.fc_name = ((PyCodeObject *)co)->co_name,
.fc_qualname = ((PyCodeObject *)co)->co_name,
.fc_code = co,
.fc_defaults = NULL,
.fc_kwdefaults = NULL,
.fc_closure = NULL
};
return _PyEval_Vector(tstate, &desc, locals, NULL, 0, NULL);
}
/* Interpreter main loop */
PyObject *
PyEval_EvalFrame(PyFrameObject *f)
{
/* Function kept for backward compatibility */
PyThreadState *tstate = _PyThreadState_GET();
return _PyEval_EvalFrame(tstate, f, 0);
}
PyObject *
PyEval_EvalFrameEx(PyFrameObject *f, int throwflag)
{
PyThreadState *tstate = _PyThreadState_GET();
return _PyEval_EvalFrame(tstate, f, throwflag);
}
/* Handle signals, pending calls, GIL drop request
and asynchronous exception */
static int
eval_frame_handle_pending(PyThreadState *tstate)
{
_PyRuntimeState * const runtime = &_PyRuntime;
struct _ceval_runtime_state *ceval = &runtime->ceval;
/* Pending signals */
if (_Py_atomic_load_relaxed(&ceval->signals_pending)) {
if (handle_signals(tstate) != 0) {
return -1;
}
}
/* Pending calls */
struct _ceval_state *ceval2 = &tstate->interp->ceval;
if (_Py_atomic_load_relaxed(&ceval2->pending.calls_to_do)) {
if (make_pending_calls(tstate->interp) != 0) {
return -1;
}
}
/* GIL drop request */
if (_Py_atomic_load_relaxed(&ceval2->gil_drop_request)) {
/* Give another thread a chance */
if (_PyThreadState_Swap(&runtime->gilstate, NULL) != tstate) {
Py_FatalError("tstate mix-up");
}
drop_gil(ceval, ceval2, tstate);
/* Other threads may run now */
take_gil(tstate);
#ifdef EXPERIMENTAL_ISOLATED_SUBINTERPRETERS
(void)_PyThreadState_Swap(&runtime->gilstate, tstate);
#else
if (_PyThreadState_Swap(&runtime->gilstate, tstate) != NULL) {
Py_FatalError("orphan tstate");
}
#endif
}
/* Check for asynchronous exception. */
if (tstate->async_exc != NULL) {
PyObject *exc = tstate->async_exc;
tstate->async_exc = NULL;
UNSIGNAL_ASYNC_EXC(tstate->interp);
_PyErr_SetNone(tstate, exc);
Py_DECREF(exc);
return -1;
}
#ifdef MS_WINDOWS
// bpo-42296: On Windows, _PyEval_SignalReceived() can be called in a
// different thread than the Python thread, in which case
// _Py_ThreadCanHandleSignals() is wrong. Recompute eval_breaker in the
// current Python thread with the correct _Py_ThreadCanHandleSignals()
// value. It prevents to interrupt the eval loop at every instruction if
// the current Python thread cannot handle signals (if
// _Py_ThreadCanHandleSignals() is false).
COMPUTE_EVAL_BREAKER(tstate->interp, ceval, ceval2);
#endif
return 0;
}
/* Computed GOTOs, or
the-optimization-commonly-but-improperly-known-as-"threaded code"
using gcc's labels-as-values extension
(http://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html).
The traditional bytecode evaluation loop uses a "switch" statement, which
decent compilers will optimize as a single indirect branch instruction
combined with a lookup table of jump addresses. However, since the
indirect jump instruction is shared by all opcodes, the CPU will have a
hard time making the right prediction for where to jump next (actually,
it will be always wrong except in the uncommon case of a sequence of
several identical opcodes).
"Threaded code" in contrast, uses an explicit jump table and an explicit
indirect jump instruction at the end of each opcode. Since the jump
instruction is at a different address for each opcode, the CPU will make a
separate prediction for each of these instructions, which is equivalent to
predicting the second opcode of each opcode pair. These predictions have
a much better chance to turn out valid, especially in small bytecode loops.
A mispredicted branch on a modern CPU flushes the whole pipeline and
can cost several CPU cycles (depending on the pipeline depth),
and potentially many more instructions (depending on the pipeline width).
A correctly predicted branch, however, is nearly free.
At the time of this writing, the "threaded code" version is up to 15-20%
faster than the normal "switch" version, depending on the compiler and the
CPU architecture.
We disable the optimization if DYNAMIC_EXECUTION_PROFILE is defined,
because it would render the measurements invalid.
NOTE: care must be taken that the compiler doesn't try to "optimize" the
indirect jumps by sharing them between all opcodes. Such optimizations
can be disabled on gcc by using the -fno-gcse flag (or possibly
-fno-crossjumping).
*/
/* Use macros rather than inline functions, to make it as clear as possible
* to the C compiler that the tracing check is a simple test then branch.
* We want to be sure that the compiler knows this before it generates
* the CFG.
*/
#ifdef LLTRACE
#define OR_LLTRACE || lltrace
#else
#define OR_LLTRACE
#endif
#ifdef WITH_DTRACE
#define OR_DTRACE_LINE || PyDTrace_LINE_ENABLED()
#else
#define OR_DTRACE_LINE
#endif
#ifdef DYNAMIC_EXECUTION_PROFILE
#undef USE_COMPUTED_GOTOS
#define USE_COMPUTED_GOTOS 0
#endif
#ifdef HAVE_COMPUTED_GOTOS
#ifndef USE_COMPUTED_GOTOS
#define USE_COMPUTED_GOTOS 1
#endif
#else
#if defined(USE_COMPUTED_GOTOS) && USE_COMPUTED_GOTOS
#error "Computed gotos are not supported on this compiler."
#endif
#undef USE_COMPUTED_GOTOS
#define USE_COMPUTED_GOTOS 0
#endif
#if USE_COMPUTED_GOTOS
#define TARGET(op) op: TARGET_##op
#define DISPATCH() \
{ \
if (trace_info.cframe.use_tracing OR_DTRACE_LINE OR_LLTRACE) { \
goto tracing_dispatch; \
} \
f->f_lasti = INSTR_OFFSET(); \
NEXTOPARG(); \
goto *opcode_targets[opcode]; \
}
#else
#define TARGET(op) op
#define DISPATCH() goto predispatch;
#endif
#define CHECK_EVAL_BREAKER() \
if (_Py_atomic_load_relaxed(eval_breaker)) { \
continue; \
}
/* Tuple access macros */
#ifndef Py_DEBUG
#define GETITEM(v, i) PyTuple_GET_ITEM((PyTupleObject *)(v), (i))
#else
#define GETITEM(v, i) PyTuple_GetItem((v), (i))
#endif
/* Code access macros */
/* The integer overflow is checked by an assertion below. */
#define INSTR_OFFSET() ((int)(next_instr - first_instr))
#define NEXTOPARG() do { \
_Py_CODEUNIT word = *next_instr; \
opcode = _Py_OPCODE(word); \
oparg = _Py_OPARG(word); \
next_instr++; \
} while (0)
#define JUMPTO(x) (next_instr = first_instr + (x))
#define JUMPBY(x) (next_instr += (x))
/* OpCode prediction macros
Some opcodes tend to come in pairs thus making it possible to
predict the second code when the first is run. For example,
COMPARE_OP is often followed by POP_JUMP_IF_FALSE or POP_JUMP_IF_TRUE.
Verifying the prediction costs a single high-speed test of a register
variable against a constant. If the pairing was good, then the
processor's own internal branch predication has a high likelihood of
success, resulting in a nearly zero-overhead transition to the
next opcode. A successful prediction saves a trip through the eval-loop
including its unpredictable switch-case branch. Combined with the
processor's internal branch prediction, a successful PREDICT has the
effect of making the two opcodes run as if they were a single new opcode
with the bodies combined.
If collecting opcode statistics, your choices are to either keep the
predictions turned-on and interpret the results as if some opcodes
had been combined or turn-off predictions so that the opcode frequency
counter updates for both opcodes.
Opcode prediction is disabled with threaded code, since the latter allows
the CPU to record separate branch prediction information for each
opcode.
*/
#define PREDICT_ID(op) PRED_##op
#if defined(DYNAMIC_EXECUTION_PROFILE) || USE_COMPUTED_GOTOS
#define PREDICT(op) if (0) goto PREDICT_ID(op)
#else
#define PREDICT(op) \
do { \
_Py_CODEUNIT word = *next_instr; \
opcode = _Py_OPCODE(word); \
if (opcode == op) { \
oparg = _Py_OPARG(word); \
next_instr++; \
goto PREDICT_ID(op); \
} \
} while(0)
#endif
#define PREDICTED(op) PREDICT_ID(op):
/* Stack manipulation macros */
/* The stack can grow at most MAXINT deep, as co_nlocals and
co_stacksize are ints. */
#define STACK_LEVEL() ((int)(stack_pointer - f->f_valuestack))
#define EMPTY() (STACK_LEVEL() == 0)
#define TOP() (stack_pointer[-1])
#define SECOND() (stack_pointer[-2])
#define THIRD() (stack_pointer[-3])
#define FOURTH() (stack_pointer[-4])
#define PEEK(n) (stack_pointer[-(n)])
#define SET_TOP(v) (stack_pointer[-1] = (v))
#define SET_SECOND(v) (stack_pointer[-2] = (v))
#define SET_THIRD(v) (stack_pointer[-3] = (v))
#define SET_FOURTH(v) (stack_pointer[-4] = (v))
#define BASIC_STACKADJ(n) (stack_pointer += n)
#define BASIC_PUSH(v) (*stack_pointer++ = (v))
#define BASIC_POP() (*--stack_pointer)
#ifdef LLTRACE
#define PUSH(v) { (void)(BASIC_PUSH(v), \
lltrace && prtrace(tstate, TOP(), "push")); \
assert(STACK_LEVEL() <= co->co_stacksize); }
#define POP() ((void)(lltrace && prtrace(tstate, TOP(), "pop")), \
BASIC_POP())
#define STACK_GROW(n) do { \
assert(n >= 0); \
(void)(BASIC_STACKADJ(n), \
lltrace && prtrace(tstate, TOP(), "stackadj")); \
assert(STACK_LEVEL() <= co->co_stacksize); \
} while (0)
#define STACK_SHRINK(n) do { \
assert(n >= 0); \
(void)(lltrace && prtrace(tstate, TOP(), "stackadj")); \
(void)(BASIC_STACKADJ(-n)); \
assert(STACK_LEVEL() <= co->co_stacksize); \
} while (0)
#define EXT_POP(STACK_POINTER) ((void)(lltrace && \
prtrace(tstate, (STACK_POINTER)[-1], "ext_pop")), \
*--(STACK_POINTER))
#else
#define PUSH(v) BASIC_PUSH(v)
#define POP() BASIC_POP()
#define STACK_GROW(n) BASIC_STACKADJ(n)
#define STACK_SHRINK(n) BASIC_STACKADJ(-n)
#define EXT_POP(STACK_POINTER) (*--(STACK_POINTER))
#endif
/* Local variable macros */
#define GETLOCAL(i) (fastlocals[i])
/* The SETLOCAL() macro must not DECREF the local variable in-place and
then store the new value; it must copy the old value to a temporary
value, then store the new value, and then DECREF the temporary value.
This is because it is possible that during the DECREF the frame is
accessed by other code (e.g. a __del__ method or gc.collect()) and the
variable would be pointing to already-freed memory. */
#define SETLOCAL(i, value) do { PyObject *tmp = GETLOCAL(i); \
GETLOCAL(i) = value; \
Py_XDECREF(tmp); } while (0)
#define UNWIND_BLOCK(b) \
while (STACK_LEVEL() > (b)->b_level) { \
PyObject *v = POP(); \
Py_XDECREF(v); \
}
#define UNWIND_EXCEPT_HANDLER(b) \
do { \
PyObject *type, *value, *traceback; \
_PyErr_StackItem *exc_info; \
assert(STACK_LEVEL() >= (b)->b_level + 3); \
while (STACK_LEVEL() > (b)->b_level + 3) { \
value = POP(); \
Py_XDECREF(value); \
} \
exc_info = tstate->exc_info; \
type = exc_info->exc_type; \
value = exc_info->exc_value; \
traceback = exc_info->exc_traceback; \
exc_info->exc_type = POP(); \
exc_info->exc_value = POP(); \
exc_info->exc_traceback = POP(); \
Py_XDECREF(type); \
Py_XDECREF(value); \
Py_XDECREF(traceback); \
} while(0)
/* macros for opcode cache */
#define OPCACHE_CHECK() \
do { \
co_opcache = NULL; \
if (co->co_opcache != NULL) { \
unsigned char co_opcache_offset = \
co->co_opcache_map[next_instr - first_instr]; \
if (co_opcache_offset > 0) { \
assert(co_opcache_offset <= co->co_opcache_size); \
co_opcache = &co->co_opcache[co_opcache_offset - 1]; \
assert(co_opcache != NULL); \
} \
} \
} while (0)
#define OPCACHE_DEOPT() \
do { \
if (co_opcache != NULL) { \
co_opcache->optimized = -1; \
unsigned char co_opcache_offset = \
co->co_opcache_map[next_instr - first_instr]; \
assert(co_opcache_offset <= co->co_opcache_size); \
co->co_opcache_map[co_opcache_offset] = 0; \
co_opcache = NULL; \
} \
} while (0)
#define OPCACHE_DEOPT_LOAD_ATTR() \
do { \
if (co_opcache != NULL) { \
OPCACHE_STAT_ATTR_DEOPT(); \
OPCACHE_DEOPT(); \
} \
} while (0)
#define OPCACHE_MAYBE_DEOPT_LOAD_ATTR() \
do { \
if (co_opcache != NULL && --co_opcache->optimized <= 0) { \
OPCACHE_DEOPT_LOAD_ATTR(); \
} \
} while (0)
#if OPCACHE_STATS
#define OPCACHE_STAT_GLOBAL_HIT() \
do { \
if (co->co_opcache != NULL) opcache_global_hits++; \
} while (0)
#define OPCACHE_STAT_GLOBAL_MISS() \
do { \
if (co->co_opcache != NULL) opcache_global_misses++; \
} while (0)
#define OPCACHE_STAT_GLOBAL_OPT() \
do { \
if (co->co_opcache != NULL) opcache_global_opts++; \
} while (0)
#define OPCACHE_STAT_ATTR_HIT() \
do { \
if (co->co_opcache != NULL) opcache_attr_hits++; \
} while (0)
#define OPCACHE_STAT_ATTR_MISS() \
do { \
if (co->co_opcache != NULL) opcache_attr_misses++; \
} while (0)
#define OPCACHE_STAT_ATTR_OPT() \
do { \
if (co->co_opcache!= NULL) opcache_attr_opts++; \
} while (0)
#define OPCACHE_STAT_ATTR_DEOPT() \
do { \
if (co->co_opcache != NULL) opcache_attr_deopts++; \
} while (0)
#define OPCACHE_STAT_ATTR_TOTAL() \
do { \
if (co->co_opcache != NULL) opcache_attr_total++; \
} while (0)
#else /* OPCACHE_STATS */
#define OPCACHE_STAT_GLOBAL_HIT()
#define OPCACHE_STAT_GLOBAL_MISS()
#define OPCACHE_STAT_GLOBAL_OPT()
#define OPCACHE_STAT_ATTR_HIT()
#define OPCACHE_STAT_ATTR_MISS()
#define OPCACHE_STAT_ATTR_OPT()
#define OPCACHE_STAT_ATTR_DEOPT()
#define OPCACHE_STAT_ATTR_TOTAL()
#endif
PyObject* _Py_HOT_FUNCTION
_PyEval_EvalFrameDefault(PyThreadState *tstate, PyFrameObject *f, int throwflag)
{
_Py_EnsureTstateNotNULL(tstate);
#if USE_COMPUTED_GOTOS
/* Import the static jump table */
#include "opcode_targets.h"
#endif
#ifdef DXPAIRS
int lastopcode = 0;
#endif
PyObject **stack_pointer; /* Next free slot in value stack */
const _Py_CODEUNIT *next_instr;
int opcode; /* Current opcode */
int oparg; /* Current opcode argument, if any */
PyObject **fastlocals, **freevars;
PyObject *retval = NULL; /* Return value */
_Py_atomic_int * const eval_breaker = &tstate->interp->ceval.eval_breaker;
PyCodeObject *co;
const _Py_CODEUNIT *first_instr;
PyObject *names;
PyObject *consts;
_PyOpcache *co_opcache;
#ifdef LLTRACE
_Py_IDENTIFIER(__ltrace__);
#endif
if (_Py_EnterRecursiveCall(tstate, "")) {
return NULL;
}
PyTraceInfo trace_info;
/* Mark trace_info as uninitialized */
trace_info.code = NULL;
/* WARNING: Because the CFrame lives on the C stack,
* but can be accessed from a heap allocated object (tstate)
* strict stack discipline must be maintained.
*/
CFrame *prev_cframe = tstate->cframe;
trace_info.cframe.use_tracing = prev_cframe->use_tracing;
trace_info.cframe.previous = prev_cframe;
tstate->cframe = &trace_info.cframe;
/* push frame */
tstate->frame = f;
co = f->f_code;
if (trace_info.cframe.use_tracing) {
if (tstate->c_tracefunc != NULL) {
/* tstate->c_tracefunc, if defined, is a
function that will be called on *every* entry
to a code block. Its return value, if not
None, is a function that will be called at
the start of each executed line of code.
(Actually, the function must return itself
in order to continue tracing.) The trace
functions are called with three arguments:
a pointer to the current frame, a string
indicating why the function is called, and
an argument which depends on the situation.
The global trace function is also called
whenever an exception is detected. */
if (call_trace_protected(tstate->c_tracefunc,
tstate->c_traceobj,
tstate, f, &trace_info,
PyTrace_CALL, Py_None)) {
/* Trace function raised an error */
goto exit_eval_frame;
}
}
if (tstate->c_profilefunc != NULL) {
/* Similar for c_profilefunc, except it needn't
return itself and isn't called for "line" events */
if (call_trace_protected(tstate->c_profilefunc,
tstate->c_profileobj,
tstate, f, &trace_info,
PyTrace_CALL, Py_None)) {
/* Profile function raised an error */
goto exit_eval_frame;
}
}
}
if (PyDTrace_FUNCTION_ENTRY_ENABLED())
dtrace_function_entry(f);
names = co->co_names;
consts = co->co_consts;
fastlocals = f->f_localsplus;
freevars = f->f_localsplus + co->co_nlocals;
assert(PyBytes_Check(co->co_code));
assert(PyBytes_GET_SIZE(co->co_code) <= INT_MAX);
assert(PyBytes_GET_SIZE(co->co_code) % sizeof(_Py_CODEUNIT) == 0);
assert(_Py_IS_ALIGNED(PyBytes_AS_STRING(co->co_code), sizeof(_Py_CODEUNIT)));
first_instr = (_Py_CODEUNIT *) PyBytes_AS_STRING(co->co_code);
/*
f->f_lasti refers to the index of the last instruction,
unless it's -1 in which case next_instr should be first_instr.
YIELD_FROM sets f_lasti to itself, in order to repeatedly yield
multiple values.
When the PREDICT() macros are enabled, some opcode pairs follow in
direct succession without updating f->f_lasti. A successful
prediction effectively links the two codes together as if they
were a single new opcode; accordingly,f->f_lasti will point to
the first code in the pair (for instance, GET_ITER followed by
FOR_ITER is effectively a single opcode and f->f_lasti will point
to the beginning of the combined pair.)
*/
assert(f->f_lasti >= -1);
next_instr = first_instr + f->f_lasti + 1;
stack_pointer = f->f_valuestack + f->f_stackdepth;
/* Set f->f_stackdepth to -1.
* Update when returning or calling trace function.
Having f_stackdepth <= 0 ensures that invalid
values are not visible to the cycle GC.
We choose -1 rather than 0 to assist debugging.
*/
f->f_stackdepth = -1;
f->f_state = FRAME_EXECUTING;
if (co->co_opcache_flag < opcache_min_runs) {
co->co_opcache_flag++;
if (co->co_opcache_flag == opcache_min_runs) {
if (_PyCode_InitOpcache(co) < 0) {
goto exit_eval_frame;
}
#if OPCACHE_STATS
opcache_code_objects_extra_mem +=
PyBytes_Size(co->co_code) / sizeof(_Py_CODEUNIT) +
sizeof(_PyOpcache) * co->co_opcache_size;
opcache_code_objects++;
#endif
}
}
#ifdef LLTRACE
{
int r = _PyDict_ContainsId(f->f_globals, &PyId___ltrace__);
if (r < 0) {
goto exit_eval_frame;
}
lltrace = r;
}
#endif
if (throwflag) { /* support for generator.throw() */
goto error;
}
#ifdef Py_DEBUG
/* _PyEval_EvalFrameDefault() must not be called with an exception set,
because it can clear it (directly or indirectly) and so the
caller loses its exception */
assert(!_PyErr_Occurred(tstate));
#endif
main_loop:
for (;;) {
assert(stack_pointer >= f->f_valuestack); /* else underflow */
assert(STACK_LEVEL() <= co->co_stacksize); /* else overflow */
assert(!_PyErr_Occurred(tstate));
/* Do periodic things. Doing this every time through
the loop would add too much overhead, so we do it
only every Nth instruction. We also do it if
``pending.calls_to_do'' is set, i.e. when an asynchronous
event needs attention (e.g. a signal handler or
async I/O handler); see Py_AddPendingCall() and
Py_MakePendingCalls() above. */
if (_Py_atomic_load_relaxed(eval_breaker)) {
opcode = _Py_OPCODE(*next_instr);
if (opcode != SETUP_FINALLY &&
opcode != SETUP_WITH &&
opcode != BEFORE_ASYNC_WITH &&
opcode != YIELD_FROM) {
/* Few cases where we skip running signal handlers and other
pending calls:
- If we're about to enter the 'with:'. It will prevent
emitting a resource warning in the common idiom
'with open(path) as file:'.
- If we're about to enter the 'async with:'.
- If we're about to enter the 'try:' of a try/finally (not
*very* useful, but might help in some cases and it's
traditional)
- If we're resuming a chain of nested 'yield from' or
'await' calls, then each frame is parked with YIELD_FROM
as its next opcode. If the user hit control-C we want to
wait until we've reached the innermost frame before
running the signal handler and raising KeyboardInterrupt
(see bpo-30039).
*/
if (eval_frame_handle_pending(tstate) != 0) {
goto error;
}
}
}
tracing_dispatch:
{
int instr_prev = f->f_lasti;
f->f_lasti = INSTR_OFFSET();
NEXTOPARG();
if (PyDTrace_LINE_ENABLED())
maybe_dtrace_line(f, &trace_info, instr_prev);
/* line-by-line tracing support */
if (trace_info.cframe.use_tracing &&
tstate->c_tracefunc != NULL && !tstate->tracing) {
int err;
/* see maybe_call_line_trace()
for expository comments */
f->f_stackdepth = (int)(stack_pointer - f->f_valuestack);
err = maybe_call_line_trace(tstate->c_tracefunc,
tstate->c_traceobj,
tstate, f,
&trace_info, instr_prev);
/* Reload possibly changed frame fields */
JUMPTO(f->f_lasti);
stack_pointer = f->f_valuestack+f->f_stackdepth;
f->f_stackdepth = -1;
if (err) {
/* trace function raised an exception */
goto error;
}
NEXTOPARG();
}
}
#ifdef LLTRACE
/* Instruction tracing */
if (lltrace) {
if (HAS_ARG(opcode)) {
printf("%d: %d, %d\n",
f->f_lasti, opcode, oparg);
}
else {
printf("%d: %d\n",
f->f_lasti, opcode);
}
}
#endif
#if USE_COMPUTED_GOTOS == 0
goto dispatch_opcode;
predispatch:
if (trace_info.cframe.use_tracing OR_DTRACE_LINE OR_LLTRACE) {
goto tracing_dispatch;
}
f->f_lasti = INSTR_OFFSET();
NEXTOPARG();
#endif
dispatch_opcode:
#ifdef DYNAMIC_EXECUTION_PROFILE
#ifdef DXPAIRS
dxpairs[lastopcode][opcode]++;
lastopcode = opcode;
#endif
dxp[opcode]++;
#endif
switch (opcode) {
/* BEWARE!
It is essential that any operation that fails must goto error
and that all operation that succeed call DISPATCH() ! */
case TARGET(NOP): {
DISPATCH();
}
case TARGET(LOAD_FAST): {
PyObject *value = GETLOCAL(oparg);
if (value == NULL) {
format_exc_check_arg(tstate, PyExc_UnboundLocalError,
UNBOUNDLOCAL_ERROR_MSG,
PyTuple_GetItem(co->co_varnames, oparg));
goto error;
}
Py_INCREF(value);
PUSH(value);
DISPATCH();
}
case TARGET(LOAD_CONST): {
PREDICTED(LOAD_CONST);
PyObject *value = GETITEM(consts, oparg);
Py_INCREF(value);
PUSH(value);
DISPATCH();
}
case TARGET(STORE_FAST): {
PREDICTED(STORE_FAST);
PyObject *value = POP();
SETLOCAL(oparg, value);
DISPATCH();
}
case TARGET(POP_TOP): {
PyObject *value = POP();
Py_DECREF(value);
DISPATCH();
}
case TARGET(ROT_TWO): {
PyObject *top = TOP();
PyObject *second = SECOND();
SET_TOP(second);
SET_SECOND(top);
DISPATCH();
}
case TARGET(ROT_THREE): {
PyObject *top = TOP();
PyObject *second = SECOND();
PyObject *third = THIRD();
SET_TOP(second);
SET_SECOND(third);
SET_THIRD(top);
DISPATCH();
}
case TARGET(ROT_FOUR): {
PyObject *top = TOP();
PyObject *second = SECOND();
PyObject *third = THIRD();
PyObject *fourth = FOURTH();
SET_TOP(second);
SET_SECOND(third);
SET_THIRD(fourth);
SET_FOURTH(top);
DISPATCH();
}
case TARGET(DUP_TOP): {
PyObject *top = TOP();
Py_INCREF(top);
PUSH(top);
DISPATCH();
}
case TARGET(DUP_TOP_TWO): {
PyObject *top = TOP();
PyObject *second = SECOND();
Py_INCREF(top);
Py_INCREF(second);
STACK_GROW(2);
SET_TOP(top);
SET_SECOND(second);
DISPATCH();
}
case TARGET(UNARY_POSITIVE): {
PyObject *value = TOP();
PyObject *res = PyNumber_Positive(value);
Py_DECREF(value);
SET_TOP(res);
if (res == NULL)
goto error;
DISPATCH();
}
case TARGET(UNARY_NEGATIVE): {
PyObject *value = TOP();
PyObject *res = PyNumber_Negative(value);
Py_DECREF(value);
SET_TOP(res);
if (res == NULL)
goto error;
DISPATCH();
}
case TARGET(UNARY_NOT): {
PyObject *value = TOP();
int err = PyObject_IsTrue(value);
Py_DECREF(value);
if (err == 0) {
Py_INCREF(Py_True);
SET_TOP(Py_True);
DISPATCH();
}
else if (err > 0) {
Py_INCREF(Py_False);
SET_TOP(Py_False);
DISPATCH();
}
STACK_SHRINK(1);
goto error;
}
case TARGET(UNARY_INVERT): {
PyObject *value = TOP();
PyObject *res = PyNumber_Invert(value);
Py_DECREF(value);
SET_TOP(res);
if (res == NULL)
goto error;
DISPATCH();
}
case TARGET(BINARY_POWER): {
PyObject *exp = POP();
PyObject *base = TOP();
PyObject *res = PyNumber_Power(base, exp, Py_None);
Py_DECREF(base);
Py_DECREF(exp);
SET_TOP(res);
if (res == NULL)
goto error;
DISPATCH();
}
case TARGET(BINARY_MULTIPLY): {
PyObject *right = POP();
PyObject *left = TOP();
PyObject *res = PyNumber_Multiply(left, right);
Py_DECREF(left);
Py_DECREF(right);
SET_TOP(res);
if (res == NULL)
goto error;
DISPATCH();
}
case TARGET(BINARY_MATRIX_MULTIPLY): {
PyObject *right = POP();
PyObject *left = TOP();
PyObject *res = PyNumber_MatrixMultiply(left, right);
Py_DECREF(left);
Py_DECREF(right);
SET_TOP(res);
if (res == NULL)
goto error;
DISPATCH();
}
case TARGET(BINARY_TRUE_DIVIDE): {
PyObject *divisor = POP();
PyObject *dividend = TOP();
PyObject *quotient = PyNumber_TrueDivide(dividend, divisor);
Py_DECREF(dividend);
Py_DECREF(divisor);
SET_TOP(quotient);
if (quotient == NULL)
goto error;
DISPATCH();
}
case TARGET(BINARY_FLOOR_DIVIDE): {
PyObject *divisor = POP();
PyObject *dividend = TOP();
PyObject *quotient = PyNumber_FloorDivide(dividend, divisor);
Py_DECREF(dividend);
Py_DECREF(divisor);
SET_TOP(quotient);
if (quotient == NULL)
goto error;
DISPATCH();
}
case TARGET(BINARY_MODULO): {
PyObject *divisor = POP();
PyObject *dividend = TOP();
PyObject *res;
if (PyUnicode_CheckExact(dividend) && (
!PyUnicode_Check(divisor) || PyUnicode_CheckExact(divisor))) {
// fast path; string formatting, but not if the RHS is a str subclass
// (see issue28598)
res = PyUnicode_Format(dividend, divisor);
} else {
res = PyNumber_Remainder(dividend, divisor);
}
Py_DECREF(divisor);
Py_DECREF(dividend);
SET_TOP(res);
if (res == NULL)
goto error;
DISPATCH();
}
case TARGET(BINARY_ADD): {
PyObject *right = POP();
PyObject *left = TOP();
PyObject *sum;
/* NOTE(vstinner): Please don't try to micro-optimize int+int on
CPython using bytecode, it is simply worthless.
See http://bugs.python.org/issue21955 and
http://bugs.python.org/issue10044 for the discussion. In short,
no patch shown any impact on a realistic benchmark, only a minor
speedup on microbenchmarks. */
if (PyUnicode_CheckExact(left) &&
PyUnicode_CheckExact(right)) {
sum = unicode_concatenate(tstate, left, right, f, next_instr);
/* unicode_concatenate consumed the ref to left */
}
else {
sum = PyNumber_Add(left, right);
Py_DECREF(left);
}
Py_DECREF(right);
SET_TOP(sum);
if (sum == NULL)
goto error;
DISPATCH();
}
case TARGET(BINARY_SUBTRACT): {
PyObject *right = POP();
PyObject *left = TOP();
PyObject *diff = PyNumber_Subtract(left, right);
Py_DECREF(right);
Py_DECREF(left);
SET_TOP(diff);
if (diff == NULL)
goto error;
DISPATCH();
}
case TARGET(BINARY_SUBSCR): {
PyObject *sub = POP();
PyObject *container = TOP();
PyObject *res = PyObject_GetItem(container, sub);
Py_DECREF(container);
Py_DECREF(sub);
SET_TOP(res);
if (res == NULL)
goto error;
DISPATCH();
}
case TARGET(BINARY_LSHIFT): {
PyObject *right = POP();
PyObject *left = TOP();
PyObject *res = PyNumber_Lshift(left, right);
Py_DECREF(left);
Py_DECREF(right);
SET_TOP(res);
if (res == NULL)
goto error;
DISPATCH();
}
case TARGET(BINARY_RSHIFT): {
PyObject *right = POP();
PyObject *left = TOP();
PyObject *res = PyNumber_Rshift(left, right);
Py_DECREF(left);
Py_DECREF(right);
SET_TOP(res);
if (res == NULL)
goto error;
DISPATCH();
}
case TARGET(BINARY_AND): {
PyObject *right = POP();
PyObject *left = TOP();
PyObject *res = PyNumber_And(left, right);
Py_DECREF(left);
Py_DECREF(right);
SET_TOP(res);
if (res == NULL)
goto error;
DISPATCH();
}
case TARGET(BINARY_XOR): {
PyObject *right = POP();
PyObject *left = TOP();
PyObject *res = PyNumber_Xor(left, right);
Py_DECREF(left);
Py_DECREF(right);
SET_TOP(res);
if (res == NULL)
goto error;
DISPATCH();
}
case TARGET(BINARY_OR): {
PyObject *right = POP();
PyObject *left = TOP();
PyObject *res = PyNumber_Or(left, right);
Py_DECREF(left);
Py_DECREF(right);
SET_TOP(res);
if (res == NULL)
goto error;
DISPATCH();
}
case TARGET(LIST_APPEND): {
PyObject *v = POP();
PyObject *list = PEEK(oparg);
int err;
err = PyList_Append(list, v);
Py_DECREF(v);
if (err != 0)
goto error;
PREDICT(JUMP_ABSOLUTE);
DISPATCH();
}
case TARGET(SET_ADD): {
PyObject *v = POP();
PyObject *set = PEEK(oparg);
int err;
err = PySet_Add(set, v);
Py_DECREF(v);
if (err != 0)
goto error;
PREDICT(JUMP_ABSOLUTE);
DISPATCH();
}
case TARGET(INPLACE_POWER): {
PyObject *exp = POP();
PyObject *base = TOP();
PyObject *res = PyNumber_InPlacePower(base, exp, Py_None);
Py_DECREF(base);
Py_DECREF(exp);
SET_TOP(res);
if (res == NULL)
goto error;
DISPATCH();
}
case TARGET(INPLACE_MULTIPLY): {
PyObject *right = POP();
PyObject *left = TOP();
PyObject *res = PyNumber_InPlaceMultiply(left, right);
Py_DECREF(left);
Py_DECREF(right);
SET_TOP(res);
if (res == NULL)
goto error;
DISPATCH();
}
case TARGET(INPLACE_MATRIX_MULTIPLY): {
PyObject *right = POP();
PyObject *left = TOP();
PyObject *res = PyNumber_InPlaceMatrixMultiply(left, right);
Py_DECREF(left);
Py_DECREF(right);
SET_TOP(res);
if (res == NULL)
goto error;
DISPATCH();
}
case TARGET(INPLACE_TRUE_DIVIDE): {
PyObject *divisor = POP();
PyObject *dividend = TOP();
PyObject *quotient = PyNumber_InPlaceTrueDivide(dividend, divisor);
Py_DECREF(dividend);
Py_DECREF(divisor);
SET_TOP(quotient);
if (quotient == NULL)
goto error;
DISPATCH();
}
case TARGET(INPLACE_FLOOR_DIVIDE): {
PyObject *divisor = POP();
PyObject *dividend = TOP();
PyObject *quotient = PyNumber_InPlaceFloorDivide(dividend, divisor);
Py_DECREF(dividend);
Py_DECREF(divisor);
SET_TOP(quotient);
if (quotient == NULL)
goto error;
DISPATCH();
}
case TARGET(INPLACE_MODULO): {
PyObject *right = POP();
PyObject *left = TOP();
PyObject *mod = PyNumber_InPlaceRemainder(left, right);
Py_DECREF(left);
Py_DECREF(right);
SET_TOP(mod);
if (mod == NULL)
goto error;
DISPATCH();
}
case TARGET(INPLACE_ADD): {
PyObject *right = POP();
PyObject *left = TOP();
PyObject *sum;
if (PyUnicode_CheckExact(left) && PyUnicode_CheckExact(right)) {
sum = unicode_concatenate(tstate, left, right, f, next_instr);
/* unicode_concatenate consumed the ref to left */
}
else {
sum = PyNumber_InPlaceAdd(left, right);
Py_DECREF(left);
}
Py_DECREF(right);
SET_TOP(sum);
if (sum == NULL)
goto error;
DISPATCH();
}
case TARGET(INPLACE_SUBTRACT): {
PyObject *right = POP();
PyObject *left = TOP();
PyObject *diff = PyNumber_InPlaceSubtract(left, right);
Py_DECREF(left);
Py_DECREF(right);
SET_TOP(diff);
if (diff == NULL)
goto error;
DISPATCH();
}
case TARGET(INPLACE_LSHIFT): {
PyObject *right = POP();
PyObject *left = TOP();
PyObject *res = PyNumber_InPlaceLshift(left, right);
Py_DECREF(left);
Py_DECREF(right);
SET_TOP(res);
if (res == NULL)
goto error;
DISPATCH();
}
case TARGET(INPLACE_RSHIFT): {
PyObject *right = POP();
PyObject *left = TOP();
PyObject *res = PyNumber_InPlaceRshift(left, right);
Py_DECREF(left);
Py_DECREF(right);
SET_TOP(res);
if (res == NULL)
goto error;
DISPATCH();
}
case TARGET(INPLACE_AND): {
PyObject *right = POP();
PyObject *left = TOP();
PyObject *res = PyNumber_InPlaceAnd(left, right);
Py_DECREF(left);
Py_DECREF(right);
SET_TOP(res);
if (res == NULL)
goto error;
DISPATCH();
}
case TARGET(INPLACE_XOR): {
PyObject *right = POP();
PyObject *left = TOP();
PyObject *res = PyNumber_InPlaceXor(left, right);
Py_DECREF(left);
Py_DECREF(right);
SET_TOP(res);
if (res == NULL)
goto error;
DISPATCH();
}
case TARGET(INPLACE_OR): {
PyObject *right = POP();
PyObject *left = TOP();
PyObject *res = PyNumber_InPlaceOr(left, right);
Py_DECREF(left);
Py_DECREF(right);
SET_TOP(res);
if (res == NULL)
goto error;
DISPATCH();
}
case TARGET(STORE_SUBSCR): {
PyObject *sub = TOP();
PyObject *container = SECOND();
PyObject *v = THIRD();
int err;
STACK_SHRINK(3);
/* container[sub] = v */
err = PyObject_SetItem(container, sub, v);
Py_DECREF(v);
Py_DECREF(container);
Py_DECREF(sub);
if (err != 0)
goto error;
DISPATCH();
}
case TARGET(DELETE_SUBSCR): {
PyObject *sub = TOP();
PyObject *container = SECOND();
int err;
STACK_SHRINK(2);
/* del container[sub] */
err = PyObject_DelItem(container, sub);
Py_DECREF(container);
Py_DECREF(sub);
if (err != 0)
goto error;
DISPATCH();
}
case TARGET(PRINT_EXPR): {
_Py_IDENTIFIER(displayhook);
PyObject *value = POP();
PyObject *hook = _PySys_GetObjectId(&PyId_displayhook);
PyObject *res;
if (hook == NULL) {
_PyErr_SetString(tstate, PyExc_RuntimeError,
"lost sys.displayhook");
Py_DECREF(value);
goto error;
}
res = PyObject_CallOneArg(hook, value);
Py_DECREF(value);
if (res == NULL)
goto error;
Py_DECREF(res);
DISPATCH();
}
case TARGET(RAISE_VARARGS): {
PyObject *cause = NULL, *exc = NULL;
switch (oparg) {
case 2:
cause = POP(); /* cause */
/* fall through */
case 1:
exc = POP(); /* exc */
/* fall through */
case 0:
if (do_raise(tstate, exc, cause)) {
goto exception_unwind;
}
break;
default:
_PyErr_SetString(tstate, PyExc_SystemError,
"bad RAISE_VARARGS oparg");
break;
}
goto error;
}
case TARGET(RETURN_VALUE): {
retval = POP();
assert(f->f_iblock == 0);
assert(EMPTY());
f->f_state = FRAME_RETURNED;
f->f_stackdepth = 0;
goto exiting;
}
case TARGET(GET_AITER): {
unaryfunc getter = NULL;
PyObject *iter = NULL;
PyObject *obj = TOP();
PyTypeObject *type = Py_TYPE(obj);
if (type->tp_as_async != NULL) {
getter = type->tp_as_async->am_aiter;
}
if (getter != NULL) {
iter = (*getter)(obj);
Py_DECREF(obj);
if (iter == NULL) {
SET_TOP(NULL);
goto error;
}
}
else {
SET_TOP(NULL);
_PyErr_Format(tstate, PyExc_TypeError,
"'async for' requires an object with "
"__aiter__ method, got %.100s",
type->tp_name);
Py_DECREF(obj);
goto error;
}
if (Py_TYPE(iter)->tp_as_async == NULL ||
Py_TYPE(iter)->tp_as_async->am_anext == NULL) {
SET_TOP(NULL);
_PyErr_Format(tstate, PyExc_TypeError,
"'async for' received an object from __aiter__ "
"that does not implement __anext__: %.100s",
Py_TYPE(iter)->tp_name);
Py_DECREF(iter);
goto error;
}
SET_TOP(iter);
DISPATCH();
}
case TARGET(GET_ANEXT): {
unaryfunc getter = NULL;
PyObject *next_iter = NULL;
PyObject *awaitable = NULL;
PyObject *aiter = TOP();
PyTypeObject *type = Py_TYPE(aiter);
if (PyAsyncGen_CheckExact(aiter)) {
awaitable = type->tp_as_async->am_anext(aiter);
if (awaitable == NULL) {
goto error;
}
} else {
if (type->tp_as_async != NULL){
getter = type->tp_as_async->am_anext;
}
if (getter != NULL) {
next_iter = (*getter)(aiter);
if (next_iter == NULL) {
goto error;
}
}
else {
_PyErr_Format(tstate, PyExc_TypeError,
"'async for' requires an iterator with "
"__anext__ method, got %.100s",
type->tp_name);
goto error;
}
awaitable = _PyCoro_GetAwaitableIter(next_iter);
if (awaitable == NULL) {
_PyErr_FormatFromCause(
PyExc_TypeError,
"'async for' received an invalid object "
"from __anext__: %.100s",
Py_TYPE(next_iter)->tp_name);
Py_DECREF(next_iter);
goto error;
} else {
Py_DECREF(next_iter);
}
}
PUSH(awaitable);
PREDICT(LOAD_CONST);
DISPATCH();
}
case TARGET(GET_AWAITABLE): {
PREDICTED(GET_AWAITABLE);
PyObject *iterable = TOP();
PyObject *iter = _PyCoro_GetAwaitableIter(iterable);
if (iter == NULL) {
int opcode_at_minus_3 = 0;
if ((next_instr - first_instr) > 2) {
opcode_at_minus_3 = _Py_OPCODE(next_instr[-3]);
}
format_awaitable_error(tstate, Py_TYPE(iterable),
opcode_at_minus_3,
_Py_OPCODE(next_instr[-2]));
}
Py_DECREF(iterable);
if (iter != NULL && PyCoro_CheckExact(iter)) {
PyObject *yf = _PyGen_yf((PyGenObject*)iter);
if (yf != NULL) {
/* `iter` is a coroutine object that is being
awaited, `yf` is a pointer to the current awaitable
being awaited on. */
Py_DECREF(yf);
Py_CLEAR(iter);
_PyErr_SetString(tstate, PyExc_RuntimeError,
"coroutine is being awaited already");
/* The code below jumps to `error` if `iter` is NULL. */
}
}
SET_TOP(iter); /* Even if it's NULL */
if (iter == NULL) {
goto error;
}
PREDICT(LOAD_CONST);
DISPATCH();
}
case TARGET(YIELD_FROM): {
PyObject *v = POP();
PyObject *receiver = TOP();
PySendResult gen_status;
if (tstate->c_tracefunc == NULL) {
gen_status = PyIter_Send(receiver, v, &retval);
} else {
_Py_IDENTIFIER(send);
if (Py_IsNone(v) && PyIter_Check(receiver)) {
retval = Py_TYPE(receiver)->tp_iternext(receiver);
}
else {
retval = _PyObject_CallMethodIdOneArg(receiver, &PyId_send, v);
}
if (retval == NULL) {
if (tstate->c_tracefunc != NULL
&& _PyErr_ExceptionMatches(tstate, PyExc_StopIteration))
call_exc_trace(tstate->c_tracefunc, tstate->c_traceobj, tstate, f, &trace_info);
if (_PyGen_FetchStopIterationValue(&retval) == 0) {
gen_status = PYGEN_RETURN;
}
else {
gen_status = PYGEN_ERROR;
}
}
else {
gen_status = PYGEN_NEXT;
}
}
Py_DECREF(v);
if (gen_status == PYGEN_ERROR) {
assert (retval == NULL);
goto error;
}
if (gen_status == PYGEN_RETURN) {
assert (retval != NULL);
Py_DECREF(receiver);
SET_TOP(retval);
retval = NULL;
DISPATCH();
}
assert (gen_status == PYGEN_NEXT);
/* receiver remains on stack, retval is value to be yielded */
/* and repeat... */
assert(f->f_lasti > 0);
f->f_lasti -= 1;
f->f_state = FRAME_SUSPENDED;
f->f_stackdepth = (int)(stack_pointer - f->f_valuestack);
goto exiting;
}
case TARGET(YIELD_VALUE): {
retval = POP();
if (co->co_flags & CO_ASYNC_GENERATOR) {
PyObject *w = _PyAsyncGenValueWrapperNew(retval);
Py_DECREF(retval);
if (w == NULL) {
retval = NULL;
goto error;
}
retval = w;
}
f->f_state = FRAME_SUSPENDED;
f->f_stackdepth = (int)(stack_pointer - f->f_valuestack);
goto exiting;
}
case TARGET(GEN_START): {
PyObject *none = POP();
assert(none == Py_None);
assert(oparg < 3);
Py_DECREF(none);
DISPATCH();
}
case TARGET(POP_EXCEPT): {
PyObject *type, *value, *traceback;
_PyErr_StackItem *exc_info;
PyTryBlock *b = PyFrame_BlockPop(f);
if (b->b_type != EXCEPT_HANDLER) {
_PyErr_SetString(tstate, PyExc_SystemError,
"popped block is not an except handler");
goto error;
}
assert(STACK_LEVEL() >= (b)->b_level + 3 &&
STACK_LEVEL() <= (b)->b_level + 4);
exc_info = tstate->exc_info;
type = exc_info->exc_type;
value = exc_info->exc_value;
traceback = exc_info->exc_traceback;
exc_info->exc_type = POP();
exc_info->exc_value = POP();
exc_info->exc_traceback = POP();
Py_XDECREF(type);
Py_XDECREF(value);
Py_XDECREF(traceback);
DISPATCH();
}
case TARGET(POP_BLOCK): {
PyFrame_BlockPop(f);
DISPATCH();
}
case TARGET(RERAISE): {
assert(f->f_iblock > 0);
if (oparg) {
f->f_lasti = f->f_blockstack[f->f_iblock-1].b_handler;
}
PyObject *exc = POP();
PyObject *val = POP();
PyObject *tb = POP();
assert(PyExceptionClass_Check(exc));
_PyErr_Restore(tstate, exc, val, tb);
goto exception_unwind;
}
case TARGET(END_ASYNC_FOR): {
PyObject *exc = POP();
assert(PyExceptionClass_Check(exc));
if (PyErr_GivenExceptionMatches(exc, PyExc_StopAsyncIteration)) {
PyTryBlock *b = PyFrame_BlockPop(f);
assert(b->b_type == EXCEPT_HANDLER);
Py_DECREF(exc);
UNWIND_EXCEPT_HANDLER(b);
Py_DECREF(POP());
JUMPBY(oparg);
DISPATCH();
}
else {
PyObject *val = POP();
PyObject *tb = POP();
_PyErr_Restore(tstate, exc, val, tb);
goto exception_unwind;
}
}
case TARGET(LOAD_ASSERTION_ERROR): {
PyObject *value = PyExc_AssertionError;
Py_INCREF(value);
PUSH(value);
DISPATCH();
}
case TARGET(LOAD_BUILD_CLASS): {
_Py_IDENTIFIER(__build_class__);
PyObject *bc;
if (PyDict_CheckExact(f->f_builtins)) {
bc = _PyDict_GetItemIdWithError(f->f_builtins, &PyId___build_class__);
if (bc == NULL) {
if (!_PyErr_Occurred(tstate)) {
_PyErr_SetString(tstate, PyExc_NameError,
"__build_class__ not found");
}
goto error;
}
Py_INCREF(bc);
}
else {
PyObject *build_class_str = _PyUnicode_FromId(&PyId___build_class__);
if (build_class_str == NULL)
goto error;
bc = PyObject_GetItem(f->f_builtins, build_class_str);
if (bc == NULL) {
if (_PyErr_ExceptionMatches(tstate, PyExc_KeyError))
_PyErr_SetString(tstate, PyExc_NameError,
"__build_class__ not found");
goto error;
}
}
PUSH(bc);
DISPATCH();
}
case TARGET(STORE_NAME): {
PyObject *name = GETITEM(names, oparg);
PyObject *v = POP();
PyObject *ns = f->f_locals;
int err;
if (ns == NULL) {
_PyErr_Format(tstate, PyExc_SystemError,
"no locals found when storing %R", name);
Py_DECREF(v);
goto error;
}
if (PyDict_CheckExact(ns))
err = PyDict_SetItem(ns, name, v);
else
err = PyObject_SetItem(ns, name, v);
Py_DECREF(v);
if (err != 0)
goto error;
DISPATCH();
}
case TARGET(DELETE_NAME): {
PyObject *name = GETITEM(names, oparg);
PyObject *ns = f->f_locals;
int err;
if (ns == NULL) {
_PyErr_Format(tstate, PyExc_SystemError,
"no locals when deleting %R", name);
goto error;
}
err = PyObject_DelItem(ns, name);
if (err != 0) {
format_exc_check_arg(tstate, PyExc_NameError,
NAME_ERROR_MSG,
name);
goto error;
}
DISPATCH();
}
case TARGET(UNPACK_SEQUENCE): {
PREDICTED(UNPACK_SEQUENCE);
PyObject *seq = POP(), *item, **items;
if (PyTuple_CheckExact(seq) &&
PyTuple_GET_SIZE(seq) == oparg) {
items = ((PyTupleObject *)seq)->ob_item;
while (oparg--) {
item = items[oparg];
Py_INCREF(item);
PUSH(item);
}
} else if (PyList_CheckExact(seq) &&
PyList_GET_SIZE(seq) == oparg) {
items = ((PyListObject *)seq)->ob_item;
while (oparg--) {
item = items[oparg];
Py_INCREF(item);
PUSH(item);
}
} else if (unpack_iterable(tstate, seq, oparg, -1,
stack_pointer + oparg)) {
STACK_GROW(oparg);
} else {
/* unpack_iterable() raised an exception */
Py_DECREF(seq);
goto error;
}
Py_DECREF(seq);
DISPATCH();
}
case TARGET(UNPACK_EX): {
int totalargs = 1 + (oparg & 0xFF) + (oparg >> 8);
PyObject *seq = POP();
if (unpack_iterable(tstate, seq, oparg & 0xFF, oparg >> 8,
stack_pointer + totalargs)) {
stack_pointer += totalargs;
} else {
Py_DECREF(seq);
goto error;
}
Py_DECREF(seq);
DISPATCH();
}
case TARGET(STORE_ATTR): {
PyObject *name = GETITEM(names, oparg);
PyObject *owner = TOP();
PyObject *v = SECOND();
int err;
STACK_SHRINK(2);
err = PyObject_SetAttr(owner, name, v);
Py_DECREF(v);
Py_DECREF(owner);
if (err != 0)
goto error;
DISPATCH();
}
case TARGET(DELETE_ATTR): {
PyObject *name = GETITEM(names, oparg);
PyObject *owner = POP();
int err;
err = PyObject_SetAttr(owner, name, (PyObject *)NULL);
Py_DECREF(owner);
if (err != 0)
goto error;
DISPATCH();
}
case TARGET(STORE_GLOBAL): {
PyObject *name = GETITEM(names, oparg);
PyObject *v = POP();
int err;
err = PyDict_SetItem(f->f_globals, name, v);
Py_DECREF(v);
if (err != 0)
goto error;
DISPATCH();
}
case TARGET(DELETE_GLOBAL): {
PyObject *name = GETITEM(names, oparg);
int err;
err = PyDict_DelItem(f->f_globals, name);
if (err != 0) {
if (_PyErr_ExceptionMatches(tstate, PyExc_KeyError)) {
format_exc_check_arg(tstate, PyExc_NameError,
NAME_ERROR_MSG, name);
}
goto error;
}
DISPATCH();
}
case TARGET(LOAD_NAME): {
PyObject *name = GETITEM(names, oparg);
PyObject *locals = f->f_locals;
PyObject *v;
if (locals == NULL) {
_PyErr_Format(tstate, PyExc_SystemError,
"no locals when loading %R", name);
goto error;
}
if (PyDict_CheckExact(locals)) {
v = PyDict_GetItemWithError(locals, name);
if (v != NULL) {
Py_INCREF(v);
}
else if (_PyErr_Occurred(tstate)) {
goto error;
}
}
else {
v = PyObject_GetItem(locals, name);
if (v == NULL) {
if (!_PyErr_ExceptionMatches(tstate, PyExc_KeyError))
goto error;
_PyErr_Clear(tstate);
}
}
if (v == NULL) {
v = PyDict_GetItemWithError(f->f_globals, name);
if (v != NULL) {
Py_INCREF(v);
}
else if (_PyErr_Occurred(tstate)) {
goto error;
}
else {
if (PyDict_CheckExact(f->f_builtins)) {
v = PyDict_GetItemWithError(f->f_builtins, name);
if (v == NULL) {
if (!_PyErr_Occurred(tstate)) {
format_exc_check_arg(
tstate, PyExc_NameError,
NAME_ERROR_MSG, name);
}
goto error;
}
Py_INCREF(v);
}
else {
v = PyObject_GetItem(f->f_builtins, name);
if (v == NULL) {
if (_PyErr_ExceptionMatches(tstate, PyExc_KeyError)) {
format_exc_check_arg(
tstate, PyExc_NameError,
NAME_ERROR_MSG, name);
}
goto error;
}
}
}
}
PUSH(v);
DISPATCH();
}
case TARGET(LOAD_GLOBAL): {
PyObject *name;
PyObject *v;
if (PyDict_CheckExact(f->f_globals)
&& PyDict_CheckExact(f->f_builtins))
{
OPCACHE_CHECK();
if (co_opcache != NULL && co_opcache->optimized > 0) {
_PyOpcache_LoadGlobal *lg = &co_opcache->u.lg;
if (lg->globals_ver ==
((PyDictObject *)f->f_globals)->ma_version_tag
&& lg->builtins_ver ==
((PyDictObject *)f->f_builtins)->ma_version_tag)
{
PyObject *ptr = lg->ptr;
OPCACHE_STAT_GLOBAL_HIT();
assert(ptr != NULL);
Py_INCREF(ptr);
PUSH(ptr);
DISPATCH();
}
}
name = GETITEM(names, oparg);
v = _PyDict_LoadGlobal((PyDictObject *)f->f_globals,
(PyDictObject *)f->f_builtins,
name);
if (v == NULL) {
if (!_PyErr_Occurred(tstate)) {
/* _PyDict_LoadGlobal() returns NULL without raising
* an exception if the key doesn't exist */
format_exc_check_arg(tstate, PyExc_NameError,
NAME_ERROR_MSG, name);
}
goto error;
}
if (co_opcache != NULL) {
_PyOpcache_LoadGlobal *lg = &co_opcache->u.lg;
if (co_opcache->optimized == 0) {
/* Wasn't optimized before. */
OPCACHE_STAT_GLOBAL_OPT();
} else {
OPCACHE_STAT_GLOBAL_MISS();
}
co_opcache->optimized = 1;
lg->globals_ver =
((PyDictObject *)f->f_globals)->ma_version_tag;
lg->builtins_ver =
((PyDictObject *)f->f_builtins)->ma_version_tag;
lg->ptr = v; /* borrowed */
}
Py_INCREF(v);
}
else {
/* Slow-path if globals or builtins is not a dict */
/* namespace 1: globals */
name = GETITEM(names, oparg);
v = PyObject_GetItem(f->f_globals, name);
if (v == NULL) {
if (!_PyErr_ExceptionMatches(tstate, PyExc_KeyError)) {
goto error;
}
_PyErr_Clear(tstate);
/* namespace 2: builtins */
v = PyObject_GetItem(f->f_builtins, name);
if (v == NULL) {
if (_PyErr_ExceptionMatches(tstate, PyExc_KeyError)) {
format_exc_check_arg(
tstate, PyExc_NameError,
NAME_ERROR_MSG, name);
}
goto error;
}
}
}
PUSH(v);
DISPATCH();
}
case TARGET(DELETE_FAST): {
PyObject *v =