| #include "Python.h" |
| #include "pycore_initconfig.h" // _PyStatus_ERR |
| #include "pycore_pystate.h" // _Py_AssertHoldsTstate() |
| #include "pycore_runtime.h" // _PyRuntime |
| #include "pycore_time.h" // PyTime_t |
| |
| #include <time.h> // gmtime_r() |
| #ifdef HAVE_SYS_TIME_H |
| # include <sys/time.h> // gettimeofday() |
| #endif |
| #ifdef MS_WINDOWS |
| # include <winsock2.h> // struct timeval |
| #endif |
| |
| #if defined(__APPLE__) |
| # include <mach/mach_time.h> // mach_absolute_time(), mach_timebase_info() |
| |
| #if defined(__APPLE__) && defined(__has_builtin) |
| # if __has_builtin(__builtin_available) |
| # define HAVE_CLOCK_GETTIME_RUNTIME __builtin_available(macOS 10.12, iOS 10.0, tvOS 10.0, watchOS 3.0, *) |
| # endif |
| #endif |
| #endif |
| |
| /* To millisecond (10^-3) */ |
| #define SEC_TO_MS 1000 |
| |
| /* To microseconds (10^-6) */ |
| #define MS_TO_US 1000 |
| #define SEC_TO_US (SEC_TO_MS * MS_TO_US) |
| |
| /* To nanoseconds (10^-9) */ |
| #define US_TO_NS 1000 |
| #define MS_TO_NS (MS_TO_US * US_TO_NS) |
| #define SEC_TO_NS (SEC_TO_MS * MS_TO_NS) |
| |
| /* Conversion from nanoseconds */ |
| #define NS_TO_MS (1000 * 1000) |
| #define NS_TO_US (1000) |
| #define NS_TO_100NS (100) |
| |
| #if SIZEOF_TIME_T == SIZEOF_LONG_LONG |
| # define PY_TIME_T_MAX LLONG_MAX |
| # define PY_TIME_T_MIN LLONG_MIN |
| #elif SIZEOF_TIME_T == SIZEOF_LONG |
| # define PY_TIME_T_MAX LONG_MAX |
| # define PY_TIME_T_MIN LONG_MIN |
| #else |
| # error "unsupported time_t size" |
| #endif |
| |
| #if PY_TIME_T_MAX + PY_TIME_T_MIN != -1 |
| # error "time_t is not a two's complement integer type" |
| #endif |
| |
| #if PyTime_MIN + PyTime_MAX != -1 |
| # error "PyTime_t is not a two's complement integer type" |
| #endif |
| |
| |
| static PyTime_t |
| _PyTime_GCD(PyTime_t x, PyTime_t y) |
| { |
| // Euclidean algorithm |
| assert(x >= 1); |
| assert(y >= 1); |
| while (y != 0) { |
| PyTime_t tmp = y; |
| y = x % y; |
| x = tmp; |
| } |
| assert(x >= 1); |
| return x; |
| } |
| |
| |
| int |
| _PyTimeFraction_Set(_PyTimeFraction *frac, PyTime_t numer, PyTime_t denom) |
| { |
| if (numer < 1 || denom < 1) { |
| return -1; |
| } |
| |
| PyTime_t gcd = _PyTime_GCD(numer, denom); |
| frac->numer = numer / gcd; |
| frac->denom = denom / gcd; |
| return 0; |
| } |
| |
| |
| double |
| _PyTimeFraction_Resolution(const _PyTimeFraction *frac) |
| { |
| return (double)frac->numer / (double)frac->denom / 1e9; |
| } |
| |
| |
| static void |
| pytime_time_t_overflow(void) |
| { |
| PyErr_SetString(PyExc_OverflowError, |
| "timestamp out of range for platform time_t"); |
| } |
| |
| |
| static void |
| pytime_overflow(void) |
| { |
| PyErr_SetString(PyExc_OverflowError, |
| "timestamp too large to convert to C PyTime_t"); |
| } |
| |
| |
| // Compute t1 + t2. Clamp to [PyTime_MIN; PyTime_MAX] on overflow. |
| static inline int |
| pytime_add(PyTime_t *t1, PyTime_t t2) |
| { |
| if (t2 > 0 && *t1 > PyTime_MAX - t2) { |
| *t1 = PyTime_MAX; |
| return -1; |
| } |
| else if (t2 < 0 && *t1 < PyTime_MIN - t2) { |
| *t1 = PyTime_MIN; |
| return -1; |
| } |
| else { |
| *t1 += t2; |
| return 0; |
| } |
| } |
| |
| |
| PyTime_t |
| _PyTime_Add(PyTime_t t1, PyTime_t t2) |
| { |
| (void)pytime_add(&t1, t2); |
| return t1; |
| } |
| |
| |
| static inline int |
| pytime_mul_check_overflow(PyTime_t a, PyTime_t b) |
| { |
| if (b != 0) { |
| assert(b > 0); |
| return ((a < PyTime_MIN / b) || (PyTime_MAX / b < a)); |
| } |
| else { |
| return 0; |
| } |
| } |
| |
| |
| // Compute t * k. Clamp to [PyTime_MIN; PyTime_MAX] on overflow. |
| static inline int |
| pytime_mul(PyTime_t *t, PyTime_t k) |
| { |
| assert(k >= 0); |
| if (pytime_mul_check_overflow(*t, k)) { |
| *t = (*t >= 0) ? PyTime_MAX : PyTime_MIN; |
| return -1; |
| } |
| else { |
| *t *= k; |
| return 0; |
| } |
| } |
| |
| |
| // Compute t * k. Clamp to [PyTime_MIN; PyTime_MAX] on overflow. |
| static inline PyTime_t |
| _PyTime_Mul(PyTime_t t, PyTime_t k) |
| { |
| (void)pytime_mul(&t, k); |
| return t; |
| } |
| |
| |
| PyTime_t |
| _PyTimeFraction_Mul(PyTime_t ticks, const _PyTimeFraction *frac) |
| { |
| const PyTime_t mul = frac->numer; |
| const PyTime_t div = frac->denom; |
| |
| if (div == 1) { |
| // Fast-path taken by mach_absolute_time() with 1/1 time base. |
| return _PyTime_Mul(ticks, mul); |
| } |
| |
| /* Compute (ticks * mul / div) in two parts to reduce the risk of integer |
| overflow: compute the integer part, and then the remaining part. |
| |
| (ticks * mul) / div == (ticks / div) * mul + (ticks % div) * mul / div |
| */ |
| PyTime_t intpart, remaining; |
| intpart = ticks / div; |
| ticks %= div; |
| remaining = _PyTime_Mul(ticks, mul) / div; |
| // intpart * mul + remaining |
| return _PyTime_Add(_PyTime_Mul(intpart, mul), remaining); |
| } |
| |
| |
| time_t |
| _PyLong_AsTime_t(PyObject *obj) |
| { |
| #if SIZEOF_TIME_T == SIZEOF_LONG_LONG |
| long long val = PyLong_AsLongLong(obj); |
| #elif SIZEOF_TIME_T <= SIZEOF_LONG |
| long val = PyLong_AsLong(obj); |
| #else |
| # error "unsupported time_t size" |
| #endif |
| if (val == -1 && PyErr_Occurred()) { |
| if (PyErr_ExceptionMatches(PyExc_OverflowError)) { |
| pytime_time_t_overflow(); |
| } |
| return -1; |
| } |
| return (time_t)val; |
| } |
| |
| |
| PyObject * |
| _PyLong_FromTime_t(time_t t) |
| { |
| #if SIZEOF_TIME_T == SIZEOF_LONG_LONG |
| return PyLong_FromLongLong((long long)t); |
| #elif SIZEOF_TIME_T <= SIZEOF_LONG |
| return PyLong_FromLong((long)t); |
| #else |
| # error "unsupported time_t size" |
| #endif |
| } |
| |
| |
| // Convert PyTime_t to time_t. |
| // Return 0 on success. Return -1 and clamp the value on overflow. |
| static int |
| _PyTime_AsTime_t(PyTime_t t, time_t *t2) |
| { |
| #if SIZEOF_TIME_T < _SIZEOF_PYTIME_T |
| if ((PyTime_t)PY_TIME_T_MAX < t) { |
| *t2 = PY_TIME_T_MAX; |
| return -1; |
| } |
| if (t < (PyTime_t)PY_TIME_T_MIN) { |
| *t2 = PY_TIME_T_MIN; |
| return -1; |
| } |
| #endif |
| *t2 = (time_t)t; |
| return 0; |
| } |
| |
| |
| #ifdef MS_WINDOWS |
| // Convert PyTime_t to long. |
| // Return 0 on success. Return -1 and clamp the value on overflow. |
| static int |
| _PyTime_AsCLong(PyTime_t t, long *t2) |
| { |
| #if SIZEOF_LONG < _SIZEOF_PYTIME_T |
| if ((PyTime_t)LONG_MAX < t) { |
| *t2 = LONG_MAX; |
| return -1; |
| } |
| if (t < (PyTime_t)LONG_MIN) { |
| *t2 = LONG_MIN; |
| return -1; |
| } |
| #endif |
| *t2 = (long)t; |
| return 0; |
| } |
| #endif |
| |
| |
| /* Round to nearest with ties going to nearest even integer |
| (_PyTime_ROUND_HALF_EVEN) */ |
| static double |
| pytime_round_half_even(double x) |
| { |
| double rounded = round(x); |
| if (fabs(x-rounded) == 0.5) { |
| /* halfway case: round to even */ |
| rounded = 2.0 * round(x / 2.0); |
| } |
| return rounded; |
| } |
| |
| |
| static double |
| pytime_round(double x, _PyTime_round_t round) |
| { |
| /* volatile avoids optimization changing how numbers are rounded */ |
| volatile double d; |
| |
| d = x; |
| if (round == _PyTime_ROUND_HALF_EVEN) { |
| d = pytime_round_half_even(d); |
| } |
| else if (round == _PyTime_ROUND_CEILING) { |
| d = ceil(d); |
| } |
| else if (round == _PyTime_ROUND_FLOOR) { |
| d = floor(d); |
| } |
| else { |
| assert(round == _PyTime_ROUND_UP); |
| d = (d >= 0.0) ? ceil(d) : floor(d); |
| } |
| return d; |
| } |
| |
| |
| static int |
| pytime_double_to_denominator(double d, time_t *sec, long *numerator, |
| long idenominator, _PyTime_round_t round) |
| { |
| double denominator = (double)idenominator; |
| double intpart; |
| /* volatile avoids optimization changing how numbers are rounded */ |
| volatile double floatpart; |
| |
| floatpart = modf(d, &intpart); |
| |
| floatpart *= denominator; |
| floatpart = pytime_round(floatpart, round); |
| if (floatpart >= denominator) { |
| floatpart -= denominator; |
| intpart += 1.0; |
| } |
| else if (floatpart < 0) { |
| floatpart += denominator; |
| intpart -= 1.0; |
| } |
| assert(0.0 <= floatpart && floatpart < denominator); |
| |
| /* |
| Conversion of an out-of-range value to time_t gives undefined behaviour |
| (C99 §6.3.1.4p1), so we must guard against it. However, checking that |
| `intpart` is in range is delicate: the obvious expression `intpart <= |
| PY_TIME_T_MAX` will first convert the value `PY_TIME_T_MAX` to a double, |
| potentially changing its value and leading to us failing to catch some |
| UB-inducing values. The code below works correctly under the mild |
| assumption that time_t is a two's complement integer type with no trap |
| representation, and that `PY_TIME_T_MIN` is within the representable |
| range of a C double. |
| |
| Note: we want the `if` condition below to be true for NaNs; therefore, |
| resist any temptation to simplify by applying De Morgan's laws. |
| */ |
| if (!((double)PY_TIME_T_MIN <= intpart && intpart < -(double)PY_TIME_T_MIN)) { |
| pytime_time_t_overflow(); |
| return -1; |
| } |
| *sec = (time_t)intpart; |
| *numerator = (long)floatpart; |
| assert(0 <= *numerator && *numerator < idenominator); |
| return 0; |
| } |
| |
| |
| static int |
| pytime_object_to_denominator(PyObject *obj, time_t *sec, long *numerator, |
| long denominator, _PyTime_round_t round) |
| { |
| assert(denominator >= 1); |
| |
| if (PyFloat_Check(obj)) { |
| double d = PyFloat_AsDouble(obj); |
| if (isnan(d)) { |
| *numerator = 0; |
| PyErr_SetString(PyExc_ValueError, "Invalid value NaN (not a number)"); |
| return -1; |
| } |
| return pytime_double_to_denominator(d, sec, numerator, |
| denominator, round); |
| } |
| else { |
| *sec = _PyLong_AsTime_t(obj); |
| *numerator = 0; |
| if (*sec == (time_t)-1 && PyErr_Occurred()) { |
| if (PyErr_ExceptionMatches(PyExc_TypeError)) { |
| PyErr_Format(PyExc_TypeError, |
| "argument must be int or float, not %T", obj); |
| } |
| return -1; |
| } |
| return 0; |
| } |
| } |
| |
| |
| int |
| _PyTime_ObjectToTime_t(PyObject *obj, time_t *sec, _PyTime_round_t round) |
| { |
| if (PyFloat_Check(obj)) { |
| double intpart; |
| /* volatile avoids optimization changing how numbers are rounded */ |
| volatile double d; |
| |
| d = PyFloat_AsDouble(obj); |
| if (isnan(d)) { |
| PyErr_SetString(PyExc_ValueError, "Invalid value NaN (not a number)"); |
| return -1; |
| } |
| |
| d = pytime_round(d, round); |
| (void)modf(d, &intpart); |
| |
| /* See comments in pytime_double_to_denominator */ |
| if (!((double)PY_TIME_T_MIN <= intpart && intpart < -(double)PY_TIME_T_MIN)) { |
| pytime_time_t_overflow(); |
| return -1; |
| } |
| *sec = (time_t)intpart; |
| return 0; |
| } |
| else { |
| *sec = _PyLong_AsTime_t(obj); |
| if (*sec == (time_t)-1 && PyErr_Occurred()) { |
| return -1; |
| } |
| return 0; |
| } |
| } |
| |
| |
| int |
| _PyTime_ObjectToTimespec(PyObject *obj, time_t *sec, long *nsec, |
| _PyTime_round_t round) |
| { |
| return pytime_object_to_denominator(obj, sec, nsec, SEC_TO_NS, round); |
| } |
| |
| |
| int |
| _PyTime_ObjectToTimeval(PyObject *obj, time_t *sec, long *usec, |
| _PyTime_round_t round) |
| { |
| return pytime_object_to_denominator(obj, sec, usec, SEC_TO_US, round); |
| } |
| |
| |
| PyTime_t |
| _PyTime_FromSeconds(int seconds) |
| { |
| /* ensure that integer overflow cannot happen, int type should have 32 |
| bits, whereas PyTime_t type has at least 64 bits (SEC_TO_NS takes 30 |
| bits). */ |
| static_assert(INT_MAX <= PyTime_MAX / SEC_TO_NS, "PyTime_t overflow"); |
| static_assert(INT_MIN >= PyTime_MIN / SEC_TO_NS, "PyTime_t underflow"); |
| |
| PyTime_t t = (PyTime_t)seconds; |
| assert((t >= 0 && t <= PyTime_MAX / SEC_TO_NS) |
| || (t < 0 && t >= PyTime_MIN / SEC_TO_NS)); |
| t *= SEC_TO_NS; |
| return t; |
| } |
| |
| |
| PyTime_t |
| _PyTime_FromMicrosecondsClamp(PyTime_t us) |
| { |
| PyTime_t ns = _PyTime_Mul(us, US_TO_NS); |
| return ns; |
| } |
| |
| |
| int |
| _PyTime_FromLong(PyTime_t *tp, PyObject *obj) |
| { |
| if (!PyLong_Check(obj)) { |
| PyErr_Format(PyExc_TypeError, "expect int, got %s", |
| Py_TYPE(obj)->tp_name); |
| return -1; |
| } |
| |
| static_assert(sizeof(long long) == sizeof(PyTime_t), |
| "PyTime_t is not long long"); |
| long long nsec = PyLong_AsLongLong(obj); |
| if (nsec == -1 && PyErr_Occurred()) { |
| if (PyErr_ExceptionMatches(PyExc_OverflowError)) { |
| pytime_overflow(); |
| } |
| return -1; |
| } |
| |
| PyTime_t t = (PyTime_t)nsec; |
| *tp = t; |
| return 0; |
| } |
| |
| |
| #ifdef HAVE_CLOCK_GETTIME |
| static int |
| pytime_fromtimespec(PyTime_t *tp, const struct timespec *ts, int raise_exc) |
| { |
| PyTime_t t, tv_nsec; |
| |
| static_assert(sizeof(ts->tv_sec) <= sizeof(PyTime_t), |
| "timespec.tv_sec is larger than PyTime_t"); |
| t = (PyTime_t)ts->tv_sec; |
| |
| int res1 = pytime_mul(&t, SEC_TO_NS); |
| |
| tv_nsec = ts->tv_nsec; |
| int res2 = pytime_add(&t, tv_nsec); |
| |
| *tp = t; |
| |
| if (raise_exc && (res1 < 0 || res2 < 0)) { |
| pytime_overflow(); |
| return -1; |
| } |
| return 0; |
| } |
| |
| int |
| _PyTime_FromTimespec(PyTime_t *tp, const struct timespec *ts) |
| { |
| return pytime_fromtimespec(tp, ts, 1); |
| } |
| #endif |
| |
| |
| #ifndef MS_WINDOWS |
| static int |
| pytime_fromtimeval(PyTime_t *tp, struct timeval *tv, int raise_exc) |
| { |
| static_assert(sizeof(tv->tv_sec) <= sizeof(PyTime_t), |
| "timeval.tv_sec is larger than PyTime_t"); |
| PyTime_t t = (PyTime_t)tv->tv_sec; |
| |
| int res1 = pytime_mul(&t, SEC_TO_NS); |
| |
| PyTime_t usec = (PyTime_t)tv->tv_usec * US_TO_NS; |
| int res2 = pytime_add(&t, usec); |
| |
| *tp = t; |
| |
| if (raise_exc && (res1 < 0 || res2 < 0)) { |
| pytime_overflow(); |
| return -1; |
| } |
| return 0; |
| } |
| |
| |
| int |
| _PyTime_FromTimeval(PyTime_t *tp, struct timeval *tv) |
| { |
| return pytime_fromtimeval(tp, tv, 1); |
| } |
| #endif |
| |
| |
| static int |
| pytime_from_double(PyTime_t *tp, double value, _PyTime_round_t round, |
| long unit_to_ns) |
| { |
| /* volatile avoids optimization changing how numbers are rounded */ |
| volatile double d; |
| |
| /* convert to a number of nanoseconds */ |
| d = value; |
| d *= (double)unit_to_ns; |
| d = pytime_round(d, round); |
| |
| /* See comments in pytime_double_to_denominator */ |
| if (!((double)PyTime_MIN <= d && d < -(double)PyTime_MIN)) { |
| pytime_time_t_overflow(); |
| *tp = 0; |
| return -1; |
| } |
| PyTime_t ns = (PyTime_t)d; |
| |
| *tp = ns; |
| return 0; |
| } |
| |
| |
| static int |
| pytime_from_object(PyTime_t *tp, PyObject *obj, _PyTime_round_t round, |
| long unit_to_ns) |
| { |
| if (PyFloat_Check(obj)) { |
| double d; |
| d = PyFloat_AsDouble(obj); |
| if (isnan(d)) { |
| PyErr_SetString(PyExc_ValueError, "Invalid value NaN (not a number)"); |
| return -1; |
| } |
| return pytime_from_double(tp, d, round, unit_to_ns); |
| } |
| |
| long long sec = PyLong_AsLongLong(obj); |
| if (sec == -1 && PyErr_Occurred()) { |
| if (PyErr_ExceptionMatches(PyExc_OverflowError)) { |
| pytime_overflow(); |
| } |
| else if (PyErr_ExceptionMatches(PyExc_TypeError)) { |
| PyErr_Format(PyExc_TypeError, |
| "'%T' object cannot be interpreted as an integer or float", |
| obj); |
| } |
| return -1; |
| } |
| |
| static_assert(sizeof(long long) <= sizeof(PyTime_t), |
| "PyTime_t is smaller than long long"); |
| PyTime_t ns = (PyTime_t)sec; |
| if (pytime_mul(&ns, unit_to_ns) < 0) { |
| pytime_overflow(); |
| return -1; |
| } |
| |
| *tp = ns; |
| return 0; |
| } |
| |
| |
| int |
| _PyTime_FromSecondsObject(PyTime_t *tp, PyObject *obj, _PyTime_round_t round) |
| { |
| return pytime_from_object(tp, obj, round, SEC_TO_NS); |
| } |
| |
| |
| int |
| _PyTime_FromMillisecondsObject(PyTime_t *tp, PyObject *obj, _PyTime_round_t round) |
| { |
| return pytime_from_object(tp, obj, round, MS_TO_NS); |
| } |
| |
| |
| double |
| PyTime_AsSecondsDouble(PyTime_t ns) |
| { |
| /* volatile avoids optimization changing how numbers are rounded */ |
| volatile double d; |
| |
| if (ns % SEC_TO_NS == 0) { |
| /* Divide using integers to avoid rounding issues on the integer part. |
| 1e-9 cannot be stored exactly in IEEE 64-bit. */ |
| PyTime_t secs = ns / SEC_TO_NS; |
| d = (double)secs; |
| } |
| else { |
| d = (double)ns; |
| d /= 1e9; |
| } |
| return d; |
| } |
| |
| |
| PyObject * |
| _PyTime_AsLong(PyTime_t ns) |
| { |
| static_assert(sizeof(long long) >= sizeof(PyTime_t), |
| "PyTime_t is larger than long long"); |
| return PyLong_FromLongLong((long long)ns); |
| } |
| |
| int |
| _PyTime_FromSecondsDouble(double seconds, _PyTime_round_t round, PyTime_t *result) |
| { |
| return pytime_from_double(result, seconds, round, SEC_TO_NS); |
| } |
| |
| |
| static PyTime_t |
| pytime_divide_round_up(const PyTime_t t, const PyTime_t k) |
| { |
| assert(k > 1); |
| if (t >= 0) { |
| // Don't use (t + k - 1) / k to avoid integer overflow |
| // if t is equal to PyTime_MAX |
| PyTime_t q = t / k; |
| if (t % k) { |
| q += 1; |
| } |
| return q; |
| } |
| else { |
| // Don't use (t - (k - 1)) / k to avoid integer overflow |
| // if t is equals to PyTime_MIN. |
| PyTime_t q = t / k; |
| if (t % k) { |
| q -= 1; |
| } |
| return q; |
| } |
| } |
| |
| |
| static PyTime_t |
| pytime_divide(const PyTime_t t, const PyTime_t k, |
| const _PyTime_round_t round) |
| { |
| assert(k > 1); |
| if (round == _PyTime_ROUND_HALF_EVEN) { |
| PyTime_t x = t / k; |
| PyTime_t r = t % k; |
| PyTime_t abs_r = Py_ABS(r); |
| if (abs_r > k / 2 || (abs_r == k / 2 && (Py_ABS(x) & 1))) { |
| if (t >= 0) { |
| x++; |
| } |
| else { |
| x--; |
| } |
| } |
| return x; |
| } |
| else if (round == _PyTime_ROUND_CEILING) { |
| if (t >= 0) { |
| return pytime_divide_round_up(t, k); |
| } |
| else { |
| return t / k; |
| } |
| } |
| else if (round == _PyTime_ROUND_FLOOR){ |
| if (t >= 0) { |
| return t / k; |
| } |
| else { |
| return pytime_divide_round_up(t, k); |
| } |
| } |
| else { |
| assert(round == _PyTime_ROUND_UP); |
| return pytime_divide_round_up(t, k); |
| } |
| } |
| |
| |
| // Compute (t / k, t % k) in (pq, pr). |
| // Make sure that 0 <= pr < k. |
| // Return 0 on success. |
| // Return -1 on underflow and store (PyTime_MIN, 0) in (pq, pr). |
| static int |
| pytime_divmod(const PyTime_t t, const PyTime_t k, |
| PyTime_t *pq, PyTime_t *pr) |
| { |
| assert(k > 1); |
| PyTime_t q = t / k; |
| PyTime_t r = t % k; |
| if (r < 0) { |
| if (q == PyTime_MIN) { |
| *pq = PyTime_MIN; |
| *pr = 0; |
| return -1; |
| } |
| r += k; |
| q -= 1; |
| } |
| assert(0 <= r && r < k); |
| |
| *pq = q; |
| *pr = r; |
| return 0; |
| } |
| |
| |
| #ifdef MS_WINDOWS |
| PyTime_t |
| _PyTime_As100Nanoseconds(PyTime_t ns, _PyTime_round_t round) |
| { |
| return pytime_divide(ns, NS_TO_100NS, round); |
| } |
| #endif |
| |
| |
| PyTime_t |
| _PyTime_AsMicroseconds(PyTime_t ns, _PyTime_round_t round) |
| { |
| return pytime_divide(ns, NS_TO_US, round); |
| } |
| |
| |
| PyTime_t |
| _PyTime_AsMilliseconds(PyTime_t ns, _PyTime_round_t round) |
| { |
| return pytime_divide(ns, NS_TO_MS, round); |
| } |
| |
| |
| static int |
| pytime_as_timeval(PyTime_t ns, PyTime_t *ptv_sec, int *ptv_usec, |
| _PyTime_round_t round) |
| { |
| PyTime_t us = pytime_divide(ns, US_TO_NS, round); |
| |
| PyTime_t tv_sec, tv_usec; |
| int res = pytime_divmod(us, SEC_TO_US, &tv_sec, &tv_usec); |
| *ptv_sec = tv_sec; |
| *ptv_usec = (int)tv_usec; |
| return res; |
| } |
| |
| |
| static int |
| pytime_as_timeval_struct(PyTime_t t, struct timeval *tv, |
| _PyTime_round_t round, int raise_exc) |
| { |
| PyTime_t tv_sec; |
| int tv_usec; |
| int res = pytime_as_timeval(t, &tv_sec, &tv_usec, round); |
| int res2; |
| #ifdef MS_WINDOWS |
| // On Windows, timeval.tv_sec type is long |
| res2 = _PyTime_AsCLong(tv_sec, &tv->tv_sec); |
| #else |
| res2 = _PyTime_AsTime_t(tv_sec, &tv->tv_sec); |
| #endif |
| if (res2 < 0) { |
| tv_usec = 0; |
| } |
| tv->tv_usec = tv_usec; |
| |
| if (raise_exc && (res < 0 || res2 < 0)) { |
| pytime_time_t_overflow(); |
| return -1; |
| } |
| return 0; |
| } |
| |
| |
| int |
| _PyTime_AsTimeval(PyTime_t t, struct timeval *tv, _PyTime_round_t round) |
| { |
| return pytime_as_timeval_struct(t, tv, round, 1); |
| } |
| |
| |
| void |
| _PyTime_AsTimeval_clamp(PyTime_t t, struct timeval *tv, _PyTime_round_t round) |
| { |
| (void)pytime_as_timeval_struct(t, tv, round, 0); |
| } |
| |
| |
| int |
| _PyTime_AsTimevalTime_t(PyTime_t t, time_t *p_secs, int *us, |
| _PyTime_round_t round) |
| { |
| PyTime_t secs; |
| if (pytime_as_timeval(t, &secs, us, round) < 0) { |
| pytime_time_t_overflow(); |
| return -1; |
| } |
| |
| if (_PyTime_AsTime_t(secs, p_secs) < 0) { |
| pytime_time_t_overflow(); |
| return -1; |
| } |
| return 0; |
| } |
| |
| |
| #if defined(HAVE_CLOCK_GETTIME) || defined(HAVE_KQUEUE) |
| static int |
| pytime_as_timespec(PyTime_t ns, struct timespec *ts, int raise_exc) |
| { |
| PyTime_t tv_sec, tv_nsec; |
| int res = pytime_divmod(ns, SEC_TO_NS, &tv_sec, &tv_nsec); |
| |
| int res2 = _PyTime_AsTime_t(tv_sec, &ts->tv_sec); |
| if (res2 < 0) { |
| tv_nsec = 0; |
| } |
| ts->tv_nsec = tv_nsec; |
| |
| if (raise_exc && (res < 0 || res2 < 0)) { |
| pytime_time_t_overflow(); |
| return -1; |
| } |
| return 0; |
| } |
| |
| void |
| _PyTime_AsTimespec_clamp(PyTime_t t, struct timespec *ts) |
| { |
| (void)pytime_as_timespec(t, ts, 0); |
| } |
| |
| int |
| _PyTime_AsTimespec(PyTime_t t, struct timespec *ts) |
| { |
| return pytime_as_timespec(t, ts, 1); |
| } |
| #endif |
| |
| |
| // N.B. If raise_exc=0, this may be called without a thread state. |
| static int |
| py_get_system_clock(PyTime_t *tp, _Py_clock_info_t *info, int raise_exc) |
| { |
| assert(info == NULL || raise_exc); |
| if (raise_exc) { |
| // raise_exc requires to hold a thread state |
| _Py_AssertHoldsTstate(); |
| } |
| |
| #ifdef MS_WINDOWS |
| FILETIME system_time; |
| ULARGE_INTEGER large; |
| |
| GetSystemTimePreciseAsFileTime(&system_time); |
| large.u.LowPart = system_time.dwLowDateTime; |
| large.u.HighPart = system_time.dwHighDateTime; |
| /* 11,644,473,600,000,000,000: number of nanoseconds between |
| the 1st january 1601 and the 1st january 1970 (369 years + 89 leap |
| days). */ |
| PyTime_t ns = (large.QuadPart - 116444736000000000) * 100; |
| *tp = ns; |
| if (info) { |
| // GetSystemTimePreciseAsFileTime() is implemented using |
| // QueryPerformanceCounter() internally. |
| info->implementation = "GetSystemTimePreciseAsFileTime()"; |
| info->monotonic = 0; |
| info->resolution = _PyTimeFraction_Resolution(&_PyRuntime.time.base); |
| info->adjustable = 1; |
| } |
| |
| #else /* MS_WINDOWS */ |
| int err; |
| #if defined(HAVE_CLOCK_GETTIME) |
| struct timespec ts; |
| #endif |
| |
| #if !defined(HAVE_CLOCK_GETTIME) || defined(__APPLE__) |
| struct timeval tv; |
| #endif |
| |
| #ifdef HAVE_CLOCK_GETTIME |
| |
| #ifdef HAVE_CLOCK_GETTIME_RUNTIME |
| if (HAVE_CLOCK_GETTIME_RUNTIME) { |
| #endif |
| |
| err = clock_gettime(CLOCK_REALTIME, &ts); |
| if (err) { |
| if (raise_exc) { |
| PyErr_SetFromErrno(PyExc_OSError); |
| } |
| return -1; |
| } |
| if (pytime_fromtimespec(tp, &ts, raise_exc) < 0) { |
| return -1; |
| } |
| |
| if (info) { |
| struct timespec res; |
| info->implementation = "clock_gettime(CLOCK_REALTIME)"; |
| info->monotonic = 0; |
| info->adjustable = 1; |
| if (clock_getres(CLOCK_REALTIME, &res) == 0) { |
| info->resolution = (double)res.tv_sec + (double)res.tv_nsec * 1e-9; |
| } |
| else { |
| info->resolution = 1e-9; |
| } |
| } |
| |
| #ifdef HAVE_CLOCK_GETTIME_RUNTIME |
| } |
| else { |
| #endif |
| |
| #endif |
| |
| #if !defined(HAVE_CLOCK_GETTIME) || defined(HAVE_CLOCK_GETTIME_RUNTIME) |
| |
| /* test gettimeofday() */ |
| err = gettimeofday(&tv, (struct timezone *)NULL); |
| if (err) { |
| if (raise_exc) { |
| PyErr_SetFromErrno(PyExc_OSError); |
| } |
| return -1; |
| } |
| if (pytime_fromtimeval(tp, &tv, raise_exc) < 0) { |
| return -1; |
| } |
| |
| if (info) { |
| info->implementation = "gettimeofday()"; |
| info->resolution = 1e-6; |
| info->monotonic = 0; |
| info->adjustable = 1; |
| } |
| |
| #if defined(HAVE_CLOCK_GETTIME_RUNTIME) && defined(HAVE_CLOCK_GETTIME) |
| } /* end of availability block */ |
| #endif |
| |
| #endif /* !HAVE_CLOCK_GETTIME */ |
| #endif /* !MS_WINDOWS */ |
| return 0; |
| } |
| |
| |
| int |
| PyTime_Time(PyTime_t *result) |
| { |
| if (py_get_system_clock(result, NULL, 1) < 0) { |
| *result = 0; |
| return -1; |
| } |
| return 0; |
| } |
| |
| |
| int |
| PyTime_TimeRaw(PyTime_t *result) |
| { |
| if (py_get_system_clock(result, NULL, 0) < 0) { |
| *result = 0; |
| return -1; |
| } |
| return 0; |
| } |
| |
| |
| int |
| _PyTime_TimeWithInfo(PyTime_t *t, _Py_clock_info_t *info) |
| { |
| return py_get_system_clock(t, info, 1); |
| } |
| |
| |
| #ifdef MS_WINDOWS |
| static PyStatus |
| py_win_perf_counter_frequency(_PyTimeFraction *base) |
| { |
| LARGE_INTEGER freq; |
| // Since Windows XP, the function cannot fail. |
| (void)QueryPerformanceFrequency(&freq); |
| LONGLONG frequency = freq.QuadPart; |
| |
| // Since Windows XP, frequency cannot be zero. |
| assert(frequency >= 1); |
| |
| Py_BUILD_ASSERT(sizeof(PyTime_t) == sizeof(frequency)); |
| PyTime_t denom = (PyTime_t)frequency; |
| |
| // Known QueryPerformanceFrequency() values: |
| // |
| // * 10,000,000 (10 MHz): 100 ns resolution |
| // * 3,579,545 Hz (3.6 MHz): 279 ns resolution |
| if (_PyTimeFraction_Set(base, SEC_TO_NS, denom) < 0) { |
| return _PyStatus_ERR("invalid QueryPerformanceFrequency"); |
| } |
| return PyStatus_Ok(); |
| } |
| |
| |
| // N.B. If raise_exc=0, this may be called without the GIL. |
| static int |
| py_get_win_perf_counter(PyTime_t *tp, _Py_clock_info_t *info, int raise_exc) |
| { |
| assert(info == NULL || raise_exc); |
| |
| if (info) { |
| info->implementation = "QueryPerformanceCounter()"; |
| info->resolution = _PyTimeFraction_Resolution(&_PyRuntime.time.base); |
| info->monotonic = 1; |
| info->adjustable = 0; |
| } |
| |
| LARGE_INTEGER now; |
| QueryPerformanceCounter(&now); |
| LONGLONG ticksll = now.QuadPart; |
| |
| /* Make sure that casting LONGLONG to PyTime_t cannot overflow, |
| both types are signed */ |
| PyTime_t ticks; |
| static_assert(sizeof(ticksll) <= sizeof(ticks), |
| "LONGLONG is larger than PyTime_t"); |
| ticks = (PyTime_t)ticksll; |
| |
| *tp = _PyTimeFraction_Mul(ticks, &_PyRuntime.time.base); |
| return 0; |
| } |
| #endif // MS_WINDOWS |
| |
| |
| #ifdef __APPLE__ |
| static PyStatus |
| py_mach_timebase_info(_PyTimeFraction *base) |
| { |
| mach_timebase_info_data_t timebase; |
| // According to the Technical Q&A QA1398, mach_timebase_info() cannot |
| // fail: https://developer.apple.com/library/mac/#qa/qa1398/ |
| (void)mach_timebase_info(&timebase); |
| |
| // Check that timebase.numer and timebase.denom can be casted to |
| // PyTime_t. In practice, timebase uses uint32_t, so casting cannot |
| // overflow. At the end, only make sure that the type is uint32_t |
| // (PyTime_t is 64-bit long). |
| Py_BUILD_ASSERT(sizeof(timebase.numer) <= sizeof(PyTime_t)); |
| Py_BUILD_ASSERT(sizeof(timebase.denom) <= sizeof(PyTime_t)); |
| PyTime_t numer = (PyTime_t)timebase.numer; |
| PyTime_t denom = (PyTime_t)timebase.denom; |
| |
| // Known time bases: |
| // |
| // * (1, 1) on Intel: 1 ns |
| // * (1000000000, 33333335) on PowerPC: ~30 ns |
| // * (1000000000, 25000000) on PowerPC: 40 ns |
| if (_PyTimeFraction_Set(base, numer, denom) < 0) { |
| return _PyStatus_ERR("invalid mach_timebase_info"); |
| } |
| return PyStatus_Ok(); |
| } |
| #endif |
| |
| PyStatus |
| _PyTime_Init(struct _Py_time_runtime_state *state) |
| { |
| #ifdef MS_WINDOWS |
| return py_win_perf_counter_frequency(&state->base); |
| #elif defined(__APPLE__) |
| return py_mach_timebase_info(&state->base); |
| #else |
| return PyStatus_Ok(); |
| #endif |
| } |
| |
| // N.B. If raise_exc=0, this may be called without a thread state. |
| static int |
| py_get_monotonic_clock(PyTime_t *tp, _Py_clock_info_t *info, int raise_exc) |
| { |
| assert(info == NULL || raise_exc); |
| if (raise_exc) { |
| // raise_exc requires to hold a thread state |
| _Py_AssertHoldsTstate(); |
| } |
| |
| #if defined(MS_WINDOWS) |
| if (py_get_win_perf_counter(tp, info, raise_exc) < 0) { |
| return -1; |
| } |
| #elif defined(__APPLE__) |
| if (info) { |
| info->implementation = "mach_absolute_time()"; |
| info->resolution = _PyTimeFraction_Resolution(&_PyRuntime.time.base); |
| info->monotonic = 1; |
| info->adjustable = 0; |
| } |
| |
| uint64_t uticks = mach_absolute_time(); |
| // unsigned => signed |
| assert(uticks <= (uint64_t)PyTime_MAX); |
| PyTime_t ticks = (PyTime_t)uticks; |
| |
| PyTime_t ns = _PyTimeFraction_Mul(ticks, &_PyRuntime.time.base); |
| *tp = ns; |
| |
| #elif defined(__hpux) |
| hrtime_t time = gethrtime(); |
| if (time == -1) { |
| if (raise_exc) { |
| PyErr_SetFromErrno(PyExc_OSError); |
| } |
| return -1; |
| } |
| |
| *tp = time; |
| |
| if (info) { |
| info->implementation = "gethrtime()"; |
| info->resolution = 1e-9; |
| info->monotonic = 1; |
| info->adjustable = 0; |
| } |
| |
| #else |
| |
| #ifdef CLOCK_HIGHRES |
| const clockid_t clk_id = CLOCK_HIGHRES; |
| const char *implementation = "clock_gettime(CLOCK_HIGHRES)"; |
| #else |
| const clockid_t clk_id = CLOCK_MONOTONIC; |
| const char *implementation = "clock_gettime(CLOCK_MONOTONIC)"; |
| #endif |
| |
| struct timespec ts; |
| if (clock_gettime(clk_id, &ts) != 0) { |
| if (raise_exc) { |
| PyErr_SetFromErrno(PyExc_OSError); |
| return -1; |
| } |
| return -1; |
| } |
| |
| if (pytime_fromtimespec(tp, &ts, raise_exc) < 0) { |
| return -1; |
| } |
| |
| if (info) { |
| info->monotonic = 1; |
| info->implementation = implementation; |
| info->adjustable = 0; |
| struct timespec res; |
| if (clock_getres(clk_id, &res) != 0) { |
| PyErr_SetFromErrno(PyExc_OSError); |
| return -1; |
| } |
| info->resolution = res.tv_sec + res.tv_nsec * 1e-9; |
| } |
| #endif |
| return 0; |
| } |
| |
| |
| int |
| PyTime_Monotonic(PyTime_t *result) |
| { |
| if (py_get_monotonic_clock(result, NULL, 1) < 0) { |
| *result = 0; |
| return -1; |
| } |
| return 0; |
| } |
| |
| |
| int |
| PyTime_MonotonicRaw(PyTime_t *result) |
| { |
| if (py_get_monotonic_clock(result, NULL, 0) < 0) { |
| *result = 0; |
| return -1; |
| } |
| return 0; |
| } |
| |
| |
| int |
| _PyTime_MonotonicWithInfo(PyTime_t *tp, _Py_clock_info_t *info) |
| { |
| return py_get_monotonic_clock(tp, info, 1); |
| } |
| |
| |
| int |
| _PyTime_PerfCounterWithInfo(PyTime_t *t, _Py_clock_info_t *info) |
| { |
| return _PyTime_MonotonicWithInfo(t, info); |
| } |
| |
| |
| int |
| PyTime_PerfCounter(PyTime_t *result) |
| { |
| return PyTime_Monotonic(result); |
| } |
| |
| |
| int |
| PyTime_PerfCounterRaw(PyTime_t *result) |
| { |
| return PyTime_MonotonicRaw(result); |
| } |
| |
| |
| int |
| _PyTime_localtime(time_t t, struct tm *tm) |
| { |
| #ifdef MS_WINDOWS |
| int error; |
| |
| error = localtime_s(tm, &t); |
| if (error != 0) { |
| errno = error; |
| PyErr_SetFromErrno(PyExc_OSError); |
| return -1; |
| } |
| return 0; |
| #else /* !MS_WINDOWS */ |
| |
| #if defined(_AIX) && (SIZEOF_TIME_T < 8) |
| /* bpo-34373: AIX does not return NULL if t is too small or too large */ |
| if (t < -2145916800 /* 1902-01-01 */ |
| || t > 2145916800 /* 2038-01-01 */) { |
| errno = EINVAL; |
| PyErr_SetString(PyExc_OverflowError, |
| "localtime argument out of range"); |
| return -1; |
| } |
| #endif |
| |
| errno = 0; |
| if (localtime_r(&t, tm) == NULL) { |
| if (errno == 0) { |
| errno = EINVAL; |
| } |
| PyErr_SetFromErrno(PyExc_OSError); |
| return -1; |
| } |
| return 0; |
| #endif /* MS_WINDOWS */ |
| } |
| |
| |
| int |
| _PyTime_gmtime(time_t t, struct tm *tm) |
| { |
| #ifdef MS_WINDOWS |
| int error; |
| |
| error = gmtime_s(tm, &t); |
| if (error != 0) { |
| errno = error; |
| PyErr_SetFromErrno(PyExc_OSError); |
| return -1; |
| } |
| return 0; |
| #else /* !MS_WINDOWS */ |
| if (gmtime_r(&t, tm) == NULL) { |
| #ifdef EINVAL |
| if (errno == 0) { |
| errno = EINVAL; |
| } |
| #endif |
| PyErr_SetFromErrno(PyExc_OSError); |
| return -1; |
| } |
| return 0; |
| #endif /* MS_WINDOWS */ |
| } |
| |
| |
| PyTime_t |
| _PyDeadline_Init(PyTime_t timeout) |
| { |
| PyTime_t now; |
| // silently ignore error: cannot report error to the caller |
| (void)PyTime_MonotonicRaw(&now); |
| return _PyTime_Add(now, timeout); |
| } |
| |
| |
| PyTime_t |
| _PyDeadline_Get(PyTime_t deadline) |
| { |
| PyTime_t now; |
| // silently ignore error: cannot report error to the caller |
| (void)PyTime_MonotonicRaw(&now); |
| return deadline - now; |
| } |