| |
| /* Thread and interpreter state structures and their interfaces */ |
| |
| #include "Python.h" |
| #include "pycore_ceval.h" |
| #include "pycore_code.h" // stats |
| #include "pycore_dtoa.h" // _dtoa_state_INIT() |
| #include "pycore_frame.h" |
| #include "pycore_initconfig.h" |
| #include "pycore_object.h" // _PyType_InitCache() |
| #include "pycore_pyerrors.h" |
| #include "pycore_pylifecycle.h" |
| #include "pycore_pymem.h" // _PyMem_SetDefaultAllocator() |
| #include "pycore_pystate.h" |
| #include "pycore_runtime_init.h" // _PyRuntimeState_INIT |
| #include "pycore_sysmodule.h" |
| |
| /* -------------------------------------------------------------------------- |
| CAUTION |
| |
| Always use PyMem_RawMalloc() and PyMem_RawFree() directly in this file. A |
| number of these functions are advertised as safe to call when the GIL isn't |
| held, and in a debug build Python redirects (e.g.) PyMem_NEW (etc) to Python's |
| debugging obmalloc functions. Those aren't thread-safe (they rely on the GIL |
| to avoid the expense of doing their own locking). |
| -------------------------------------------------------------------------- */ |
| |
| #ifdef HAVE_DLOPEN |
| #ifdef HAVE_DLFCN_H |
| #include <dlfcn.h> |
| #endif |
| #if !HAVE_DECL_RTLD_LAZY |
| #define RTLD_LAZY 1 |
| #endif |
| #endif |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| |
| /****************************************/ |
| /* helpers for the current thread state */ |
| /****************************************/ |
| |
| // API for the current thread state is further down. |
| |
| /* "current" means one of: |
| - bound to the current OS thread |
| - holds the GIL |
| */ |
| |
| //------------------------------------------------- |
| // a highly efficient lookup for the current thread |
| //------------------------------------------------- |
| |
| /* |
| The stored thread state is set by PyThreadState_Swap(). |
| |
| For each of these functions, the GIL must be held by the current thread. |
| */ |
| |
| |
| #ifdef HAVE_THREAD_LOCAL |
| _Py_thread_local PyThreadState *_Py_tss_tstate = NULL; |
| #endif |
| |
| static inline PyThreadState * |
| current_fast_get(_PyRuntimeState *Py_UNUSED(runtime)) |
| { |
| #ifdef HAVE_THREAD_LOCAL |
| return _Py_tss_tstate; |
| #else |
| // XXX Fall back to the PyThread_tss_*() API. |
| # error "no supported thread-local variable storage classifier" |
| #endif |
| } |
| |
| static inline void |
| current_fast_set(_PyRuntimeState *Py_UNUSED(runtime), PyThreadState *tstate) |
| { |
| assert(tstate != NULL); |
| #ifdef HAVE_THREAD_LOCAL |
| _Py_tss_tstate = tstate; |
| #else |
| // XXX Fall back to the PyThread_tss_*() API. |
| # error "no supported thread-local variable storage classifier" |
| #endif |
| } |
| |
| static inline void |
| current_fast_clear(_PyRuntimeState *Py_UNUSED(runtime)) |
| { |
| #ifdef HAVE_THREAD_LOCAL |
| _Py_tss_tstate = NULL; |
| #else |
| // XXX Fall back to the PyThread_tss_*() API. |
| # error "no supported thread-local variable storage classifier" |
| #endif |
| } |
| |
| #define tstate_verify_not_active(tstate) \ |
| if (tstate == current_fast_get((tstate)->interp->runtime)) { \ |
| _Py_FatalErrorFormat(__func__, "tstate %p is still current", tstate); \ |
| } |
| |
| PyThreadState * |
| _PyThreadState_GetCurrent(void) |
| { |
| return current_fast_get(&_PyRuntime); |
| } |
| |
| |
| //------------------------------------------------ |
| // the thread state bound to the current OS thread |
| //------------------------------------------------ |
| |
| static inline int |
| tstate_tss_initialized(Py_tss_t *key) |
| { |
| return PyThread_tss_is_created(key); |
| } |
| |
| static inline int |
| tstate_tss_init(Py_tss_t *key) |
| { |
| assert(!tstate_tss_initialized(key)); |
| return PyThread_tss_create(key); |
| } |
| |
| static inline void |
| tstate_tss_fini(Py_tss_t *key) |
| { |
| assert(tstate_tss_initialized(key)); |
| PyThread_tss_delete(key); |
| } |
| |
| static inline PyThreadState * |
| tstate_tss_get(Py_tss_t *key) |
| { |
| assert(tstate_tss_initialized(key)); |
| return (PyThreadState *)PyThread_tss_get(key); |
| } |
| |
| static inline int |
| tstate_tss_set(Py_tss_t *key, PyThreadState *tstate) |
| { |
| assert(tstate != NULL); |
| assert(tstate_tss_initialized(key)); |
| return PyThread_tss_set(key, (void *)tstate); |
| } |
| |
| static inline int |
| tstate_tss_clear(Py_tss_t *key) |
| { |
| assert(tstate_tss_initialized(key)); |
| return PyThread_tss_set(key, (void *)NULL); |
| } |
| |
| #ifdef HAVE_FORK |
| /* Reset the TSS key - called by PyOS_AfterFork_Child(). |
| * This should not be necessary, but some - buggy - pthread implementations |
| * don't reset TSS upon fork(), see issue #10517. |
| */ |
| static PyStatus |
| tstate_tss_reinit(Py_tss_t *key) |
| { |
| if (!tstate_tss_initialized(key)) { |
| return _PyStatus_OK(); |
| } |
| PyThreadState *tstate = tstate_tss_get(key); |
| |
| tstate_tss_fini(key); |
| if (tstate_tss_init(key) != 0) { |
| return _PyStatus_NO_MEMORY(); |
| } |
| |
| /* If the thread had an associated auto thread state, reassociate it with |
| * the new key. */ |
| if (tstate && tstate_tss_set(key, tstate) != 0) { |
| return _PyStatus_ERR("failed to re-set autoTSSkey"); |
| } |
| return _PyStatus_OK(); |
| } |
| #endif |
| |
| |
| /* |
| The stored thread state is set by bind_tstate() (AKA PyThreadState_Bind(). |
| |
| The GIL does no need to be held for these. |
| */ |
| |
| #define gilstate_tss_initialized(runtime) \ |
| tstate_tss_initialized(&(runtime)->autoTSSkey) |
| #define gilstate_tss_init(runtime) \ |
| tstate_tss_init(&(runtime)->autoTSSkey) |
| #define gilstate_tss_fini(runtime) \ |
| tstate_tss_fini(&(runtime)->autoTSSkey) |
| #define gilstate_tss_get(runtime) \ |
| tstate_tss_get(&(runtime)->autoTSSkey) |
| #define _gilstate_tss_set(runtime, tstate) \ |
| tstate_tss_set(&(runtime)->autoTSSkey, tstate) |
| #define _gilstate_tss_clear(runtime) \ |
| tstate_tss_clear(&(runtime)->autoTSSkey) |
| #define gilstate_tss_reinit(runtime) \ |
| tstate_tss_reinit(&(runtime)->autoTSSkey) |
| |
| static inline void |
| gilstate_tss_set(_PyRuntimeState *runtime, PyThreadState *tstate) |
| { |
| assert(tstate != NULL && tstate->interp->runtime == runtime); |
| if (_gilstate_tss_set(runtime, tstate) != 0) { |
| Py_FatalError("failed to set current tstate (TSS)"); |
| } |
| } |
| |
| static inline void |
| gilstate_tss_clear(_PyRuntimeState *runtime) |
| { |
| if (_gilstate_tss_clear(runtime) != 0) { |
| Py_FatalError("failed to clear current tstate (TSS)"); |
| } |
| } |
| |
| |
| #ifndef NDEBUG |
| static inline int tstate_is_alive(PyThreadState *tstate); |
| |
| static inline int |
| tstate_is_bound(PyThreadState *tstate) |
| { |
| return tstate->_status.bound && !tstate->_status.unbound; |
| } |
| #endif // !NDEBUG |
| |
| static void bind_gilstate_tstate(PyThreadState *); |
| static void unbind_gilstate_tstate(PyThreadState *); |
| |
| static void |
| bind_tstate(PyThreadState *tstate) |
| { |
| assert(tstate != NULL); |
| assert(tstate_is_alive(tstate) && !tstate->_status.bound); |
| assert(!tstate->_status.unbound); // just in case |
| assert(!tstate->_status.bound_gilstate); |
| assert(tstate != gilstate_tss_get(tstate->interp->runtime)); |
| assert(!tstate->_status.active); |
| assert(tstate->thread_id == 0); |
| assert(tstate->native_thread_id == 0); |
| |
| // Currently we don't necessarily store the thread state |
| // in thread-local storage (e.g. per-interpreter). |
| |
| tstate->thread_id = PyThread_get_thread_ident(); |
| #ifdef PY_HAVE_THREAD_NATIVE_ID |
| tstate->native_thread_id = PyThread_get_thread_native_id(); |
| #endif |
| |
| tstate->_status.bound = 1; |
| } |
| |
| static void |
| unbind_tstate(PyThreadState *tstate) |
| { |
| assert(tstate != NULL); |
| assert(tstate_is_bound(tstate)); |
| #ifndef HAVE_PTHREAD_STUBS |
| assert(tstate->thread_id > 0); |
| #endif |
| #ifdef PY_HAVE_THREAD_NATIVE_ID |
| assert(tstate->native_thread_id > 0); |
| #endif |
| |
| // We leave thread_id and native_thread_id alone |
| // since they can be useful for debugging. |
| // Check the `_status` field to know if these values |
| // are still valid. |
| |
| // We leave tstate->_status.bound set to 1 |
| // to indicate it was previously bound. |
| tstate->_status.unbound = 1; |
| } |
| |
| |
| /* Stick the thread state for this thread in thread specific storage. |
| |
| When a thread state is created for a thread by some mechanism |
| other than PyGILState_Ensure(), it's important that the GILState |
| machinery knows about it so it doesn't try to create another |
| thread state for the thread. |
| (This is a better fix for SF bug #1010677 than the first one attempted.) |
| |
| The only situation where you can legitimately have more than one |
| thread state for an OS level thread is when there are multiple |
| interpreters. |
| |
| Before 3.12, the PyGILState_*() APIs didn't work with multiple |
| interpreters (see bpo-10915 and bpo-15751), so this function used |
| to set TSS only once. Thus, the first thread state created for that |
| given OS level thread would "win", which seemed reasonable behaviour. |
| */ |
| |
| static void |
| bind_gilstate_tstate(PyThreadState *tstate) |
| { |
| assert(tstate != NULL); |
| assert(tstate_is_alive(tstate)); |
| assert(tstate_is_bound(tstate)); |
| // XXX assert(!tstate->_status.active); |
| assert(!tstate->_status.bound_gilstate); |
| |
| _PyRuntimeState *runtime = tstate->interp->runtime; |
| PyThreadState *tcur = gilstate_tss_get(runtime); |
| assert(tstate != tcur); |
| |
| if (tcur != NULL) { |
| tcur->_status.bound_gilstate = 0; |
| } |
| gilstate_tss_set(runtime, tstate); |
| tstate->_status.bound_gilstate = 1; |
| } |
| |
| static void |
| unbind_gilstate_tstate(PyThreadState *tstate) |
| { |
| assert(tstate != NULL); |
| // XXX assert(tstate_is_alive(tstate)); |
| assert(tstate_is_bound(tstate)); |
| // XXX assert(!tstate->_status.active); |
| assert(tstate->_status.bound_gilstate); |
| assert(tstate == gilstate_tss_get(tstate->interp->runtime)); |
| |
| gilstate_tss_clear(tstate->interp->runtime); |
| tstate->_status.bound_gilstate = 0; |
| } |
| |
| |
| //---------------------------------------------- |
| // the thread state that currently holds the GIL |
| //---------------------------------------------- |
| |
| /* This is not exported, as it is not reliable! It can only |
| ever be compared to the state for the *current* thread. |
| * If not equal, then it doesn't matter that the actual |
| value may change immediately after comparison, as it can't |
| possibly change to the current thread's state. |
| * If equal, then the current thread holds the lock, so the value can't |
| change until we yield the lock. |
| */ |
| static int |
| holds_gil(PyThreadState *tstate) |
| { |
| // XXX Fall back to tstate->interp->runtime->ceval.gil.last_holder |
| // (and tstate->interp->runtime->ceval.gil.locked). |
| assert(tstate != NULL); |
| _PyRuntimeState *runtime = tstate->interp->runtime; |
| /* Must be the tstate for this thread */ |
| assert(tstate == gilstate_tss_get(runtime)); |
| return tstate == current_fast_get(runtime); |
| } |
| |
| |
| /****************************/ |
| /* the global runtime state */ |
| /****************************/ |
| |
| //---------- |
| // lifecycle |
| //---------- |
| |
| /* Suppress deprecation warning for PyBytesObject.ob_shash */ |
| _Py_COMP_DIAG_PUSH |
| _Py_COMP_DIAG_IGNORE_DEPR_DECLS |
| /* We use "initial" if the runtime gets re-used |
| (e.g. Py_Finalize() followed by Py_Initialize(). |
| Note that we initialize "initial" relative to _PyRuntime, |
| to ensure pre-initialized pointers point to the active |
| runtime state (and not "initial"). */ |
| static const _PyRuntimeState initial = _PyRuntimeState_INIT(_PyRuntime); |
| _Py_COMP_DIAG_POP |
| |
| #define NUMLOCKS 9 |
| #define LOCKS_INIT(runtime) \ |
| { \ |
| &(runtime)->interpreters.mutex, \ |
| &(runtime)->xidregistry.mutex, \ |
| &(runtime)->getargs.mutex, \ |
| &(runtime)->unicode_state.ids.lock, \ |
| &(runtime)->imports.extensions.mutex, \ |
| &(runtime)->ceval.pending_mainthread.lock, \ |
| &(runtime)->atexit.mutex, \ |
| &(runtime)->audit_hooks.mutex, \ |
| &(runtime)->allocators.mutex, \ |
| } |
| |
| static int |
| alloc_for_runtime(PyThread_type_lock locks[NUMLOCKS]) |
| { |
| /* Force default allocator, since _PyRuntimeState_Fini() must |
| use the same allocator than this function. */ |
| PyMemAllocatorEx old_alloc; |
| _PyMem_SetDefaultAllocator(PYMEM_DOMAIN_RAW, &old_alloc); |
| |
| for (int i = 0; i < NUMLOCKS; i++) { |
| PyThread_type_lock lock = PyThread_allocate_lock(); |
| if (lock == NULL) { |
| for (int j = 0; j < i; j++) { |
| PyThread_free_lock(locks[j]); |
| locks[j] = NULL; |
| } |
| break; |
| } |
| locks[i] = lock; |
| } |
| |
| PyMem_SetAllocator(PYMEM_DOMAIN_RAW, &old_alloc); |
| return 0; |
| } |
| |
| static void |
| init_runtime(_PyRuntimeState *runtime, |
| void *open_code_hook, void *open_code_userdata, |
| _Py_AuditHookEntry *audit_hook_head, |
| Py_ssize_t unicode_next_index, |
| PyThread_type_lock locks[NUMLOCKS]) |
| { |
| if (runtime->_initialized) { |
| Py_FatalError("runtime already initialized"); |
| } |
| assert(!runtime->preinitializing && |
| !runtime->preinitialized && |
| !runtime->core_initialized && |
| !runtime->initialized); |
| |
| runtime->open_code_hook = open_code_hook; |
| runtime->open_code_userdata = open_code_userdata; |
| runtime->audit_hooks.head = audit_hook_head; |
| |
| PyPreConfig_InitPythonConfig(&runtime->preconfig); |
| |
| PyThread_type_lock *lockptrs[NUMLOCKS] = LOCKS_INIT(runtime); |
| for (int i = 0; i < NUMLOCKS; i++) { |
| assert(locks[i] != NULL); |
| *lockptrs[i] = locks[i]; |
| } |
| |
| // Set it to the ID of the main thread of the main interpreter. |
| runtime->main_thread = PyThread_get_thread_ident(); |
| |
| runtime->unicode_state.ids.next_index = unicode_next_index; |
| |
| runtime->_initialized = 1; |
| } |
| |
| PyStatus |
| _PyRuntimeState_Init(_PyRuntimeState *runtime) |
| { |
| /* We preserve the hook across init, because there is |
| currently no public API to set it between runtime |
| initialization and interpreter initialization. */ |
| void *open_code_hook = runtime->open_code_hook; |
| void *open_code_userdata = runtime->open_code_userdata; |
| _Py_AuditHookEntry *audit_hook_head = runtime->audit_hooks.head; |
| // bpo-42882: Preserve next_index value if Py_Initialize()/Py_Finalize() |
| // is called multiple times. |
| Py_ssize_t unicode_next_index = runtime->unicode_state.ids.next_index; |
| |
| PyThread_type_lock locks[NUMLOCKS]; |
| if (alloc_for_runtime(locks) != 0) { |
| return _PyStatus_NO_MEMORY(); |
| } |
| |
| if (runtime->_initialized) { |
| // Py_Initialize() must be running again. |
| // Reset to _PyRuntimeState_INIT. |
| memcpy(runtime, &initial, sizeof(*runtime)); |
| } |
| |
| if (gilstate_tss_init(runtime) != 0) { |
| _PyRuntimeState_Fini(runtime); |
| return _PyStatus_NO_MEMORY(); |
| } |
| |
| if (PyThread_tss_create(&runtime->trashTSSkey) != 0) { |
| _PyRuntimeState_Fini(runtime); |
| return _PyStatus_NO_MEMORY(); |
| } |
| |
| init_runtime(runtime, open_code_hook, open_code_userdata, audit_hook_head, |
| unicode_next_index, locks); |
| |
| return _PyStatus_OK(); |
| } |
| |
| static void _xidregistry_clear(struct _xidregistry *); |
| |
| void |
| _PyRuntimeState_Fini(_PyRuntimeState *runtime) |
| { |
| #ifdef Py_REF_DEBUG |
| /* The count is cleared by _Py_FinalizeRefTotal(). */ |
| assert(runtime->object_state.interpreter_leaks == 0); |
| #endif |
| |
| _xidregistry_clear(&runtime->xidregistry); |
| |
| if (gilstate_tss_initialized(runtime)) { |
| gilstate_tss_fini(runtime); |
| } |
| |
| if (PyThread_tss_is_created(&runtime->trashTSSkey)) { |
| PyThread_tss_delete(&runtime->trashTSSkey); |
| } |
| |
| /* Force the allocator used by _PyRuntimeState_Init(). */ |
| PyMemAllocatorEx old_alloc; |
| _PyMem_SetDefaultAllocator(PYMEM_DOMAIN_RAW, &old_alloc); |
| #define FREE_LOCK(LOCK) \ |
| if (LOCK != NULL) { \ |
| PyThread_free_lock(LOCK); \ |
| LOCK = NULL; \ |
| } |
| |
| PyThread_type_lock *lockptrs[NUMLOCKS] = LOCKS_INIT(runtime); |
| for (int i = 0; i < NUMLOCKS; i++) { |
| FREE_LOCK(*lockptrs[i]); |
| } |
| |
| #undef FREE_LOCK |
| if (runtime->sys_path_0 != NULL) { |
| PyMem_RawFree(runtime->sys_path_0); |
| runtime->sys_path_0 = NULL; |
| } |
| PyMem_SetAllocator(PYMEM_DOMAIN_RAW, &old_alloc); |
| } |
| |
| #ifdef HAVE_FORK |
| /* This function is called from PyOS_AfterFork_Child to ensure that |
| newly created child processes do not share locks with the parent. */ |
| PyStatus |
| _PyRuntimeState_ReInitThreads(_PyRuntimeState *runtime) |
| { |
| // This was initially set in _PyRuntimeState_Init(). |
| runtime->main_thread = PyThread_get_thread_ident(); |
| |
| /* Force default allocator, since _PyRuntimeState_Fini() must |
| use the same allocator than this function. */ |
| PyMemAllocatorEx old_alloc; |
| _PyMem_SetDefaultAllocator(PYMEM_DOMAIN_RAW, &old_alloc); |
| |
| PyThread_type_lock *lockptrs[NUMLOCKS] = LOCKS_INIT(runtime); |
| int reinit_err = 0; |
| for (int i = 0; i < NUMLOCKS; i++) { |
| reinit_err += _PyThread_at_fork_reinit(lockptrs[i]); |
| } |
| /* PyOS_AfterFork_Child(), which calls this function, later calls |
| _PyInterpreterState_DeleteExceptMain(), so we only need to update |
| the main interpreter here. */ |
| assert(runtime->interpreters.main != NULL); |
| runtime->interpreters.main->xidregistry.mutex = runtime->xidregistry.mutex; |
| |
| PyMem_SetAllocator(PYMEM_DOMAIN_RAW, &old_alloc); |
| |
| /* bpo-42540: id_mutex is freed by _PyInterpreterState_Delete, which does |
| * not force the default allocator. */ |
| reinit_err += _PyThread_at_fork_reinit(&runtime->interpreters.main->id_mutex); |
| |
| if (reinit_err < 0) { |
| return _PyStatus_ERR("Failed to reinitialize runtime locks"); |
| } |
| |
| PyStatus status = gilstate_tss_reinit(runtime); |
| if (_PyStatus_EXCEPTION(status)) { |
| return status; |
| } |
| |
| if (PyThread_tss_is_created(&runtime->trashTSSkey)) { |
| PyThread_tss_delete(&runtime->trashTSSkey); |
| } |
| if (PyThread_tss_create(&runtime->trashTSSkey) != 0) { |
| return _PyStatus_NO_MEMORY(); |
| } |
| |
| return _PyStatus_OK(); |
| } |
| #endif |
| |
| |
| /*************************************/ |
| /* the per-interpreter runtime state */ |
| /*************************************/ |
| |
| //---------- |
| // lifecycle |
| //---------- |
| |
| /* Calling this indicates that the runtime is ready to create interpreters. */ |
| |
| PyStatus |
| _PyInterpreterState_Enable(_PyRuntimeState *runtime) |
| { |
| struct pyinterpreters *interpreters = &runtime->interpreters; |
| interpreters->next_id = 0; |
| |
| /* Py_Finalize() calls _PyRuntimeState_Fini() which clears the mutex. |
| Create a new mutex if needed. */ |
| if (interpreters->mutex == NULL) { |
| /* Force default allocator, since _PyRuntimeState_Fini() must |
| use the same allocator than this function. */ |
| PyMemAllocatorEx old_alloc; |
| _PyMem_SetDefaultAllocator(PYMEM_DOMAIN_RAW, &old_alloc); |
| |
| interpreters->mutex = PyThread_allocate_lock(); |
| |
| PyMem_SetAllocator(PYMEM_DOMAIN_RAW, &old_alloc); |
| |
| if (interpreters->mutex == NULL) { |
| return _PyStatus_ERR("Can't initialize threads for interpreter"); |
| } |
| } |
| |
| return _PyStatus_OK(); |
| } |
| |
| |
| static PyInterpreterState * |
| alloc_interpreter(void) |
| { |
| return PyMem_RawCalloc(1, sizeof(PyInterpreterState)); |
| } |
| |
| static void |
| free_interpreter(PyInterpreterState *interp) |
| { |
| // The main interpreter is statically allocated so |
| // should not be freed. |
| if (interp != &_PyRuntime._main_interpreter) { |
| PyMem_RawFree(interp); |
| } |
| } |
| |
| /* Get the interpreter state to a minimal consistent state. |
| Further init happens in pylifecycle.c before it can be used. |
| All fields not initialized here are expected to be zeroed out, |
| e.g. by PyMem_RawCalloc() or memset(), or otherwise pre-initialized. |
| The runtime state is not manipulated. Instead it is assumed that |
| the interpreter is getting added to the runtime. |
| |
| Note that the main interpreter was statically initialized as part |
| of the runtime and most state is already set properly. That leaves |
| a small number of fields to initialize dynamically, as well as some |
| that are initialized lazily. |
| |
| For subinterpreters we memcpy() the main interpreter in |
| PyInterpreterState_New(), leaving it in the same mostly-initialized |
| state. The only difference is that the interpreter has some |
| self-referential state that is statically initializexd to the |
| main interpreter. We fix those fields here, in addition |
| to the other dynamically initialized fields. |
| */ |
| static void |
| init_interpreter(PyInterpreterState *interp, |
| _PyRuntimeState *runtime, int64_t id, |
| PyInterpreterState *next, |
| PyThread_type_lock pending_lock) |
| { |
| if (interp->_initialized) { |
| Py_FatalError("interpreter already initialized"); |
| } |
| |
| assert(runtime != NULL); |
| interp->runtime = runtime; |
| |
| assert(id > 0 || (id == 0 && interp == runtime->interpreters.main)); |
| interp->id = id; |
| |
| assert(runtime->interpreters.head == interp); |
| assert(next != NULL || (interp == runtime->interpreters.main)); |
| interp->next = next; |
| |
| /* Initialize obmalloc, but only for subinterpreters, |
| since the main interpreter is initialized statically. */ |
| if (interp != &runtime->_main_interpreter) { |
| poolp temp[OBMALLOC_USED_POOLS_SIZE] = \ |
| _obmalloc_pools_INIT(interp->obmalloc.pools); |
| memcpy(&interp->obmalloc.pools.used, temp, sizeof(temp)); |
| } |
| |
| // We would call _PyObject_InitState() at this point |
| // if interp->feature_flags were alredy set. |
| |
| _PyEval_InitState(interp, pending_lock); |
| _PyGC_InitState(&interp->gc); |
| PyConfig_InitPythonConfig(&interp->config); |
| _PyType_InitCache(interp); |
| for (int i = 0; i < _PY_MONITORING_UNGROUPED_EVENTS; i++) { |
| interp->monitors.tools[i] = 0; |
| } |
| for (int t = 0; t < PY_MONITORING_TOOL_IDS; t++) { |
| for (int e = 0; e < _PY_MONITORING_EVENTS; e++) { |
| interp->monitoring_callables[t][e] = NULL; |
| |
| } |
| } |
| interp->sys_profile_initialized = false; |
| interp->sys_trace_initialized = false; |
| if (interp != &runtime->_main_interpreter) { |
| /* Fix the self-referential, statically initialized fields. */ |
| interp->dtoa = (struct _dtoa_state)_dtoa_state_INIT(interp); |
| } |
| interp->f_opcode_trace_set = false; |
| |
| assert(runtime->xidregistry.mutex != NULL); |
| interp->xidregistry.mutex = runtime->xidregistry.mutex; |
| |
| interp->_initialized = 1; |
| } |
| |
| PyInterpreterState * |
| PyInterpreterState_New(void) |
| { |
| PyInterpreterState *interp; |
| _PyRuntimeState *runtime = &_PyRuntime; |
| PyThreadState *tstate = current_fast_get(runtime); |
| |
| /* tstate is NULL when Py_InitializeFromConfig() calls |
| PyInterpreterState_New() to create the main interpreter. */ |
| if (_PySys_Audit(tstate, "cpython.PyInterpreterState_New", NULL) < 0) { |
| return NULL; |
| } |
| |
| PyThread_type_lock pending_lock = PyThread_allocate_lock(); |
| if (pending_lock == NULL) { |
| if (tstate != NULL) { |
| _PyErr_NoMemory(tstate); |
| } |
| return NULL; |
| } |
| |
| /* Don't get runtime from tstate since tstate can be NULL. */ |
| struct pyinterpreters *interpreters = &runtime->interpreters; |
| |
| /* We completely serialize creation of multiple interpreters, since |
| it simplifies things here and blocking concurrent calls isn't a problem. |
| Regardless, we must fully block subinterpreter creation until |
| after the main interpreter is created. */ |
| HEAD_LOCK(runtime); |
| |
| int64_t id = interpreters->next_id; |
| interpreters->next_id += 1; |
| |
| // Allocate the interpreter and add it to the runtime state. |
| PyInterpreterState *old_head = interpreters->head; |
| if (old_head == NULL) { |
| // We are creating the main interpreter. |
| assert(interpreters->main == NULL); |
| assert(id == 0); |
| |
| interp = &runtime->_main_interpreter; |
| assert(interp->id == 0); |
| assert(interp->next == NULL); |
| |
| interpreters->main = interp; |
| } |
| else { |
| assert(interpreters->main != NULL); |
| assert(id != 0); |
| |
| interp = alloc_interpreter(); |
| if (interp == NULL) { |
| goto error; |
| } |
| // Set to _PyInterpreterState_INIT. |
| memcpy(interp, &initial._main_interpreter, |
| sizeof(*interp)); |
| |
| if (id < 0) { |
| /* overflow or Py_Initialize() not called yet! */ |
| if (tstate != NULL) { |
| _PyErr_SetString(tstate, PyExc_RuntimeError, |
| "failed to get an interpreter ID"); |
| } |
| goto error; |
| } |
| } |
| interpreters->head = interp; |
| |
| init_interpreter(interp, runtime, id, old_head, pending_lock); |
| |
| HEAD_UNLOCK(runtime); |
| return interp; |
| |
| error: |
| HEAD_UNLOCK(runtime); |
| |
| PyThread_free_lock(pending_lock); |
| if (interp != NULL) { |
| free_interpreter(interp); |
| } |
| return NULL; |
| } |
| |
| |
| static void |
| interpreter_clear(PyInterpreterState *interp, PyThreadState *tstate) |
| { |
| assert(interp != NULL); |
| assert(tstate != NULL); |
| _PyRuntimeState *runtime = interp->runtime; |
| |
| /* XXX Conditions we need to enforce: |
| |
| * the GIL must be held by the current thread |
| * tstate must be the "current" thread state (current_fast_get()) |
| * tstate->interp must be interp |
| * for the main interpreter, tstate must be the main thread |
| */ |
| // XXX Ideally, we would not rely on any thread state in this function |
| // (and we would drop the "tstate" argument). |
| |
| if (_PySys_Audit(tstate, "cpython.PyInterpreterState_Clear", NULL) < 0) { |
| _PyErr_Clear(tstate); |
| } |
| |
| // Clear the current/main thread state last. |
| HEAD_LOCK(runtime); |
| PyThreadState *p = interp->threads.head; |
| HEAD_UNLOCK(runtime); |
| while (p != NULL) { |
| // See https://github.com/python/cpython/issues/102126 |
| // Must be called without HEAD_LOCK held as it can deadlock |
| // if any finalizer tries to acquire that lock. |
| PyThreadState_Clear(p); |
| HEAD_LOCK(runtime); |
| p = p->next; |
| HEAD_UNLOCK(runtime); |
| } |
| if (tstate->interp == interp) { |
| /* We fix tstate->_status below when we for sure aren't using it |
| (e.g. no longer need the GIL). */ |
| // XXX Eliminate the need to do this. |
| tstate->_status.cleared = 0; |
| } |
| |
| /* It is possible that any of the objects below have a finalizer |
| that runs Python code or otherwise relies on a thread state |
| or even the interpreter state. For now we trust that isn't |
| a problem. |
| */ |
| // XXX Make sure we properly deal with problematic finalizers. |
| |
| Py_CLEAR(interp->audit_hooks); |
| |
| for (int i = 0; i < _PY_MONITORING_UNGROUPED_EVENTS; i++) { |
| interp->monitors.tools[i] = 0; |
| } |
| for (int t = 0; t < PY_MONITORING_TOOL_IDS; t++) { |
| for (int e = 0; e < _PY_MONITORING_EVENTS; e++) { |
| Py_CLEAR(interp->monitoring_callables[t][e]); |
| } |
| } |
| interp->sys_profile_initialized = false; |
| interp->sys_trace_initialized = false; |
| for (int t = 0; t < PY_MONITORING_TOOL_IDS; t++) { |
| Py_CLEAR(interp->monitoring_tool_names[t]); |
| } |
| |
| PyConfig_Clear(&interp->config); |
| Py_CLEAR(interp->codec_search_path); |
| Py_CLEAR(interp->codec_search_cache); |
| Py_CLEAR(interp->codec_error_registry); |
| |
| assert(interp->imports.modules == NULL); |
| assert(interp->imports.modules_by_index == NULL); |
| assert(interp->imports.importlib == NULL); |
| assert(interp->imports.import_func == NULL); |
| |
| Py_CLEAR(interp->sysdict_copy); |
| Py_CLEAR(interp->builtins_copy); |
| Py_CLEAR(interp->dict); |
| #ifdef HAVE_FORK |
| Py_CLEAR(interp->before_forkers); |
| Py_CLEAR(interp->after_forkers_parent); |
| Py_CLEAR(interp->after_forkers_child); |
| #endif |
| |
| _PyAST_Fini(interp); |
| _PyWarnings_Fini(interp); |
| _PyAtExit_Fini(interp); |
| |
| // All Python types must be destroyed before the last GC collection. Python |
| // types create a reference cycle to themselves in their in their |
| // PyTypeObject.tp_mro member (the tuple contains the type). |
| |
| /* Last garbage collection on this interpreter */ |
| _PyGC_CollectNoFail(tstate); |
| _PyGC_Fini(interp); |
| |
| /* We don't clear sysdict and builtins until the end of this function. |
| Because clearing other attributes can execute arbitrary Python code |
| which requires sysdict and builtins. */ |
| PyDict_Clear(interp->sysdict); |
| PyDict_Clear(interp->builtins); |
| Py_CLEAR(interp->sysdict); |
| Py_CLEAR(interp->builtins); |
| Py_CLEAR(interp->interpreter_trampoline); |
| |
| _xidregistry_clear(&interp->xidregistry); |
| /* The lock is owned by the runtime, so we don't free it here. */ |
| interp->xidregistry.mutex = NULL; |
| |
| if (tstate->interp == interp) { |
| /* We are now safe to fix tstate->_status.cleared. */ |
| // XXX Do this (much) earlier? |
| tstate->_status.cleared = 1; |
| } |
| |
| for (int i=0; i < DICT_MAX_WATCHERS; i++) { |
| interp->dict_state.watchers[i] = NULL; |
| } |
| |
| for (int i=0; i < TYPE_MAX_WATCHERS; i++) { |
| interp->type_watchers[i] = NULL; |
| } |
| |
| for (int i=0; i < FUNC_MAX_WATCHERS; i++) { |
| interp->func_watchers[i] = NULL; |
| } |
| interp->active_func_watchers = 0; |
| |
| for (int i=0; i < CODE_MAX_WATCHERS; i++) { |
| interp->code_watchers[i] = NULL; |
| } |
| interp->active_code_watchers = 0; |
| interp->f_opcode_trace_set = false; |
| // XXX Once we have one allocator per interpreter (i.e. |
| // per-interpreter GC) we must ensure that all of the interpreter's |
| // objects have been cleaned up at the point. |
| } |
| |
| |
| void |
| PyInterpreterState_Clear(PyInterpreterState *interp) |
| { |
| // Use the current Python thread state to call audit hooks and to collect |
| // garbage. It can be different than the current Python thread state |
| // of 'interp'. |
| PyThreadState *current_tstate = current_fast_get(interp->runtime); |
| _PyImport_ClearCore(interp); |
| interpreter_clear(interp, current_tstate); |
| } |
| |
| |
| void |
| _PyInterpreterState_Clear(PyThreadState *tstate) |
| { |
| _PyImport_ClearCore(tstate->interp); |
| interpreter_clear(tstate->interp, tstate); |
| } |
| |
| |
| static inline void tstate_deactivate(PyThreadState *tstate); |
| static void zapthreads(PyInterpreterState *interp); |
| |
| void |
| PyInterpreterState_Delete(PyInterpreterState *interp) |
| { |
| _PyRuntimeState *runtime = interp->runtime; |
| struct pyinterpreters *interpreters = &runtime->interpreters; |
| |
| // XXX Clearing the "current" thread state should happen before |
| // we start finalizing the interpreter (or the current thread state). |
| PyThreadState *tcur = current_fast_get(runtime); |
| if (tcur != NULL && interp == tcur->interp) { |
| /* Unset current thread. After this, many C API calls become crashy. */ |
| current_fast_clear(runtime); |
| tstate_deactivate(tcur); |
| _PyEval_ReleaseLock(interp, NULL); |
| } |
| |
| zapthreads(interp); |
| |
| _PyEval_FiniState(&interp->ceval); |
| |
| // XXX These two calls should be done at the end of clear_interpreter(), |
| // but currently some objects get decref'ed after that. |
| #ifdef Py_REF_DEBUG |
| _PyInterpreterState_FinalizeRefTotal(interp); |
| #endif |
| _PyInterpreterState_FinalizeAllocatedBlocks(interp); |
| |
| HEAD_LOCK(runtime); |
| PyInterpreterState **p; |
| for (p = &interpreters->head; ; p = &(*p)->next) { |
| if (*p == NULL) { |
| Py_FatalError("NULL interpreter"); |
| } |
| if (*p == interp) { |
| break; |
| } |
| } |
| if (interp->threads.head != NULL) { |
| Py_FatalError("remaining threads"); |
| } |
| *p = interp->next; |
| |
| if (interpreters->main == interp) { |
| interpreters->main = NULL; |
| if (interpreters->head != NULL) { |
| Py_FatalError("remaining subinterpreters"); |
| } |
| } |
| HEAD_UNLOCK(runtime); |
| |
| if (interp->id_mutex != NULL) { |
| PyThread_free_lock(interp->id_mutex); |
| } |
| free_interpreter(interp); |
| } |
| |
| |
| #ifdef HAVE_FORK |
| /* |
| * Delete all interpreter states except the main interpreter. If there |
| * is a current interpreter state, it *must* be the main interpreter. |
| */ |
| PyStatus |
| _PyInterpreterState_DeleteExceptMain(_PyRuntimeState *runtime) |
| { |
| struct pyinterpreters *interpreters = &runtime->interpreters; |
| |
| PyThreadState *tstate = _PyThreadState_Swap(runtime, NULL); |
| if (tstate != NULL && tstate->interp != interpreters->main) { |
| return _PyStatus_ERR("not main interpreter"); |
| } |
| |
| HEAD_LOCK(runtime); |
| PyInterpreterState *interp = interpreters->head; |
| interpreters->head = NULL; |
| while (interp != NULL) { |
| if (interp == interpreters->main) { |
| interpreters->main->next = NULL; |
| interpreters->head = interp; |
| interp = interp->next; |
| continue; |
| } |
| |
| // XXX Won't this fail since PyInterpreterState_Clear() requires |
| // the "current" tstate to be set? |
| PyInterpreterState_Clear(interp); // XXX must activate? |
| zapthreads(interp); |
| if (interp->id_mutex != NULL) { |
| PyThread_free_lock(interp->id_mutex); |
| } |
| PyInterpreterState *prev_interp = interp; |
| interp = interp->next; |
| free_interpreter(prev_interp); |
| } |
| HEAD_UNLOCK(runtime); |
| |
| if (interpreters->head == NULL) { |
| return _PyStatus_ERR("missing main interpreter"); |
| } |
| _PyThreadState_Swap(runtime, tstate); |
| return _PyStatus_OK(); |
| } |
| #endif |
| |
| |
| int |
| _PyInterpreterState_SetRunningMain(PyInterpreterState *interp) |
| { |
| if (interp->threads_main != NULL) { |
| PyErr_SetString(PyExc_RuntimeError, |
| "interpreter already running"); |
| return -1; |
| } |
| PyThreadState *tstate = current_fast_get(&_PyRuntime); |
| _Py_EnsureTstateNotNULL(tstate); |
| if (tstate->interp != interp) { |
| PyErr_SetString(PyExc_RuntimeError, |
| "current tstate has wrong interpreter"); |
| return -1; |
| } |
| interp->threads_main = tstate; |
| return 0; |
| } |
| |
| void |
| _PyInterpreterState_SetNotRunningMain(PyInterpreterState *interp) |
| { |
| assert(interp->threads_main == current_fast_get(&_PyRuntime)); |
| interp->threads_main = NULL; |
| } |
| |
| int |
| _PyInterpreterState_IsRunningMain(PyInterpreterState *interp) |
| { |
| return (interp->threads_main != NULL); |
| } |
| |
| |
| //---------- |
| // accessors |
| //---------- |
| |
| int64_t |
| PyInterpreterState_GetID(PyInterpreterState *interp) |
| { |
| if (interp == NULL) { |
| PyErr_SetString(PyExc_RuntimeError, "no interpreter provided"); |
| return -1; |
| } |
| return interp->id; |
| } |
| |
| |
| int |
| _PyInterpreterState_IDInitref(PyInterpreterState *interp) |
| { |
| if (interp->id_mutex != NULL) { |
| return 0; |
| } |
| interp->id_mutex = PyThread_allocate_lock(); |
| if (interp->id_mutex == NULL) { |
| PyErr_SetString(PyExc_RuntimeError, |
| "failed to create init interpreter ID mutex"); |
| return -1; |
| } |
| interp->id_refcount = 0; |
| return 0; |
| } |
| |
| |
| int |
| _PyInterpreterState_IDIncref(PyInterpreterState *interp) |
| { |
| if (_PyInterpreterState_IDInitref(interp) < 0) { |
| return -1; |
| } |
| |
| PyThread_acquire_lock(interp->id_mutex, WAIT_LOCK); |
| interp->id_refcount += 1; |
| PyThread_release_lock(interp->id_mutex); |
| return 0; |
| } |
| |
| |
| void |
| _PyInterpreterState_IDDecref(PyInterpreterState *interp) |
| { |
| assert(interp->id_mutex != NULL); |
| _PyRuntimeState *runtime = interp->runtime; |
| |
| PyThread_acquire_lock(interp->id_mutex, WAIT_LOCK); |
| assert(interp->id_refcount != 0); |
| interp->id_refcount -= 1; |
| int64_t refcount = interp->id_refcount; |
| PyThread_release_lock(interp->id_mutex); |
| |
| if (refcount == 0 && interp->requires_idref) { |
| // XXX Using the "head" thread isn't strictly correct. |
| PyThreadState *tstate = PyInterpreterState_ThreadHead(interp); |
| // XXX Possible GILState issues? |
| PyThreadState *save_tstate = _PyThreadState_Swap(runtime, tstate); |
| Py_EndInterpreter(tstate); |
| _PyThreadState_Swap(runtime, save_tstate); |
| } |
| } |
| |
| int |
| _PyInterpreterState_RequiresIDRef(PyInterpreterState *interp) |
| { |
| return interp->requires_idref; |
| } |
| |
| void |
| _PyInterpreterState_RequireIDRef(PyInterpreterState *interp, int required) |
| { |
| interp->requires_idref = required ? 1 : 0; |
| } |
| |
| PyObject * |
| _PyInterpreterState_GetMainModule(PyInterpreterState *interp) |
| { |
| PyObject *modules = _PyImport_GetModules(interp); |
| if (modules == NULL) { |
| PyErr_SetString(PyExc_RuntimeError, "interpreter not initialized"); |
| return NULL; |
| } |
| return PyMapping_GetItemString(modules, "__main__"); |
| } |
| |
| PyObject * |
| PyInterpreterState_GetDict(PyInterpreterState *interp) |
| { |
| if (interp->dict == NULL) { |
| interp->dict = PyDict_New(); |
| if (interp->dict == NULL) { |
| PyErr_Clear(); |
| } |
| } |
| /* Returning NULL means no per-interpreter dict is available. */ |
| return interp->dict; |
| } |
| |
| |
| //----------------------------- |
| // look up an interpreter state |
| //----------------------------- |
| |
| /* Return the interpreter associated with the current OS thread. |
| |
| The GIL must be held. |
| */ |
| |
| PyInterpreterState * |
| PyInterpreterState_Get(void) |
| { |
| PyThreadState *tstate = current_fast_get(&_PyRuntime); |
| _Py_EnsureTstateNotNULL(tstate); |
| PyInterpreterState *interp = tstate->interp; |
| if (interp == NULL) { |
| Py_FatalError("no current interpreter"); |
| } |
| return interp; |
| } |
| |
| |
| static PyInterpreterState * |
| interp_look_up_id(_PyRuntimeState *runtime, int64_t requested_id) |
| { |
| PyInterpreterState *interp = runtime->interpreters.head; |
| while (interp != NULL) { |
| int64_t id = PyInterpreterState_GetID(interp); |
| if (id < 0) { |
| return NULL; |
| } |
| if (requested_id == id) { |
| return interp; |
| } |
| interp = PyInterpreterState_Next(interp); |
| } |
| return NULL; |
| } |
| |
| /* Return the interpreter state with the given ID. |
| |
| Fail with RuntimeError if the interpreter is not found. */ |
| |
| PyInterpreterState * |
| _PyInterpreterState_LookUpID(int64_t requested_id) |
| { |
| PyInterpreterState *interp = NULL; |
| if (requested_id >= 0) { |
| _PyRuntimeState *runtime = &_PyRuntime; |
| HEAD_LOCK(runtime); |
| interp = interp_look_up_id(runtime, requested_id); |
| HEAD_UNLOCK(runtime); |
| } |
| if (interp == NULL && !PyErr_Occurred()) { |
| PyErr_Format(PyExc_RuntimeError, |
| "unrecognized interpreter ID %lld", requested_id); |
| } |
| return interp; |
| } |
| |
| |
| /********************************/ |
| /* the per-thread runtime state */ |
| /********************************/ |
| |
| #ifndef NDEBUG |
| static inline int |
| tstate_is_alive(PyThreadState *tstate) |
| { |
| return (tstate->_status.initialized && |
| !tstate->_status.finalized && |
| !tstate->_status.cleared && |
| !tstate->_status.finalizing); |
| } |
| #endif |
| |
| |
| //---------- |
| // lifecycle |
| //---------- |
| |
| /* Minimum size of data stack chunk */ |
| #define DATA_STACK_CHUNK_SIZE (16*1024) |
| |
| static _PyStackChunk* |
| allocate_chunk(int size_in_bytes, _PyStackChunk* previous) |
| { |
| assert(size_in_bytes % sizeof(PyObject **) == 0); |
| _PyStackChunk *res = _PyObject_VirtualAlloc(size_in_bytes); |
| if (res == NULL) { |
| return NULL; |
| } |
| res->previous = previous; |
| res->size = size_in_bytes; |
| res->top = 0; |
| return res; |
| } |
| |
| static PyThreadState * |
| alloc_threadstate(void) |
| { |
| return PyMem_RawCalloc(1, sizeof(PyThreadState)); |
| } |
| |
| static void |
| free_threadstate(PyThreadState *tstate) |
| { |
| // The initial thread state of the interpreter is allocated |
| // as part of the interpreter state so should not be freed. |
| if (tstate != &tstate->interp->_initial_thread) { |
| PyMem_RawFree(tstate); |
| } |
| } |
| |
| /* Get the thread state to a minimal consistent state. |
| Further init happens in pylifecycle.c before it can be used. |
| All fields not initialized here are expected to be zeroed out, |
| e.g. by PyMem_RawCalloc() or memset(), or otherwise pre-initialized. |
| The interpreter state is not manipulated. Instead it is assumed that |
| the thread is getting added to the interpreter. |
| */ |
| |
| static void |
| init_threadstate(PyThreadState *tstate, |
| PyInterpreterState *interp, uint64_t id) |
| { |
| if (tstate->_status.initialized) { |
| Py_FatalError("thread state already initialized"); |
| } |
| |
| assert(interp != NULL); |
| tstate->interp = interp; |
| |
| // next/prev are set in add_threadstate(). |
| assert(tstate->next == NULL); |
| assert(tstate->prev == NULL); |
| |
| assert(id > 0); |
| tstate->id = id; |
| |
| // thread_id and native_thread_id are set in bind_tstate(). |
| |
| tstate->py_recursion_limit = interp->ceval.recursion_limit, |
| tstate->py_recursion_remaining = interp->ceval.recursion_limit, |
| tstate->c_recursion_remaining = C_RECURSION_LIMIT; |
| |
| tstate->exc_info = &tstate->exc_state; |
| |
| // PyGILState_Release must not try to delete this thread state. |
| // This is cleared when PyGILState_Ensure() creates the thread state. |
| tstate->gilstate_counter = 1; |
| |
| tstate->cframe = &tstate->root_cframe; |
| tstate->datastack_chunk = NULL; |
| tstate->datastack_top = NULL; |
| tstate->datastack_limit = NULL; |
| tstate->what_event = -1; |
| |
| tstate->_status.initialized = 1; |
| } |
| |
| static void |
| add_threadstate(PyInterpreterState *interp, PyThreadState *tstate, |
| PyThreadState *next) |
| { |
| assert(interp->threads.head != tstate); |
| assert((next != NULL && tstate->id != 1) || |
| (next == NULL && tstate->id == 1)); |
| if (next != NULL) { |
| assert(next->prev == NULL || next->prev == tstate); |
| next->prev = tstate; |
| } |
| tstate->next = next; |
| assert(tstate->prev == NULL); |
| interp->threads.head = tstate; |
| } |
| |
| static PyThreadState * |
| new_threadstate(PyInterpreterState *interp) |
| { |
| PyThreadState *tstate; |
| _PyRuntimeState *runtime = interp->runtime; |
| // We don't need to allocate a thread state for the main interpreter |
| // (the common case), but doing it later for the other case revealed a |
| // reentrancy problem (deadlock). So for now we always allocate before |
| // taking the interpreters lock. See GH-96071. |
| PyThreadState *new_tstate = alloc_threadstate(); |
| int used_newtstate; |
| if (new_tstate == NULL) { |
| return NULL; |
| } |
| /* We serialize concurrent creation to protect global state. */ |
| HEAD_LOCK(runtime); |
| |
| interp->threads.next_unique_id += 1; |
| uint64_t id = interp->threads.next_unique_id; |
| |
| // Allocate the thread state and add it to the interpreter. |
| PyThreadState *old_head = interp->threads.head; |
| if (old_head == NULL) { |
| // It's the interpreter's initial thread state. |
| assert(id == 1); |
| used_newtstate = 0; |
| tstate = &interp->_initial_thread; |
| } |
| else { |
| // Every valid interpreter must have at least one thread. |
| assert(id > 1); |
| assert(old_head->prev == NULL); |
| used_newtstate = 1; |
| tstate = new_tstate; |
| // Set to _PyThreadState_INIT. |
| memcpy(tstate, |
| &initial._main_interpreter._initial_thread, |
| sizeof(*tstate)); |
| } |
| |
| init_threadstate(tstate, interp, id); |
| add_threadstate(interp, tstate, old_head); |
| |
| HEAD_UNLOCK(runtime); |
| if (!used_newtstate) { |
| // Must be called with lock unlocked to avoid re-entrancy deadlock. |
| PyMem_RawFree(new_tstate); |
| } |
| return tstate; |
| } |
| |
| PyThreadState * |
| PyThreadState_New(PyInterpreterState *interp) |
| { |
| PyThreadState *tstate = new_threadstate(interp); |
| if (tstate) { |
| bind_tstate(tstate); |
| // This makes sure there's a gilstate tstate bound |
| // as soon as possible. |
| if (gilstate_tss_get(tstate->interp->runtime) == NULL) { |
| bind_gilstate_tstate(tstate); |
| } |
| } |
| return tstate; |
| } |
| |
| // This must be followed by a call to _PyThreadState_Bind(); |
| PyThreadState * |
| _PyThreadState_New(PyInterpreterState *interp) |
| { |
| return new_threadstate(interp); |
| } |
| |
| // We keep this for stable ABI compabibility. |
| PyThreadState * |
| _PyThreadState_Prealloc(PyInterpreterState *interp) |
| { |
| return _PyThreadState_New(interp); |
| } |
| |
| // We keep this around for (accidental) stable ABI compatibility. |
| // Realistically, no extensions are using it. |
| void |
| _PyThreadState_Init(PyThreadState *tstate) |
| { |
| Py_FatalError("_PyThreadState_Init() is for internal use only"); |
| } |
| |
| |
| static void |
| clear_datastack(PyThreadState *tstate) |
| { |
| _PyStackChunk *chunk = tstate->datastack_chunk; |
| tstate->datastack_chunk = NULL; |
| while (chunk != NULL) { |
| _PyStackChunk *prev = chunk->previous; |
| _PyObject_VirtualFree(chunk, chunk->size); |
| chunk = prev; |
| } |
| } |
| |
| void |
| PyThreadState_Clear(PyThreadState *tstate) |
| { |
| assert(tstate->_status.initialized && !tstate->_status.cleared); |
| // XXX assert(!tstate->_status.bound || tstate->_status.unbound); |
| tstate->_status.finalizing = 1; // just in case |
| |
| /* XXX Conditions we need to enforce: |
| |
| * the GIL must be held by the current thread |
| * current_fast_get()->interp must match tstate->interp |
| * for the main interpreter, current_fast_get() must be the main thread |
| */ |
| |
| int verbose = _PyInterpreterState_GetConfig(tstate->interp)->verbose; |
| |
| if (verbose && tstate->cframe->current_frame != NULL) { |
| /* bpo-20526: After the main thread calls |
| _PyInterpreterState_SetFinalizing() in Py_FinalizeEx() |
| (or in Py_EndInterpreter() for subinterpreters), |
| threads must exit when trying to take the GIL. |
| If a thread exit in the middle of _PyEval_EvalFrameDefault(), |
| tstate->frame is not reset to its previous value. |
| It is more likely with daemon threads, but it can happen |
| with regular threads if threading._shutdown() fails |
| (ex: interrupted by CTRL+C). */ |
| fprintf(stderr, |
| "PyThreadState_Clear: warning: thread still has a frame\n"); |
| } |
| |
| /* At this point tstate shouldn't be used any more, |
| neither to run Python code nor for other uses. |
| |
| This is tricky when current_fast_get() == tstate, in the same way |
| as noted in interpreter_clear() above. The below finalizers |
| can possibly run Python code or otherwise use the partially |
| cleared thread state. For now we trust that isn't a problem |
| in practice. |
| */ |
| // XXX Deal with the possibility of problematic finalizers. |
| |
| /* Don't clear tstate->pyframe: it is a borrowed reference */ |
| |
| Py_CLEAR(tstate->dict); |
| Py_CLEAR(tstate->async_exc); |
| |
| Py_CLEAR(tstate->current_exception); |
| |
| Py_CLEAR(tstate->exc_state.exc_value); |
| |
| /* The stack of exception states should contain just this thread. */ |
| if (verbose && tstate->exc_info != &tstate->exc_state) { |
| fprintf(stderr, |
| "PyThreadState_Clear: warning: thread still has a generator\n"); |
| } |
| |
| if (tstate->c_profilefunc != NULL) { |
| tstate->interp->sys_profiling_threads--; |
| tstate->c_profilefunc = NULL; |
| } |
| if (tstate->c_tracefunc != NULL) { |
| tstate->interp->sys_tracing_threads--; |
| tstate->c_tracefunc = NULL; |
| } |
| Py_CLEAR(tstate->c_profileobj); |
| Py_CLEAR(tstate->c_traceobj); |
| |
| Py_CLEAR(tstate->async_gen_firstiter); |
| Py_CLEAR(tstate->async_gen_finalizer); |
| |
| Py_CLEAR(tstate->context); |
| |
| if (tstate->on_delete != NULL) { |
| tstate->on_delete(tstate->on_delete_data); |
| } |
| |
| tstate->_status.cleared = 1; |
| |
| // XXX Call _PyThreadStateSwap(runtime, NULL) here if "current". |
| // XXX Do it as early in the function as possible. |
| } |
| |
| /* Common code for PyThreadState_Delete() and PyThreadState_DeleteCurrent() */ |
| static void |
| tstate_delete_common(PyThreadState *tstate) |
| { |
| assert(tstate->_status.cleared && !tstate->_status.finalized); |
| |
| PyInterpreterState *interp = tstate->interp; |
| if (interp == NULL) { |
| Py_FatalError("NULL interpreter"); |
| } |
| _PyRuntimeState *runtime = interp->runtime; |
| |
| HEAD_LOCK(runtime); |
| if (tstate->prev) { |
| tstate->prev->next = tstate->next; |
| } |
| else { |
| interp->threads.head = tstate->next; |
| } |
| if (tstate->next) { |
| tstate->next->prev = tstate->prev; |
| } |
| HEAD_UNLOCK(runtime); |
| |
| // XXX Unbind in PyThreadState_Clear(), or earlier |
| // (and assert not-equal here)? |
| if (tstate->_status.bound_gilstate) { |
| unbind_gilstate_tstate(tstate); |
| } |
| if (tstate->_status.bound) { |
| unbind_tstate(tstate); |
| } |
| |
| // XXX Move to PyThreadState_Clear()? |
| clear_datastack(tstate); |
| |
| tstate->_status.finalized = 1; |
| } |
| |
| static void |
| zapthreads(PyInterpreterState *interp) |
| { |
| PyThreadState *tstate; |
| /* No need to lock the mutex here because this should only happen |
| when the threads are all really dead (XXX famous last words). */ |
| while ((tstate = interp->threads.head) != NULL) { |
| tstate_verify_not_active(tstate); |
| tstate_delete_common(tstate); |
| free_threadstate(tstate); |
| } |
| } |
| |
| |
| void |
| PyThreadState_Delete(PyThreadState *tstate) |
| { |
| _Py_EnsureTstateNotNULL(tstate); |
| tstate_verify_not_active(tstate); |
| tstate_delete_common(tstate); |
| free_threadstate(tstate); |
| } |
| |
| |
| void |
| _PyThreadState_DeleteCurrent(PyThreadState *tstate) |
| { |
| _Py_EnsureTstateNotNULL(tstate); |
| tstate_delete_common(tstate); |
| current_fast_clear(tstate->interp->runtime); |
| _PyEval_ReleaseLock(tstate->interp, NULL); |
| free_threadstate(tstate); |
| } |
| |
| void |
| PyThreadState_DeleteCurrent(void) |
| { |
| PyThreadState *tstate = current_fast_get(&_PyRuntime); |
| _PyThreadState_DeleteCurrent(tstate); |
| } |
| |
| |
| /* |
| * Delete all thread states except the one passed as argument. |
| * Note that, if there is a current thread state, it *must* be the one |
| * passed as argument. Also, this won't touch any other interpreters |
| * than the current one, since we don't know which thread state should |
| * be kept in those other interpreters. |
| */ |
| void |
| _PyThreadState_DeleteExcept(PyThreadState *tstate) |
| { |
| assert(tstate != NULL); |
| PyInterpreterState *interp = tstate->interp; |
| _PyRuntimeState *runtime = interp->runtime; |
| |
| HEAD_LOCK(runtime); |
| /* Remove all thread states, except tstate, from the linked list of |
| thread states. This will allow calling PyThreadState_Clear() |
| without holding the lock. */ |
| PyThreadState *list = interp->threads.head; |
| if (list == tstate) { |
| list = tstate->next; |
| } |
| if (tstate->prev) { |
| tstate->prev->next = tstate->next; |
| } |
| if (tstate->next) { |
| tstate->next->prev = tstate->prev; |
| } |
| tstate->prev = tstate->next = NULL; |
| interp->threads.head = tstate; |
| HEAD_UNLOCK(runtime); |
| |
| /* Clear and deallocate all stale thread states. Even if this |
| executes Python code, we should be safe since it executes |
| in the current thread, not one of the stale threads. */ |
| PyThreadState *p, *next; |
| for (p = list; p; p = next) { |
| next = p->next; |
| PyThreadState_Clear(p); |
| free_threadstate(p); |
| } |
| } |
| |
| |
| //---------- |
| // accessors |
| //---------- |
| |
| /* An extension mechanism to store arbitrary additional per-thread state. |
| PyThreadState_GetDict() returns a dictionary that can be used to hold such |
| state; the caller should pick a unique key and store its state there. If |
| PyThreadState_GetDict() returns NULL, an exception has *not* been raised |
| and the caller should assume no per-thread state is available. */ |
| |
| PyObject * |
| _PyThreadState_GetDict(PyThreadState *tstate) |
| { |
| assert(tstate != NULL); |
| if (tstate->dict == NULL) { |
| tstate->dict = PyDict_New(); |
| if (tstate->dict == NULL) { |
| _PyErr_Clear(tstate); |
| } |
| } |
| return tstate->dict; |
| } |
| |
| |
| PyObject * |
| PyThreadState_GetDict(void) |
| { |
| PyThreadState *tstate = current_fast_get(&_PyRuntime); |
| if (tstate == NULL) { |
| return NULL; |
| } |
| return _PyThreadState_GetDict(tstate); |
| } |
| |
| |
| PyInterpreterState * |
| PyThreadState_GetInterpreter(PyThreadState *tstate) |
| { |
| assert(tstate != NULL); |
| return tstate->interp; |
| } |
| |
| |
| PyFrameObject* |
| PyThreadState_GetFrame(PyThreadState *tstate) |
| { |
| assert(tstate != NULL); |
| _PyInterpreterFrame *f = _PyThreadState_GetFrame(tstate); |
| if (f == NULL) { |
| return NULL; |
| } |
| PyFrameObject *frame = _PyFrame_GetFrameObject(f); |
| if (frame == NULL) { |
| PyErr_Clear(); |
| } |
| return (PyFrameObject*)Py_XNewRef(frame); |
| } |
| |
| |
| uint64_t |
| PyThreadState_GetID(PyThreadState *tstate) |
| { |
| assert(tstate != NULL); |
| return tstate->id; |
| } |
| |
| |
| static inline void |
| tstate_activate(PyThreadState *tstate) |
| { |
| assert(tstate != NULL); |
| // XXX assert(tstate_is_alive(tstate)); |
| assert(tstate_is_bound(tstate)); |
| assert(!tstate->_status.active); |
| |
| assert(!tstate->_status.bound_gilstate || |
| tstate == gilstate_tss_get((tstate->interp->runtime))); |
| if (!tstate->_status.bound_gilstate) { |
| bind_gilstate_tstate(tstate); |
| } |
| |
| tstate->_status.active = 1; |
| } |
| |
| static inline void |
| tstate_deactivate(PyThreadState *tstate) |
| { |
| assert(tstate != NULL); |
| // XXX assert(tstate_is_alive(tstate)); |
| assert(tstate_is_bound(tstate)); |
| assert(tstate->_status.active); |
| |
| tstate->_status.active = 0; |
| |
| // We do not unbind the gilstate tstate here. |
| // It will still be used in PyGILState_Ensure(). |
| } |
| |
| |
| //---------- |
| // other API |
| //---------- |
| |
| /* Asynchronously raise an exception in a thread. |
| Requested by Just van Rossum and Alex Martelli. |
| To prevent naive misuse, you must write your own extension |
| to call this, or use ctypes. Must be called with the GIL held. |
| Returns the number of tstates modified (normally 1, but 0 if `id` didn't |
| match any known thread id). Can be called with exc=NULL to clear an |
| existing async exception. This raises no exceptions. */ |
| |
| // XXX Move this to Python/ceval_gil.c? |
| // XXX Deprecate this. |
| int |
| PyThreadState_SetAsyncExc(unsigned long id, PyObject *exc) |
| { |
| _PyRuntimeState *runtime = &_PyRuntime; |
| PyInterpreterState *interp = _PyInterpreterState_GET(); |
| |
| /* Although the GIL is held, a few C API functions can be called |
| * without the GIL held, and in particular some that create and |
| * destroy thread and interpreter states. Those can mutate the |
| * list of thread states we're traversing, so to prevent that we lock |
| * head_mutex for the duration. |
| */ |
| HEAD_LOCK(runtime); |
| for (PyThreadState *tstate = interp->threads.head; tstate != NULL; tstate = tstate->next) { |
| if (tstate->thread_id != id) { |
| continue; |
| } |
| |
| /* Tricky: we need to decref the current value |
| * (if any) in tstate->async_exc, but that can in turn |
| * allow arbitrary Python code to run, including |
| * perhaps calls to this function. To prevent |
| * deadlock, we need to release head_mutex before |
| * the decref. |
| */ |
| PyObject *old_exc = tstate->async_exc; |
| tstate->async_exc = Py_XNewRef(exc); |
| HEAD_UNLOCK(runtime); |
| |
| Py_XDECREF(old_exc); |
| _PyEval_SignalAsyncExc(tstate->interp); |
| return 1; |
| } |
| HEAD_UNLOCK(runtime); |
| return 0; |
| } |
| |
| |
| //--------------------------------- |
| // API for the current thread state |
| //--------------------------------- |
| |
| PyThreadState * |
| _PyThreadState_UncheckedGet(void) |
| { |
| return current_fast_get(&_PyRuntime); |
| } |
| |
| |
| PyThreadState * |
| PyThreadState_Get(void) |
| { |
| PyThreadState *tstate = current_fast_get(&_PyRuntime); |
| _Py_EnsureTstateNotNULL(tstate); |
| return tstate; |
| } |
| |
| |
| static void |
| _swap_thread_states(_PyRuntimeState *runtime, |
| PyThreadState *oldts, PyThreadState *newts) |
| { |
| // XXX Do this only if oldts != NULL? |
| current_fast_clear(runtime); |
| |
| if (oldts != NULL) { |
| // XXX assert(tstate_is_alive(oldts) && tstate_is_bound(oldts)); |
| tstate_deactivate(oldts); |
| } |
| |
| if (newts != NULL) { |
| // XXX assert(tstate_is_alive(newts)); |
| assert(tstate_is_bound(newts)); |
| current_fast_set(runtime, newts); |
| tstate_activate(newts); |
| } |
| } |
| |
| PyThreadState * |
| _PyThreadState_SwapNoGIL(PyThreadState *newts) |
| { |
| #if defined(Py_DEBUG) |
| /* This can be called from PyEval_RestoreThread(). Similar |
| to it, we need to ensure errno doesn't change. |
| */ |
| int err = errno; |
| #endif |
| |
| PyThreadState *oldts = current_fast_get(&_PyRuntime); |
| _swap_thread_states(&_PyRuntime, oldts, newts); |
| |
| #if defined(Py_DEBUG) |
| errno = err; |
| #endif |
| return oldts; |
| } |
| |
| PyThreadState * |
| _PyThreadState_Swap(_PyRuntimeState *runtime, PyThreadState *newts) |
| { |
| PyThreadState *oldts = current_fast_get(runtime); |
| if (oldts != NULL) { |
| _PyEval_ReleaseLock(oldts->interp, oldts); |
| } |
| _swap_thread_states(runtime, oldts, newts); |
| if (newts != NULL) { |
| _PyEval_AcquireLock(newts); |
| } |
| return oldts; |
| } |
| |
| PyThreadState * |
| PyThreadState_Swap(PyThreadState *newts) |
| { |
| return _PyThreadState_Swap(&_PyRuntime, newts); |
| } |
| |
| |
| void |
| _PyThreadState_Bind(PyThreadState *tstate) |
| { |
| // gh-104690: If Python is being finalized and PyInterpreterState_Delete() |
| // was called, tstate becomes a dangling pointer. |
| assert(_PyThreadState_CheckConsistency(tstate)); |
| |
| bind_tstate(tstate); |
| // This makes sure there's a gilstate tstate bound |
| // as soon as possible. |
| if (gilstate_tss_get(tstate->interp->runtime) == NULL) { |
| bind_gilstate_tstate(tstate); |
| } |
| } |
| |
| |
| /***********************************/ |
| /* routines for advanced debuggers */ |
| /***********************************/ |
| |
| // (requested by David Beazley) |
| // Don't use unless you know what you are doing! |
| |
| PyInterpreterState * |
| PyInterpreterState_Head(void) |
| { |
| return _PyRuntime.interpreters.head; |
| } |
| |
| PyInterpreterState * |
| PyInterpreterState_Main(void) |
| { |
| return _PyInterpreterState_Main(); |
| } |
| |
| PyInterpreterState * |
| PyInterpreterState_Next(PyInterpreterState *interp) { |
| return interp->next; |
| } |
| |
| PyThreadState * |
| PyInterpreterState_ThreadHead(PyInterpreterState *interp) { |
| return interp->threads.head; |
| } |
| |
| PyThreadState * |
| PyThreadState_Next(PyThreadState *tstate) { |
| return tstate->next; |
| } |
| |
| |
| /********************************************/ |
| /* reporting execution state of all threads */ |
| /********************************************/ |
| |
| /* The implementation of sys._current_frames(). This is intended to be |
| called with the GIL held, as it will be when called via |
| sys._current_frames(). It's possible it would work fine even without |
| the GIL held, but haven't thought enough about that. |
| */ |
| PyObject * |
| _PyThread_CurrentFrames(void) |
| { |
| _PyRuntimeState *runtime = &_PyRuntime; |
| PyThreadState *tstate = current_fast_get(runtime); |
| if (_PySys_Audit(tstate, "sys._current_frames", NULL) < 0) { |
| return NULL; |
| } |
| |
| PyObject *result = PyDict_New(); |
| if (result == NULL) { |
| return NULL; |
| } |
| |
| /* for i in all interpreters: |
| * for t in all of i's thread states: |
| * if t's frame isn't NULL, map t's id to its frame |
| * Because these lists can mutate even when the GIL is held, we |
| * need to grab head_mutex for the duration. |
| */ |
| HEAD_LOCK(runtime); |
| PyInterpreterState *i; |
| for (i = runtime->interpreters.head; i != NULL; i = i->next) { |
| PyThreadState *t; |
| for (t = i->threads.head; t != NULL; t = t->next) { |
| _PyInterpreterFrame *frame = t->cframe->current_frame; |
| frame = _PyFrame_GetFirstComplete(frame); |
| if (frame == NULL) { |
| continue; |
| } |
| PyObject *id = PyLong_FromUnsignedLong(t->thread_id); |
| if (id == NULL) { |
| goto fail; |
| } |
| PyObject *frameobj = (PyObject *)_PyFrame_GetFrameObject(frame); |
| if (frameobj == NULL) { |
| Py_DECREF(id); |
| goto fail; |
| } |
| int stat = PyDict_SetItem(result, id, frameobj); |
| Py_DECREF(id); |
| if (stat < 0) { |
| goto fail; |
| } |
| } |
| } |
| goto done; |
| |
| fail: |
| Py_CLEAR(result); |
| |
| done: |
| HEAD_UNLOCK(runtime); |
| return result; |
| } |
| |
| /* The implementation of sys._current_exceptions(). This is intended to be |
| called with the GIL held, as it will be when called via |
| sys._current_exceptions(). It's possible it would work fine even without |
| the GIL held, but haven't thought enough about that. |
| */ |
| PyObject * |
| _PyThread_CurrentExceptions(void) |
| { |
| _PyRuntimeState *runtime = &_PyRuntime; |
| PyThreadState *tstate = current_fast_get(runtime); |
| |
| _Py_EnsureTstateNotNULL(tstate); |
| |
| if (_PySys_Audit(tstate, "sys._current_exceptions", NULL) < 0) { |
| return NULL; |
| } |
| |
| PyObject *result = PyDict_New(); |
| if (result == NULL) { |
| return NULL; |
| } |
| |
| /* for i in all interpreters: |
| * for t in all of i's thread states: |
| * if t's frame isn't NULL, map t's id to its frame |
| * Because these lists can mutate even when the GIL is held, we |
| * need to grab head_mutex for the duration. |
| */ |
| HEAD_LOCK(runtime); |
| PyInterpreterState *i; |
| for (i = runtime->interpreters.head; i != NULL; i = i->next) { |
| PyThreadState *t; |
| for (t = i->threads.head; t != NULL; t = t->next) { |
| _PyErr_StackItem *err_info = _PyErr_GetTopmostException(t); |
| if (err_info == NULL) { |
| continue; |
| } |
| PyObject *id = PyLong_FromUnsignedLong(t->thread_id); |
| if (id == NULL) { |
| goto fail; |
| } |
| PyObject *exc = err_info->exc_value; |
| assert(exc == NULL || |
| exc == Py_None || |
| PyExceptionInstance_Check(exc)); |
| |
| int stat = PyDict_SetItem(result, id, exc == NULL ? Py_None : exc); |
| Py_DECREF(id); |
| if (stat < 0) { |
| goto fail; |
| } |
| } |
| } |
| goto done; |
| |
| fail: |
| Py_CLEAR(result); |
| |
| done: |
| HEAD_UNLOCK(runtime); |
| return result; |
| } |
| |
| |
| /***********************************/ |
| /* Python "auto thread state" API. */ |
| /***********************************/ |
| |
| /* Internal initialization/finalization functions called by |
| Py_Initialize/Py_FinalizeEx |
| */ |
| PyStatus |
| _PyGILState_Init(PyInterpreterState *interp) |
| { |
| if (!_Py_IsMainInterpreter(interp)) { |
| /* Currently, PyGILState is shared by all interpreters. The main |
| * interpreter is responsible to initialize it. */ |
| return _PyStatus_OK(); |
| } |
| _PyRuntimeState *runtime = interp->runtime; |
| assert(gilstate_tss_get(runtime) == NULL); |
| assert(runtime->gilstate.autoInterpreterState == NULL); |
| runtime->gilstate.autoInterpreterState = interp; |
| return _PyStatus_OK(); |
| } |
| |
| void |
| _PyGILState_Fini(PyInterpreterState *interp) |
| { |
| if (!_Py_IsMainInterpreter(interp)) { |
| /* Currently, PyGILState is shared by all interpreters. The main |
| * interpreter is responsible to initialize it. */ |
| return; |
| } |
| interp->runtime->gilstate.autoInterpreterState = NULL; |
| } |
| |
| |
| // XXX Drop this. |
| PyStatus |
| _PyGILState_SetTstate(PyThreadState *tstate) |
| { |
| /* must init with valid states */ |
| assert(tstate != NULL); |
| assert(tstate->interp != NULL); |
| |
| if (!_Py_IsMainInterpreter(tstate->interp)) { |
| /* Currently, PyGILState is shared by all interpreters. The main |
| * interpreter is responsible to initialize it. */ |
| return _PyStatus_OK(); |
| } |
| |
| #ifndef NDEBUG |
| _PyRuntimeState *runtime = tstate->interp->runtime; |
| |
| assert(runtime->gilstate.autoInterpreterState == tstate->interp); |
| assert(gilstate_tss_get(runtime) == tstate); |
| assert(tstate->gilstate_counter == 1); |
| #endif |
| |
| return _PyStatus_OK(); |
| } |
| |
| PyInterpreterState * |
| _PyGILState_GetInterpreterStateUnsafe(void) |
| { |
| return _PyRuntime.gilstate.autoInterpreterState; |
| } |
| |
| /* The public functions */ |
| |
| PyThreadState * |
| PyGILState_GetThisThreadState(void) |
| { |
| _PyRuntimeState *runtime = &_PyRuntime; |
| if (!gilstate_tss_initialized(runtime)) { |
| return NULL; |
| } |
| return gilstate_tss_get(runtime); |
| } |
| |
| int |
| PyGILState_Check(void) |
| { |
| _PyRuntimeState *runtime = &_PyRuntime; |
| if (!runtime->gilstate.check_enabled) { |
| return 1; |
| } |
| |
| if (!gilstate_tss_initialized(runtime)) { |
| return 1; |
| } |
| |
| PyThreadState *tstate = current_fast_get(runtime); |
| if (tstate == NULL) { |
| return 0; |
| } |
| |
| return (tstate == gilstate_tss_get(runtime)); |
| } |
| |
| PyGILState_STATE |
| PyGILState_Ensure(void) |
| { |
| _PyRuntimeState *runtime = &_PyRuntime; |
| |
| /* Note that we do not auto-init Python here - apart from |
| potential races with 2 threads auto-initializing, pep-311 |
| spells out other issues. Embedders are expected to have |
| called Py_Initialize(). */ |
| |
| /* Ensure that _PyEval_InitThreads() and _PyGILState_Init() have been |
| called by Py_Initialize() */ |
| assert(_PyEval_ThreadsInitialized()); |
| assert(gilstate_tss_initialized(runtime)); |
| assert(runtime->gilstate.autoInterpreterState != NULL); |
| |
| PyThreadState *tcur = gilstate_tss_get(runtime); |
| int has_gil; |
| if (tcur == NULL) { |
| /* Create a new Python thread state for this thread */ |
| tcur = new_threadstate(runtime->gilstate.autoInterpreterState); |
| if (tcur == NULL) { |
| Py_FatalError("Couldn't create thread-state for new thread"); |
| } |
| bind_tstate(tcur); |
| bind_gilstate_tstate(tcur); |
| |
| /* This is our thread state! We'll need to delete it in the |
| matching call to PyGILState_Release(). */ |
| assert(tcur->gilstate_counter == 1); |
| tcur->gilstate_counter = 0; |
| has_gil = 0; /* new thread state is never current */ |
| } |
| else { |
| has_gil = holds_gil(tcur); |
| } |
| |
| if (!has_gil) { |
| PyEval_RestoreThread(tcur); |
| } |
| |
| /* Update our counter in the thread-state - no need for locks: |
| - tcur will remain valid as we hold the GIL. |
| - the counter is safe as we are the only thread "allowed" |
| to modify this value |
| */ |
| ++tcur->gilstate_counter; |
| |
| return has_gil ? PyGILState_LOCKED : PyGILState_UNLOCKED; |
| } |
| |
| void |
| PyGILState_Release(PyGILState_STATE oldstate) |
| { |
| _PyRuntimeState *runtime = &_PyRuntime; |
| PyThreadState *tstate = gilstate_tss_get(runtime); |
| if (tstate == NULL) { |
| Py_FatalError("auto-releasing thread-state, " |
| "but no thread-state for this thread"); |
| } |
| |
| /* We must hold the GIL and have our thread state current */ |
| /* XXX - remove the check - the assert should be fine, |
| but while this is very new (April 2003), the extra check |
| by release-only users can't hurt. |
| */ |
| if (!holds_gil(tstate)) { |
| _Py_FatalErrorFormat(__func__, |
| "thread state %p must be current when releasing", |
| tstate); |
| } |
| assert(holds_gil(tstate)); |
| --tstate->gilstate_counter; |
| assert(tstate->gilstate_counter >= 0); /* illegal counter value */ |
| |
| /* If we're going to destroy this thread-state, we must |
| * clear it while the GIL is held, as destructors may run. |
| */ |
| if (tstate->gilstate_counter == 0) { |
| /* can't have been locked when we created it */ |
| assert(oldstate == PyGILState_UNLOCKED); |
| // XXX Unbind tstate here. |
| // gh-119585: `PyThreadState_Clear()` may call destructors that |
| // themselves use PyGILState_Ensure and PyGILState_Release, so make |
| // sure that gilstate_counter is not zero when calling it. |
| ++tstate->gilstate_counter; |
| PyThreadState_Clear(tstate); |
| --tstate->gilstate_counter; |
| /* Delete the thread-state. Note this releases the GIL too! |
| * It's vital that the GIL be held here, to avoid shutdown |
| * races; see bugs 225673 and 1061968 (that nasty bug has a |
| * habit of coming back). |
| */ |
| assert(tstate->gilstate_counter == 0); |
| assert(current_fast_get(runtime) == tstate); |
| _PyThreadState_DeleteCurrent(tstate); |
| } |
| /* Release the lock if necessary */ |
| else if (oldstate == PyGILState_UNLOCKED) { |
| PyEval_SaveThread(); |
| } |
| } |
| |
| |
| /**************************/ |
| /* cross-interpreter data */ |
| /**************************/ |
| |
| /* cross-interpreter data */ |
| |
| static inline void |
| _xidata_init(_PyCrossInterpreterData *data) |
| { |
| // If the value is being reused |
| // then _xidata_clear() should have been called already. |
| assert(data->data == NULL); |
| assert(data->obj == NULL); |
| *data = (_PyCrossInterpreterData){0}; |
| data->interp = -1; |
| } |
| |
| static inline void |
| _xidata_clear(_PyCrossInterpreterData *data) |
| { |
| // _PyCrossInterpreterData only has two members that need to be |
| // cleaned up, if set: "data" must be freed and "obj" must be decref'ed. |
| // In both cases the original (owning) interpreter must be used, |
| // which is the caller's responsibility to ensure. |
| if (data->data != NULL) { |
| if (data->free != NULL) { |
| data->free(data->data); |
| } |
| data->data = NULL; |
| } |
| Py_CLEAR(data->obj); |
| } |
| |
| void |
| _PyCrossInterpreterData_Init(_PyCrossInterpreterData *data, |
| PyInterpreterState *interp, |
| void *shared, PyObject *obj, |
| xid_newobjectfunc new_object) |
| { |
| assert(data != NULL); |
| assert(new_object != NULL); |
| _xidata_init(data); |
| data->data = shared; |
| if (obj != NULL) { |
| assert(interp != NULL); |
| // released in _PyCrossInterpreterData_Clear() |
| data->obj = Py_NewRef(obj); |
| } |
| // Ideally every object would know its owning interpreter. |
| // Until then, we have to rely on the caller to identify it |
| // (but we don't need it in all cases). |
| data->interp = (interp != NULL) ? interp->id : -1; |
| data->new_object = new_object; |
| } |
| |
| int |
| _PyCrossInterpreterData_InitWithSize(_PyCrossInterpreterData *data, |
| PyInterpreterState *interp, |
| const size_t size, PyObject *obj, |
| xid_newobjectfunc new_object) |
| { |
| assert(size > 0); |
| // For now we always free the shared data in the same interpreter |
| // where it was allocated, so the interpreter is required. |
| assert(interp != NULL); |
| _PyCrossInterpreterData_Init(data, interp, NULL, obj, new_object); |
| data->data = PyMem_RawMalloc(size); |
| if (data->data == NULL) { |
| return -1; |
| } |
| data->free = PyMem_RawFree; |
| return 0; |
| } |
| |
| void |
| _PyCrossInterpreterData_Clear(PyInterpreterState *interp, |
| _PyCrossInterpreterData *data) |
| { |
| assert(data != NULL); |
| // This must be called in the owning interpreter. |
| assert(interp == NULL || data->interp == interp->id); |
| _xidata_clear(data); |
| } |
| |
| static int |
| _check_xidata(PyThreadState *tstate, _PyCrossInterpreterData *data) |
| { |
| // data->data can be anything, including NULL, so we don't check it. |
| |
| // data->obj may be NULL, so we don't check it. |
| |
| if (data->interp < 0) { |
| _PyErr_SetString(tstate, PyExc_SystemError, "missing interp"); |
| return -1; |
| } |
| |
| if (data->new_object == NULL) { |
| _PyErr_SetString(tstate, PyExc_SystemError, "missing new_object func"); |
| return -1; |
| } |
| |
| // data->free may be NULL, so we don't check it. |
| |
| return 0; |
| } |
| |
| crossinterpdatafunc _PyCrossInterpreterData_Lookup(PyObject *); |
| |
| /* This is a separate func from _PyCrossInterpreterData_Lookup in order |
| to keep the registry code separate. */ |
| static crossinterpdatafunc |
| _lookup_getdata(PyObject *obj) |
| { |
| crossinterpdatafunc getdata = _PyCrossInterpreterData_Lookup(obj); |
| if (getdata == NULL && PyErr_Occurred() == 0) |
| PyErr_Format(PyExc_ValueError, |
| "%S does not support cross-interpreter data", obj); |
| return getdata; |
| } |
| |
| int |
| _PyObject_CheckCrossInterpreterData(PyObject *obj) |
| { |
| crossinterpdatafunc getdata = _lookup_getdata(obj); |
| if (getdata == NULL) { |
| return -1; |
| } |
| return 0; |
| } |
| |
| int |
| _PyObject_GetCrossInterpreterData(PyObject *obj, _PyCrossInterpreterData *data) |
| { |
| _PyRuntimeState *runtime = &_PyRuntime; |
| PyThreadState *tstate = current_fast_get(runtime); |
| #ifdef Py_DEBUG |
| // The caller must hold the GIL |
| _Py_EnsureTstateNotNULL(tstate); |
| #endif |
| PyInterpreterState *interp = tstate->interp; |
| |
| // Reset data before re-populating. |
| *data = (_PyCrossInterpreterData){0}; |
| data->interp = -1; |
| |
| // Call the "getdata" func for the object. |
| Py_INCREF(obj); |
| crossinterpdatafunc getdata = _lookup_getdata(obj); |
| if (getdata == NULL) { |
| Py_DECREF(obj); |
| return -1; |
| } |
| int res = getdata(tstate, obj, data); |
| Py_DECREF(obj); |
| if (res != 0) { |
| return -1; |
| } |
| |
| // Fill in the blanks and validate the result. |
| data->interp = interp->id; |
| if (_check_xidata(tstate, data) != 0) { |
| (void)_PyCrossInterpreterData_Release(data); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| PyObject * |
| _PyCrossInterpreterData_NewObject(_PyCrossInterpreterData *data) |
| { |
| return data->new_object(data); |
| } |
| |
| static int |
| _release_xidata_pending(void *data) |
| { |
| _xidata_clear((_PyCrossInterpreterData *)data); |
| return 0; |
| } |
| |
| static int |
| _xidata_release_and_rawfree_pending(void *data) |
| { |
| _xidata_clear((_PyCrossInterpreterData *)data); |
| PyMem_RawFree(data); |
| return 0; |
| } |
| |
| static int |
| _xidata_release(_PyCrossInterpreterData *data, int rawfree) |
| { |
| if ((data->data == NULL || data->free == NULL) && data->obj == NULL) { |
| // Nothing to release! |
| if (rawfree) { |
| PyMem_RawFree(data); |
| } |
| else { |
| data->data = NULL; |
| } |
| return 0; |
| } |
| |
| // Switch to the original interpreter. |
| PyInterpreterState *interp = _PyInterpreterState_LookUpID(data->interp); |
| if (interp == NULL) { |
| // The interpreter was already destroyed. |
| // This function shouldn't have been called. |
| // XXX Someone leaked some memory... |
| assert(PyErr_Occurred()); |
| if (rawfree) { |
| PyMem_RawFree(data); |
| } |
| return -1; |
| } |
| |
| // "Release" the data and/or the object. |
| if (interp == current_fast_get(interp->runtime)->interp) { |
| _xidata_clear(data); |
| if (rawfree) { |
| PyMem_RawFree(data); |
| } |
| } |
| else { |
| int (*func)(void *) = _release_xidata_pending; |
| if (rawfree) { |
| func = _xidata_release_and_rawfree_pending; |
| } |
| // XXX Emit a warning if this fails? |
| _PyEval_AddPendingCall(interp, func, data, 0); |
| } |
| return 0; |
| } |
| |
| int |
| _PyCrossInterpreterData_Release(_PyCrossInterpreterData *data) |
| { |
| return _xidata_release(data, 0); |
| } |
| |
| int |
| _PyCrossInterpreterData_ReleaseAndRawFree(_PyCrossInterpreterData *data) |
| { |
| return _xidata_release(data, 1); |
| } |
| |
| /* registry of {type -> crossinterpdatafunc} */ |
| |
| /* For now we use a global registry of shareable classes. An |
| alternative would be to add a tp_* slot for a class's |
| crossinterpdatafunc. It would be simpler and more efficient. */ |
| |
| static int |
| _xidregistry_add_type(struct _xidregistry *xidregistry, |
| PyTypeObject *cls, crossinterpdatafunc getdata) |
| { |
| struct _xidregitem *newhead = PyMem_RawMalloc(sizeof(struct _xidregitem)); |
| if (newhead == NULL) { |
| return -1; |
| } |
| *newhead = (struct _xidregitem){ |
| // We do not keep a reference, to avoid keeping the class alive. |
| .cls = cls, |
| .refcount = 1, |
| .getdata = getdata, |
| }; |
| if (cls->tp_flags & Py_TPFLAGS_HEAPTYPE) { |
| // XXX Assign a callback to clear the entry from the registry? |
| newhead->weakref = PyWeakref_NewRef((PyObject *)cls, NULL); |
| if (newhead->weakref == NULL) { |
| PyMem_RawFree(newhead); |
| return -1; |
| } |
| } |
| newhead->next = xidregistry->head; |
| if (newhead->next != NULL) { |
| newhead->next->prev = newhead; |
| } |
| xidregistry->head = newhead; |
| return 0; |
| } |
| |
| static struct _xidregitem * |
| _xidregistry_remove_entry(struct _xidregistry *xidregistry, |
| struct _xidregitem *entry) |
| { |
| struct _xidregitem *next = entry->next; |
| if (entry->prev != NULL) { |
| assert(entry->prev->next == entry); |
| entry->prev->next = next; |
| } |
| else { |
| assert(xidregistry->head == entry); |
| xidregistry->head = next; |
| } |
| if (next != NULL) { |
| next->prev = entry->prev; |
| } |
| Py_XDECREF(entry->weakref); |
| PyMem_RawFree(entry); |
| return next; |
| } |
| |
| static void |
| _xidregistry_clear(struct _xidregistry *xidregistry) |
| { |
| struct _xidregitem *cur = xidregistry->head; |
| xidregistry->head = NULL; |
| while (cur != NULL) { |
| struct _xidregitem *next = cur->next; |
| Py_XDECREF(cur->weakref); |
| PyMem_RawFree(cur); |
| cur = next; |
| } |
| } |
| |
| static struct _xidregitem * |
| _xidregistry_find_type(struct _xidregistry *xidregistry, PyTypeObject *cls) |
| { |
| struct _xidregitem *cur = xidregistry->head; |
| while (cur != NULL) { |
| if (cur->weakref != NULL) { |
| // cur is/was a heap type. |
| PyObject *registered = PyWeakref_GetObject(cur->weakref); |
| assert(registered != NULL); |
| if (registered == Py_None) { |
| // The weakly ref'ed object was freed. |
| cur = _xidregistry_remove_entry(xidregistry, cur); |
| continue; |
| } |
| assert(PyType_Check(registered)); |
| assert(cur->cls == (PyTypeObject *)registered); |
| assert(cur->cls->tp_flags & Py_TPFLAGS_HEAPTYPE); |
| //Py_DECREF(registered); |
| } |
| if (cur->cls == cls) { |
| return cur; |
| } |
| cur = cur->next; |
| } |
| return NULL; |
| } |
| |
| static inline struct _xidregistry * |
| _get_xidregistry(PyInterpreterState *interp, PyTypeObject *cls) |
| { |
| struct _xidregistry *xidregistry = &interp->runtime->xidregistry; |
| if (cls->tp_flags & Py_TPFLAGS_HEAPTYPE) { |
| assert(interp->xidregistry.mutex == xidregistry->mutex); |
| xidregistry = &interp->xidregistry; |
| } |
| return xidregistry; |
| } |
| |
| static void _register_builtins_for_crossinterpreter_data(struct _xidregistry *xidregistry); |
| |
| static inline void |
| _ensure_builtins_xid(PyInterpreterState *interp, struct _xidregistry *xidregistry) |
| { |
| if (xidregistry != &interp->xidregistry) { |
| assert(xidregistry == &interp->runtime->xidregistry); |
| if (xidregistry->head == NULL) { |
| _register_builtins_for_crossinterpreter_data(xidregistry); |
| } |
| } |
| } |
| |
| int |
| _PyCrossInterpreterData_RegisterClass(PyTypeObject *cls, |
| crossinterpdatafunc getdata) |
| { |
| if (!PyType_Check(cls)) { |
| PyErr_Format(PyExc_ValueError, "only classes may be registered"); |
| return -1; |
| } |
| if (getdata == NULL) { |
| PyErr_Format(PyExc_ValueError, "missing 'getdata' func"); |
| return -1; |
| } |
| |
| int res = 0; |
| PyInterpreterState *interp = _PyInterpreterState_GET(); |
| struct _xidregistry *xidregistry = _get_xidregistry(interp, cls); |
| PyThread_acquire_lock(xidregistry->mutex, WAIT_LOCK); |
| |
| _ensure_builtins_xid(interp, xidregistry); |
| |
| struct _xidregitem *matched = _xidregistry_find_type(xidregistry, cls); |
| if (matched != NULL) { |
| assert(matched->getdata == getdata); |
| matched->refcount += 1; |
| goto finally; |
| } |
| |
| res = _xidregistry_add_type(xidregistry, cls, getdata); |
| |
| finally: |
| PyThread_release_lock(xidregistry->mutex); |
| return res; |
| } |
| |
| int |
| _PyCrossInterpreterData_UnregisterClass(PyTypeObject *cls) |
| { |
| int res = 0; |
| PyInterpreterState *interp = _PyInterpreterState_GET(); |
| struct _xidregistry *xidregistry = _get_xidregistry(interp, cls); |
| PyThread_acquire_lock(xidregistry->mutex, WAIT_LOCK); |
| |
| struct _xidregitem *matched = _xidregistry_find_type(xidregistry, cls); |
| if (matched != NULL) { |
| assert(matched->refcount > 0); |
| matched->refcount -= 1; |
| if (matched->refcount == 0) { |
| (void)_xidregistry_remove_entry(xidregistry, matched); |
| } |
| res = 1; |
| } |
| |
| PyThread_release_lock(xidregistry->mutex); |
| return res; |
| } |
| |
| |
| /* Cross-interpreter objects are looked up by exact match on the class. |
| We can reassess this policy when we move from a global registry to a |
| tp_* slot. */ |
| |
| crossinterpdatafunc |
| _PyCrossInterpreterData_Lookup(PyObject *obj) |
| { |
| PyTypeObject *cls = Py_TYPE(obj); |
| |
| PyInterpreterState *interp = _PyInterpreterState_GET(); |
| struct _xidregistry *xidregistry = _get_xidregistry(interp, cls); |
| PyThread_acquire_lock(xidregistry->mutex, WAIT_LOCK); |
| |
| _ensure_builtins_xid(interp, xidregistry); |
| |
| struct _xidregitem *matched = _xidregistry_find_type(xidregistry, cls); |
| crossinterpdatafunc func = matched != NULL ? matched->getdata : NULL; |
| |
| PyThread_release_lock(xidregistry->mutex); |
| return func; |
| } |
| |
| /* cross-interpreter data for builtin types */ |
| |
| struct _shared_bytes_data { |
| char *bytes; |
| Py_ssize_t len; |
| }; |
| |
| static PyObject * |
| _new_bytes_object(_PyCrossInterpreterData *data) |
| { |
| struct _shared_bytes_data *shared = (struct _shared_bytes_data *)(data->data); |
| return PyBytes_FromStringAndSize(shared->bytes, shared->len); |
| } |
| |
| static int |
| _bytes_shared(PyThreadState *tstate, PyObject *obj, |
| _PyCrossInterpreterData *data) |
| { |
| if (_PyCrossInterpreterData_InitWithSize( |
| data, tstate->interp, sizeof(struct _shared_bytes_data), obj, |
| _new_bytes_object |
| ) < 0) |
| { |
| return -1; |
| } |
| struct _shared_bytes_data *shared = (struct _shared_bytes_data *)data->data; |
| if (PyBytes_AsStringAndSize(obj, &shared->bytes, &shared->len) < 0) { |
| _PyCrossInterpreterData_Clear(tstate->interp, data); |
| return -1; |
| } |
| return 0; |
| } |
| |
| struct _shared_str_data { |
| int kind; |
| const void *buffer; |
| Py_ssize_t len; |
| }; |
| |
| static PyObject * |
| _new_str_object(_PyCrossInterpreterData *data) |
| { |
| struct _shared_str_data *shared = (struct _shared_str_data *)(data->data); |
| return PyUnicode_FromKindAndData(shared->kind, shared->buffer, shared->len); |
| } |
| |
| static int |
| _str_shared(PyThreadState *tstate, PyObject *obj, |
| _PyCrossInterpreterData *data) |
| { |
| if (_PyCrossInterpreterData_InitWithSize( |
| data, tstate->interp, sizeof(struct _shared_str_data), obj, |
| _new_str_object |
| ) < 0) |
| { |
| return -1; |
| } |
| struct _shared_str_data *shared = (struct _shared_str_data *)data->data; |
| shared->kind = PyUnicode_KIND(obj); |
| shared->buffer = PyUnicode_DATA(obj); |
| shared->len = PyUnicode_GET_LENGTH(obj); |
| return 0; |
| } |
| |
| static PyObject * |
| _new_long_object(_PyCrossInterpreterData *data) |
| { |
| return PyLong_FromSsize_t((Py_ssize_t)(data->data)); |
| } |
| |
| static int |
| _long_shared(PyThreadState *tstate, PyObject *obj, |
| _PyCrossInterpreterData *data) |
| { |
| /* Note that this means the size of shareable ints is bounded by |
| * sys.maxsize. Hence on 32-bit architectures that is half the |
| * size of maximum shareable ints on 64-bit. |
| */ |
| Py_ssize_t value = PyLong_AsSsize_t(obj); |
| if (value == -1 && PyErr_Occurred()) { |
| if (PyErr_ExceptionMatches(PyExc_OverflowError)) { |
| PyErr_SetString(PyExc_OverflowError, "try sending as bytes"); |
| } |
| return -1; |
| } |
| _PyCrossInterpreterData_Init(data, tstate->interp, (void *)value, NULL, |
| _new_long_object); |
| // data->obj and data->free remain NULL |
| return 0; |
| } |
| |
| static PyObject * |
| _new_none_object(_PyCrossInterpreterData *data) |
| { |
| // XXX Singleton refcounts are problematic across interpreters... |
| return Py_NewRef(Py_None); |
| } |
| |
| static int |
| _none_shared(PyThreadState *tstate, PyObject *obj, |
| _PyCrossInterpreterData *data) |
| { |
| _PyCrossInterpreterData_Init(data, tstate->interp, NULL, NULL, |
| _new_none_object); |
| // data->data, data->obj and data->free remain NULL |
| return 0; |
| } |
| |
| static void |
| _register_builtins_for_crossinterpreter_data(struct _xidregistry *xidregistry) |
| { |
| // None |
| if (_xidregistry_add_type(xidregistry, (PyTypeObject *)PyObject_Type(Py_None), _none_shared) != 0) { |
| Py_FatalError("could not register None for cross-interpreter sharing"); |
| } |
| |
| // int |
| if (_xidregistry_add_type(xidregistry, &PyLong_Type, _long_shared) != 0) { |
| Py_FatalError("could not register int for cross-interpreter sharing"); |
| } |
| |
| // bytes |
| if (_xidregistry_add_type(xidregistry, &PyBytes_Type, _bytes_shared) != 0) { |
| Py_FatalError("could not register bytes for cross-interpreter sharing"); |
| } |
| |
| // str |
| if (_xidregistry_add_type(xidregistry, &PyUnicode_Type, _str_shared) != 0) { |
| Py_FatalError("could not register str for cross-interpreter sharing"); |
| } |
| } |
| |
| |
| /*************/ |
| /* Other API */ |
| /*************/ |
| |
| _PyFrameEvalFunction |
| _PyInterpreterState_GetEvalFrameFunc(PyInterpreterState *interp) |
| { |
| if (interp->eval_frame == NULL) { |
| return _PyEval_EvalFrameDefault; |
| } |
| return interp->eval_frame; |
| } |
| |
| |
| void |
| _PyInterpreterState_SetEvalFrameFunc(PyInterpreterState *interp, |
| _PyFrameEvalFunction eval_frame) |
| { |
| if (eval_frame == _PyEval_EvalFrameDefault) { |
| interp->eval_frame = NULL; |
| } |
| else { |
| interp->eval_frame = eval_frame; |
| } |
| } |
| |
| |
| const PyConfig* |
| _PyInterpreterState_GetConfig(PyInterpreterState *interp) |
| { |
| return &interp->config; |
| } |
| |
| |
| int |
| _PyInterpreterState_GetConfigCopy(PyConfig *config) |
| { |
| PyInterpreterState *interp = PyInterpreterState_Get(); |
| |
| PyStatus status = _PyConfig_Copy(config, &interp->config); |
| if (PyStatus_Exception(status)) { |
| _PyErr_SetFromPyStatus(status); |
| return -1; |
| } |
| return 0; |
| } |
| |
| |
| const PyConfig* |
| _Py_GetConfig(void) |
| { |
| _PyRuntimeState *runtime = &_PyRuntime; |
| assert(PyGILState_Check()); |
| PyThreadState *tstate = current_fast_get(runtime); |
| _Py_EnsureTstateNotNULL(tstate); |
| return _PyInterpreterState_GetConfig(tstate->interp); |
| } |
| |
| |
| int |
| _PyInterpreterState_HasFeature(PyInterpreterState *interp, unsigned long feature) |
| { |
| return ((interp->feature_flags & feature) != 0); |
| } |
| |
| |
| #define MINIMUM_OVERHEAD 1000 |
| |
| static PyObject ** |
| push_chunk(PyThreadState *tstate, int size) |
| { |
| int allocate_size = DATA_STACK_CHUNK_SIZE; |
| while (allocate_size < (int)sizeof(PyObject*)*(size + MINIMUM_OVERHEAD)) { |
| allocate_size *= 2; |
| } |
| _PyStackChunk *new = allocate_chunk(allocate_size, tstate->datastack_chunk); |
| if (new == NULL) { |
| return NULL; |
| } |
| if (tstate->datastack_chunk) { |
| tstate->datastack_chunk->top = tstate->datastack_top - |
| &tstate->datastack_chunk->data[0]; |
| } |
| tstate->datastack_chunk = new; |
| tstate->datastack_limit = (PyObject **)(((char *)new) + allocate_size); |
| // When new is the "root" chunk (i.e. new->previous == NULL), we can keep |
| // _PyThreadState_PopFrame from freeing it later by "skipping" over the |
| // first element: |
| PyObject **res = &new->data[new->previous == NULL]; |
| tstate->datastack_top = res + size; |
| return res; |
| } |
| |
| _PyInterpreterFrame * |
| _PyThreadState_PushFrame(PyThreadState *tstate, size_t size) |
| { |
| assert(size < INT_MAX/sizeof(PyObject *)); |
| if (_PyThreadState_HasStackSpace(tstate, (int)size)) { |
| _PyInterpreterFrame *res = (_PyInterpreterFrame *)tstate->datastack_top; |
| tstate->datastack_top += size; |
| return res; |
| } |
| return (_PyInterpreterFrame *)push_chunk(tstate, (int)size); |
| } |
| |
| void |
| _PyThreadState_PopFrame(PyThreadState *tstate, _PyInterpreterFrame * frame) |
| { |
| assert(tstate->datastack_chunk); |
| PyObject **base = (PyObject **)frame; |
| if (base == &tstate->datastack_chunk->data[0]) { |
| _PyStackChunk *chunk = tstate->datastack_chunk; |
| _PyStackChunk *previous = chunk->previous; |
| // push_chunk ensures that the root chunk is never popped: |
| assert(previous); |
| tstate->datastack_top = &previous->data[previous->top]; |
| tstate->datastack_chunk = previous; |
| _PyObject_VirtualFree(chunk, chunk->size); |
| tstate->datastack_limit = (PyObject **)(((char *)previous) + previous->size); |
| } |
| else { |
| assert(tstate->datastack_top); |
| assert(tstate->datastack_top >= base); |
| tstate->datastack_top = base; |
| } |
| } |
| |
| |
| #ifndef NDEBUG |
| // Check that a Python thread state valid. In practice, this function is used |
| // on a Python debug build to check if 'tstate' is a dangling pointer, if the |
| // PyThreadState memory has been freed. |
| // |
| // Usage: |
| // |
| // assert(_PyThreadState_CheckConsistency(tstate)); |
| int |
| _PyThreadState_CheckConsistency(PyThreadState *tstate) |
| { |
| assert(!_PyMem_IsPtrFreed(tstate)); |
| assert(!_PyMem_IsPtrFreed(tstate->interp)); |
| return 1; |
| } |
| #endif |
| |
| |
| // Check if a Python thread must exit immediately, rather than taking the GIL |
| // if Py_Finalize() has been called. |
| // |
| // When this function is called by a daemon thread after Py_Finalize() has been |
| // called, the GIL does no longer exist. |
| // |
| // tstate can be a dangling pointer (point to freed memory): only tstate value |
| // is used, the pointer is not deferenced. |
| // |
| // tstate must be non-NULL. |
| int |
| _PyThreadState_MustExit(PyThreadState *tstate) |
| { |
| /* bpo-39877: Access _PyRuntime directly rather than using |
| tstate->interp->runtime to support calls from Python daemon threads. |
| After Py_Finalize() has been called, tstate can be a dangling pointer: |
| point to PyThreadState freed memory. */ |
| unsigned long finalizing_id = _PyRuntimeState_GetFinalizingID(&_PyRuntime); |
| PyThreadState *finalizing = _PyRuntimeState_GetFinalizing(&_PyRuntime); |
| if (finalizing == NULL) { |
| // XXX This isn't completely safe from daemon thraeds, |
| // since tstate might be a dangling pointer. |
| finalizing = _PyInterpreterState_GetFinalizing(tstate->interp); |
| finalizing_id = _PyInterpreterState_GetFinalizingID(tstate->interp); |
| } |
| // XXX else check &_PyRuntime._main_interpreter._initial_thread |
| if (finalizing == NULL) { |
| return 0; |
| } |
| else if (finalizing == tstate) { |
| return 0; |
| } |
| else if (finalizing_id == PyThread_get_thread_ident()) { |
| /* gh-109793: we must have switched interpreters. */ |
| return 0; |
| } |
| return 1; |
| } |
| |
| |
| #ifdef __cplusplus |
| } |
| #endif |