| #include "Python.h" |
| #include "pycore_flowgraph.h" |
| #include "pycore_compile.h" |
| #include "pycore_pymem.h" // _PyMem_IsPtrFreed() |
| |
| #include "pycore_opcode_utils.h" |
| #define NEED_OPCODE_METADATA |
| #include "opcode_metadata.h" // _PyOpcode_opcode_metadata, _PyOpcode_num_popped/pushed |
| #undef NEED_OPCODE_METADATA |
| |
| #include <stdbool.h> |
| |
| |
| #undef SUCCESS |
| #undef ERROR |
| #define SUCCESS 0 |
| #define ERROR -1 |
| |
| #define RETURN_IF_ERROR(X) \ |
| if ((X) == -1) { \ |
| return ERROR; \ |
| } |
| |
| #define DEFAULT_BLOCK_SIZE 16 |
| |
| typedef _PyCompilerSrcLocation location; |
| typedef _PyCfgJumpTargetLabel jump_target_label; |
| typedef _PyCfgBasicblock basicblock; |
| typedef _PyCfgBuilder cfg_builder; |
| typedef _PyCfgInstruction cfg_instr; |
| |
| static const jump_target_label NO_LABEL = {-1}; |
| |
| #define SAME_LABEL(L1, L2) ((L1).id == (L2).id) |
| #define IS_LABEL(L) (!SAME_LABEL((L), (NO_LABEL))) |
| |
| |
| static inline int |
| is_block_push(cfg_instr *i) |
| { |
| return IS_BLOCK_PUSH_OPCODE(i->i_opcode); |
| } |
| |
| static inline int |
| is_jump(cfg_instr *i) |
| { |
| return IS_JUMP_OPCODE(i->i_opcode); |
| } |
| |
| /* One arg*/ |
| #define INSTR_SET_OP1(I, OP, ARG) \ |
| do { \ |
| assert(HAS_ARG(OP)); \ |
| _PyCfgInstruction *_instr__ptr_ = (I); \ |
| _instr__ptr_->i_opcode = (OP); \ |
| _instr__ptr_->i_oparg = (ARG); \ |
| } while (0); |
| |
| /* No args*/ |
| #define INSTR_SET_OP0(I, OP) \ |
| do { \ |
| assert(!HAS_ARG(OP)); \ |
| _PyCfgInstruction *_instr__ptr_ = (I); \ |
| _instr__ptr_->i_opcode = (OP); \ |
| _instr__ptr_->i_oparg = 0; \ |
| } while (0); |
| |
| /***** Blocks *****/ |
| |
| /* Returns the offset of the next instruction in the current block's |
| b_instr array. Resizes the b_instr as necessary. |
| Returns -1 on failure. |
| */ |
| static int |
| basicblock_next_instr(basicblock *b) |
| { |
| assert(b != NULL); |
| RETURN_IF_ERROR( |
| _PyCompile_EnsureArrayLargeEnough( |
| b->b_iused + 1, |
| (void**)&b->b_instr, |
| &b->b_ialloc, |
| DEFAULT_BLOCK_SIZE, |
| sizeof(cfg_instr))); |
| return b->b_iused++; |
| } |
| |
| /* Allocate a new block and return a pointer to it. |
| Returns NULL on error. |
| */ |
| |
| static basicblock * |
| cfg_builder_new_block(cfg_builder *g) |
| { |
| basicblock *b = (basicblock *)PyObject_Calloc(1, sizeof(basicblock)); |
| if (b == NULL) { |
| PyErr_NoMemory(); |
| return NULL; |
| } |
| /* Extend the singly linked list of blocks with new block. */ |
| b->b_list = g->g_block_list; |
| g->g_block_list = b; |
| b->b_label = NO_LABEL; |
| return b; |
| } |
| |
| static int |
| basicblock_addop(basicblock *b, int opcode, int oparg, location loc) |
| { |
| assert(IS_WITHIN_OPCODE_RANGE(opcode)); |
| assert(!IS_ASSEMBLER_OPCODE(opcode)); |
| assert(HAS_ARG(opcode) || HAS_TARGET(opcode) || oparg == 0); |
| assert(0 <= oparg && oparg < (1 << 30)); |
| |
| int off = basicblock_next_instr(b); |
| if (off < 0) { |
| return ERROR; |
| } |
| cfg_instr *i = &b->b_instr[off]; |
| i->i_opcode = opcode; |
| i->i_oparg = oparg; |
| i->i_target = NULL; |
| i->i_loc = loc; |
| |
| return SUCCESS; |
| } |
| |
| static inline int |
| basicblock_append_instructions(basicblock *target, basicblock *source) |
| { |
| for (int i = 0; i < source->b_iused; i++) { |
| int n = basicblock_next_instr(target); |
| if (n < 0) { |
| return ERROR; |
| } |
| target->b_instr[n] = source->b_instr[i]; |
| } |
| return SUCCESS; |
| } |
| |
| static basicblock * |
| copy_basicblock(cfg_builder *g, basicblock *block) |
| { |
| /* Cannot copy a block if it has a fallthrough, since |
| * a block can only have one fallthrough predecessor. |
| */ |
| assert(BB_NO_FALLTHROUGH(block)); |
| basicblock *result = cfg_builder_new_block(g); |
| if (result == NULL) { |
| return NULL; |
| } |
| if (basicblock_append_instructions(result, block) < 0) { |
| return NULL; |
| } |
| return result; |
| } |
| |
| int |
| _PyBasicblock_InsertInstruction(basicblock *block, int pos, cfg_instr *instr) { |
| RETURN_IF_ERROR(basicblock_next_instr(block)); |
| for (int i = block->b_iused - 1; i > pos; i--) { |
| block->b_instr[i] = block->b_instr[i-1]; |
| } |
| block->b_instr[pos] = *instr; |
| return SUCCESS; |
| } |
| |
| static int |
| instr_size(cfg_instr *instruction) |
| { |
| return _PyCompile_InstrSize(instruction->i_opcode, instruction->i_oparg); |
| } |
| |
| static int |
| blocksize(basicblock *b) |
| { |
| int size = 0; |
| for (int i = 0; i < b->b_iused; i++) { |
| size += instr_size(&b->b_instr[i]); |
| } |
| return size; |
| } |
| |
| /* For debugging purposes only */ |
| #if 0 |
| static void |
| dump_instr(cfg_instr *i) |
| { |
| const char *jump = is_jump(i) ? "jump " : ""; |
| |
| char arg[128]; |
| |
| *arg = '\0'; |
| if (HAS_ARG(i->i_opcode)) { |
| sprintf(arg, "arg: %d ", i->i_oparg); |
| } |
| if (HAS_TARGET(i->i_opcode)) { |
| sprintf(arg, "target: %p [%d] ", i->i_target, i->i_oparg); |
| } |
| fprintf(stderr, "line: %d, opcode: %d %s%s\n", |
| i->i_loc.lineno, i->i_opcode, arg, jump); |
| } |
| |
| static inline int |
| basicblock_returns(const basicblock *b) { |
| cfg_instr *last = _PyCfg_BasicblockLastInstr(b); |
| return last && (last->i_opcode == RETURN_VALUE || last->i_opcode == RETURN_CONST); |
| } |
| |
| static void |
| dump_basicblock(const basicblock *b) |
| { |
| const char *b_return = basicblock_returns(b) ? "return " : ""; |
| fprintf(stderr, "%d: [EH=%d CLD=%d WRM=%d NO_FT=%d %p] used: %d, depth: %d, offset: %d %s\n", |
| b->b_label.id, b->b_except_handler, b->b_cold, b->b_warm, BB_NO_FALLTHROUGH(b), b, b->b_iused, |
| b->b_startdepth, b->b_offset, b_return); |
| if (b->b_instr) { |
| int i; |
| for (i = 0; i < b->b_iused; i++) { |
| fprintf(stderr, " [%02d] ", i); |
| dump_instr(b->b_instr + i); |
| } |
| } |
| } |
| |
| void |
| _PyCfgBuilder_DumpGraph(const basicblock *entryblock) |
| { |
| for (const basicblock *b = entryblock; b != NULL; b = b->b_next) { |
| dump_basicblock(b); |
| } |
| } |
| |
| #endif |
| |
| |
| /***** CFG construction and modification *****/ |
| |
| static basicblock * |
| cfg_builder_use_next_block(cfg_builder *g, basicblock *block) |
| { |
| assert(block != NULL); |
| g->g_curblock->b_next = block; |
| g->g_curblock = block; |
| return block; |
| } |
| |
| cfg_instr * |
| _PyCfg_BasicblockLastInstr(const basicblock *b) { |
| assert(b->b_iused >= 0); |
| if (b->b_iused > 0) { |
| assert(b->b_instr != NULL); |
| return &b->b_instr[b->b_iused - 1]; |
| } |
| return NULL; |
| } |
| |
| static inline int |
| basicblock_exits_scope(const basicblock *b) { |
| cfg_instr *last = _PyCfg_BasicblockLastInstr(b); |
| return last && IS_SCOPE_EXIT_OPCODE(last->i_opcode); |
| } |
| |
| static bool |
| cfg_builder_current_block_is_terminated(cfg_builder *g) |
| { |
| cfg_instr *last = _PyCfg_BasicblockLastInstr(g->g_curblock); |
| if (last && IS_TERMINATOR_OPCODE(last->i_opcode)) { |
| return true; |
| } |
| if (IS_LABEL(g->g_current_label)) { |
| if (last || IS_LABEL(g->g_curblock->b_label)) { |
| return true; |
| } |
| else { |
| /* current block is empty, label it */ |
| g->g_curblock->b_label = g->g_current_label; |
| g->g_current_label = NO_LABEL; |
| } |
| } |
| return false; |
| } |
| |
| static int |
| cfg_builder_maybe_start_new_block(cfg_builder *g) |
| { |
| if (cfg_builder_current_block_is_terminated(g)) { |
| basicblock *b = cfg_builder_new_block(g); |
| if (b == NULL) { |
| return ERROR; |
| } |
| b->b_label = g->g_current_label; |
| g->g_current_label = NO_LABEL; |
| cfg_builder_use_next_block(g, b); |
| } |
| return SUCCESS; |
| } |
| |
| #ifndef NDEBUG |
| static bool |
| cfg_builder_check(cfg_builder *g) |
| { |
| assert(g->g_entryblock->b_iused > 0); |
| for (basicblock *block = g->g_block_list; block != NULL; block = block->b_list) { |
| assert(!_PyMem_IsPtrFreed(block)); |
| if (block->b_instr != NULL) { |
| assert(block->b_ialloc > 0); |
| assert(block->b_iused >= 0); |
| assert(block->b_ialloc >= block->b_iused); |
| } |
| else { |
| assert (block->b_iused == 0); |
| assert (block->b_ialloc == 0); |
| } |
| } |
| return true; |
| } |
| #endif |
| |
| int |
| _PyCfgBuilder_Init(cfg_builder *g) |
| { |
| g->g_block_list = NULL; |
| basicblock *block = cfg_builder_new_block(g); |
| if (block == NULL) { |
| return ERROR; |
| } |
| g->g_curblock = g->g_entryblock = block; |
| g->g_current_label = NO_LABEL; |
| return SUCCESS; |
| } |
| |
| void |
| _PyCfgBuilder_Fini(cfg_builder* g) |
| { |
| assert(cfg_builder_check(g)); |
| basicblock *b = g->g_block_list; |
| while (b != NULL) { |
| if (b->b_instr) { |
| PyObject_Free((void *)b->b_instr); |
| } |
| basicblock *next = b->b_list; |
| PyObject_Free((void *)b); |
| b = next; |
| } |
| } |
| |
| int |
| _PyCfgBuilder_UseLabel(cfg_builder *g, jump_target_label lbl) |
| { |
| g->g_current_label = lbl; |
| return cfg_builder_maybe_start_new_block(g); |
| } |
| |
| int |
| _PyCfgBuilder_Addop(cfg_builder *g, int opcode, int oparg, location loc) |
| { |
| RETURN_IF_ERROR(cfg_builder_maybe_start_new_block(g)); |
| return basicblock_addop(g->g_curblock, opcode, oparg, loc); |
| } |
| |
| |
| /***** debugging helpers *****/ |
| |
| #ifndef NDEBUG |
| static int remove_redundant_nops(basicblock *bb); |
| |
| /* |
| static bool |
| no_redundant_nops(cfg_builder *g) { |
| for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) { |
| if (remove_redundant_nops(b) != 0) { |
| return false; |
| } |
| } |
| return true; |
| } |
| */ |
| |
| static bool |
| no_empty_basic_blocks(cfg_builder *g) { |
| for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) { |
| if (b->b_iused == 0) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| static bool |
| no_redundant_jumps(cfg_builder *g) { |
| for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) { |
| cfg_instr *last = _PyCfg_BasicblockLastInstr(b); |
| if (last != NULL) { |
| if (IS_UNCONDITIONAL_JUMP_OPCODE(last->i_opcode)) { |
| assert(last->i_target != b->b_next); |
| if (last->i_target == b->b_next) { |
| return false; |
| } |
| } |
| } |
| } |
| return true; |
| } |
| |
| #endif |
| |
| /***** CFG preprocessing (jump targets and exceptions) *****/ |
| |
| static int |
| normalize_jumps_in_block(cfg_builder *g, basicblock *b) { |
| cfg_instr *last = _PyCfg_BasicblockLastInstr(b); |
| if (last == NULL || !is_jump(last)) { |
| return SUCCESS; |
| } |
| assert(!IS_ASSEMBLER_OPCODE(last->i_opcode)); |
| bool is_forward = last->i_target->b_visited == 0; |
| switch(last->i_opcode) { |
| case JUMP: |
| last->i_opcode = is_forward ? JUMP_FORWARD : JUMP_BACKWARD; |
| return SUCCESS; |
| case JUMP_NO_INTERRUPT: |
| last->i_opcode = is_forward ? |
| JUMP_FORWARD : JUMP_BACKWARD_NO_INTERRUPT; |
| return SUCCESS; |
| } |
| int reversed_opcode = 0; |
| switch(last->i_opcode) { |
| case POP_JUMP_IF_NOT_NONE: |
| reversed_opcode = POP_JUMP_IF_NONE; |
| break; |
| case POP_JUMP_IF_NONE: |
| reversed_opcode = POP_JUMP_IF_NOT_NONE; |
| break; |
| case POP_JUMP_IF_FALSE: |
| reversed_opcode = POP_JUMP_IF_TRUE; |
| break; |
| case POP_JUMP_IF_TRUE: |
| reversed_opcode = POP_JUMP_IF_FALSE; |
| break; |
| } |
| if (is_forward) { |
| return SUCCESS; |
| } |
| /* transform 'conditional jump T' to |
| * 'reversed_jump b_next' followed by 'jump_backwards T' |
| */ |
| |
| basicblock *target = last->i_target; |
| basicblock *backwards_jump = cfg_builder_new_block(g); |
| if (backwards_jump == NULL) { |
| return ERROR; |
| } |
| basicblock_addop(backwards_jump, JUMP, target->b_label.id, last->i_loc); |
| backwards_jump->b_instr[0].i_target = target; |
| last->i_opcode = reversed_opcode; |
| last->i_target = b->b_next; |
| |
| backwards_jump->b_cold = b->b_cold; |
| backwards_jump->b_next = b->b_next; |
| b->b_next = backwards_jump; |
| return SUCCESS; |
| } |
| |
| |
| static int |
| normalize_jumps(_PyCfgBuilder *g) |
| { |
| basicblock *entryblock = g->g_entryblock; |
| for (basicblock *b = entryblock; b != NULL; b = b->b_next) { |
| b->b_visited = 0; |
| } |
| for (basicblock *b = entryblock; b != NULL; b = b->b_next) { |
| b->b_visited = 1; |
| RETURN_IF_ERROR(normalize_jumps_in_block(g, b)); |
| } |
| return SUCCESS; |
| } |
| |
| static void |
| resolve_jump_offsets(basicblock *entryblock) |
| { |
| int bsize, totsize, extended_arg_recompile; |
| |
| /* Compute the size of each block and fixup jump args. |
| Replace block pointer with position in bytecode. */ |
| do { |
| totsize = 0; |
| for (basicblock *b = entryblock; b != NULL; b = b->b_next) { |
| bsize = blocksize(b); |
| b->b_offset = totsize; |
| totsize += bsize; |
| } |
| extended_arg_recompile = 0; |
| for (basicblock *b = entryblock; b != NULL; b = b->b_next) { |
| bsize = b->b_offset; |
| for (int i = 0; i < b->b_iused; i++) { |
| cfg_instr *instr = &b->b_instr[i]; |
| int isize = instr_size(instr); |
| /* jump offsets are computed relative to |
| * the instruction pointer after fetching |
| * the jump instruction. |
| */ |
| bsize += isize; |
| if (is_jump(instr)) { |
| instr->i_oparg = instr->i_target->b_offset; |
| if (instr->i_oparg < bsize) { |
| assert(IS_BACKWARDS_JUMP_OPCODE(instr->i_opcode)); |
| instr->i_oparg = bsize - instr->i_oparg; |
| } |
| else { |
| assert(!IS_BACKWARDS_JUMP_OPCODE(instr->i_opcode)); |
| instr->i_oparg -= bsize; |
| } |
| if (instr_size(instr) != isize) { |
| extended_arg_recompile = 1; |
| } |
| } |
| } |
| } |
| |
| /* XXX: This is an awful hack that could hurt performance, but |
| on the bright side it should work until we come up |
| with a better solution. |
| |
| The issue is that in the first loop blocksize() is called |
| which calls instr_size() which requires i_oparg be set |
| appropriately. There is a bootstrap problem because |
| i_oparg is calculated in the second loop above. |
| |
| So we loop until we stop seeing new EXTENDED_ARGs. |
| The only EXTENDED_ARGs that could be popping up are |
| ones in jump instructions. So this should converge |
| fairly quickly. |
| */ |
| } while (extended_arg_recompile); |
| } |
| |
| int |
| _PyCfg_ResolveJumps(_PyCfgBuilder *g) |
| { |
| RETURN_IF_ERROR(normalize_jumps(g)); |
| assert(no_redundant_jumps(g)); |
| resolve_jump_offsets(g->g_entryblock); |
| return SUCCESS; |
| } |
| |
| static int |
| check_cfg(cfg_builder *g) { |
| for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) { |
| /* Raise SystemError if jump or exit is not last instruction in the block. */ |
| for (int i = 0; i < b->b_iused; i++) { |
| int opcode = b->b_instr[i].i_opcode; |
| assert(!IS_ASSEMBLER_OPCODE(opcode)); |
| if (IS_TERMINATOR_OPCODE(opcode)) { |
| if (i != b->b_iused - 1) { |
| PyErr_SetString(PyExc_SystemError, "malformed control flow graph."); |
| return ERROR; |
| } |
| } |
| } |
| } |
| return SUCCESS; |
| } |
| |
| static int |
| get_max_label(basicblock *entryblock) |
| { |
| int lbl = -1; |
| for (basicblock *b = entryblock; b != NULL; b = b->b_next) { |
| if (b->b_label.id > lbl) { |
| lbl = b->b_label.id; |
| } |
| } |
| return lbl; |
| } |
| |
| /* Calculate the actual jump target from the target_label */ |
| static int |
| translate_jump_labels_to_targets(basicblock *entryblock) |
| { |
| int max_label = get_max_label(entryblock); |
| size_t mapsize = sizeof(basicblock *) * (max_label + 1); |
| basicblock **label2block = (basicblock **)PyMem_Malloc(mapsize); |
| if (!label2block) { |
| PyErr_NoMemory(); |
| return ERROR; |
| } |
| memset(label2block, 0, mapsize); |
| for (basicblock *b = entryblock; b != NULL; b = b->b_next) { |
| if (b->b_label.id >= 0) { |
| label2block[b->b_label.id] = b; |
| } |
| } |
| for (basicblock *b = entryblock; b != NULL; b = b->b_next) { |
| for (int i = 0; i < b->b_iused; i++) { |
| cfg_instr *instr = &b->b_instr[i]; |
| assert(instr->i_target == NULL); |
| if (HAS_TARGET(instr->i_opcode)) { |
| int lbl = instr->i_oparg; |
| assert(lbl >= 0 && lbl <= max_label); |
| instr->i_target = label2block[lbl]; |
| assert(instr->i_target != NULL); |
| assert(instr->i_target->b_label.id == lbl); |
| } |
| } |
| } |
| PyMem_Free(label2block); |
| return SUCCESS; |
| } |
| |
| int |
| _PyCfg_JumpLabelsToTargets(basicblock *entryblock) |
| { |
| return translate_jump_labels_to_targets(entryblock); |
| } |
| |
| static int |
| mark_except_handlers(basicblock *entryblock) { |
| #ifndef NDEBUG |
| for (basicblock *b = entryblock; b != NULL; b = b->b_next) { |
| assert(!b->b_except_handler); |
| } |
| #endif |
| for (basicblock *b = entryblock; b != NULL; b = b->b_next) { |
| for (int i=0; i < b->b_iused; i++) { |
| cfg_instr *instr = &b->b_instr[i]; |
| if (is_block_push(instr)) { |
| instr->i_target->b_except_handler = 1; |
| } |
| } |
| } |
| return SUCCESS; |
| } |
| |
| |
| typedef _PyCfgExceptStack ExceptStack; |
| |
| static basicblock * |
| push_except_block(ExceptStack *stack, cfg_instr *setup) { |
| assert(is_block_push(setup)); |
| int opcode = setup->i_opcode; |
| basicblock * target = setup->i_target; |
| if (opcode == SETUP_WITH || opcode == SETUP_CLEANUP) { |
| target->b_preserve_lasti = 1; |
| } |
| assert(stack->depth <= CO_MAXBLOCKS); |
| stack->handlers[++stack->depth] = target; |
| return target; |
| } |
| |
| static basicblock * |
| pop_except_block(ExceptStack *stack) { |
| assert(stack->depth > 0); |
| return stack->handlers[--stack->depth]; |
| } |
| |
| static basicblock * |
| except_stack_top(ExceptStack *stack) { |
| return stack->handlers[stack->depth]; |
| } |
| |
| static ExceptStack * |
| make_except_stack(void) { |
| ExceptStack *new = PyMem_Malloc(sizeof(ExceptStack)); |
| if (new == NULL) { |
| PyErr_NoMemory(); |
| return NULL; |
| } |
| new->depth = 0; |
| new->handlers[0] = NULL; |
| return new; |
| } |
| |
| static ExceptStack * |
| copy_except_stack(ExceptStack *stack) { |
| ExceptStack *copy = PyMem_Malloc(sizeof(ExceptStack)); |
| if (copy == NULL) { |
| PyErr_NoMemory(); |
| return NULL; |
| } |
| memcpy(copy, stack, sizeof(ExceptStack)); |
| return copy; |
| } |
| |
| static basicblock** |
| make_cfg_traversal_stack(basicblock *entryblock) { |
| int nblocks = 0; |
| for (basicblock *b = entryblock; b != NULL; b = b->b_next) { |
| b->b_visited = 0; |
| nblocks++; |
| } |
| basicblock **stack = (basicblock **)PyMem_Malloc(sizeof(basicblock *) * nblocks); |
| if (!stack) { |
| PyErr_NoMemory(); |
| } |
| return stack; |
| } |
| |
| Py_LOCAL_INLINE(void) |
| stackdepth_push(basicblock ***sp, basicblock *b, int depth) |
| { |
| assert(b->b_startdepth < 0 || b->b_startdepth == depth); |
| if (b->b_startdepth < depth && b->b_startdepth < 100) { |
| assert(b->b_startdepth < 0); |
| b->b_startdepth = depth; |
| *(*sp)++ = b; |
| } |
| } |
| |
| /* Find the flow path that needs the largest stack. We assume that |
| * cycles in the flow graph have no net effect on the stack depth. |
| */ |
| int |
| _PyCfg_Stackdepth(basicblock *entryblock, int code_flags) |
| { |
| for (basicblock *b = entryblock; b != NULL; b = b->b_next) { |
| b->b_startdepth = INT_MIN; |
| } |
| basicblock **stack = make_cfg_traversal_stack(entryblock); |
| if (!stack) { |
| return ERROR; |
| } |
| |
| int maxdepth = 0; |
| basicblock **sp = stack; |
| if (code_flags & (CO_GENERATOR | CO_COROUTINE | CO_ASYNC_GENERATOR)) { |
| stackdepth_push(&sp, entryblock, 1); |
| } else { |
| stackdepth_push(&sp, entryblock, 0); |
| } |
| |
| while (sp != stack) { |
| basicblock *b = *--sp; |
| int depth = b->b_startdepth; |
| assert(depth >= 0); |
| basicblock *next = b->b_next; |
| for (int i = 0; i < b->b_iused; i++) { |
| cfg_instr *instr = &b->b_instr[i]; |
| int effect = PyCompile_OpcodeStackEffectWithJump(instr->i_opcode, instr->i_oparg, 0); |
| if (effect == PY_INVALID_STACK_EFFECT) { |
| PyErr_Format(PyExc_SystemError, |
| "compiler PyCompile_OpcodeStackEffectWithJump(opcode=%d, arg=%i) failed", |
| instr->i_opcode, instr->i_oparg); |
| return ERROR; |
| } |
| int new_depth = depth + effect; |
| assert(new_depth >= 0); /* invalid code or bug in stackdepth() */ |
| if (new_depth > maxdepth) { |
| maxdepth = new_depth; |
| } |
| if (HAS_TARGET(instr->i_opcode)) { |
| effect = PyCompile_OpcodeStackEffectWithJump(instr->i_opcode, instr->i_oparg, 1); |
| assert(effect != PY_INVALID_STACK_EFFECT); |
| int target_depth = depth + effect; |
| assert(target_depth >= 0); /* invalid code or bug in stackdepth() */ |
| if (target_depth > maxdepth) { |
| maxdepth = target_depth; |
| } |
| stackdepth_push(&sp, instr->i_target, target_depth); |
| } |
| depth = new_depth; |
| assert(!IS_ASSEMBLER_OPCODE(instr->i_opcode)); |
| if (IS_UNCONDITIONAL_JUMP_OPCODE(instr->i_opcode) || |
| IS_SCOPE_EXIT_OPCODE(instr->i_opcode)) |
| { |
| /* remaining code is dead */ |
| next = NULL; |
| break; |
| } |
| } |
| if (next != NULL) { |
| assert(BB_HAS_FALLTHROUGH(b)); |
| stackdepth_push(&sp, next, depth); |
| } |
| } |
| PyMem_Free(stack); |
| return maxdepth; |
| } |
| |
| static int |
| label_exception_targets(basicblock *entryblock) { |
| basicblock **todo_stack = make_cfg_traversal_stack(entryblock); |
| if (todo_stack == NULL) { |
| return ERROR; |
| } |
| ExceptStack *except_stack = make_except_stack(); |
| if (except_stack == NULL) { |
| PyMem_Free(todo_stack); |
| PyErr_NoMemory(); |
| return ERROR; |
| } |
| except_stack->depth = 0; |
| todo_stack[0] = entryblock; |
| entryblock->b_visited = 1; |
| entryblock->b_exceptstack = except_stack; |
| basicblock **todo = &todo_stack[1]; |
| basicblock *handler = NULL; |
| while (todo > todo_stack) { |
| todo--; |
| basicblock *b = todo[0]; |
| assert(b->b_visited == 1); |
| except_stack = b->b_exceptstack; |
| assert(except_stack != NULL); |
| b->b_exceptstack = NULL; |
| handler = except_stack_top(except_stack); |
| for (int i = 0; i < b->b_iused; i++) { |
| cfg_instr *instr = &b->b_instr[i]; |
| if (is_block_push(instr)) { |
| if (!instr->i_target->b_visited) { |
| ExceptStack *copy = copy_except_stack(except_stack); |
| if (copy == NULL) { |
| goto error; |
| } |
| instr->i_target->b_exceptstack = copy; |
| todo[0] = instr->i_target; |
| instr->i_target->b_visited = 1; |
| todo++; |
| } |
| handler = push_except_block(except_stack, instr); |
| } |
| else if (instr->i_opcode == POP_BLOCK) { |
| handler = pop_except_block(except_stack); |
| } |
| else if (is_jump(instr)) { |
| instr->i_except = handler; |
| assert(i == b->b_iused -1); |
| if (!instr->i_target->b_visited) { |
| if (BB_HAS_FALLTHROUGH(b)) { |
| ExceptStack *copy = copy_except_stack(except_stack); |
| if (copy == NULL) { |
| goto error; |
| } |
| instr->i_target->b_exceptstack = copy; |
| } |
| else { |
| instr->i_target->b_exceptstack = except_stack; |
| except_stack = NULL; |
| } |
| todo[0] = instr->i_target; |
| instr->i_target->b_visited = 1; |
| todo++; |
| } |
| } |
| else { |
| if (instr->i_opcode == YIELD_VALUE) { |
| instr->i_oparg = except_stack->depth; |
| } |
| instr->i_except = handler; |
| } |
| } |
| if (BB_HAS_FALLTHROUGH(b) && !b->b_next->b_visited) { |
| assert(except_stack != NULL); |
| b->b_next->b_exceptstack = except_stack; |
| todo[0] = b->b_next; |
| b->b_next->b_visited = 1; |
| todo++; |
| } |
| else if (except_stack != NULL) { |
| PyMem_Free(except_stack); |
| } |
| } |
| #ifdef Py_DEBUG |
| for (basicblock *b = entryblock; b != NULL; b = b->b_next) { |
| assert(b->b_exceptstack == NULL); |
| } |
| #endif |
| PyMem_Free(todo_stack); |
| return SUCCESS; |
| error: |
| PyMem_Free(todo_stack); |
| PyMem_Free(except_stack); |
| return ERROR; |
| } |
| |
| /***** CFG optimizations *****/ |
| |
| static int |
| mark_reachable(basicblock *entryblock) { |
| basicblock **stack = make_cfg_traversal_stack(entryblock); |
| if (stack == NULL) { |
| return ERROR; |
| } |
| basicblock **sp = stack; |
| entryblock->b_predecessors = 1; |
| *sp++ = entryblock; |
| while (sp > stack) { |
| basicblock *b = *(--sp); |
| b->b_visited = 1; |
| if (b->b_next && BB_HAS_FALLTHROUGH(b)) { |
| if (!b->b_next->b_visited) { |
| assert(b->b_next->b_predecessors == 0); |
| *sp++ = b->b_next; |
| } |
| b->b_next->b_predecessors++; |
| } |
| for (int i = 0; i < b->b_iused; i++) { |
| basicblock *target; |
| cfg_instr *instr = &b->b_instr[i]; |
| if (is_jump(instr) || is_block_push(instr)) { |
| target = instr->i_target; |
| if (!target->b_visited) { |
| assert(target->b_predecessors == 0 || target == b->b_next); |
| *sp++ = target; |
| } |
| target->b_predecessors++; |
| } |
| } |
| } |
| PyMem_Free(stack); |
| return SUCCESS; |
| } |
| |
| static void |
| eliminate_empty_basic_blocks(cfg_builder *g) { |
| /* Eliminate empty blocks */ |
| for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) { |
| basicblock *next = b->b_next; |
| while (next && next->b_iused == 0) { |
| next = next->b_next; |
| } |
| b->b_next = next; |
| } |
| while(g->g_entryblock && g->g_entryblock->b_iused == 0) { |
| g->g_entryblock = g->g_entryblock->b_next; |
| } |
| int next_lbl = get_max_label(g->g_entryblock) + 1; |
| for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) { |
| assert(b->b_iused > 0); |
| for (int i = 0; i < b->b_iused; i++) { |
| cfg_instr *instr = &b->b_instr[i]; |
| if (HAS_TARGET(instr->i_opcode)) { |
| basicblock *target = instr->i_target; |
| while (target->b_iused == 0) { |
| target = target->b_next; |
| } |
| if (instr->i_target != target) { |
| if (!IS_LABEL(target->b_label)) { |
| target->b_label.id = next_lbl++; |
| } |
| instr->i_target = target; |
| instr->i_oparg = target->b_label.id; |
| } |
| assert(instr->i_target && instr->i_target->b_iused > 0); |
| } |
| } |
| } |
| } |
| |
| static int |
| remove_redundant_nops(basicblock *bb) { |
| /* Remove NOPs when legal to do so. */ |
| int dest = 0; |
| int prev_lineno = -1; |
| for (int src = 0; src < bb->b_iused; src++) { |
| int lineno = bb->b_instr[src].i_loc.lineno; |
| if (bb->b_instr[src].i_opcode == NOP) { |
| /* Eliminate no-op if it doesn't have a line number */ |
| if (lineno < 0) { |
| continue; |
| } |
| /* or, if the previous instruction had the same line number. */ |
| if (prev_lineno == lineno) { |
| continue; |
| } |
| /* or, if the next instruction has same line number or no line number */ |
| if (src < bb->b_iused - 1) { |
| int next_lineno = bb->b_instr[src+1].i_loc.lineno; |
| if (next_lineno == lineno) { |
| continue; |
| } |
| if (next_lineno < 0) { |
| bb->b_instr[src+1].i_loc = bb->b_instr[src].i_loc; |
| continue; |
| } |
| } |
| else { |
| basicblock* next = bb->b_next; |
| while (next && next->b_iused == 0) { |
| next = next->b_next; |
| } |
| /* or if last instruction in BB and next BB has same line number */ |
| if (next) { |
| location next_loc = NO_LOCATION; |
| for (int next_i=0; next_i < next->b_iused; next_i++) { |
| cfg_instr *instr = &next->b_instr[next_i]; |
| if (instr->i_opcode == NOP && instr->i_loc.lineno == NO_LOCATION.lineno) { |
| /* Skip over NOPs without location, they will be removed */ |
| continue; |
| } |
| next_loc = instr->i_loc; |
| break; |
| } |
| if (lineno == next_loc.lineno) { |
| continue; |
| } |
| } |
| } |
| |
| } |
| if (dest != src) { |
| bb->b_instr[dest] = bb->b_instr[src]; |
| } |
| dest++; |
| prev_lineno = lineno; |
| } |
| assert(dest <= bb->b_iused); |
| int num_removed = bb->b_iused - dest; |
| bb->b_iused = dest; |
| return num_removed; |
| } |
| |
| static int |
| remove_redundant_nops_and_pairs(basicblock *entryblock) |
| { |
| bool done = false; |
| |
| while (! done) { |
| done = true; |
| cfg_instr *prev_instr = NULL; |
| cfg_instr *instr = NULL; |
| for (basicblock *b = entryblock; b != NULL; b = b->b_next) { |
| remove_redundant_nops(b); |
| if (IS_LABEL(b->b_label)) { |
| /* this block is a jump target, forget instr */ |
| instr = NULL; |
| } |
| for (int i = 0; i < b->b_iused; i++) { |
| prev_instr = instr; |
| instr = &b->b_instr[i]; |
| int prev_opcode = prev_instr ? prev_instr->i_opcode : 0; |
| int prev_oparg = prev_instr ? prev_instr->i_oparg : 0; |
| int opcode = instr->i_opcode; |
| bool is_redundant_pair = false; |
| if (opcode == POP_TOP) { |
| if (prev_opcode == LOAD_CONST) { |
| is_redundant_pair = true; |
| } |
| else if (prev_opcode == COPY && prev_oparg == 1) { |
| is_redundant_pair = true; |
| } |
| } |
| if (is_redundant_pair) { |
| INSTR_SET_OP0(prev_instr, NOP); |
| INSTR_SET_OP0(instr, NOP); |
| done = false; |
| } |
| } |
| if ((instr && is_jump(instr)) || !BB_HAS_FALLTHROUGH(b)) { |
| instr = NULL; |
| } |
| } |
| } |
| return SUCCESS; |
| } |
| |
| static int |
| remove_redundant_jumps(cfg_builder *g) { |
| /* If a non-empty block ends with a jump instruction, check if the next |
| * non-empty block reached through normal flow control is the target |
| * of that jump. If it is, then the jump instruction is redundant and |
| * can be deleted. |
| */ |
| assert(no_empty_basic_blocks(g)); |
| for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) { |
| cfg_instr *last = _PyCfg_BasicblockLastInstr(b); |
| assert(last != NULL); |
| assert(!IS_ASSEMBLER_OPCODE(last->i_opcode)); |
| if (IS_UNCONDITIONAL_JUMP_OPCODE(last->i_opcode)) { |
| if (last->i_target == NULL) { |
| PyErr_SetString(PyExc_SystemError, "jump with NULL target"); |
| return ERROR; |
| } |
| if (last->i_target == b->b_next) { |
| assert(b->b_next->b_iused); |
| INSTR_SET_OP0(last, NOP); |
| } |
| } |
| } |
| return SUCCESS; |
| } |
| |
| /* Maximum size of basic block that should be copied in optimizer */ |
| #define MAX_COPY_SIZE 4 |
| |
| /* If this block ends with an unconditional jump to a small exit block, then |
| * remove the jump and extend this block with the target. |
| * Returns 1 if extended, 0 if no change, and -1 on error. |
| */ |
| static int |
| inline_small_exit_blocks(basicblock *bb) { |
| cfg_instr *last = _PyCfg_BasicblockLastInstr(bb); |
| if (last == NULL) { |
| return 0; |
| } |
| if (!IS_UNCONDITIONAL_JUMP_OPCODE(last->i_opcode)) { |
| return 0; |
| } |
| basicblock *target = last->i_target; |
| if (basicblock_exits_scope(target) && target->b_iused <= MAX_COPY_SIZE) { |
| INSTR_SET_OP0(last, NOP); |
| RETURN_IF_ERROR(basicblock_append_instructions(bb, target)); |
| return 1; |
| } |
| return 0; |
| } |
| |
| // Attempt to eliminate jumps to jumps by updating inst to jump to |
| // target->i_target using the provided opcode. Return whether or not the |
| // optimization was successful. |
| static bool |
| jump_thread(cfg_instr *inst, cfg_instr *target, int opcode) |
| { |
| assert(is_jump(inst)); |
| assert(is_jump(target)); |
| // bpo-45773: If inst->i_target == target->i_target, then nothing actually |
| // changes (and we fall into an infinite loop): |
| if ((inst->i_loc.lineno == target->i_loc.lineno || target->i_loc.lineno == -1) && |
| inst->i_target != target->i_target) |
| { |
| inst->i_target = target->i_target; |
| inst->i_opcode = opcode; |
| return true; |
| } |
| return false; |
| } |
| |
| static PyObject* |
| get_const_value(int opcode, int oparg, PyObject *co_consts) |
| { |
| PyObject *constant = NULL; |
| assert(HAS_CONST(opcode)); |
| if (opcode == LOAD_CONST) { |
| constant = PyList_GET_ITEM(co_consts, oparg); |
| } |
| |
| if (constant == NULL) { |
| PyErr_SetString(PyExc_SystemError, |
| "Internal error: failed to get value of a constant"); |
| return NULL; |
| } |
| return Py_NewRef(constant); |
| } |
| |
| /* Replace LOAD_CONST c1, LOAD_CONST c2 ... LOAD_CONST cn, BUILD_TUPLE n |
| with LOAD_CONST (c1, c2, ... cn). |
| The consts table must still be in list form so that the |
| new constant (c1, c2, ... cn) can be appended. |
| Called with codestr pointing to the first LOAD_CONST. |
| */ |
| static int |
| fold_tuple_on_constants(PyObject *const_cache, |
| cfg_instr *inst, |
| int n, PyObject *consts) |
| { |
| /* Pre-conditions */ |
| assert(PyDict_CheckExact(const_cache)); |
| assert(PyList_CheckExact(consts)); |
| assert(inst[n].i_opcode == BUILD_TUPLE); |
| assert(inst[n].i_oparg == n); |
| |
| for (int i = 0; i < n; i++) { |
| if (!HAS_CONST(inst[i].i_opcode)) { |
| return SUCCESS; |
| } |
| } |
| |
| /* Buildup new tuple of constants */ |
| PyObject *newconst = PyTuple_New(n); |
| if (newconst == NULL) { |
| return ERROR; |
| } |
| for (int i = 0; i < n; i++) { |
| int op = inst[i].i_opcode; |
| int arg = inst[i].i_oparg; |
| PyObject *constant = get_const_value(op, arg, consts); |
| if (constant == NULL) { |
| return ERROR; |
| } |
| PyTuple_SET_ITEM(newconst, i, constant); |
| } |
| if (_PyCompile_ConstCacheMergeOne(const_cache, &newconst) < 0) { |
| Py_DECREF(newconst); |
| return ERROR; |
| } |
| |
| Py_ssize_t index; |
| for (index = 0; index < PyList_GET_SIZE(consts); index++) { |
| if (PyList_GET_ITEM(consts, index) == newconst) { |
| break; |
| } |
| } |
| if (index == PyList_GET_SIZE(consts)) { |
| if ((size_t)index >= (size_t)INT_MAX - 1) { |
| Py_DECREF(newconst); |
| PyErr_SetString(PyExc_OverflowError, "too many constants"); |
| return ERROR; |
| } |
| if (PyList_Append(consts, newconst)) { |
| Py_DECREF(newconst); |
| return ERROR; |
| } |
| } |
| Py_DECREF(newconst); |
| for (int i = 0; i < n; i++) { |
| INSTR_SET_OP0(&inst[i], NOP); |
| } |
| INSTR_SET_OP1(&inst[n], LOAD_CONST, (int)index); |
| return SUCCESS; |
| } |
| |
| #define VISITED (-1) |
| |
| // Replace an arbitrary run of SWAPs and NOPs with an optimal one that has the |
| // same effect. |
| static int |
| swaptimize(basicblock *block, int *ix) |
| { |
| // NOTE: "./python -m test test_patma" serves as a good, quick stress test |
| // for this function. Make sure to blow away cached *.pyc files first! |
| assert(*ix < block->b_iused); |
| cfg_instr *instructions = &block->b_instr[*ix]; |
| // Find the length of the current sequence of SWAPs and NOPs, and record the |
| // maximum depth of the stack manipulations: |
| assert(instructions[0].i_opcode == SWAP); |
| int depth = instructions[0].i_oparg; |
| int len = 0; |
| int more = false; |
| int limit = block->b_iused - *ix; |
| while (++len < limit) { |
| int opcode = instructions[len].i_opcode; |
| if (opcode == SWAP) { |
| depth = Py_MAX(depth, instructions[len].i_oparg); |
| more = true; |
| } |
| else if (opcode != NOP) { |
| break; |
| } |
| } |
| // It's already optimal if there's only one SWAP: |
| if (!more) { |
| return SUCCESS; |
| } |
| // Create an array with elements {0, 1, 2, ..., depth - 1}: |
| int *stack = PyMem_Malloc(depth * sizeof(int)); |
| if (stack == NULL) { |
| PyErr_NoMemory(); |
| return ERROR; |
| } |
| for (int i = 0; i < depth; i++) { |
| stack[i] = i; |
| } |
| // Simulate the combined effect of these instructions by "running" them on |
| // our "stack": |
| for (int i = 0; i < len; i++) { |
| if (instructions[i].i_opcode == SWAP) { |
| int oparg = instructions[i].i_oparg; |
| int top = stack[0]; |
| // SWAPs are 1-indexed: |
| stack[0] = stack[oparg - 1]; |
| stack[oparg - 1] = top; |
| } |
| } |
| // Now we can begin! Our approach here is based on a solution to a closely |
| // related problem (https://cs.stackexchange.com/a/13938). It's easiest to |
| // think of this algorithm as determining the steps needed to efficiently |
| // "un-shuffle" our stack. By performing the moves in *reverse* order, |
| // though, we can efficiently *shuffle* it! For this reason, we will be |
| // replacing instructions starting from the *end* of the run. Since the |
| // solution is optimal, we don't need to worry about running out of space: |
| int current = len - 1; |
| for (int i = 0; i < depth; i++) { |
| // Skip items that have already been visited, or just happen to be in |
| // the correct location: |
| if (stack[i] == VISITED || stack[i] == i) { |
| continue; |
| } |
| // Okay, we've found an item that hasn't been visited. It forms a cycle |
| // with other items; traversing the cycle and swapping each item with |
| // the next will put them all in the correct place. The weird |
| // loop-and-a-half is necessary to insert 0 into every cycle, since we |
| // can only swap from that position: |
| int j = i; |
| while (true) { |
| // Skip the actual swap if our item is zero, since swapping the top |
| // item with itself is pointless: |
| if (j) { |
| assert(0 <= current); |
| // SWAPs are 1-indexed: |
| instructions[current].i_opcode = SWAP; |
| instructions[current--].i_oparg = j + 1; |
| } |
| if (stack[j] == VISITED) { |
| // Completed the cycle: |
| assert(j == i); |
| break; |
| } |
| int next_j = stack[j]; |
| stack[j] = VISITED; |
| j = next_j; |
| } |
| } |
| // NOP out any unused instructions: |
| while (0 <= current) { |
| INSTR_SET_OP0(&instructions[current--], NOP); |
| } |
| PyMem_Free(stack); |
| *ix += len - 1; |
| return SUCCESS; |
| } |
| |
| |
| // This list is pretty small, since it's only okay to reorder opcodes that: |
| // - can't affect control flow (like jumping or raising exceptions) |
| // - can't invoke arbitrary code (besides finalizers) |
| // - only touch the TOS (and pop it when finished) |
| #define SWAPPABLE(opcode) \ |
| ((opcode) == STORE_FAST || \ |
| (opcode) == STORE_FAST_MAYBE_NULL || \ |
| (opcode) == POP_TOP) |
| |
| #define STORES_TO(instr) \ |
| (((instr).i_opcode == STORE_FAST || \ |
| (instr).i_opcode == STORE_FAST_MAYBE_NULL) \ |
| ? (instr).i_oparg : -1) |
| |
| static int |
| next_swappable_instruction(basicblock *block, int i, int lineno) |
| { |
| while (++i < block->b_iused) { |
| cfg_instr *instruction = &block->b_instr[i]; |
| if (0 <= lineno && instruction->i_loc.lineno != lineno) { |
| // Optimizing across this instruction could cause user-visible |
| // changes in the names bound between line tracing events! |
| return -1; |
| } |
| if (instruction->i_opcode == NOP) { |
| continue; |
| } |
| if (SWAPPABLE(instruction->i_opcode)) { |
| return i; |
| } |
| return -1; |
| } |
| return -1; |
| } |
| |
| // Attempt to apply SWAPs statically by swapping *instructions* rather than |
| // stack items. For example, we can replace SWAP(2), POP_TOP, STORE_FAST(42) |
| // with the more efficient NOP, STORE_FAST(42), POP_TOP. |
| static void |
| apply_static_swaps(basicblock *block, int i) |
| { |
| // SWAPs are to our left, and potential swaperands are to our right: |
| for (; 0 <= i; i--) { |
| assert(i < block->b_iused); |
| cfg_instr *swap = &block->b_instr[i]; |
| if (swap->i_opcode != SWAP) { |
| if (swap->i_opcode == NOP || SWAPPABLE(swap->i_opcode)) { |
| // Nope, but we know how to handle these. Keep looking: |
| continue; |
| } |
| // We can't reason about what this instruction does. Bail: |
| return; |
| } |
| int j = next_swappable_instruction(block, i, -1); |
| if (j < 0) { |
| return; |
| } |
| int k = j; |
| int lineno = block->b_instr[j].i_loc.lineno; |
| for (int count = swap->i_oparg - 1; 0 < count; count--) { |
| k = next_swappable_instruction(block, k, lineno); |
| if (k < 0) { |
| return; |
| } |
| } |
| // The reordering is not safe if the two instructions to be swapped |
| // store to the same location, or if any intervening instruction stores |
| // to the same location as either of them. |
| int store_j = STORES_TO(block->b_instr[j]); |
| int store_k = STORES_TO(block->b_instr[k]); |
| if (store_j >= 0 || store_k >= 0) { |
| if (store_j == store_k) { |
| return; |
| } |
| for (int idx = j + 1; idx < k; idx++) { |
| int store_idx = STORES_TO(block->b_instr[idx]); |
| if (store_idx >= 0 && (store_idx == store_j || store_idx == store_k)) { |
| return; |
| } |
| } |
| } |
| |
| // Success! |
| INSTR_SET_OP0(swap, NOP); |
| cfg_instr temp = block->b_instr[j]; |
| block->b_instr[j] = block->b_instr[k]; |
| block->b_instr[k] = temp; |
| } |
| } |
| |
| static int |
| optimize_basic_block(PyObject *const_cache, basicblock *bb, PyObject *consts) |
| { |
| assert(PyDict_CheckExact(const_cache)); |
| assert(PyList_CheckExact(consts)); |
| cfg_instr nop; |
| INSTR_SET_OP0(&nop, NOP); |
| cfg_instr *target = &nop; |
| int opcode = 0; |
| int oparg = 0; |
| int nextop = 0; |
| for (int i = 0; i < bb->b_iused; i++) { |
| cfg_instr *inst = &bb->b_instr[i]; |
| bool is_copy_of_load_const = (opcode == LOAD_CONST && |
| inst->i_opcode == COPY && |
| inst->i_oparg == 1); |
| if (! is_copy_of_load_const) { |
| opcode = inst->i_opcode; |
| oparg = inst->i_oparg; |
| if (HAS_TARGET(opcode)) { |
| assert(inst->i_target->b_iused > 0); |
| target = &inst->i_target->b_instr[0]; |
| assert(!IS_ASSEMBLER_OPCODE(target->i_opcode)); |
| } |
| else { |
| target = &nop; |
| } |
| } |
| nextop = i+1 < bb->b_iused ? bb->b_instr[i+1].i_opcode : 0; |
| assert(!IS_ASSEMBLER_OPCODE(opcode)); |
| switch (opcode) { |
| /* Remove LOAD_CONST const; conditional jump */ |
| case LOAD_CONST: |
| { |
| PyObject* cnt; |
| int is_true; |
| int jump_if_true; |
| switch(nextop) { |
| case POP_JUMP_IF_FALSE: |
| case POP_JUMP_IF_TRUE: |
| cnt = get_const_value(opcode, oparg, consts); |
| if (cnt == NULL) { |
| goto error; |
| } |
| is_true = PyObject_IsTrue(cnt); |
| Py_DECREF(cnt); |
| if (is_true == -1) { |
| goto error; |
| } |
| INSTR_SET_OP0(inst, NOP); |
| jump_if_true = nextop == POP_JUMP_IF_TRUE; |
| if (is_true == jump_if_true) { |
| bb->b_instr[i+1].i_opcode = JUMP; |
| } |
| else { |
| INSTR_SET_OP0(&bb->b_instr[i + 1], NOP); |
| } |
| break; |
| case IS_OP: |
| cnt = get_const_value(opcode, oparg, consts); |
| if (cnt == NULL) { |
| goto error; |
| } |
| int jump_op = i+2 < bb->b_iused ? bb->b_instr[i+2].i_opcode : 0; |
| if (Py_IsNone(cnt) && (jump_op == POP_JUMP_IF_FALSE || jump_op == POP_JUMP_IF_TRUE)) { |
| unsigned char nextarg = bb->b_instr[i+1].i_oparg; |
| INSTR_SET_OP0(inst, NOP); |
| INSTR_SET_OP0(&bb->b_instr[i + 1], NOP); |
| bb->b_instr[i+2].i_opcode = nextarg ^ (jump_op == POP_JUMP_IF_FALSE) ? |
| POP_JUMP_IF_NOT_NONE : POP_JUMP_IF_NONE; |
| } |
| Py_DECREF(cnt); |
| break; |
| case RETURN_VALUE: |
| INSTR_SET_OP0(inst, NOP); |
| INSTR_SET_OP1(&bb->b_instr[++i], RETURN_CONST, oparg); |
| break; |
| } |
| break; |
| } |
| /* Try to fold tuples of constants. |
| Skip over BUILD_TUPLE(1) UNPACK_SEQUENCE(1). |
| Replace BUILD_TUPLE(2) UNPACK_SEQUENCE(2) with SWAP(2). |
| Replace BUILD_TUPLE(3) UNPACK_SEQUENCE(3) with SWAP(3). */ |
| case BUILD_TUPLE: |
| if (nextop == UNPACK_SEQUENCE && oparg == bb->b_instr[i+1].i_oparg) { |
| switch(oparg) { |
| case 1: |
| INSTR_SET_OP0(inst, NOP); |
| INSTR_SET_OP0(&bb->b_instr[i + 1], NOP); |
| continue; |
| case 2: |
| case 3: |
| INSTR_SET_OP0(inst, NOP); |
| bb->b_instr[i+1].i_opcode = SWAP; |
| continue; |
| } |
| } |
| if (i >= oparg) { |
| if (fold_tuple_on_constants(const_cache, inst-oparg, oparg, consts)) { |
| goto error; |
| } |
| } |
| break; |
| case POP_JUMP_IF_NOT_NONE: |
| case POP_JUMP_IF_NONE: |
| switch (target->i_opcode) { |
| case JUMP: |
| i -= jump_thread(inst, target, inst->i_opcode); |
| } |
| break; |
| case POP_JUMP_IF_FALSE: |
| switch (target->i_opcode) { |
| case JUMP: |
| i -= jump_thread(inst, target, POP_JUMP_IF_FALSE); |
| } |
| break; |
| case POP_JUMP_IF_TRUE: |
| switch (target->i_opcode) { |
| case JUMP: |
| i -= jump_thread(inst, target, POP_JUMP_IF_TRUE); |
| } |
| break; |
| case JUMP: |
| switch (target->i_opcode) { |
| case JUMP: |
| i -= jump_thread(inst, target, JUMP); |
| } |
| break; |
| case FOR_ITER: |
| if (target->i_opcode == JUMP) { |
| /* This will not work now because the jump (at target) could |
| * be forward or backward and FOR_ITER only jumps forward. We |
| * can re-enable this if ever we implement a backward version |
| * of FOR_ITER. |
| */ |
| /* |
| i -= jump_thread(inst, target, FOR_ITER); |
| */ |
| } |
| break; |
| case SWAP: |
| if (oparg == 1) { |
| INSTR_SET_OP0(inst, NOP); |
| break; |
| } |
| if (swaptimize(bb, &i) < 0) { |
| goto error; |
| } |
| apply_static_swaps(bb, i); |
| break; |
| case KW_NAMES: |
| break; |
| case PUSH_NULL: |
| if (nextop == LOAD_GLOBAL && (bb->b_instr[i+1].i_oparg & 1) == 0) { |
| INSTR_SET_OP0(inst, NOP); |
| bb->b_instr[i+1].i_oparg |= 1; |
| } |
| break; |
| default: |
| /* All HAS_CONST opcodes should be handled with LOAD_CONST */ |
| assert (!HAS_CONST(inst->i_opcode)); |
| } |
| } |
| return SUCCESS; |
| error: |
| return ERROR; |
| } |
| |
| |
| /* Perform optimizations on a control flow graph. |
| The consts object should still be in list form to allow new constants |
| to be appended. |
| |
| Code trasnformations that reduce code size initially fill the gaps with |
| NOPs. Later those NOPs are removed. |
| */ |
| static int |
| optimize_cfg(cfg_builder *g, PyObject *consts, PyObject *const_cache) |
| { |
| assert(PyDict_CheckExact(const_cache)); |
| RETURN_IF_ERROR(check_cfg(g)); |
| eliminate_empty_basic_blocks(g); |
| for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) { |
| RETURN_IF_ERROR(inline_small_exit_blocks(b)); |
| } |
| assert(no_empty_basic_blocks(g)); |
| for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) { |
| RETURN_IF_ERROR(optimize_basic_block(const_cache, b, consts)); |
| assert(b->b_predecessors == 0); |
| } |
| RETURN_IF_ERROR(remove_redundant_nops_and_pairs(g->g_entryblock)); |
| for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) { |
| RETURN_IF_ERROR(inline_small_exit_blocks(b)); |
| } |
| RETURN_IF_ERROR(mark_reachable(g->g_entryblock)); |
| |
| /* Delete unreachable instructions */ |
| for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) { |
| if (b->b_predecessors == 0) { |
| b->b_iused = 0; |
| } |
| } |
| for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) { |
| remove_redundant_nops(b); |
| } |
| eliminate_empty_basic_blocks(g); |
| /* This assertion fails in an edge case (See gh-109889). |
| * Remove it for the release (it's just one more NOP in the |
| * bytecode for unlikely code). |
| */ |
| // assert(no_redundant_nops(g)); |
| RETURN_IF_ERROR(remove_redundant_jumps(g)); |
| return SUCCESS; |
| } |
| |
| // helper functions for add_checks_for_loads_of_unknown_variables |
| static inline void |
| maybe_push(basicblock *b, uint64_t unsafe_mask, basicblock ***sp) |
| { |
| // Push b if the unsafe mask is giving us any new information. |
| // To avoid overflowing the stack, only allow each block once. |
| // Use b->b_visited=1 to mean that b is currently on the stack. |
| uint64_t both = b->b_unsafe_locals_mask | unsafe_mask; |
| if (b->b_unsafe_locals_mask != both) { |
| b->b_unsafe_locals_mask = both; |
| // More work left to do. |
| if (!b->b_visited) { |
| // not on the stack, so push it. |
| *(*sp)++ = b; |
| b->b_visited = 1; |
| } |
| } |
| } |
| |
| static void |
| scan_block_for_locals(basicblock *b, basicblock ***sp) |
| { |
| // bit i is set if local i is potentially uninitialized |
| uint64_t unsafe_mask = b->b_unsafe_locals_mask; |
| for (int i = 0; i < b->b_iused; i++) { |
| cfg_instr *instr = &b->b_instr[i]; |
| assert(instr->i_opcode != EXTENDED_ARG); |
| assert(!IS_SUPERINSTRUCTION_OPCODE(instr->i_opcode)); |
| if (instr->i_except != NULL) { |
| maybe_push(instr->i_except, unsafe_mask, sp); |
| } |
| if (instr->i_oparg >= 64) { |
| continue; |
| } |
| assert(instr->i_oparg >= 0); |
| uint64_t bit = (uint64_t)1 << instr->i_oparg; |
| switch (instr->i_opcode) { |
| case DELETE_FAST: |
| case LOAD_FAST_AND_CLEAR: |
| case STORE_FAST_MAYBE_NULL: |
| unsafe_mask |= bit; |
| break; |
| case STORE_FAST: |
| unsafe_mask &= ~bit; |
| break; |
| case LOAD_FAST_CHECK: |
| // If this doesn't raise, then the local is defined. |
| unsafe_mask &= ~bit; |
| break; |
| case LOAD_FAST: |
| if (unsafe_mask & bit) { |
| instr->i_opcode = LOAD_FAST_CHECK; |
| } |
| unsafe_mask &= ~bit; |
| break; |
| } |
| } |
| if (b->b_next && BB_HAS_FALLTHROUGH(b)) { |
| maybe_push(b->b_next, unsafe_mask, sp); |
| } |
| cfg_instr *last = _PyCfg_BasicblockLastInstr(b); |
| if (last && is_jump(last)) { |
| assert(last->i_target != NULL); |
| maybe_push(last->i_target, unsafe_mask, sp); |
| } |
| } |
| |
| static int |
| fast_scan_many_locals(basicblock *entryblock, int nlocals) |
| { |
| assert(nlocals > 64); |
| Py_ssize_t *states = PyMem_Calloc(nlocals - 64, sizeof(Py_ssize_t)); |
| if (states == NULL) { |
| PyErr_NoMemory(); |
| return ERROR; |
| } |
| Py_ssize_t blocknum = 0; |
| // state[i - 64] == blocknum if local i is guaranteed to |
| // be initialized, i.e., if it has had a previous LOAD_FAST or |
| // STORE_FAST within that basicblock (not followed by |
| // DELETE_FAST/LOAD_FAST_AND_CLEAR/STORE_FAST_MAYBE_NULL). |
| for (basicblock *b = entryblock; b != NULL; b = b->b_next) { |
| blocknum++; |
| for (int i = 0; i < b->b_iused; i++) { |
| cfg_instr *instr = &b->b_instr[i]; |
| assert(instr->i_opcode != EXTENDED_ARG); |
| assert(!IS_SUPERINSTRUCTION_OPCODE(instr->i_opcode)); |
| int arg = instr->i_oparg; |
| if (arg < 64) { |
| continue; |
| } |
| assert(arg >= 0); |
| switch (instr->i_opcode) { |
| case DELETE_FAST: |
| case LOAD_FAST_AND_CLEAR: |
| case STORE_FAST_MAYBE_NULL: |
| states[arg - 64] = blocknum - 1; |
| break; |
| case STORE_FAST: |
| states[arg - 64] = blocknum; |
| break; |
| case LOAD_FAST: |
| if (states[arg - 64] != blocknum) { |
| instr->i_opcode = LOAD_FAST_CHECK; |
| } |
| states[arg - 64] = blocknum; |
| break; |
| Py_UNREACHABLE(); |
| } |
| } |
| } |
| PyMem_Free(states); |
| return SUCCESS; |
| } |
| |
| static int |
| remove_unused_consts(basicblock *entryblock, PyObject *consts) |
| { |
| assert(PyList_CheckExact(consts)); |
| Py_ssize_t nconsts = PyList_GET_SIZE(consts); |
| if (nconsts == 0) { |
| return SUCCESS; /* nothing to do */ |
| } |
| |
| Py_ssize_t *index_map = NULL; |
| Py_ssize_t *reverse_index_map = NULL; |
| int err = ERROR; |
| |
| index_map = PyMem_Malloc(nconsts * sizeof(Py_ssize_t)); |
| if (index_map == NULL) { |
| goto end; |
| } |
| for (Py_ssize_t i = 1; i < nconsts; i++) { |
| index_map[i] = -1; |
| } |
| // The first constant may be docstring; keep it always. |
| index_map[0] = 0; |
| |
| /* mark used consts */ |
| for (basicblock *b = entryblock; b != NULL; b = b->b_next) { |
| for (int i = 0; i < b->b_iused; i++) { |
| if (HAS_CONST(b->b_instr[i].i_opcode)) { |
| int index = b->b_instr[i].i_oparg; |
| index_map[index] = index; |
| } |
| } |
| } |
| /* now index_map[i] == i if consts[i] is used, -1 otherwise */ |
| /* condense consts */ |
| Py_ssize_t n_used_consts = 0; |
| for (int i = 0; i < nconsts; i++) { |
| if (index_map[i] != -1) { |
| assert(index_map[i] == i); |
| index_map[n_used_consts++] = index_map[i]; |
| } |
| } |
| if (n_used_consts == nconsts) { |
| /* nothing to do */ |
| err = SUCCESS; |
| goto end; |
| } |
| |
| /* move all used consts to the beginning of the consts list */ |
| assert(n_used_consts < nconsts); |
| for (Py_ssize_t i = 0; i < n_used_consts; i++) { |
| Py_ssize_t old_index = index_map[i]; |
| assert(i <= old_index && old_index < nconsts); |
| if (i != old_index) { |
| PyObject *value = PyList_GET_ITEM(consts, index_map[i]); |
| assert(value != NULL); |
| PyList_SetItem(consts, i, Py_NewRef(value)); |
| } |
| } |
| |
| /* truncate the consts list at its new size */ |
| if (PyList_SetSlice(consts, n_used_consts, nconsts, NULL) < 0) { |
| goto end; |
| } |
| /* adjust const indices in the bytecode */ |
| reverse_index_map = PyMem_Malloc(nconsts * sizeof(Py_ssize_t)); |
| if (reverse_index_map == NULL) { |
| goto end; |
| } |
| for (Py_ssize_t i = 0; i < nconsts; i++) { |
| reverse_index_map[i] = -1; |
| } |
| for (Py_ssize_t i = 0; i < n_used_consts; i++) { |
| assert(index_map[i] != -1); |
| assert(reverse_index_map[index_map[i]] == -1); |
| reverse_index_map[index_map[i]] = i; |
| } |
| |
| for (basicblock *b = entryblock; b != NULL; b = b->b_next) { |
| for (int i = 0; i < b->b_iused; i++) { |
| if (HAS_CONST(b->b_instr[i].i_opcode)) { |
| int index = b->b_instr[i].i_oparg; |
| assert(reverse_index_map[index] >= 0); |
| assert(reverse_index_map[index] < n_used_consts); |
| b->b_instr[i].i_oparg = (int)reverse_index_map[index]; |
| } |
| } |
| } |
| |
| err = SUCCESS; |
| end: |
| PyMem_Free(index_map); |
| PyMem_Free(reverse_index_map); |
| return err; |
| } |
| |
| |
| |
| static int |
| add_checks_for_loads_of_uninitialized_variables(basicblock *entryblock, |
| int nlocals, |
| int nparams) |
| { |
| if (nlocals == 0) { |
| return SUCCESS; |
| } |
| if (nlocals > 64) { |
| // To avoid O(nlocals**2) compilation, locals beyond the first |
| // 64 are only analyzed one basicblock at a time: initialization |
| // info is not passed between basicblocks. |
| if (fast_scan_many_locals(entryblock, nlocals) < 0) { |
| return ERROR; |
| } |
| nlocals = 64; |
| } |
| basicblock **stack = make_cfg_traversal_stack(entryblock); |
| if (stack == NULL) { |
| return ERROR; |
| } |
| basicblock **sp = stack; |
| |
| // First origin of being uninitialized: |
| // The non-parameter locals in the entry block. |
| uint64_t start_mask = 0; |
| for (int i = nparams; i < nlocals; i++) { |
| start_mask |= (uint64_t)1 << i; |
| } |
| maybe_push(entryblock, start_mask, &sp); |
| |
| // Second origin of being uninitialized: |
| // There could be DELETE_FAST somewhere, so |
| // be sure to scan each basicblock at least once. |
| for (basicblock *b = entryblock; b != NULL; b = b->b_next) { |
| scan_block_for_locals(b, &sp); |
| } |
| // Now propagate the uncertainty from the origins we found: Use |
| // LOAD_FAST_CHECK for any LOAD_FAST where the local could be undefined. |
| while (sp > stack) { |
| basicblock *b = *--sp; |
| // mark as no longer on stack |
| b->b_visited = 0; |
| scan_block_for_locals(b, &sp); |
| } |
| PyMem_Free(stack); |
| return SUCCESS; |
| } |
| |
| |
| static int |
| mark_warm(basicblock *entryblock) { |
| basicblock **stack = make_cfg_traversal_stack(entryblock); |
| if (stack == NULL) { |
| return ERROR; |
| } |
| basicblock **sp = stack; |
| |
| *sp++ = entryblock; |
| entryblock->b_visited = 1; |
| while (sp > stack) { |
| basicblock *b = *(--sp); |
| assert(!b->b_except_handler); |
| b->b_warm = 1; |
| basicblock *next = b->b_next; |
| if (next && BB_HAS_FALLTHROUGH(b) && !next->b_visited) { |
| *sp++ = next; |
| next->b_visited = 1; |
| } |
| for (int i=0; i < b->b_iused; i++) { |
| cfg_instr *instr = &b->b_instr[i]; |
| if (is_jump(instr) && !instr->i_target->b_visited) { |
| *sp++ = instr->i_target; |
| instr->i_target->b_visited = 1; |
| } |
| } |
| } |
| PyMem_Free(stack); |
| return SUCCESS; |
| } |
| |
| static int |
| mark_cold(basicblock *entryblock) { |
| for (basicblock *b = entryblock; b != NULL; b = b->b_next) { |
| assert(!b->b_cold && !b->b_warm); |
| } |
| if (mark_warm(entryblock) < 0) { |
| return ERROR; |
| } |
| |
| basicblock **stack = make_cfg_traversal_stack(entryblock); |
| if (stack == NULL) { |
| return ERROR; |
| } |
| |
| basicblock **sp = stack; |
| for (basicblock *b = entryblock; b != NULL; b = b->b_next) { |
| if (b->b_except_handler) { |
| assert(!b->b_warm); |
| *sp++ = b; |
| b->b_visited = 1; |
| } |
| } |
| |
| while (sp > stack) { |
| basicblock *b = *(--sp); |
| b->b_cold = 1; |
| basicblock *next = b->b_next; |
| if (next && BB_HAS_FALLTHROUGH(b)) { |
| if (!next->b_warm && !next->b_visited) { |
| *sp++ = next; |
| next->b_visited = 1; |
| } |
| } |
| for (int i = 0; i < b->b_iused; i++) { |
| cfg_instr *instr = &b->b_instr[i]; |
| if (is_jump(instr)) { |
| assert(i == b->b_iused - 1); |
| basicblock *target = b->b_instr[i].i_target; |
| if (!target->b_warm && !target->b_visited) { |
| *sp++ = target; |
| target->b_visited = 1; |
| } |
| } |
| } |
| } |
| PyMem_Free(stack); |
| return SUCCESS; |
| } |
| |
| |
| static int |
| push_cold_blocks_to_end(cfg_builder *g, int code_flags) { |
| basicblock *entryblock = g->g_entryblock; |
| if (entryblock->b_next == NULL) { |
| /* single basicblock, no need to reorder */ |
| return SUCCESS; |
| } |
| RETURN_IF_ERROR(mark_cold(entryblock)); |
| |
| int next_lbl = get_max_label(g->g_entryblock) + 1; |
| |
| /* If we have a cold block with fallthrough to a warm block, add */ |
| /* an explicit jump instead of fallthrough */ |
| for (basicblock *b = entryblock; b != NULL; b = b->b_next) { |
| if (b->b_cold && BB_HAS_FALLTHROUGH(b) && b->b_next && b->b_next->b_warm) { |
| basicblock *explicit_jump = cfg_builder_new_block(g); |
| if (explicit_jump == NULL) { |
| return ERROR; |
| } |
| if (!IS_LABEL(b->b_next->b_label)) { |
| b->b_next->b_label.id = next_lbl++; |
| } |
| basicblock_addop(explicit_jump, JUMP, b->b_next->b_label.id, NO_LOCATION); |
| explicit_jump->b_cold = 1; |
| explicit_jump->b_next = b->b_next; |
| b->b_next = explicit_jump; |
| |
| /* set target */ |
| cfg_instr *last = _PyCfg_BasicblockLastInstr(explicit_jump); |
| last->i_target = explicit_jump->b_next; |
| } |
| } |
| |
| assert(!entryblock->b_cold); /* First block can't be cold */ |
| basicblock *cold_blocks = NULL; |
| basicblock *cold_blocks_tail = NULL; |
| |
| basicblock *b = entryblock; |
| while(b->b_next) { |
| assert(!b->b_cold); |
| while (b->b_next && !b->b_next->b_cold) { |
| b = b->b_next; |
| } |
| if (b->b_next == NULL) { |
| /* no more cold blocks */ |
| break; |
| } |
| |
| /* b->b_next is the beginning of a cold streak */ |
| assert(!b->b_cold && b->b_next->b_cold); |
| |
| basicblock *b_end = b->b_next; |
| while (b_end->b_next && b_end->b_next->b_cold) { |
| b_end = b_end->b_next; |
| } |
| |
| /* b_end is the end of the cold streak */ |
| assert(b_end && b_end->b_cold); |
| assert(b_end->b_next == NULL || !b_end->b_next->b_cold); |
| |
| if (cold_blocks == NULL) { |
| cold_blocks = b->b_next; |
| } |
| else { |
| cold_blocks_tail->b_next = b->b_next; |
| } |
| cold_blocks_tail = b_end; |
| b->b_next = b_end->b_next; |
| b_end->b_next = NULL; |
| } |
| assert(b != NULL && b->b_next == NULL); |
| b->b_next = cold_blocks; |
| |
| if (cold_blocks != NULL) { |
| RETURN_IF_ERROR(remove_redundant_jumps(g)); |
| } |
| return SUCCESS; |
| } |
| |
| void |
| _PyCfg_ConvertPseudoOps(basicblock *entryblock) |
| { |
| for (basicblock *b = entryblock; b != NULL; b = b->b_next) { |
| for (int i = 0; i < b->b_iused; i++) { |
| cfg_instr *instr = &b->b_instr[i]; |
| if (is_block_push(instr) || instr->i_opcode == POP_BLOCK) { |
| INSTR_SET_OP0(instr, NOP); |
| } |
| else if (instr->i_opcode == STORE_FAST_MAYBE_NULL) { |
| instr->i_opcode = STORE_FAST; |
| } |
| } |
| } |
| for (basicblock *b = entryblock; b != NULL; b = b->b_next) { |
| remove_redundant_nops(b); |
| } |
| } |
| |
| static inline bool |
| is_exit_without_lineno(basicblock *b) { |
| if (!basicblock_exits_scope(b)) { |
| return false; |
| } |
| for (int i = 0; i < b->b_iused; i++) { |
| if (b->b_instr[i].i_loc.lineno >= 0) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| |
| /* PEP 626 mandates that the f_lineno of a frame is correct |
| * after a frame terminates. It would be prohibitively expensive |
| * to continuously update the f_lineno field at runtime, |
| * so we make sure that all exiting instruction (raises and returns) |
| * have a valid line number, allowing us to compute f_lineno lazily. |
| * We can do this by duplicating the exit blocks without line number |
| * so that none have more than one predecessor. We can then safely |
| * copy the line number from the sole predecessor block. |
| */ |
| static int |
| duplicate_exits_without_lineno(cfg_builder *g) |
| { |
| assert(no_empty_basic_blocks(g)); |
| |
| int next_lbl = get_max_label(g->g_entryblock) + 1; |
| |
| /* Copy all exit blocks without line number that are targets of a jump. |
| */ |
| basicblock *entryblock = g->g_entryblock; |
| for (basicblock *b = entryblock; b != NULL; b = b->b_next) { |
| cfg_instr *last = _PyCfg_BasicblockLastInstr(b); |
| assert(last != NULL); |
| if (is_jump(last)) { |
| basicblock *target = last->i_target; |
| if (is_exit_without_lineno(target) && target->b_predecessors > 1) { |
| basicblock *new_target = copy_basicblock(g, target); |
| if (new_target == NULL) { |
| return ERROR; |
| } |
| new_target->b_instr[0].i_loc = last->i_loc; |
| last->i_target = new_target; |
| target->b_predecessors--; |
| new_target->b_predecessors = 1; |
| new_target->b_next = target->b_next; |
| new_target->b_label.id = next_lbl++; |
| target->b_next = new_target; |
| } |
| } |
| } |
| |
| /* Any remaining reachable exit blocks without line number can only be reached by |
| * fall through, and thus can only have a single predecessor */ |
| for (basicblock *b = entryblock; b != NULL; b = b->b_next) { |
| if (BB_HAS_FALLTHROUGH(b) && b->b_next && b->b_iused > 0) { |
| if (is_exit_without_lineno(b->b_next)) { |
| cfg_instr *last = _PyCfg_BasicblockLastInstr(b); |
| assert(last != NULL); |
| b->b_next->b_instr[0].i_loc = last->i_loc; |
| } |
| } |
| } |
| return SUCCESS; |
| } |
| |
| |
| /* If an instruction has no line number, but it's predecessor in the BB does, |
| * then copy the line number. If a successor block has no line number, and only |
| * one predecessor, then inherit the line number. |
| * This ensures that all exit blocks (with one predecessor) receive a line number. |
| * Also reduces the size of the line number table, |
| * but has no impact on the generated line number events. |
| */ |
| static void |
| propagate_line_numbers(basicblock *entryblock) { |
| for (basicblock *b = entryblock; b != NULL; b = b->b_next) { |
| cfg_instr *last = _PyCfg_BasicblockLastInstr(b); |
| if (last == NULL) { |
| continue; |
| } |
| |
| location prev_location = NO_LOCATION; |
| for (int i = 0; i < b->b_iused; i++) { |
| if (b->b_instr[i].i_loc.lineno < 0) { |
| b->b_instr[i].i_loc = prev_location; |
| } |
| else { |
| prev_location = b->b_instr[i].i_loc; |
| } |
| } |
| if (BB_HAS_FALLTHROUGH(b) && b->b_next->b_predecessors == 1) { |
| assert(b->b_next->b_iused); |
| if (b->b_next->b_instr[0].i_loc.lineno < 0) { |
| b->b_next->b_instr[0].i_loc = prev_location; |
| } |
| } |
| if (is_jump(last)) { |
| basicblock *target = last->i_target; |
| if (target->b_predecessors == 1) { |
| if (target->b_instr[0].i_loc.lineno < 0) { |
| target->b_instr[0].i_loc = prev_location; |
| } |
| } |
| } |
| } |
| } |
| |
| /* Make sure that all returns have a line number, even if early passes |
| * have failed to propagate a correct line number. |
| * The resulting line number may not be correct according to PEP 626, |
| * but should be "good enough", and no worse than in older versions. */ |
| static void |
| guarantee_lineno_for_exits(basicblock *entryblock, int firstlineno) { |
| int lineno = firstlineno; |
| assert(lineno > 0); |
| for (basicblock *b = entryblock; b != NULL; b = b->b_next) { |
| cfg_instr *last = _PyCfg_BasicblockLastInstr(b); |
| if (last == NULL) { |
| continue; |
| } |
| if (last->i_loc.lineno < 0) { |
| if (last->i_opcode == RETURN_VALUE) { |
| for (int i = 0; i < b->b_iused; i++) { |
| assert(b->b_instr[i].i_loc.lineno < 0); |
| |
| b->b_instr[i].i_loc.lineno = lineno; |
| } |
| } |
| } |
| else { |
| lineno = last->i_loc.lineno; |
| } |
| } |
| } |
| |
| static int |
| resolve_line_numbers(cfg_builder *g, int firstlineno) |
| { |
| RETURN_IF_ERROR(duplicate_exits_without_lineno(g)); |
| propagate_line_numbers(g->g_entryblock); |
| guarantee_lineno_for_exits(g->g_entryblock, firstlineno); |
| return SUCCESS; |
| } |
| |
| int |
| _PyCfg_OptimizeCodeUnit(cfg_builder *g, PyObject *consts, PyObject *const_cache, |
| int code_flags, int nlocals, int nparams, int firstlineno) |
| { |
| assert(cfg_builder_check(g)); |
| /** Preprocessing **/ |
| /* Map labels to targets and mark exception handlers */ |
| RETURN_IF_ERROR(translate_jump_labels_to_targets(g->g_entryblock)); |
| RETURN_IF_ERROR(mark_except_handlers(g->g_entryblock)); |
| RETURN_IF_ERROR(label_exception_targets(g->g_entryblock)); |
| |
| /** Optimization **/ |
| RETURN_IF_ERROR(optimize_cfg(g, consts, const_cache)); |
| RETURN_IF_ERROR(remove_unused_consts(g->g_entryblock, consts)); |
| RETURN_IF_ERROR( |
| add_checks_for_loads_of_uninitialized_variables( |
| g->g_entryblock, nlocals, nparams)); |
| |
| RETURN_IF_ERROR(push_cold_blocks_to_end(g, code_flags)); |
| RETURN_IF_ERROR(resolve_line_numbers(g, firstlineno)); |
| return SUCCESS; |
| } |