| <!doctype html> |
| <html lang="en" data-theme="light"> |
| <head> |
| <meta charset="UTF-8"> |
| <meta name="viewport" content="width=device-width, initial-scale=1.0"> |
| <title>/tmp/tachyon_selfcontained.py - Heatmap</title> |
| <style> |
| /* ========================================================================== |
| Python Profiler - Shared CSS Foundation |
| Design system shared between Flamegraph and Heatmap viewers |
| ========================================================================== */ |
| |
| /* -------------------------------------------------------------------------- |
| CSS Variables & Theme System |
| -------------------------------------------------------------------------- */ |
| |
| :root { |
| /* Typography */ |
| --font-sans: "Source Sans Pro", "Lucida Grande", "Lucida Sans Unicode", |
| "Geneva", "Verdana", sans-serif; |
| --font-mono: 'SF Mono', 'Monaco', 'Consolas', 'Liberation Mono', monospace; |
| |
| /* Python brand colors (theme-independent) */ |
| --python-blue: #3776ab; |
| --python-blue-light: #4584bb; |
| --python-blue-lighter: #5592cc; |
| --python-gold: #ffd43b; |
| --python-gold-dark: #ffcd02; |
| --python-gold-light: #ffdc5c; |
| |
| /* Heat palette - defined per theme below */ |
| |
| /* Layout */ |
| --sidebar-width: 280px; |
| --sidebar-collapsed: 44px; |
| --topbar-height: 56px; |
| --statusbar-height: 32px; |
| |
| /* Border radius */ |
| --radius-sm: 4px; |
| --radius-md: 8px; |
| --radius-lg: 12px; |
| |
| /* Transitions */ |
| --transition-fast: 0.15s ease; |
| --transition-normal: 0.25s ease; |
| --transition-slow: 0.3s ease; |
| } |
| |
| /* Light theme (default) */ |
| :root, [data-theme="light"] { |
| --bg-primary: #ffffff; |
| --bg-secondary: #f8f9fa; |
| --bg-tertiary: #e9ecef; |
| --border: #e9ecef; |
| --border-subtle: #f0f2f5; |
| |
| --text-primary: #2e3338; |
| --text-secondary: #5a6c7d; |
| --text-muted: #6f767e; |
| |
| --accent: #3776ab; |
| --accent-hover: #2d5aa0; |
| --accent-glow: rgba(55, 118, 171, 0.15); |
| |
| --shadow-sm: 0 1px 3px rgba(0, 0, 0, 0.08); |
| --shadow-md: 0 4px 12px rgba(0, 0, 0, 0.1); |
| --shadow-lg: 0 8px 24px rgba(0, 0, 0, 0.15); |
| |
| --header-gradient: linear-gradient(135deg, #3776ab 0%, #4584bb 100%); |
| |
| /* Light mode heat palette - blue to yellow to orange to red (cold to hot) */ |
| --heat-1: #7ba3d1; |
| --heat-2: #a8d0ef; |
| --heat-3: #d6e9f8; |
| --heat-4: #ffe6a8; |
| --heat-5: #ffd43b; |
| --heat-6: #ffb84d; |
| --heat-7: #ff9966; |
| --heat-8: #ff6347; |
| |
| /* Code view specific */ |
| --code-bg: #ffffff; |
| --code-bg-line: #f8f9fa; |
| --code-border: #e9ecef; |
| --code-text: #2e3338; |
| --code-text-muted: #8b949e; |
| --code-accent: #3776ab; |
| |
| /* Navigation colors */ |
| --nav-caller: #2563eb; |
| --nav-caller-hover: #1d4ed8; |
| --nav-callee: #dc2626; |
| --nav-callee-hover: #b91c1c; |
| |
| /* Specialization status colors */ |
| --spec-high: #4caf50; |
| --spec-high-text: #2e7d32; |
| --spec-high-bg: rgba(76, 175, 80, 0.15); |
| --spec-medium: #ff9800; |
| --spec-medium-text: #e65100; |
| --spec-medium-bg: rgba(255, 152, 0, 0.15); |
| --spec-low: #9e9e9e; |
| --spec-low-text: #616161; |
| --spec-low-bg: rgba(158, 158, 158, 0.15); |
| |
| /* Heatmap span highlighting colors */ |
| --span-hot-base: 255, 100, 50; |
| --span-cold-base: 150, 150, 150; |
| } |
| |
| /* Dark theme */ |
| [data-theme="dark"] { |
| --bg-primary: #0d1117; |
| --bg-secondary: #161b22; |
| --bg-tertiary: #21262d; |
| --border: #30363d; |
| --border-subtle: #21262d; |
| |
| --text-primary: #e6edf3; |
| --text-secondary: #8b949e; |
| --text-muted: #757e8a; |
| |
| --accent: #58a6ff; |
| --accent-hover: #79b8ff; |
| --accent-glow: rgba(88, 166, 255, 0.15); |
| |
| --shadow-sm: 0 1px 3px rgba(0, 0, 0, 0.3); |
| --shadow-md: 0 4px 12px rgba(0, 0, 0, 0.4); |
| --shadow-lg: 0 8px 24px rgba(0, 0, 0, 0.5); |
| |
| --header-gradient: linear-gradient(135deg, #21262d 0%, #30363d 100%); |
| |
| /* Dark mode heat palette - muted colors that provide sufficient contrast with light text */ |
| --heat-1: rgba(74, 123, 167, 0.35); |
| --heat-2: rgba(90, 159, 168, 0.38); |
| --heat-3: rgba(106, 181, 181, 0.40); |
| --heat-4: rgba(126, 196, 136, 0.42); |
| --heat-5: rgba(160, 216, 120, 0.45); |
| --heat-6: rgba(196, 222, 106, 0.48); |
| --heat-7: rgba(244, 212, 77, 0.50); |
| --heat-8: rgba(255, 107, 53, 0.55); |
| |
| /* Code view specific - dark mode */ |
| --code-bg: #0d1117; |
| --code-bg-line: #161b22; |
| --code-border: #30363d; |
| --code-text: #e6edf3; |
| --code-text-muted: #6e7681; |
| --code-accent: #58a6ff; |
| |
| /* Navigation colors - dark theme friendly */ |
| --nav-caller: #58a6ff; |
| --nav-caller-hover: #4184e4; |
| --nav-callee: #f87171; |
| --nav-callee-hover: #e53e3e; |
| |
| /* Specialization status colors - dark theme */ |
| --spec-high: #81c784; |
| --spec-high-text: #81c784; |
| --spec-high-bg: rgba(129, 199, 132, 0.2); |
| --spec-medium: #ffb74d; |
| --spec-medium-text: #ffb74d; |
| --spec-medium-bg: rgba(255, 183, 77, 0.2); |
| --spec-low: #bdbdbd; |
| --spec-low-text: #9e9e9e; |
| --spec-low-bg: rgba(189, 189, 189, 0.15); |
| |
| /* Heatmap span highlighting colors - dark theme */ |
| --span-hot-base: 255, 107, 53; |
| --span-cold-base: 189, 189, 189; |
| } |
| |
| /* -------------------------------------------------------------------------- |
| Base Styles |
| -------------------------------------------------------------------------- */ |
| |
| *, *::before, *::after { |
| box-sizing: border-box; |
| } |
| |
| html, body { |
| margin: 0; |
| padding: 0; |
| } |
| |
| body { |
| font-family: var(--font-sans); |
| font-size: 14px; |
| line-height: 1.6; |
| color: var(--text-primary); |
| background: var(--bg-primary); |
| -webkit-font-smoothing: antialiased; |
| -moz-osx-font-smoothing: grayscale; |
| transition: background var(--transition-normal), color var(--transition-normal); |
| } |
| |
| /* -------------------------------------------------------------------------- |
| Layout Structure |
| -------------------------------------------------------------------------- */ |
| |
| .app-layout { |
| display: flex; |
| flex-direction: column; |
| } |
| |
| /* -------------------------------------------------------------------------- |
| Top Bar |
| -------------------------------------------------------------------------- */ |
| |
| .top-bar { |
| height: var(--topbar-height); |
| background: var(--header-gradient); |
| display: flex; |
| align-items: center; |
| padding: 0 16px; |
| gap: 16px; |
| flex-shrink: 0; |
| box-shadow: 0 2px 10px rgba(55, 118, 171, 0.25); |
| border-bottom: 2px solid var(--python-gold); |
| } |
| |
| /* Brand / Logo */ |
| .brand { |
| display: flex; |
| align-items: center; |
| gap: 12px; |
| color: white; |
| text-decoration: none; |
| flex-shrink: 0; |
| } |
| |
| .brand-logo { |
| display: flex; |
| align-items: center; |
| justify-content: center; |
| width: 48px; |
| height: 40px; |
| flex-shrink: 0; |
| } |
| |
| /* Style the inlined SVG/img inside brand-logo */ |
| .brand-logo svg, |
| .brand-logo img { |
| width: 48px; |
| height: 40px; |
| display: block; |
| object-fit: contain; |
| filter: drop-shadow(0 1px 2px rgba(0, 0, 0, 0.2)); |
| } |
| |
| .brand-info { |
| display: flex; |
| flex-direction: column; |
| line-height: 1.15; |
| } |
| |
| .brand-text { |
| font-family: var(--font-sans); |
| font-weight: 700; |
| font-size: 16px; |
| letter-spacing: -0.3px; |
| text-shadow: 0 1px 2px rgba(0, 0, 0, 0.15); |
| color: inherit; |
| text-decoration: none; |
| } |
| |
| .brand-subtitle { |
| font-weight: 500; |
| font-size: 10px; |
| opacity: 0.9; |
| text-transform: uppercase; |
| letter-spacing: 0.5px; |
| } |
| |
| .brand-divider { |
| width: 1px; |
| height: 16px; |
| background: rgba(255, 255, 255, 0.3); |
| } |
| |
| /* Toolbar */ |
| .toolbar { |
| display: flex; |
| align-items: center; |
| gap: 6px; |
| margin-left: auto; |
| } |
| |
| .toolbar-btn { |
| display: flex; |
| align-items: center; |
| justify-content: center; |
| width: 32px; |
| height: 32px; |
| padding: 0; |
| font-size: 15px; |
| color: white; |
| background: rgba(255, 255, 255, 0.12); |
| border: 1px solid rgba(255, 255, 255, 0.18); |
| border-radius: 6px; |
| cursor: pointer; |
| text-decoration: none; |
| transition: all var(--transition-fast); |
| } |
| |
| .toolbar-btn:hover { |
| background: rgba(255, 255, 255, 0.22); |
| border-color: rgba(255, 255, 255, 0.35); |
| } |
| |
| .toolbar-btn:active { |
| transform: scale(0.95); |
| } |
| |
| /* -------------------------------------------------------------------------- |
| Status Bar |
| -------------------------------------------------------------------------- */ |
| |
| .status-bar { |
| height: var(--statusbar-height); |
| background: var(--bg-secondary); |
| border-top: 1px solid var(--border); |
| display: flex; |
| align-items: center; |
| padding: 0 16px; |
| gap: 16px; |
| font-family: var(--font-mono); |
| font-size: 11px; |
| color: var(--text-secondary); |
| flex-shrink: 0; |
| } |
| |
| .status-item { |
| display: flex; |
| align-items: center; |
| gap: 5px; |
| } |
| |
| .status-item::before { |
| content: ''; |
| width: 4px; |
| height: 4px; |
| background: var(--python-gold); |
| border-radius: 50%; |
| } |
| |
| .status-item:first-child::before { |
| display: none; |
| } |
| |
| .status-label { |
| color: var(--text-muted); |
| } |
| |
| .status-value { |
| color: var(--text-primary); |
| font-weight: 500; |
| } |
| |
| .status-value.accent { |
| color: var(--accent); |
| font-weight: 600; |
| } |
| |
| /* -------------------------------------------------------------------------- |
| Animations |
| -------------------------------------------------------------------------- */ |
| |
| @keyframes fadeIn { |
| from { opacity: 0; } |
| to { opacity: 1; } |
| } |
| |
| @keyframes slideUp { |
| from { |
| opacity: 0; |
| transform: translateY(12px); |
| } |
| to { |
| opacity: 1; |
| transform: translateY(0); |
| } |
| } |
| |
| @keyframes shimmer { |
| 0% { left: -100%; } |
| 100% { left: 100%; } |
| } |
| |
| /* -------------------------------------------------------------------------- |
| Focus States (Accessibility) |
| -------------------------------------------------------------------------- */ |
| |
| button:focus-visible, |
| select:focus-visible, |
| input:focus-visible, |
| .toggle-switch:focus-visible, |
| a.toolbar-btn:focus-visible { |
| outline: 2px solid var(--python-gold); |
| outline-offset: 2px; |
| } |
| |
| /* -------------------------------------------------------------------------- |
| Shared Responsive |
| -------------------------------------------------------------------------- */ |
| |
| @media (max-width: 900px) { |
| .brand-subtitle { |
| display: none; |
| } |
| } |
| |
| @media (max-width: 600px) { |
| .toolbar-btn:not(.theme-toggle) { |
| display: none; |
| } |
| } |
| |
| /* -------------------------------------------------------------------------- |
| Toggle Switch |
| -------------------------------------------------------------------------- */ |
| |
| .toggle-switch { |
| display: inline-flex; |
| align-items: center; |
| gap: 8px; |
| cursor: pointer; |
| user-select: none; |
| font-family: var(--font-sans); |
| transition: opacity var(--transition-fast); |
| flex-shrink: 0; |
| } |
| |
| .toggle-switch:hover { |
| opacity: 0.85; |
| } |
| |
| .toggle-switch .toggle-label { |
| font-size: 11px; |
| font-weight: 500; |
| color: var(--text-muted); |
| transition: color var(--transition-fast); |
| white-space: nowrap; |
| display: inline-flex; |
| flex-direction: column; |
| } |
| |
| .toggle-switch .toggle-label.active { |
| color: var(--text-primary); |
| font-weight: 600; |
| } |
| |
| /* Reserve space for bold text to prevent layout shift on toggle */ |
| .toggle-switch .toggle-label::after { |
| content: attr(data-text); |
| font-weight: 600; |
| height: 0; |
| visibility: hidden; |
| } |
| |
| .toggle-switch.disabled { |
| opacity: 0.4; |
| pointer-events: none; |
| cursor: not-allowed; |
| } |
| |
| .toggle-track { |
| position: relative; |
| width: 36px; |
| height: 20px; |
| background: var(--bg-tertiary); |
| border: 2px solid var(--border); |
| border-radius: 12px; |
| transition: all var(--transition-fast); |
| box-shadow: inset var(--shadow-sm); |
| } |
| |
| .toggle-track:hover { |
| border-color: var(--text-muted); |
| } |
| |
| .toggle-track.on { |
| background: var(--accent); |
| border-color: var(--accent); |
| box-shadow: 0 0 8px var(--accent-glow); |
| } |
| |
| .toggle-track::after { |
| content: ''; |
| position: absolute; |
| top: 1px; |
| left: 1px; |
| width: 14px; |
| height: 14px; |
| background: white; |
| border-radius: 50%; |
| box-shadow: var(--shadow-sm); |
| transition: all var(--transition-fast); |
| } |
| |
| .toggle-track.on::after { |
| transform: translateX(16px); |
| box-shadow: var(--shadow-md); |
| } |
| |
| |
| /* ========================================================================== |
| Heatmap Viewer - Component-Specific CSS |
| |
| DEPENDENCY: Requires _shared_assets/base.css to be loaded first |
| This file extends the shared foundation with heatmap-specific styles. |
| ========================================================================== */ |
| |
| /* -------------------------------------------------------------------------- |
| Layout Overrides (Heatmap-specific) |
| -------------------------------------------------------------------------- */ |
| |
| .app-layout { |
| min-height: 100vh; |
| } |
| |
| /* Sticky top bar for heatmap views */ |
| .top-bar { |
| position: sticky; |
| top: 0; |
| z-index: 100; |
| } |
| |
| /* -------------------------------------------------------------------------- |
| Main Content Area |
| -------------------------------------------------------------------------- */ |
| |
| .main-content { |
| flex: 1; |
| padding: 24px 3%; |
| width: 100%; |
| max-width: 100%; |
| } |
| |
| /* -------------------------------------------------------------------------- |
| Stats Summary Cards - Enhanced with Icons & Animations |
| -------------------------------------------------------------------------- */ |
| |
| .stats-summary { |
| display: grid; |
| grid-template-columns: repeat(3, 1fr); |
| gap: 12px; |
| margin-bottom: 24px; |
| } |
| |
| .stat-card { |
| display: flex; |
| align-items: center; |
| gap: 12px; |
| background: var(--bg-primary); |
| border: 2px solid var(--border); |
| border-radius: 10px; |
| padding: 14px 16px; |
| transition: all var(--transition-fast); |
| animation: slideUp 0.5s ease-out backwards; |
| animation-delay: calc(var(--i, 0) * 0.08s); |
| position: relative; |
| overflow: hidden; |
| } |
| |
| .stat-card:nth-child(1) { --i: 0; --card-color: 55, 118, 171; } |
| .stat-card:nth-child(2) { --i: 1; --card-color: 40, 167, 69; } |
| .stat-card:nth-child(3) { --i: 2; --card-color: 255, 193, 7; } |
| .stat-card:nth-child(4) { --i: 3; --card-color: 111, 66, 193; } |
| .stat-card:nth-child(5) { --i: 4; --card-color: 220, 53, 69; } |
| .stat-card:nth-child(6) { --i: 5; --card-color: 23, 162, 184; } |
| |
| .stat-card:hover { |
| border-color: rgba(var(--card-color), 0.6); |
| background: linear-gradient(135deg, rgba(var(--card-color), 0.08) 0%, var(--bg-primary) 100%); |
| transform: translateY(-2px); |
| box-shadow: 0 4px 16px rgba(var(--card-color), 0.15); |
| } |
| |
| .stat-icon { |
| width: 40px; |
| height: 40px; |
| display: flex; |
| align-items: center; |
| justify-content: center; |
| font-size: 18px; |
| background: linear-gradient(135deg, rgba(var(--card-color), 0.15) 0%, rgba(var(--card-color), 0.05) 100%); |
| border: 1px solid rgba(var(--card-color), 0.2); |
| border-radius: 10px; |
| flex-shrink: 0; |
| transition: all var(--transition-fast); |
| } |
| |
| .stat-card:hover .stat-icon { |
| transform: scale(1.05) rotate(-2deg); |
| background: linear-gradient(135deg, rgba(var(--card-color), 0.25) 0%, rgba(var(--card-color), 0.1) 100%); |
| } |
| |
| .stat-data { |
| flex: 1; |
| min-width: 0; |
| } |
| |
| .stat-value { |
| font-family: var(--font-mono); |
| font-size: 1.35em; |
| font-weight: 800; |
| color: rgb(var(--card-color)); |
| display: block; |
| line-height: 1.1; |
| letter-spacing: -0.3px; |
| } |
| |
| .stat-label { |
| font-size: 10px; |
| font-weight: 600; |
| color: var(--text-muted); |
| text-transform: uppercase; |
| letter-spacing: 0.3px; |
| margin-top: 2px; |
| } |
| |
| /* Sparkline decoration for stats */ |
| .stat-sparkline { |
| position: absolute; |
| bottom: 0; |
| left: 0; |
| right: 0; |
| height: 30px; |
| opacity: 0.1; |
| background: linear-gradient(180deg, |
| transparent 0%, |
| rgba(var(--card-color), 0.3) 100% |
| ); |
| pointer-events: none; |
| } |
| |
| /* -------------------------------------------------------------------------- |
| Rate Cards (Error Rate, Missed Samples) with Progress Bars |
| -------------------------------------------------------------------------- */ |
| |
| .rate-card { |
| display: flex; |
| flex-direction: column; |
| gap: 12px; |
| background: var(--bg-primary); |
| border: 2px solid var(--border); |
| border-radius: 12px; |
| padding: 18px 20px; |
| transition: all var(--transition-fast); |
| animation: slideUp 0.5s ease-out backwards; |
| position: relative; |
| overflow: hidden; |
| } |
| |
| .rate-card:nth-child(5) { animation-delay: 0.32s; --rate-color: 220, 53, 69; } |
| .rate-card:nth-child(6) { animation-delay: 0.40s; --rate-color: 255, 152, 0; } |
| |
| .rate-card:hover { |
| border-color: rgba(var(--rate-color), 0.5); |
| transform: translateY(-2px); |
| box-shadow: 0 6px 20px rgba(var(--rate-color), 0.15); |
| } |
| |
| .rate-header { |
| display: flex; |
| justify-content: space-between; |
| align-items: center; |
| } |
| |
| .rate-info { |
| display: flex; |
| align-items: center; |
| gap: 10px; |
| } |
| |
| .rate-icon { |
| width: 36px; |
| height: 36px; |
| display: flex; |
| align-items: center; |
| justify-content: center; |
| font-size: 18px; |
| background: linear-gradient(135deg, rgba(var(--rate-color), 0.15) 0%, rgba(var(--rate-color), 0.05) 100%); |
| border: 1px solid rgba(var(--rate-color), 0.2); |
| border-radius: 10px; |
| flex-shrink: 0; |
| } |
| |
| .rate-label { |
| font-size: 12px; |
| font-weight: 600; |
| color: var(--text-secondary); |
| text-transform: uppercase; |
| letter-spacing: 0.3px; |
| } |
| |
| .rate-value { |
| font-family: var(--font-mono); |
| font-size: 1.4em; |
| font-weight: 800; |
| color: rgb(var(--rate-color)); |
| } |
| |
| .rate-bar { |
| height: 8px; |
| background: var(--bg-tertiary); |
| border-radius: 4px; |
| overflow: hidden; |
| position: relative; |
| } |
| |
| .rate-fill { |
| height: 100%; |
| border-radius: 4px; |
| transition: width 0.8s ease-out; |
| position: relative; |
| overflow: hidden; |
| } |
| |
| .rate-fill.error { |
| background: linear-gradient(90deg, #dc3545 0%, #ff6b6b 100%); |
| } |
| |
| .rate-fill.warning { |
| background: linear-gradient(90deg, #ff9800 0%, #ffc107 100%); |
| } |
| |
| .rate-fill.good { |
| background: linear-gradient(90deg, #28a745 0%, #20c997 100%); |
| } |
| |
| /* Shimmer animation on rate bars */ |
| .rate-fill::after { |
| content: ''; |
| position: absolute; |
| top: 0; |
| left: -100%; |
| width: 100%; |
| height: 100%; |
| background: linear-gradient( |
| 90deg, |
| transparent 0%, |
| rgba(255, 255, 255, 0.4) 50%, |
| transparent 100% |
| ); |
| animation: shimmer 2.5s ease-in-out infinite; |
| } |
| |
| /* -------------------------------------------------------------------------- |
| Section Headers |
| -------------------------------------------------------------------------- */ |
| |
| .section-header { |
| display: flex; |
| align-items: center; |
| gap: 12px; |
| margin-bottom: 16px; |
| padding-bottom: 12px; |
| border-bottom: 2px solid var(--python-gold); |
| } |
| |
| .section-title { |
| font-size: 18px; |
| font-weight: 700; |
| color: var(--text-primary); |
| margin: 0; |
| flex: 1; |
| } |
| |
| /* -------------------------------------------------------------------------- |
| Filter Controls |
| -------------------------------------------------------------------------- */ |
| |
| .filter-controls { |
| display: flex; |
| gap: 8px; |
| flex-wrap: wrap; |
| align-items: center; |
| margin-bottom: 16px; |
| } |
| |
| .control-btn { |
| padding: 8px 16px; |
| background: var(--bg-secondary); |
| color: var(--text-primary); |
| border: 1px solid var(--border); |
| border-radius: 6px; |
| font-size: 13px; |
| font-weight: 500; |
| cursor: pointer; |
| transition: all var(--transition-fast); |
| } |
| |
| .control-btn:hover { |
| background: var(--accent); |
| color: white; |
| border-color: var(--accent); |
| } |
| |
| /* -------------------------------------------------------------------------- |
| Type Sections (stdlib, project, etc) |
| -------------------------------------------------------------------------- */ |
| |
| .type-section { |
| background: var(--bg-primary); |
| border: 1px solid var(--border); |
| border-radius: 8px; |
| overflow: hidden; |
| margin-bottom: 12px; |
| } |
| |
| .type-header { |
| padding: 12px 16px; |
| background: var(--header-gradient); |
| color: white; |
| cursor: pointer; |
| display: flex; |
| align-items: center; |
| gap: 10px; |
| user-select: none; |
| transition: all var(--transition-fast); |
| font-weight: 600; |
| } |
| |
| .type-header:hover { |
| opacity: 0.95; |
| } |
| |
| .type-icon { |
| font-size: 12px; |
| transition: transform var(--transition-fast); |
| min-width: 12px; |
| } |
| |
| .type-title { |
| font-size: 14px; |
| flex: 1; |
| } |
| |
| .type-stats { |
| font-size: 12px; |
| opacity: 0.9; |
| background: rgba(255, 255, 255, 0.15); |
| padding: 4px 10px; |
| border-radius: 4px; |
| font-family: var(--font-mono); |
| } |
| |
| .type-content { |
| padding: 12px; |
| } |
| |
| /* -------------------------------------------------------------------------- |
| Folder Nodes (hierarchical structure) |
| -------------------------------------------------------------------------- */ |
| |
| .folder-node { |
| margin-bottom: 6px; |
| } |
| |
| .folder-header { |
| padding: 8px 12px; |
| background: var(--bg-secondary); |
| border: 1px solid var(--border); |
| border-radius: 6px; |
| cursor: pointer; |
| display: flex; |
| align-items: center; |
| gap: 8px; |
| user-select: none; |
| transition: all var(--transition-fast); |
| } |
| |
| .folder-header:hover { |
| background: var(--accent-glow); |
| border-color: var(--accent); |
| } |
| |
| .folder-icon { |
| font-size: 10px; |
| color: var(--accent); |
| transition: transform var(--transition-fast); |
| min-width: 12px; |
| } |
| |
| .folder-name { |
| flex: 1; |
| font-weight: 500; |
| color: var(--text-primary); |
| font-size: 13px; |
| } |
| |
| .folder-stats { |
| font-size: 11px; |
| color: var(--text-secondary); |
| background: var(--bg-tertiary); |
| padding: 2px 8px; |
| border-radius: 4px; |
| font-family: var(--font-mono); |
| } |
| |
| .folder-content { |
| padding-left: 20px; |
| margin-top: 6px; |
| } |
| |
| /* -------------------------------------------------------------------------- |
| File Items |
| -------------------------------------------------------------------------- */ |
| |
| .files-list { |
| display: flex; |
| flex-direction: column; |
| gap: 4px; |
| margin-top: 8px; |
| } |
| |
| .file-item { |
| display: flex; |
| align-items: center; |
| gap: 12px; |
| padding: 8px 12px; |
| background: var(--bg-primary); |
| border: 1px solid var(--border-subtle); |
| border-radius: 6px; |
| transition: all var(--transition-fast); |
| } |
| |
| .file-item:hover { |
| background: var(--bg-secondary); |
| border-color: var(--border); |
| } |
| |
| .file-item .file-link { |
| flex: 1; |
| min-width: 0; |
| font-size: 13px; |
| } |
| |
| .file-samples { |
| font-size: 12px; |
| color: var(--text-secondary); |
| font-weight: 600; |
| white-space: nowrap; |
| width: 130px; |
| flex-shrink: 0; |
| text-align: right; |
| font-family: var(--font-mono); |
| } |
| |
| .heatmap-bar-container { |
| width: 120px; |
| flex-shrink: 0; |
| display: flex; |
| align-items: center; |
| } |
| |
| .heatmap-bar { |
| flex-shrink: 0; |
| border-radius: 2px; |
| } |
| |
| /* Links */ |
| .file-link { |
| color: var(--accent); |
| text-decoration: none; |
| font-weight: 500; |
| transition: color var(--transition-fast); |
| } |
| |
| .file-link:hover { |
| color: var(--accent-hover); |
| text-decoration: underline; |
| } |
| |
| /* -------------------------------------------------------------------------- |
| Module Badges |
| -------------------------------------------------------------------------- */ |
| |
| .module-badge { |
| display: inline-block; |
| padding: 3px 8px; |
| border-radius: 4px; |
| font-size: 11px; |
| font-weight: 600; |
| } |
| |
| .badge-stdlib { |
| background: rgba(40, 167, 69, 0.15); |
| color: #28a745; |
| } |
| |
| .badge-site-packages { |
| background: rgba(0, 123, 255, 0.15); |
| color: #007bff; |
| } |
| |
| .badge-project { |
| background: rgba(255, 193, 7, 0.2); |
| color: #d39e00; |
| } |
| |
| .badge-other { |
| background: var(--bg-tertiary); |
| color: var(--text-secondary); |
| } |
| |
| [data-theme="dark"] .badge-stdlib { |
| background: rgba(40, 167, 69, 0.25); |
| color: #5dd879; |
| } |
| |
| [data-theme="dark"] .badge-site-packages { |
| background: rgba(88, 166, 255, 0.25); |
| color: #79b8ff; |
| } |
| |
| [data-theme="dark"] .badge-project { |
| background: rgba(255, 212, 59, 0.25); |
| color: #ffd43b; |
| } |
| |
| /* ========================================================================== |
| FILE VIEW STYLES (Code Display) |
| ========================================================================== */ |
| |
| .code-view { |
| font-family: var(--font-mono); |
| min-height: 100vh; |
| } |
| |
| /* Code Header (Top Bar for file view) */ |
| .code-header { |
| height: var(--topbar-height); |
| background: var(--header-gradient); |
| display: flex; |
| align-items: center; |
| padding: 0 16px; |
| gap: 16px; |
| box-shadow: 0 2px 10px rgba(55, 118, 171, 0.25); |
| border-bottom: 2px solid var(--python-gold); |
| position: sticky; |
| top: 0; |
| z-index: 100; |
| } |
| |
| .code-header-content { |
| display: flex; |
| align-items: center; |
| justify-content: space-between; |
| width: 94%; |
| max-width: 100%; |
| margin: 0 auto; |
| } |
| |
| .code-header h1 { |
| font-size: 14px; |
| font-weight: 600; |
| color: white; |
| margin: 0; |
| font-family: var(--font-mono); |
| display: flex; |
| align-items: center; |
| gap: 8px; |
| } |
| |
| /* File Stats Bar */ |
| .file-stats { |
| background: var(--bg-secondary); |
| padding: 16px 24px; |
| border-bottom: 1px solid var(--border); |
| } |
| |
| .file-stats .stats-grid { |
| width: 94%; |
| max-width: 100%; |
| margin: 0 auto; |
| display: grid; |
| grid-template-columns: repeat(auto-fit, minmax(120px, 1fr)); |
| gap: 12px; |
| } |
| |
| .stat-item { |
| background: var(--bg-primary); |
| padding: 12px; |
| border-radius: 8px; |
| box-shadow: var(--shadow-sm); |
| text-align: center; |
| border: 1px solid var(--border); |
| transition: all var(--transition-fast); |
| } |
| |
| .stat-item:hover { |
| transform: translateY(-2px); |
| box-shadow: var(--shadow-md); |
| border-color: var(--accent); |
| } |
| |
| .stat-item .stat-value { |
| font-size: 1.4em; |
| font-weight: 700; |
| color: var(--accent); |
| } |
| |
| .stat-item .stat-label { |
| color: var(--text-muted); |
| font-size: 10px; |
| margin-top: 2px; |
| } |
| |
| /* Legend */ |
| .legend { |
| background: var(--bg-secondary); |
| padding: 12px 24px; |
| border-bottom: 1px solid var(--border); |
| } |
| |
| .legend-content { |
| width: 100%; |
| display: flex; |
| align-items: center; |
| gap: 20px; |
| flex-wrap: nowrap; |
| } |
| |
| .legend-separator { |
| width: 1px; |
| height: 24px; |
| background: var(--border); |
| flex-shrink: 0; |
| } |
| |
| .legend-title { |
| font-weight: 600; |
| color: var(--text-primary); |
| font-size: 13px; |
| font-family: var(--font-sans); |
| flex-shrink: 0; |
| } |
| |
| .legend-gradient { |
| width: 150px; |
| flex-shrink: 0; |
| height: 20px; |
| background: linear-gradient(90deg, |
| var(--bg-tertiary) 0%, |
| var(--heat-2) 25%, |
| var(--heat-4) 50%, |
| var(--heat-6) 75%, |
| var(--heat-8) 100% |
| ); |
| border-radius: 4px; |
| border: 1px solid var(--border); |
| } |
| |
| .legend-labels { |
| display: flex; |
| gap: 12px; |
| font-size: 11px; |
| color: var(--text-muted); |
| font-family: var(--font-sans); |
| flex-shrink: 0; |
| } |
| |
| /* Legend Controls Group - wraps toggles and bytecode button together */ |
| .legend-controls { |
| display: flex; |
| align-items: center; |
| gap: 20px; |
| flex-shrink: 0; |
| margin-left: auto; |
| } |
| |
| /* Heatmap-Specific Toggle Overrides */ |
| #toggle-color-mode .toggle-track.on { |
| background: #8e44ad; |
| border-color: #8e44ad; |
| box-shadow: 0 0 8px rgba(142, 68, 173, 0.3); |
| } |
| |
| #toggle-cold .toggle-track.on { |
| background: #e67e22; |
| border-color: #e67e22; |
| box-shadow: 0 0 8px rgba(230, 126, 34, 0.3); |
| } |
| |
| /* Code Container */ |
| .code-container { |
| width: 94%; |
| max-width: 100%; |
| margin: 16px auto; |
| background: var(--bg-primary); |
| border: 1px solid var(--border); |
| border-radius: 8px 8px 8px 8px; |
| box-shadow: var(--shadow-sm); |
| /* Allow horizontal scroll for long lines, but don't clip sticky header */ |
| } |
| |
| /* Code Header Row */ |
| .code-header-row { |
| position: sticky; |
| top: var(--topbar-height); |
| z-index: 50; |
| display: flex; |
| background: var(--bg-secondary); |
| border-bottom: 2px solid var(--border); |
| font-weight: 700; |
| font-size: 11px; |
| color: var(--text-muted); |
| text-transform: uppercase; |
| letter-spacing: 0.5px; |
| border-radius: 8px 8px 0 0; |
| } |
| |
| .header-line-number { |
| flex-shrink: 0; |
| width: 60px; |
| padding: 8px 10px; |
| text-align: right; |
| border-right: 1px solid var(--border); |
| } |
| |
| .header-samples-self, |
| .header-samples-cumulative { |
| flex-shrink: 0; |
| width: 90px; |
| padding: 8px 10px; |
| text-align: right; |
| border-right: 1px solid var(--border); |
| } |
| |
| .header-samples-self { |
| color: var(--heat-8); |
| } |
| |
| .header-samples-cumulative { |
| color: var(--accent); |
| } |
| |
| .header-content { |
| flex: 1; |
| padding: 8px 15px; |
| } |
| |
| /* Code Lines */ |
| .code-line { |
| position: relative; |
| display: flex; |
| min-height: 20px; |
| line-height: 20px; |
| font-size: 13px; |
| transition: background var(--transition-fast); |
| scroll-margin-top: calc(var(--topbar-height) + 50px); |
| } |
| |
| .code-line:hover { |
| filter: brightness(0.97); |
| } |
| |
| [data-theme="dark"] .code-line:hover { |
| filter: brightness(1.1); |
| } |
| |
| .line-number { |
| flex-shrink: 0; |
| width: 60px; |
| padding: 0 10px; |
| text-align: right; |
| color: var(--text-muted); |
| background: var(--bg-secondary); |
| border-right: 1px solid var(--border); |
| user-select: none; |
| transition: all var(--transition-fast); |
| } |
| |
| .line-number:hover { |
| background: var(--accent); |
| color: white; |
| cursor: pointer; |
| } |
| |
| .line-samples-self, |
| .line-samples-cumulative { |
| flex-shrink: 0; |
| width: 90px; |
| padding: 0 10px; |
| text-align: right; |
| background: var(--bg-secondary); |
| border-right: 1px solid var(--border); |
| font-weight: 600; |
| user-select: none; |
| font-size: 12px; |
| } |
| |
| .line-samples-self { |
| color: var(--heat-8); |
| } |
| |
| .line-samples-cumulative { |
| color: var(--accent); |
| } |
| |
| .line-content { |
| flex: 1; |
| padding: 0 15px; |
| white-space: pre; |
| overflow-x: auto; |
| } |
| |
| /* Scrollbar Styling */ |
| .line-content::-webkit-scrollbar { |
| height: 6px; |
| } |
| |
| .line-content::-webkit-scrollbar-thumb { |
| background: var(--border); |
| border-radius: 3px; |
| } |
| |
| .line-content::-webkit-scrollbar-thumb:hover { |
| background: var(--text-muted); |
| } |
| |
| /* Navigation Buttons */ |
| .line-nav-buttons { |
| position: absolute; |
| right: 8px; |
| top: 50%; |
| transform: translateY(-50%); |
| display: flex; |
| gap: 4px; |
| align-items: center; |
| } |
| |
| .nav-btn { |
| padding: 2px 6px; |
| font-size: 12px; |
| font-weight: 500; |
| border: 1px solid var(--accent); |
| border-radius: 4px; |
| background: var(--bg-primary); |
| color: var(--accent); |
| cursor: pointer; |
| transition: all var(--transition-fast); |
| user-select: none; |
| line-height: 1; |
| } |
| |
| .nav-btn:hover:not(:disabled) { |
| background: var(--accent); |
| color: white; |
| transform: translateY(-1px); |
| box-shadow: var(--shadow-sm); |
| } |
| |
| .nav-btn:active:not(:disabled) { |
| transform: translateY(0); |
| } |
| |
| .nav-btn:disabled { |
| opacity: 0.3; |
| cursor: not-allowed; |
| color: var(--text-muted); |
| background: var(--bg-secondary); |
| border-color: var(--border); |
| } |
| |
| .nav-btn.caller { |
| color: var(--nav-caller); |
| border-color: var(--nav-caller); |
| } |
| |
| .nav-btn.callee { |
| color: var(--nav-callee); |
| border-color: var(--nav-callee); |
| } |
| |
| .nav-btn.caller:hover:not(:disabled) { |
| background: var(--nav-caller-hover); |
| color: white; |
| } |
| |
| .nav-btn.callee:hover:not(:disabled) { |
| background: var(--nav-callee-hover); |
| color: white; |
| } |
| |
| /* Highlighted target line */ |
| .code-line:target { |
| animation: highlight-line 2s ease-out; |
| } |
| |
| @keyframes highlight-line { |
| 0% { |
| background: rgba(255, 212, 59, 0.6) !important; |
| outline: 3px solid var(--python-gold); |
| outline-offset: -3px; |
| } |
| 50% { |
| background: rgba(255, 212, 59, 0.5) !important; |
| outline: 3px solid var(--python-gold); |
| outline-offset: -3px; |
| } |
| 100% { |
| outline: 3px solid transparent; |
| outline-offset: -3px; |
| } |
| } |
| |
| /* Popup menu for multiple callees */ |
| .callee-menu { |
| position: absolute; |
| background: var(--bg-primary); |
| border: 1px solid var(--border); |
| border-radius: 8px; |
| box-shadow: var(--shadow-lg); |
| padding: 8px; |
| z-index: 1000; |
| min-width: 250px; |
| max-width: 400px; |
| max-height: 300px; |
| overflow-y: auto; |
| } |
| |
| .callee-menu-header { |
| font-weight: 600; |
| color: var(--text-primary); |
| margin-bottom: 8px; |
| padding-bottom: 8px; |
| border-bottom: 1px solid var(--border); |
| font-size: 13px; |
| font-family: var(--font-sans); |
| } |
| |
| .callee-menu-item { |
| padding: 8px; |
| margin: 4px 0; |
| border-radius: 6px; |
| cursor: pointer; |
| transition: background var(--transition-fast); |
| display: flex; |
| flex-direction: column; |
| gap: 4px; |
| } |
| |
| .callee-menu-item:hover { |
| background: var(--bg-secondary); |
| } |
| |
| .callee-menu-func { |
| font-weight: 500; |
| color: var(--accent); |
| font-size: 12px; |
| } |
| |
| .callee-menu-file { |
| font-size: 11px; |
| color: var(--text-muted); |
| } |
| |
| .count-badge { |
| display: inline-block; |
| background: var(--accent); |
| color: white; |
| font-size: 10px; |
| padding: 2px 6px; |
| border-radius: 4px; |
| font-weight: 600; |
| margin-left: 6px; |
| } |
| |
| /* Callee menu scrollbar */ |
| .callee-menu::-webkit-scrollbar { |
| width: 6px; |
| } |
| |
| .callee-menu::-webkit-scrollbar-track { |
| background: var(--bg-secondary); |
| border-radius: 3px; |
| } |
| |
| .callee-menu::-webkit-scrollbar-thumb { |
| background: var(--border); |
| border-radius: 3px; |
| } |
| |
| /* -------------------------------------------------------------------------- |
| Scroll Minimap Marker |
| -------------------------------------------------------------------------- */ |
| |
| #scroll_marker { |
| position: fixed; |
| z-index: 1000; |
| right: 0; |
| top: 0; |
| width: 12px; |
| height: 100%; |
| background: var(--bg-secondary); |
| border-left: 1px solid var(--border); |
| pointer-events: none; |
| } |
| |
| #scroll_marker .marker { |
| position: absolute; |
| min-height: 3px; |
| width: 100%; |
| pointer-events: none; |
| } |
| |
| #scroll_marker .marker.cold { |
| background: var(--heat-1); |
| } |
| |
| #scroll_marker .marker.cool { |
| background: var(--heat-2); |
| } |
| |
| #scroll_marker .marker.mild { |
| background: var(--heat-3); |
| } |
| |
| #scroll_marker .marker.warm { |
| background: var(--heat-4); |
| } |
| |
| #scroll_marker .marker.hot { |
| background: var(--heat-5); |
| } |
| |
| #scroll_marker .marker.very-hot { |
| background: var(--heat-6); |
| } |
| |
| #scroll_marker .marker.intense { |
| background: var(--heat-7); |
| } |
| |
| #scroll_marker .marker.extreme { |
| background: var(--heat-8); |
| } |
| |
| /* -------------------------------------------------------------------------- |
| Responsive (Heatmap-specific) |
| -------------------------------------------------------------------------- */ |
| |
| @media (max-width: 1100px) { |
| .stats-summary { |
| grid-template-columns: repeat(2, 1fr); |
| } |
| |
| .legend-content { |
| flex-wrap: wrap; |
| justify-content: center; |
| } |
| |
| .legend-controls { |
| margin-left: 0; |
| } |
| } |
| |
| @media (max-width: 900px) { |
| .main-content { |
| padding: 16px; |
| } |
| } |
| |
| @media (max-width: 600px) { |
| .stats-summary { |
| grid-template-columns: 1fr; |
| } |
| |
| .file-stats .stats-grid { |
| grid-template-columns: repeat(2, 1fr); |
| } |
| |
| .legend-content { |
| flex-direction: column; |
| align-items: center; |
| gap: 12px; |
| } |
| |
| .legend-gradient { |
| width: 100%; |
| max-width: none; |
| } |
| |
| .legend-separator { |
| width: 80%; |
| height: 1px; |
| } |
| |
| .legend-controls { |
| flex-direction: column; |
| gap: 12px; |
| } |
| |
| .legend-controls .toggle-switch { |
| justify-content: center; |
| } |
| |
| .legend-controls .toggle-switch .toggle-label:first-child { |
| width: 70px; |
| text-align: right; |
| } |
| |
| .legend-controls .toggle-switch .toggle-label:last-child { |
| width: 90px; |
| text-align: left; |
| } |
| |
| /* Compact code columns on small screens */ |
| .header-line-number, |
| .line-number { |
| width: 40px; |
| } |
| |
| .header-samples-self, |
| .header-samples-cumulative, |
| .line-samples-self, |
| .line-samples-cumulative { |
| width: 55px; |
| font-size: 10px; |
| } |
| |
| /* Adjust padding - headers need vertical, data rows don't */ |
| .header-line-number, |
| .header-samples-self, |
| .header-samples-cumulative { |
| padding: 8px 4px; |
| } |
| |
| .line-number, |
| .line-samples-self, |
| .line-samples-cumulative { |
| padding: 0 4px; |
| } |
| } |
| |
| .bytecode-toggle { |
| flex-shrink: 0; |
| width: 20px; |
| height: 20px; |
| padding: 0; |
| margin: 0 4px; |
| border: none; |
| background: transparent; |
| color: var(--code-accent); |
| cursor: pointer; |
| font-size: 10px; |
| transition: transform var(--transition-fast), color var(--transition-fast); |
| display: inline-flex; |
| align-items: center; |
| justify-content: center; |
| } |
| |
| .bytecode-toggle:hover { |
| color: var(--accent); |
| } |
| |
| .bytecode-spacer { |
| flex-shrink: 0; |
| width: 20px; |
| height: 20px; |
| margin: 0 4px; |
| } |
| |
| .bytecode-panel { |
| margin-left: 90px; |
| padding: 8px 15px; |
| background: var(--bg-secondary); |
| border-left: 3px solid var(--accent); |
| font-family: var(--font-mono); |
| font-size: 12px; |
| margin-bottom: 4px; |
| } |
| |
| /* Specialization summary bar */ |
| .bytecode-spec-summary { |
| display: flex; |
| align-items: center; |
| gap: 8px; |
| padding: 8px 12px; |
| margin-bottom: 10px; |
| border-radius: var(--radius-sm); |
| background: rgba(100, 100, 100, 0.1); |
| } |
| |
| .bytecode-spec-summary .spec-pct { |
| font-size: 1.4em; |
| font-weight: 700; |
| } |
| |
| .bytecode-spec-summary .spec-label { |
| font-weight: 500; |
| text-transform: uppercase; |
| font-size: 0.85em; |
| letter-spacing: 0.5px; |
| } |
| |
| .bytecode-spec-summary .spec-detail { |
| color: var(--text-secondary); |
| font-size: 0.9em; |
| margin-left: auto; |
| } |
| |
| .bytecode-spec-summary.high { |
| background: var(--spec-high-bg); |
| border-left: 3px solid var(--spec-high); |
| } |
| .bytecode-spec-summary.high .spec-pct, |
| .bytecode-spec-summary.high .spec-label { |
| color: var(--spec-high-text); |
| } |
| |
| .bytecode-spec-summary.medium { |
| background: var(--spec-medium-bg); |
| border-left: 3px solid var(--spec-medium); |
| } |
| .bytecode-spec-summary.medium .spec-pct, |
| .bytecode-spec-summary.medium .spec-label { |
| color: var(--spec-medium-text); |
| } |
| |
| .bytecode-spec-summary.low { |
| background: var(--spec-low-bg); |
| border-left: 3px solid var(--spec-low); |
| } |
| .bytecode-spec-summary.low .spec-pct, |
| .bytecode-spec-summary.low .spec-label { |
| color: var(--spec-low-text); |
| } |
| |
| .bytecode-header { |
| display: grid; |
| grid-template-columns: 1fr 80px 80px; |
| gap: 12px; |
| padding: 4px 8px; |
| font-weight: 600; |
| color: var(--text-secondary); |
| border-bottom: 1px solid var(--code-border); |
| margin-bottom: 4px; |
| } |
| |
| .bytecode-expand-all { |
| display: inline-flex; |
| align-items: center; |
| gap: 6px; |
| padding: 6px 12px; |
| background: var(--bg-secondary); |
| border: 1px solid var(--code-border); |
| border-radius: var(--radius-sm); |
| color: var(--text-secondary); |
| font-size: 12px; |
| font-weight: 500; |
| cursor: pointer; |
| transition: all var(--transition-fast); |
| flex-shrink: 0; |
| } |
| |
| .bytecode-expand-all:hover, |
| .bytecode-expand-all.expanded { |
| background: var(--accent); |
| color: white; |
| border-color: var(--accent); |
| } |
| |
| .bytecode-expand-all .expand-icon { |
| font-size: 10px; |
| transition: transform var(--transition-fast); |
| } |
| |
| .bytecode-expand-all.expanded .expand-icon { |
| transform: rotate(90deg); |
| } |
| |
| /* ======================================== |
| INSTRUCTION SPAN HIGHLIGHTING |
| (triggered only from bytecode panel hover) |
| ======================================== */ |
| |
| /* Highlight from bytecode panel hover */ |
| .instr-span.highlight-from-bytecode { |
| outline: 3px solid #ff6b6b !important; |
| background-color: rgba(255, 107, 107, 0.4) !important; |
| border-radius: 2px; |
| } |
| |
| /* Bytecode instruction row */ |
| .bytecode-instruction { |
| display: grid; |
| grid-template-columns: 1fr 80px 80px; |
| gap: 12px; |
| align-items: center; |
| padding: 4px 8px; |
| margin: 2px 0; |
| border-radius: var(--radius-sm); |
| cursor: pointer; |
| transition: background-color var(--transition-fast); |
| } |
| |
| .bytecode-instruction:hover, |
| .bytecode-instruction.highlight { |
| background-color: rgba(55, 118, 171, 0.15); |
| } |
| |
| .bytecode-instruction[data-locations] { |
| cursor: pointer; |
| } |
| |
| .bytecode-instruction[data-locations]:hover { |
| background-color: rgba(255, 107, 107, 0.2); |
| } |
| |
| .bytecode-opname { |
| font-weight: 600; |
| font-family: var(--font-mono); |
| overflow: hidden; |
| text-overflow: ellipsis; |
| white-space: nowrap; |
| } |
| |
| .bytecode-opname.specialized { |
| color: #2e7d32; |
| } |
| |
| [data-theme="dark"] .bytecode-opname.specialized { |
| color: #81c784; |
| } |
| |
| .bytecode-opname .base-op { |
| color: var(--code-text-muted); |
| font-weight: normal; |
| font-size: 0.9em; |
| margin-left: 4px; |
| } |
| |
| .bytecode-samples { |
| text-align: right; |
| font-weight: 600; |
| color: var(--accent); |
| font-family: var(--font-mono); |
| } |
| |
| .bytecode-samples.hot { |
| color: #ff6b6b; |
| } |
| |
| .bytecode-heatbar { |
| width: 60px; |
| height: 12px; |
| background: var(--bg-secondary); |
| border-radius: 2px; |
| overflow: hidden; |
| border: 1px solid var(--code-border); |
| } |
| |
| .bytecode-heatbar-fill { |
| height: 100%; |
| background: linear-gradient(90deg, #00d4ff 0%, #ff6b00 100%); |
| } |
| |
| .specialization-badge { |
| display: inline-block; |
| padding: 1px 6px; |
| font-size: 0.75em; |
| background: #e8f5e9; |
| color: #2e7d32; |
| border-radius: 3px; |
| margin-left: 6px; |
| font-weight: 600; |
| } |
| |
| [data-theme="dark"] .specialization-badge { |
| background: rgba(129, 199, 132, 0.2); |
| color: #81c784; |
| } |
| |
| .bytecode-empty { |
| color: var(--code-text-muted); |
| font-style: italic; |
| padding: 8px; |
| } |
| |
| .bytecode-error { |
| color: #d32f2f; |
| font-style: italic; |
| padding: 8px; |
| } |
| |
| /* ======================================== |
| SPAN TOOLTIPS |
| ======================================== */ |
| |
| .span-tooltip { |
| position: absolute; |
| z-index: 10000; |
| background: var(--bg-primary); |
| color: var(--text-primary); |
| padding: 10px 14px; |
| border-radius: var(--radius-md); |
| border: 1px solid var(--border); |
| font-family: var(--font-sans); |
| font-size: 12px; |
| box-shadow: var(--shadow-lg); |
| pointer-events: none; |
| min-width: 160px; |
| max-width: 300px; |
| } |
| |
| .span-tooltip::after { |
| content: ''; |
| position: absolute; |
| bottom: -7px; |
| left: 50%; |
| transform: translateX(-50%); |
| border-width: 7px 7px 0; |
| border-style: solid; |
| border-color: var(--bg-primary) transparent transparent; |
| filter: drop-shadow(0 1px 1px rgba(0, 0, 0, 0.1)); |
| } |
| |
| .span-tooltip-header { |
| font-weight: 600; |
| margin-bottom: 8px; |
| padding-bottom: 6px; |
| border-bottom: 1px solid var(--border); |
| color: var(--text-primary); |
| } |
| |
| .span-tooltip-header.hot { |
| color: #e65100; |
| } |
| |
| .span-tooltip-header.warm { |
| color: #f59e0b; |
| } |
| |
| .span-tooltip-header.cold { |
| color: var(--text-muted); |
| } |
| |
| .span-tooltip-row { |
| display: flex; |
| justify-content: space-between; |
| margin: 4px 0; |
| gap: 16px; |
| } |
| |
| .span-tooltip-label { |
| color: var(--text-secondary); |
| } |
| |
| .span-tooltip-value { |
| font-weight: 600; |
| text-align: right; |
| color: var(--text-primary); |
| } |
| |
| .span-tooltip-value.highlight { |
| color: var(--accent); |
| } |
| |
| .span-tooltip-section { |
| font-weight: 600; |
| color: var(--text-secondary); |
| font-size: 11px; |
| margin-top: 8px; |
| margin-bottom: 4px; |
| padding-top: 6px; |
| border-top: 1px solid var(--border); |
| } |
| |
| .span-tooltip-opcode { |
| font-family: var(--font-mono); |
| font-size: 11px; |
| color: var(--text-primary); |
| background: var(--bg-secondary); |
| padding: 3px 8px; |
| margin: 2px 0; |
| border-radius: var(--radius-sm); |
| border-left: 2px solid var(--accent); |
| } |
| |
| </style> |
| </head> |
| <body class="code-view"> |
| <div class="app-layout"> |
| <!-- Top Bar (Code Header) --> |
| <header class="top-bar"> |
| <div class="brand"> |
| <div class="brand-logo"><img src="" alt="Tachyon logo" class="python-logo"/></div> |
| <a href="https://docs.python.org/3.15/library/profiling.sampling.html#heatmap-format" class="brand-text">Tachyon</a> |
| <span class="brand-divider"></span> |
| <span class="brand-subtitle" style="font-family: var(--font-mono); font-size: 13px;">/tmp/tachyon_selfcontained.py</span> |
| </div> |
| <div class="toolbar"> |
| <a href="https://docs.python.org/3.15/library/profiling.sampling.html#heatmap-format" class="toolbar-btn" title="Back to Index" aria-label="Back to Index"> |
| <svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" viewBox="0 0 16 16"> |
| <path d="M8.707 1.5a1 1 0 0 0-1.414 0L.646 8.146a.5.5 0 0 0 .708.708L2 8.207V13.5A1.5 1.5 0 0 0 3.5 15h9a1.5 1.5 0 0 0 1.5-1.5V8.207l.646.647a.5.5 0 0 0 .708-.708L13 5.793V2.5a.5.5 0 0 0-.5-.5h-1a.5.5 0 0 0-.5.5v1.293zM13 7.207V13.5a.5.5 0 0 1-.5.5h-9a.5.5 0 0 1-.5-.5V7.207l5-5z"/> |
| </svg> |
| </a> |
| <a |
| class="toolbar-btn" |
| href="https://docs.python.org/3.15/library/profiling.sampling.html" |
| target="_blank" |
| title="Documentation" |
| > |
| <svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" viewBox="0 0 16 16"> |
| <path d="M1 2.828c.885-.37 2.154-.769 3.388-.893 1.33-.134 2.458.063 3.112.752v9.746c-.935-.53-2.12-.603-3.213-.493-1.18.12-2.37.461-3.287.811zm7.5-.141c.654-.689 1.782-.886 3.112-.752 1.234.124 2.503.523 3.388.893v9.923c-.918-.35-2.107-.692-3.287-.81-1.094-.111-2.278-.039-3.213.492zM8 1.783C7.015.936 5.587.81 4.287.94c-1.514.153-3.042.672-3.994 1.105A.5.5 0 0 0 0 2.5v11a.5.5 0 0 0 .707.455c.882-.4 2.303-.881 3.68-1.02 1.409-.142 2.59.087 3.223.877a.5.5 0 0 0 .78 0c.633-.79 1.814-1.019 3.222-.877 1.378.139 2.8.62 3.681 1.02A.5.5 0 0 0 16 13.5v-11a.5.5 0 0 0-.293-.455c-.952-.433-2.48-.952-3.994-1.105C10.413.809 8.985.936 8 1.783"/> |
| </svg> |
| </a> |
| <button |
| class="toolbar-btn theme-toggle" |
| onclick="toggleTheme()" |
| title="Toggle theme" |
| aria-label="Toggle theme" |
| id="theme-btn" |
| > |
| <svg class="icon-moon" xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" viewBox="0 0 16 16"> |
| <path d="M6 .278a.77.77 0 0 1 .08.858 7.2 7.2 0 0 0-.878 3.46c0 4.021 3.278 7.277 7.318 7.277q.792-.001 1.533-.16a.79.79 0 0 1 .81.316.73.73 0 0 1-.031.893A8.35 8.35 0 0 1 8.344 16C3.734 16 0 12.286 0 7.71 0 4.266 2.114 1.312 5.124.06A.75.75 0 0 1 6 .278M4.858 1.311A7.27 7.27 0 0 0 1.025 7.71c0 4.02 3.279 7.276 7.319 7.276a7.32 7.32 0 0 0 5.205-2.162q-.506.063-1.029.063c-4.61 0-8.343-3.714-8.343-8.29 0-1.167.242-2.278.681-3.286"/> |
| </svg> |
| <svg class="icon-sun" xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" viewBox="0 0 16 16" style="display:none"> |
| <path d="M8 11a3 3 0 1 1 0-6 3 3 0 0 1 0 6m0 1a4 4 0 1 0 0-8 4 4 0 0 0 0 8M8 0a.5.5 0 0 1 .5.5v2a.5.5 0 0 1-1 0v-2A.5.5 0 0 1 8 0m0 13a.5.5 0 0 1 .5.5v2a.5.5 0 0 1-1 0v-2A.5.5 0 0 1 8 13m8-5a.5.5 0 0 1-.5.5h-2a.5.5 0 0 1 0-1h2a.5.5 0 0 1 .5.5M3 8a.5.5 0 0 1-.5.5h-2a.5.5 0 0 1 0-1h2A.5.5 0 0 1 3 8m10.657-5.657a.5.5 0 0 1 0 .707l-1.414 1.415a.5.5 0 1 1-.707-.708l1.414-1.414a.5.5 0 0 1 .707 0m-9.193 9.193a.5.5 0 0 1 0 .707L3.05 13.657a.5.5 0 0 1-.707-.707l1.414-1.414a.5.5 0 0 1 .707 0m9.193 2.121a.5.5 0 0 1-.707 0l-1.414-1.414a.5.5 0 0 1 .707-.707l1.414 1.414a.5.5 0 0 1 0 .707M4.464 4.465a.5.5 0 0 1-.707 0L2.343 3.05a.5.5 0 1 1 .707-.707l1.414 1.414a.5.5 0 0 1 0 .708"/> |
| </svg> |
| </button> |
| </div> |
| </header> |
| |
| <!-- File Stats Bar --> |
| <div class="file-stats"> |
| <div class="stats-grid"> |
| <div class="stat-item"> |
| <div class="stat-value">1,054</div> |
| <div class="stat-label">Self Samples</div> |
| </div> |
| <div class="stat-item"> |
| <div class="stat-value">4,236</div> |
| <div class="stat-label">Cumulative</div> |
| </div> |
| <div class="stat-item"> |
| <div class="stat-value">24</div> |
| <div class="stat-label">Lines Hit</div> |
| </div> |
| <div class="stat-item"> |
| <div class="stat-value">100.00%</div> |
| <div class="stat-label">% of Total</div> |
| </div> |
| <div class="stat-item"> |
| <div class="stat-value">206</div> |
| <div class="stat-label">Max Self</div> |
| </div> |
| <div class="stat-item"> |
| <div class="stat-value">1054</div> |
| <div class="stat-label">Max Total</div> |
| </div> |
| </div> |
| </div> |
| |
| <!-- Legend --> |
| <div class="legend"> |
| <div class="legend-content"> |
| <span class="legend-title">Intensity:</span> |
| <div class="legend-gradient"></div> |
| <div class="legend-labels"> |
| <span>Cold</span> |
| <span aria-hidden="true">→</span> |
| <span>Hot</span> |
| </div> |
| <div class="legend-separator" aria-hidden="true"></div> |
| <div class="legend-controls"> |
| <div class="toggle-switch" id="toggle-color-mode" title="Toggle between self time and total time coloring" tabindex="0"> |
| <span class="toggle-label active" data-text="Self Time">Self Time</span> |
| <div class="toggle-track"></div> |
| <span class="toggle-label" data-text="Total Time">Total Time</span> |
| </div> |
| <div class="toggle-switch" id="toggle-cold" title="Toggle visibility of lines with zero samples" tabindex="0"> |
| <span class="toggle-label active" data-text="Show All">Show All</span> |
| <div class="toggle-track"></div> |
| <span class="toggle-label" data-text="Hot Only">Hot Only</span> |
| </div> |
| <div class="toggle-switch" id="toggle-spec-view" title="Color lines by specialization level (requires bytecode data)" tabindex="0"> |
| <span class="toggle-label active" data-text="Heat">Heat</span> |
| <div class="toggle-track"></div> |
| <span class="toggle-label" data-text="Specialization">Specialization</span> |
| </div> |
| <div class="legend-separator" aria-hidden="true"></div> |
| <button class="bytecode-expand-all" id="toggle-all-bytecode" title="Expand/collapse all bytecode panels (keyboard: b)"> |
| <span class="expand-icon" aria-hidden="true">â–¶</span> Bytecode |
| </button> |
| </div> |
| </div> |
| </div> |
| |
| <!-- Code Container --> |
| <div class="code-container"> |
| <div class="code-header-row"> |
| <div class="header-line-number">Line</div> |
| <div class="header-samples-self">Self</div> |
| <div class="header-samples-cumulative">Total</div> |
| <div class="header-content">Code</div> |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-1"> |
| <div class="line-number">1</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content">"""</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-2"> |
| <div class="line-number">2</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content">Tachyon Demo - Self-contained profiling example.</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-3"> |
| <div class="line-number">3</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content">Pure Python with no external imports for clean heatmap output.</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-4"> |
| <div class="line-number">4</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content">"""</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-5"> |
| <div class="line-number">5</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"></div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-6"> |
| <div class="line-number">6</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"></div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.130" data-cumulative-intensity="0.100" data-spec-color="rgba(0, 255, 0, 0.4)" id="line-7" title="Self: 1, Total: 1"> |
| <div class="line-number">7</div> |
| <div class="line-samples-self">1</div> |
| <div class="line-samples-cumulative">1</div> |
| <button class="bytecode-toggle" data-bytecode='[{"opcode": 194, "opname": "RESUME_CHECK (RESUME)", "base_opname": "RESUME", "is_specialized": true, "samples": 1, "locations": [{"end_lineno": 7, "col_offset": 0, "end_col_offset": 0}]}]' data-spec-pct="100" onclick="toggleBytecode(this)" title="Show bytecode">▶</button> |
| <div class="line-content">def fibonacci(n):</div> |
| |
| </div> |
| <div class="bytecode-panel" id="bytecode-7" style="display:none;"></div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-8"> |
| <div class="line-number">8</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"> """Recursive fibonacci - creates deep call stacks."""</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.260" data-cumulative-intensity="0.199" data-spec-color="rgba(222, 172, 86, 0.23249999999999998)" id="line-9" title="Self: 3, Total: 3"> |
| <div class="line-number">9</div> |
| <div class="line-samples-self">3</div> |
| <div class="line-samples-cumulative">3</div> |
| <button class="bytecode-toggle" data-bytecode='[{"opcode": 86, "opname": "LOAD_FAST_BORROW", "base_opname": "LOAD_FAST_BORROW", "is_specialized": false, "samples": 1, "locations": [{"end_lineno": 9, "col_offset": 7, "end_col_offset": 8}]}, {"opcode": 100, "opname": "POP_JUMP_IF_FALSE", "base_opname": "POP_JUMP_IF_FALSE", "is_specialized": false, "samples": 1, "locations": [{"end_lineno": 9, "col_offset": 7, "end_col_offset": 13}]}, {"opcode": 167, "opname": "COMPARE_OP_INT (COMPARE_OP)", "base_opname": "COMPARE_OP", "is_specialized": true, "samples": 1, "locations": [{"end_lineno": 9, "col_offset": 7, "end_col_offset": 13}]}]' data-spec-pct="33" onclick="toggleBytecode(this)" title="Show bytecode">▶</button> |
| <div class="line-content"> if <span class="instr-span" data-col-start="7" data-col-end="8" data-samples="1" data-max-samples="2" data-pct="33" data-opcodes="LOAD_FAST_BORROW">n</span><span class="instr-span" data-col-start="7" data-col-end="13" data-samples="2" data-max-samples="2" data-pct="66" data-opcodes="POP_JUMP_IF_FALSE, COMPARE_OP_INT (COMPARE_OP)"> <= 1</span>:</div> |
| |
| </div> |
| <div class="bytecode-panel" id="bytecode-9" style="display:none;"></div> |
| <div class="code-line" data-self-intensity="0.542" data-cumulative-intensity="0.415" data-spec-color="rgba(158, 158, 158, 0.15)" id="line-10" title="Self: 17, Total: 17"> |
| <div class="line-number">10</div> |
| <div class="line-samples-self">17</div> |
| <div class="line-samples-cumulative">17</div> |
| <button class="bytecode-toggle" data-bytecode='[{"opcode": 35, "opname": "RETURN_VALUE", "base_opname": "RETURN_VALUE", "is_specialized": false, "samples": 17, "locations": [{"end_lineno": 10, "col_offset": 8, "end_col_offset": 16}]}, {"opcode": 86, "opname": "LOAD_FAST_BORROW", "base_opname": "LOAD_FAST_BORROW", "is_specialized": false, "samples": 1, "locations": [{"end_lineno": 10, "col_offset": 15, "end_col_offset": 16}]}]' data-spec-pct="0" onclick="toggleBytecode(this)" title="Show bytecode">▶</button> |
| <div class="line-content"> <span class="instr-span" data-col-start="8" data-col-end="16" data-samples="17" data-max-samples="17" data-pct="94" data-opcodes="RETURN_VALUE">return </span><span class="instr-span" data-col-start="15" data-col-end="16" data-samples="1" data-max-samples="17" data-pct="5" data-opcodes="LOAD_FAST_BORROW">n</span></div> |
| <div class="line-nav-buttons"><button class="nav-btn caller" data-nav-multi='[{"file": "tachyon_selfcontained.py", "func": "fibonacci", "count": 4170, "link": "#line-11"}, {"file": "tachyon_selfcontained.py", "func": "compute_heavy", "count": 227, "link": "#line-78"}]' title="2 callers (4,397 samples)">â–²</button><button class="nav-btn callee" data-nav='{"link": "#line-10", "func": "fibonacci"}' title="Go to callee: fibonacci (1 samples)">â–¼</button></div> |
| </div> |
| <div class="bytecode-panel" id="bytecode-10" style="display:none;"></div> |
| <div class="code-line" data-self-intensity="1.000" data-cumulative-intensity="0.780" data-spec-color="rgba(5, 253, 1, 0.39749999999999996)" id="line-11" title="Self: 206, Total: 227"> |
| <div class="line-number">11</div> |
| <div class="line-samples-self">206</div> |
| <div class="line-samples-cumulative">227</div> |
| <button class="bytecode-toggle" data-bytecode='[{"opcode": 161, "opname": "CALL_PY_EXACT_ARGS (CALL)", "base_opname": "CALL", "is_specialized": true, "samples": 4315, "locations": [{"end_lineno": 11, "col_offset": 30, "end_col_offset": 46}, {"end_lineno": 11, "col_offset": 11, "end_col_offset": 27}]}, {"opcode": 35, "opname": "RETURN_VALUE", "base_opname": "RETURN_VALUE", "is_specialized": false, "samples": 32, "locations": [{"end_lineno": 11, "col_offset": 4, "end_col_offset": 46}]}, {"opcode": 191, "opname": "LOAD_GLOBAL_MODULE (LOAD_GLOBAL)", "base_opname": "LOAD_GLOBAL", "is_specialized": true, "samples": 14, "locations": [{"end_lineno": 11, "col_offset": 30, "end_col_offset": 39}, {"end_lineno": 11, "col_offset": 11, "end_col_offset": 20}]}, {"opcode": 86, "opname": "LOAD_FAST_BORROW", "base_opname": "LOAD_FAST_BORROW", "is_specialized": false, "samples": 8, "locations": [{"end_lineno": 11, "col_offset": 21, "end_col_offset": 22}]}, {"opcode": 142, "opname": "BINARY_OP_SUBTRACT_INT (BINARY_OP)", "base_opname": "BINARY_OP", "is_specialized": true, "samples": 4, "locations": [{"end_lineno": 11, "col_offset": 21, "end_col_offset": 26}, {"end_lineno": 11, "col_offset": 40, "end_col_offset": 45}]}, {"opcode": 130, "opname": "BINARY_OP_ADD_INT (BINARY_OP)", "base_opname": "BINARY_OP", "is_specialized": true, "samples": 2, "locations": [{"end_lineno": 11, "col_offset": 11, "end_col_offset": 46}]}, {"opcode": 94, "opname": "LOAD_SMALL_INT", "base_opname": "LOAD_SMALL_INT", "is_specialized": false, "samples": 1, "locations": [{"end_lineno": 11, "col_offset": 25, "end_col_offset": 26}]}]' data-spec-pct="99" onclick="toggleBytecode(this)" title="Show bytecode">▶</button> |
| <div class="line-content"> <span class="instr-span" data-col-start="4" data-col-end="46" data-samples="32" data-max-samples="4315" data-pct="0" data-opcodes="RETURN_VALUE">return </span><span class="instr-span" data-col-start="11" data-col-end="20" data-samples="14" data-max-samples="4315" data-pct="0" data-opcodes="LOAD_GLOBAL_MODULE (LOAD_GLOBAL)">fibonacci</span><span class="instr-span" data-col-start="11" data-col-end="27" data-samples="4315" data-max-samples="4315" data-pct="49" data-opcodes="CALL_PY_EXACT_ARGS (CALL)">(</span><span class="instr-span" data-col-start="21" data-col-end="22" data-samples="8" data-max-samples="4315" data-pct="0" data-opcodes="LOAD_FAST_BORROW">n</span><span class="instr-span" data-col-start="21" data-col-end="26" data-samples="4" data-max-samples="4315" data-pct="0" data-opcodes="BINARY_OP_SUBTRACT_INT (BINARY_OP)"> - </span><span class="instr-span" data-col-start="25" data-col-end="26" data-samples="1" data-max-samples="4315" data-pct="0" data-opcodes="LOAD_SMALL_INT">1</span><span class="instr-span" data-col-start="11" data-col-end="27" data-samples="4315" data-max-samples="4315" data-pct="49" data-opcodes="CALL_PY_EXACT_ARGS (CALL)">)</span><span class="instr-span" data-col-start="11" data-col-end="46" data-samples="2" data-max-samples="4315" data-pct="0" data-opcodes="BINARY_OP_ADD_INT (BINARY_OP)"> + </span><span class="instr-span" data-col-start="30" data-col-end="39" data-samples="14" data-max-samples="4315" data-pct="0" data-opcodes="LOAD_GLOBAL_MODULE (LOAD_GLOBAL)">fibonacci</span><span class="instr-span" data-col-start="30" data-col-end="46" data-samples="4315" data-max-samples="4315" data-pct="49" data-opcodes="CALL_PY_EXACT_ARGS (CALL)">(</span><span class="instr-span" data-col-start="40" data-col-end="45" data-samples="4" data-max-samples="4315" data-pct="0" data-opcodes="BINARY_OP_SUBTRACT_INT (BINARY_OP)">n - 2</span><span class="instr-span" data-col-start="30" data-col-end="46" data-samples="4315" data-max-samples="4315" data-pct="49" data-opcodes="CALL_PY_EXACT_ARGS (CALL)">)</span></div> |
| <div class="line-nav-buttons"><button class="nav-btn callee" data-nav='{"link": "#line-10", "func": "fibonacci"}' title="Go to callee: fibonacci (4,170 samples)">â–¼</button></div> |
| </div> |
| <div class="bytecode-panel" id="bytecode-11" style="display:none;"></div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-12"> |
| <div class="line-number">12</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"></div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-13"> |
| <div class="line-number">13</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"></div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-14"> |
| <div class="line-number">14</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content">def bubble_sort(arr):</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-15"> |
| <div class="line-number">15</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"> """Classic bubble sort - O(n^2) comparison sorting."""</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-16"> |
| <div class="line-number">16</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"> n = len(arr)</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-17"> |
| <div class="line-number">17</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"> for i in range(n):</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.206" data-cumulative-intensity="0.158" data-spec-color="rgba(255, 180, 50, 0.275)" id="line-18" title="Self: 2, Total: 2"> |
| <div class="line-number">18</div> |
| <div class="line-samples-self">2</div> |
| <div class="line-samples-cumulative">2</div> |
| <button class="bytecode-toggle" data-bytecode='[{"opcode": 112, "opname": "STORE_FAST", "base_opname": "STORE_FAST", "is_specialized": false, "samples": 1, "locations": [{"end_lineno": 18, "col_offset": 12, "end_col_offset": 13}]}, {"opcode": 173, "opname": "FOR_ITER_RANGE (FOR_ITER)", "base_opname": "FOR_ITER", "is_specialized": true, "samples": 1, "locations": [{"end_lineno": 18, "col_offset": 17, "end_col_offset": 36}]}]' data-spec-pct="50" onclick="toggleBytecode(this)" title="Show bytecode">▶</button> |
| <div class="line-content"> for <span class="instr-span" data-col-start="12" data-col-end="13" data-samples="1" data-max-samples="1" data-pct="50" data-opcodes="STORE_FAST">j</span> in <span class="instr-span" data-col-start="17" data-col-end="36" data-samples="1" data-max-samples="1" data-pct="50" data-opcodes="FOR_ITER_RANGE (FOR_ITER)">range(0, n - i - 1)</span>:</div> |
| |
| </div> |
| <div class="bytecode-panel" id="bytecode-18" style="display:none;"></div> |
| <div class="code-line" data-self-intensity="0.412" data-cumulative-intensity="0.316" data-spec-color="rgba(255, 180, 50, 0.275)" id="line-19" title="Self: 8, Total: 8"> |
| <div class="line-number">19</div> |
| <div class="line-samples-self">8</div> |
| <div class="line-samples-cumulative">8</div> |
| <button class="bytecode-toggle" data-bytecode='[{"opcode": 167, "opname": "COMPARE_OP_INT (COMPARE_OP)", "base_opname": "COMPARE_OP", "is_specialized": true, "samples": 3, "locations": [{"end_lineno": 19, "col_offset": 15, "end_col_offset": 34}]}, {"opcode": 87, "opname": "LOAD_FAST_BORROW_LOAD_FAST_BORROW", "base_opname": "LOAD_FAST_BORROW_LOAD_FAST_BORROW", "is_specialized": false, "samples": 2, "locations": [{"end_lineno": 19, "col_offset": 24, "end_col_offset": 27}, {"end_lineno": 19, "col_offset": 15, "end_col_offset": 18}]}, {"opcode": 94, "opname": "LOAD_SMALL_INT", "base_opname": "LOAD_SMALL_INT", "is_specialized": false, "samples": 2, "locations": [{"end_lineno": 19, "col_offset": 32, "end_col_offset": 33}]}, {"opcode": 137, "opname": "BINARY_OP_SUBSCR_LIST_INT (BINARY_OP)", "base_opname": "BINARY_OP", "is_specialized": true, "samples": 1, "locations": [{"end_lineno": 19, "col_offset": 15, "end_col_offset": 21}]}]' data-spec-pct="50" onclick="toggleBytecode(this)" title="Show bytecode">▶</button> |
| <div class="line-content"> if <span class="instr-span" data-col-start="15" data-col-end="18" data-samples="2" data-max-samples="3" data-pct="20" data-opcodes="LOAD_FAST_BORROW_LOAD_FAST_BORROW">arr</span><span class="instr-span" data-col-start="15" data-col-end="21" data-samples="1" data-max-samples="3" data-pct="10" data-opcodes="BINARY_OP_SUBSCR_LIST_INT (BINARY_OP)">[j]</span><span class="instr-span" data-col-start="15" data-col-end="34" data-samples="3" data-max-samples="3" data-pct="30" data-opcodes="COMPARE_OP_INT (COMPARE_OP)"> > </span><span class="instr-span" data-col-start="24" data-col-end="27" data-samples="2" data-max-samples="3" data-pct="20" data-opcodes="LOAD_FAST_BORROW_LOAD_FAST_BORROW">arr</span><span class="instr-span" data-col-start="15" data-col-end="34" data-samples="3" data-max-samples="3" data-pct="30" data-opcodes="COMPARE_OP_INT (COMPARE_OP)">[j + </span><span class="instr-span" data-col-start="32" data-col-end="33" data-samples="2" data-max-samples="3" data-pct="20" data-opcodes="LOAD_SMALL_INT">1</span><span class="instr-span" data-col-start="15" data-col-end="34" data-samples="3" data-max-samples="3" data-pct="30" data-opcodes="COMPARE_OP_INT (COMPARE_OP)">]</span>:</div> |
| <div class="line-nav-buttons"><button class="nav-btn caller" data-nav='{"link": "#line-90", "func": "data_processing"}' title="Go to caller: data_processing (12 samples)">â–²</button></div> |
| </div> |
| <div class="bytecode-panel" id="bytecode-19" style="display:none;"></div> |
| <div class="code-line" data-self-intensity="0.206" data-cumulative-intensity="0.158" data-spec-color="rgba(0, 255, 0, 0.4)" id="line-20" title="Self: 2, Total: 2"> |
| <div class="line-number">20</div> |
| <div class="line-samples-self">2</div> |
| <div class="line-samples-cumulative">2</div> |
| <button class="bytecode-toggle" data-bytecode='[{"opcode": 137, "opname": "BINARY_OP_SUBSCR_LIST_INT (BINARY_OP)", "base_opname": "BINARY_OP", "is_specialized": true, "samples": 2, "locations": [{"end_lineno": 20, "col_offset": 37, "end_col_offset": 47}]}]' data-spec-pct="100" onclick="toggleBytecode(this)" title="Show bytecode">▶</button> |
| <div class="line-content"> arr[j], arr[j + 1] = <span class="instr-span" data-col-start="37" data-col-end="47" data-samples="2" data-max-samples="2" data-pct="100" data-opcodes="BINARY_OP_SUBSCR_LIST_INT (BINARY_OP)">arr[j + 1]</span>, arr[j]</div> |
| |
| </div> |
| <div class="bytecode-panel" id="bytecode-20" style="display:none;"></div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-21"> |
| <div class="line-number">21</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"> return arr</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-22"> |
| <div class="line-number">22</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"></div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-23"> |
| <div class="line-number">23</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"></div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-24"> |
| <div class="line-number">24</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content">def matrix_multiply(a, b):</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-25"> |
| <div class="line-number">25</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"> """Matrix multiplication using nested loops."""</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-26"> |
| <div class="line-number">26</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"> rows_a, cols_a = len(a), len(a[0])</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-27"> |
| <div class="line-number">27</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"> rows_b, cols_b = len(b), len(b[0])</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-28"> |
| <div class="line-number">28</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"> result = [[0] * cols_b for _ in range(rows_a)]</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-29"> |
| <div class="line-number">29</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"></div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-30"> |
| <div class="line-number">30</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"> for i in range(rows_a):</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-31"> |
| <div class="line-number">31</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"> for j in range(cols_b):</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.412" data-cumulative-intensity="0.316" data-spec-color="rgba(229, 174, 78, 0.2425)" id="line-32" title="Self: 8, Total: 8"> |
| <div class="line-number">32</div> |
| <div class="line-samples-self">8</div> |
| <div class="line-samples-cumulative">8</div> |
| <button class="bytecode-toggle" data-bytecode='[{"opcode": 112, "opname": "STORE_FAST", "base_opname": "STORE_FAST", "is_specialized": false, "samples": 5, "locations": [{"end_lineno": 32, "col_offset": 16, "end_col_offset": 17}]}, {"opcode": 173, "opname": "FOR_ITER_RANGE (FOR_ITER)", "base_opname": "FOR_ITER", "is_specialized": true, "samples": 3, "locations": [{"end_lineno": 32, "col_offset": 21, "end_col_offset": 34}]}]' data-spec-pct="37" onclick="toggleBytecode(this)" title="Show bytecode">▶</button> |
| <div class="line-content"> for <span class="instr-span" data-col-start="16" data-col-end="17" data-samples="5" data-max-samples="5" data-pct="62" data-opcodes="STORE_FAST">k</span> in <span class="instr-span" data-col-start="21" data-col-end="34" data-samples="3" data-max-samples="5" data-pct="37" data-opcodes="FOR_ITER_RANGE (FOR_ITER)">range(cols_a)</span>:</div> |
| |
| </div> |
| <div class="bytecode-panel" id="bytecode-32" style="display:none;"></div> |
| <div class="code-line" data-self-intensity="0.777" data-cumulative-intensity="0.595" data-spec-color="rgba(117, 220, 23, 0.3425)" id="line-33" title="Self: 62, Total: 62"> |
| <div class="line-number">33</div> |
| <div class="line-samples-self">62</div> |
| <div class="line-samples-cumulative">62</div> |
| <button class="bytecode-toggle" data-bytecode='[{"opcode": 137, "opname": "BINARY_OP_SUBSCR_LIST_INT (BINARY_OP)", "base_opname": "BINARY_OP", "is_specialized": true, "samples": 26, "locations": [{"end_lineno": 33, "col_offset": 42, "end_col_offset": 46}, {"end_lineno": 33, "col_offset": 42, "end_col_offset": 49}, {"end_lineno": 33, "col_offset": 32, "end_col_offset": 36}, {"end_lineno": 33, "col_offset": 32, "end_col_offset": 39}, {"end_lineno": 33, "col_offset": 16, "end_col_offset": 28}]}, {"opcode": 130, "opname": "BINARY_OP_ADD_INT (BINARY_OP)", "base_opname": "BINARY_OP", "is_specialized": true, "samples": 11, "locations": [{"end_lineno": 33, "col_offset": 16, "end_col_offset": 49}]}, {"opcode": 134, "opname": "BINARY_OP_MULTIPLY_INT (BINARY_OP)", "base_opname": "BINARY_OP", "is_specialized": true, "samples": 8, "locations": [{"end_lineno": 33, "col_offset": 32, "end_col_offset": 49}]}, {"opcode": 117, "opname": "SWAP", "base_opname": "SWAP", "is_specialized": false, "samples": 5, "locations": [{"end_lineno": 33, "col_offset": 16, "end_col_offset": 28}]}, {"opcode": 59, "opname": "COPY", "base_opname": "COPY", "is_specialized": false, "samples": 4, "locations": [{"end_lineno": 33, "col_offset": 16, "end_col_offset": 28}]}, {"opcode": 86, "opname": "LOAD_FAST_BORROW", "base_opname": "LOAD_FAST_BORROW", "is_specialized": false, "samples": 3, "locations": [{"end_lineno": 33, "col_offset": 37, "end_col_offset": 38}, {"end_lineno": 33, "col_offset": 47, "end_col_offset": 48}]}, {"opcode": 87, "opname": "LOAD_FAST_BORROW_LOAD_FAST_BORROW", "base_opname": "LOAD_FAST_BORROW_LOAD_FAST_BORROW", "is_specialized": false, "samples": 2, "locations": [{"end_lineno": 33, "col_offset": 42, "end_col_offset": 43}, {"end_lineno": 33, "col_offset": 32, "end_col_offset": 33}]}, {"opcode": 200, "opname": "STORE_SUBSCR_LIST_INT (STORE_SUBSCR)", "base_opname": "STORE_SUBSCR", "is_specialized": true, "samples": 2, "locations": [{"end_lineno": 33, "col_offset": 16, "end_col_offset": 28}]}, {"opcode": 176, "opname": "JUMP_BACKWARD_NO_JIT (JUMP_BACKWARD)", "base_opname": "JUMP_BACKWARD", "is_specialized": true, "samples": 1, "locations": [{"end_lineno": 33, "col_offset": 16, "end_col_offset": 28}]}]' data-spec-pct="77" onclick="toggleBytecode(this)" title="Show bytecode">▶</button> |
| <div class="line-content"> <span class="instr-span" data-col-start="16" data-col-end="28" data-samples="38" data-max-samples="38" data-pct="22" data-opcodes="BINARY_OP_SUBSCR_LIST_INT (BINARY_OP), SWAP, COPY +2 more">result[i][j]</span><span class="instr-span" data-col-start="16" data-col-end="49" data-samples="11" data-max-samples="38" data-pct="6" data-opcodes="BINARY_OP_ADD_INT (BINARY_OP)"> += </span><span class="instr-span" data-col-start="32" data-col-end="33" data-samples="2" data-max-samples="38" data-pct="1" data-opcodes="LOAD_FAST_BORROW_LOAD_FAST_BORROW">a</span><span class="instr-span" data-col-start="32" data-col-end="36" data-samples="26" data-max-samples="38" data-pct="15" data-opcodes="BINARY_OP_SUBSCR_LIST_INT (BINARY_OP)">[i]</span><span class="instr-span" data-col-start="32" data-col-end="39" data-samples="26" data-max-samples="38" data-pct="15" data-opcodes="BINARY_OP_SUBSCR_LIST_INT (BINARY_OP)">[</span><span class="instr-span" data-col-start="37" data-col-end="38" data-samples="3" data-max-samples="38" data-pct="1" data-opcodes="LOAD_FAST_BORROW">k</span><span class="instr-span" data-col-start="32" data-col-end="39" data-samples="26" data-max-samples="38" data-pct="15" data-opcodes="BINARY_OP_SUBSCR_LIST_INT (BINARY_OP)">]</span><span class="instr-span" data-col-start="32" data-col-end="49" data-samples="8" data-max-samples="38" data-pct="4" data-opcodes="BINARY_OP_MULTIPLY_INT (BINARY_OP)"> * </span><span class="instr-span" data-col-start="42" data-col-end="43" data-samples="2" data-max-samples="38" data-pct="1" data-opcodes="LOAD_FAST_BORROW_LOAD_FAST_BORROW">b</span><span class="instr-span" data-col-start="42" data-col-end="46" data-samples="26" data-max-samples="38" data-pct="15" data-opcodes="BINARY_OP_SUBSCR_LIST_INT (BINARY_OP)">[k]</span><span class="instr-span" data-col-start="42" data-col-end="49" data-samples="26" data-max-samples="38" data-pct="15" data-opcodes="BINARY_OP_SUBSCR_LIST_INT (BINARY_OP)">[</span><span class="instr-span" data-col-start="47" data-col-end="48" data-samples="3" data-max-samples="38" data-pct="1" data-opcodes="LOAD_FAST_BORROW">j</span><span class="instr-span" data-col-start="42" data-col-end="49" data-samples="26" data-max-samples="38" data-pct="15" data-opcodes="BINARY_OP_SUBSCR_LIST_INT (BINARY_OP)">]</span></div> |
| <div class="line-nav-buttons"><button class="nav-btn caller" data-nav='{"link": "#line-78", "func": "compute_heavy"}' title="Go to caller: compute_heavy (70 samples)">â–²</button></div> |
| </div> |
| <div class="bytecode-panel" id="bytecode-33" style="display:none;"></div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-34"> |
| <div class="line-number">34</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"> return result</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-35"> |
| <div class="line-number">35</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"></div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-36"> |
| <div class="line-number">36</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"></div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-37"> |
| <div class="line-number">37</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content">def prime_sieve(limit):</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-38"> |
| <div class="line-number">38</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"> """Sieve of Eratosthenes - find all primes up to limit."""</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-39"> |
| <div class="line-number">39</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"> is_prime = [True] * (limit + 1)</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-40"> |
| <div class="line-number">40</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"> is_prime[0] = is_prime[1] = False</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-41"> |
| <div class="line-number">41</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"></div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-42"> |
| <div class="line-number">42</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"> for num in range(2, int(limit ** 0.5) + 1):</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-43"> |
| <div class="line-number">43</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"> if is_prime[num]:</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.130" data-cumulative-intensity="0.100" data-spec-color="rgba(0, 255, 0, 0.4)" id="line-44" title="Self: 1, Total: 1"> |
| <div class="line-number">44</div> |
| <div class="line-samples-self">1</div> |
| <div class="line-samples-cumulative">1</div> |
| <button class="bytecode-toggle" data-bytecode='[{"opcode": 173, "opname": "FOR_ITER_RANGE (FOR_ITER)", "base_opname": "FOR_ITER", "is_specialized": true, "samples": 1, "locations": [{"end_lineno": 44, "col_offset": 28, "end_col_offset": 60}]}]' data-spec-pct="100" onclick="toggleBytecode(this)" title="Show bytecode">▶</button> |
| <div class="line-content"> for multiple in <span class="instr-span" data-col-start="28" data-col-end="60" data-samples="1" data-max-samples="1" data-pct="100" data-opcodes="FOR_ITER_RANGE (FOR_ITER)">range(num * num, limit + 1, num)</span>:</div> |
| <div class="line-nav-buttons"><button class="nav-btn caller" data-nav='{"link": "#line-78", "func": "compute_heavy"}' title="Go to caller: compute_heavy (3 samples)">â–²</button></div> |
| </div> |
| <div class="bytecode-panel" id="bytecode-44" style="display:none;"></div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-45"> |
| <div class="line-number">45</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"> is_prime[multiple] = False</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-46"> |
| <div class="line-number">46</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"></div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.206" data-cumulative-intensity="0.158" data-spec-color="rgba(158, 158, 158, 0.15)" id="line-47" title="Self: 2, Total: 2"> |
| <div class="line-number">47</div> |
| <div class="line-samples-self">2</div> |
| <div class="line-samples-cumulative">2</div> |
| <button class="bytecode-toggle" data-bytecode='[{"opcode": 70, "opname": "FOR_ITER", "base_opname": "FOR_ITER", "is_specialized": false, "samples": 2, "locations": [{"end_lineno": 47, "col_offset": 34, "end_col_offset": 53}]}]' data-spec-pct="0" onclick="toggleBytecode(this)" title="Show bytecode">▶</button> |
| <div class="line-content"> return [num for num, prime in <span class="instr-span" data-col-start="34" data-col-end="53" data-samples="2" data-max-samples="2" data-pct="100" data-opcodes="FOR_ITER">enumerate(is_prime)</span> if prime]</div> |
| |
| </div> |
| <div class="bytecode-panel" id="bytecode-47" style="display:none;"></div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-48"> |
| <div class="line-number">48</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"></div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-49"> |
| <div class="line-number">49</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"></div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-50"> |
| <div class="line-number">50</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content">def string_processing(iterations):</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-51"> |
| <div class="line-number">51</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"> """String operations - concatenation and formatting."""</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-52"> |
| <div class="line-number">52</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"> for _ in range(iterations):</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-53"> |
| <div class="line-number">53</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"> result = ""</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-54"> |
| <div class="line-number">54</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"> for i in range(50):</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.848" data-cumulative-intensity="0.650" data-spec-color="rgba(239, 176, 67, 0.255)" id="line-55" title="Self: 91, Total: 91"> |
| <div class="line-number">55</div> |
| <div class="line-samples-self">91</div> |
| <div class="line-samples-cumulative">91</div> |
| <button class="bytecode-toggle" data-bytecode='[{"opcode": 3, "opname": "BINARY_OP_INPLACE_ADD_UNICODE (BINARY_OP)", "base_opname": "BINARY_OP", "is_specialized": true, "samples": 39, "locations": [{"end_lineno": 55, "col_offset": 12, "end_col_offset": 34}]}, {"opcode": 12, "opname": "FORMAT_SIMPLE", "base_opname": "FORMAT_SIMPLE", "is_specialized": false, "samples": 32, "locations": [{"end_lineno": 55, "col_offset": 29, "end_col_offset": 32}]}, {"opcode": 50, "opname": "BUILD_STRING", "base_opname": "BUILD_STRING", "is_specialized": false, "samples": 15, "locations": [{"end_lineno": 55, "col_offset": 22, "end_col_offset": 34}]}, {"opcode": 82, "opname": "LOAD_CONST", "base_opname": "LOAD_CONST", "is_specialized": false, "samples": 4, "locations": [{"end_lineno": 55, "col_offset": 24, "end_col_offset": 29}, {"end_lineno": 55, "col_offset": 32, "end_col_offset": 33}]}, {"opcode": 86, "opname": "LOAD_FAST_BORROW", "base_opname": "LOAD_FAST_BORROW", "is_specialized": false, "samples": 1, "locations": [{"end_lineno": 55, "col_offset": 12, "end_col_offset": 18}]}]' data-spec-pct="42" onclick="toggleBytecode(this)" title="Show bytecode">▶</button> |
| <div class="line-content"> <span class="instr-span" data-col-start="12" data-col-end="18" data-samples="1" data-max-samples="39" data-pct="1" data-opcodes="LOAD_FAST_BORROW">result</span><span class="instr-span" data-col-start="12" data-col-end="34" data-samples="39" data-max-samples="39" data-pct="41" data-opcodes="BINARY_OP_INPLACE_ADD_UNICODE (BINARY_OP)"> += </span><span class="instr-span" data-col-start="22" data-col-end="34" data-samples="15" data-max-samples="39" data-pct="15" data-opcodes="BUILD_STRING">f"</span><span class="instr-span" data-col-start="24" data-col-end="29" data-samples="4" data-max-samples="39" data-pct="4" data-opcodes="LOAD_CONST">item_</span><span class="instr-span" data-col-start="29" data-col-end="32" data-samples="32" data-max-samples="39" data-pct="33" data-opcodes="FORMAT_SIMPLE">{i}</span><span class="instr-span" data-col-start="32" data-col-end="33" data-samples="4" data-max-samples="39" data-pct="4" data-opcodes="LOAD_CONST">_</span><span class="instr-span" data-col-start="22" data-col-end="34" data-samples="15" data-max-samples="39" data-pct="15" data-opcodes="BUILD_STRING">"</span></div> |
| <div class="line-nav-buttons"><button class="nav-btn caller" data-nav='{"link": "#line-90", "func": "data_processing"}' title="Go to caller: data_processing (123 samples)">â–²</button></div> |
| </div> |
| <div class="bytecode-panel" id="bytecode-55" style="display:none;"></div> |
| <div class="code-line" data-self-intensity="0.588" data-cumulative-intensity="0.450" data-spec-color="rgba(163, 207, 31, 0.32)" id="line-56" title="Self: 22, Total: 22"> |
| <div class="line-number">56</div> |
| <div class="line-samples-self">22</div> |
| <div class="line-samples-cumulative">22</div> |
| <button class="bytecode-toggle" data-bytecode='[{"opcode": 157, "opname": "CALL_METHOD_DESCRIPTOR_FAST_WITH_KEYWORDS (CALL)", "base_opname": "CALL", "is_specialized": true, "samples": 15, "locations": [{"end_lineno": 56, "col_offset": 16, "end_col_offset": 33}]}, {"opcode": 112, "opname": "STORE_FAST", "base_opname": "STORE_FAST", "is_specialized": false, "samples": 7, "locations": [{"end_lineno": 56, "col_offset": 8, "end_col_offset": 13}]}]' data-spec-pct="68" onclick="toggleBytecode(this)" title="Show bytecode">▶</button> |
| <div class="line-content"> <span class="instr-span" data-col-start="8" data-col-end="13" data-samples="7" data-max-samples="15" data-pct="31" data-opcodes="STORE_FAST">parts</span> = <span class="instr-span" data-col-start="16" data-col-end="33" data-samples="15" data-max-samples="15" data-pct="68" data-opcodes="CALL_METHOD_DESCRIPTOR_FAST_WITH_KEYWORDS (CALL)">result.split("_")</span></div> |
| |
| </div> |
| <div class="bytecode-panel" id="bytecode-56" style="display:none;"></div> |
| <div class="code-line" data-self-intensity="0.450" data-cumulative-intensity="0.344" data-spec-color="rgba(0, 255, 0, 0.4)" id="line-57" title="Self: 10, Total: 10"> |
| <div class="line-number">57</div> |
| <div class="line-samples-self">10</div> |
| <div class="line-samples-cumulative">10</div> |
| <button class="bytecode-toggle" data-bytecode='[{"opcode": 159, "opname": "CALL_METHOD_DESCRIPTOR_O (CALL)", "base_opname": "CALL", "is_specialized": true, "samples": 10, "locations": [{"end_lineno": 57, "col_offset": 17, "end_col_offset": 32}]}]' data-spec-pct="100" onclick="toggleBytecode(this)" title="Show bytecode">▶</button> |
| <div class="line-content"> joined = <span class="instr-span" data-col-start="17" data-col-end="32" data-samples="10" data-max-samples="10" data-pct="100" data-opcodes="CALL_METHOD_DESCRIPTOR_O (CALL)">"-".join(parts)</span></div> |
| |
| </div> |
| <div class="bytecode-panel" id="bytecode-57" style="display:none;"></div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-58"> |
| <div class="line-number">58</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"></div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-59"> |
| <div class="line-number">59</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"></div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-60"> |
| <div class="line-number">60</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content">def list_operations(iterations):</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-61"> |
| <div class="line-number">61</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"> """List comprehensions and operations."""</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-62"> |
| <div class="line-number">62</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"> for _ in range(iterations):</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.896" data-cumulative-intensity="0.687" data-spec-color="rgba(206, 169, 104, 0.2125)" id="line-63" title="Self: 118, Total: 118"> |
| <div class="line-number">63</div> |
| <div class="line-samples-self">118</div> |
| <div class="line-samples-cumulative">118</div> |
| <button class="bytecode-toggle" data-bytecode='[{"opcode": 44, "opname": "BINARY_OP", "base_opname": "BINARY_OP", "is_specialized": false, "samples": 54, "locations": [{"end_lineno": 63, "col_offset": 19, "end_col_offset": 25}]}, {"opcode": 173, "opname": "FOR_ITER_RANGE (FOR_ITER)", "base_opname": "FOR_ITER", "is_specialized": true, "samples": 26, "locations": [{"end_lineno": 63, "col_offset": 35, "end_col_offset": 45}]}, {"opcode": 78, "opname": "LIST_APPEND", "base_opname": "LIST_APPEND", "is_specialized": false, "samples": 13, "locations": [{"end_lineno": 63, "col_offset": 19, "end_col_offset": 25}]}, {"opcode": 112, "opname": "STORE_FAST", "base_opname": "STORE_FAST", "is_specialized": false, "samples": 10, "locations": [{"end_lineno": 63, "col_offset": 8, "end_col_offset": 15}]}, {"opcode": 113, "opname": "STORE_FAST_LOAD_FAST", "base_opname": "STORE_FAST_LOAD_FAST", "is_specialized": false, "samples": 9, "locations": [{"end_lineno": 63, "col_offset": 30, "end_col_offset": 31}]}, {"opcode": 176, "opname": "JUMP_BACKWARD_NO_JIT (JUMP_BACKWARD)", "base_opname": "JUMP_BACKWARD", "is_specialized": true, "samples": 4, "locations": [{"end_lineno": 63, "col_offset": 19, "end_col_offset": 25}]}, {"opcode": 94, "opname": "LOAD_SMALL_INT", "base_opname": "LOAD_SMALL_INT", "is_specialized": false, "samples": 2, "locations": [{"end_lineno": 63, "col_offset": 24, "end_col_offset": 25}]}]' data-spec-pct="25" onclick="toggleBytecode(this)" title="Show bytecode">▶</button> |
| <div class="line-content"> <span class="instr-span" data-col-start="8" data-col-end="15" data-samples="10" data-max-samples="71" data-pct="8" data-opcodes="STORE_FAST">squares</span> = [<span class="instr-span" data-col-start="19" data-col-end="25" data-samples="71" data-max-samples="71" data-pct="60" data-opcodes="BINARY_OP, LIST_APPEND, JUMP_BACKWARD_NO_JIT (JUMP_BACKWARD)">x ** </span><span class="instr-span" data-col-start="24" data-col-end="25" data-samples="2" data-max-samples="71" data-pct="1" data-opcodes="LOAD_SMALL_INT">2</span> for <span class="instr-span" data-col-start="30" data-col-end="31" data-samples="9" data-max-samples="71" data-pct="7" data-opcodes="STORE_FAST_LOAD_FAST">x</span> in <span class="instr-span" data-col-start="35" data-col-end="45" data-samples="26" data-max-samples="71" data-pct="22" data-opcodes="FOR_ITER_RANGE (FOR_ITER)">range(500)</span>]</div> |
| |
| </div> |
| <div class="bytecode-panel" id="bytecode-63" style="display:none;"></div> |
| <div class="code-line" data-self-intensity="0.898" data-cumulative-intensity="0.688" data-spec-color="rgba(206, 169, 104, 0.2125)" id="line-64" title="Self: 119, Total: 119"> |
| <div class="line-number">64</div> |
| <div class="line-samples-self">119</div> |
| <div class="line-samples-cumulative">119</div> |
| <button class="bytecode-toggle" data-bytecode='[{"opcode": 44, "opname": "BINARY_OP", "base_opname": "BINARY_OP", "is_specialized": false, "samples": 48, "locations": [{"end_lineno": 64, "col_offset": 39, "end_col_offset": 44}]}, {"opcode": 167, "opname": "COMPARE_OP_INT (COMPARE_OP)", "base_opname": "COMPARE_OP", "is_specialized": true, "samples": 16, "locations": [{"end_lineno": 64, "col_offset": 39, "end_col_offset": 49}]}, {"opcode": 94, "opname": "LOAD_SMALL_INT", "base_opname": "LOAD_SMALL_INT", "is_specialized": false, "samples": 13, "locations": [{"end_lineno": 64, "col_offset": 43, "end_col_offset": 44}, {"end_lineno": 64, "col_offset": 48, "end_col_offset": 49}]}, {"opcode": 172, "opname": "FOR_ITER_LIST (FOR_ITER)", "base_opname": "FOR_ITER", "is_specialized": true, "samples": 13, "locations": [{"end_lineno": 64, "col_offset": 28, "end_col_offset": 35}]}, {"opcode": 112, "opname": "STORE_FAST", "base_opname": "STORE_FAST", "is_specialized": false, "samples": 12, "locations": [{"end_lineno": 64, "col_offset": 8, "end_col_offset": 13}]}, {"opcode": 113, "opname": "STORE_FAST_LOAD_FAST", "base_opname": "STORE_FAST_LOAD_FAST", "is_specialized": false, "samples": 6, "locations": [{"end_lineno": 64, "col_offset": 23, "end_col_offset": 24}]}, {"opcode": 86, "opname": "LOAD_FAST_BORROW", "base_opname": "LOAD_FAST_BORROW", "is_specialized": false, "samples": 4, "locations": [{"end_lineno": 64, "col_offset": 17, "end_col_offset": 18}]}, {"opcode": 78, "opname": "LIST_APPEND", "base_opname": "LIST_APPEND", "is_specialized": false, "samples": 3, "locations": [{"end_lineno": 64, "col_offset": 17, "end_col_offset": 18}]}, {"opcode": 103, "opname": "POP_JUMP_IF_TRUE", "base_opname": "POP_JUMP_IF_TRUE", "is_specialized": false, "samples": 2, "locations": [{"end_lineno": 64, "col_offset": 17, "end_col_offset": 18}]}, {"opcode": 16, "opname": "GET_ITER", "base_opname": "GET_ITER", "is_specialized": false, "samples": 1, "locations": [{"end_lineno": 64, "col_offset": 28, "end_col_offset": 35}]}, {"opcode": 176, "opname": "JUMP_BACKWARD_NO_JIT (JUMP_BACKWARD)", "base_opname": "JUMP_BACKWARD", "is_specialized": true, "samples": 1, "locations": [{"end_lineno": 64, "col_offset": 17, "end_col_offset": 18}]}]' data-spec-pct="25" onclick="toggleBytecode(this)" title="Show bytecode">▶</button> |
| <div class="line-content"> <span class="instr-span" data-col-start="8" data-col-end="13" data-samples="12" data-max-samples="48" data-pct="9" data-opcodes="STORE_FAST">evens</span> = [<span class="instr-span" data-col-start="17" data-col-end="18" data-samples="10" data-max-samples="48" data-pct="7" data-opcodes="LOAD_FAST_BORROW, LIST_APPEND, POP_JUMP_IF_TRUE +1 more">x</span> for <span class="instr-span" data-col-start="23" data-col-end="24" data-samples="6" data-max-samples="48" data-pct="4" data-opcodes="STORE_FAST_LOAD_FAST">x</span> in <span class="instr-span" data-col-start="28" data-col-end="35" data-samples="14" data-max-samples="48" data-pct="10" data-opcodes="FOR_ITER_LIST (FOR_ITER), GET_ITER">squares</span> if <span class="instr-span" data-col-start="39" data-col-end="44" data-samples="48" data-max-samples="48" data-pct="36" data-opcodes="BINARY_OP">x % </span><span class="instr-span" data-col-start="43" data-col-end="44" data-samples="13" data-max-samples="48" data-pct="9" data-opcodes="LOAD_SMALL_INT">2</span><span class="instr-span" data-col-start="39" data-col-end="49" data-samples="16" data-max-samples="48" data-pct="12" data-opcodes="COMPARE_OP_INT (COMPARE_OP)"> == </span><span class="instr-span" data-col-start="48" data-col-end="49" data-samples="13" data-max-samples="48" data-pct="9" data-opcodes="LOAD_SMALL_INT">0</span>]</div> |
| <div class="line-nav-buttons"><button class="nav-btn caller" data-nav='{"link": "#line-90", "func": "data_processing"}' title="Go to caller: data_processing (249 samples)">â–²</button></div> |
| </div> |
| <div class="bytecode-panel" id="bytecode-64" style="display:none;"></div> |
| <div class="code-line" data-self-intensity="0.481" data-cumulative-intensity="0.368" data-spec-color="rgba(0, 255, 0, 0.4)" id="line-65" title="Self: 12, Total: 12"> |
| <div class="line-number">65</div> |
| <div class="line-samples-self">12</div> |
| <div class="line-samples-cumulative">12</div> |
| <button class="bytecode-toggle" data-bytecode='[{"opcode": 148, "opname": "CALL_BUILTIN_FAST_WITH_KEYWORDS (CALL)", "base_opname": "CALL", "is_specialized": true, "samples": 11, "locations": [{"end_lineno": 65, "col_offset": 16, "end_col_offset": 26}]}, {"opcode": 176, "opname": "JUMP_BACKWARD_NO_JIT (JUMP_BACKWARD)", "base_opname": "JUMP_BACKWARD", "is_specialized": true, "samples": 1, "locations": [{"end_lineno": 65, "col_offset": 8, "end_col_offset": 13}]}]' data-spec-pct="100" onclick="toggleBytecode(this)" title="Show bytecode">▶</button> |
| <div class="line-content"> <span class="instr-span" data-col-start="8" data-col-end="13" data-samples="1" data-max-samples="11" data-pct="8" data-opcodes="JUMP_BACKWARD_NO_JIT (JUMP_BACKWARD)">total</span> = <span class="instr-span" data-col-start="16" data-col-end="26" data-samples="11" data-max-samples="11" data-pct="91" data-opcodes="CALL_BUILTIN_FAST_WITH_KEYWORDS (CALL)">sum(evens)</span></div> |
| |
| </div> |
| <div class="bytecode-panel" id="bytecode-65" style="display:none;"></div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-66"> |
| <div class="line-number">66</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"></div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-67"> |
| <div class="line-number">67</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"></div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-68"> |
| <div class="line-number">68</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content">def dict_operations(iterations):</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-69"> |
| <div class="line-number">69</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"> """Dictionary creation and lookups."""</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-70"> |
| <div class="line-number">70</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"> for _ in range(iterations):</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="1.000" data-cumulative-intensity="0.766" data-spec-color="rgba(175, 161, 138, 0.1725)" id="line-71" title="Self: 206, Total: 206"> |
| <div class="line-number">71</div> |
| <div class="line-samples-self">206</div> |
| <div class="line-samples-cumulative">206</div> |
| <button class="bytecode-toggle" data-bytecode='[{"opcode": 12, "opname": "FORMAT_SIMPLE", "base_opname": "FORMAT_SIMPLE", "is_specialized": false, "samples": 56, "locations": [{"end_lineno": 71, "col_offset": 22, "end_col_offset": 25}]}, {"opcode": 98, "opname": "MAP_ADD", "base_opname": "MAP_ADD", "is_specialized": false, "samples": 56, "locations": [{"end_lineno": 71, "col_offset": 16, "end_col_offset": 34}]}, {"opcode": 50, "opname": "BUILD_STRING", "base_opname": "BUILD_STRING", "is_specialized": false, "samples": 37, "locations": [{"end_lineno": 71, "col_offset": 16, "end_col_offset": 26}]}, {"opcode": 44, "opname": "BINARY_OP", "base_opname": "BINARY_OP", "is_specialized": false, "samples": 21, "locations": [{"end_lineno": 71, "col_offset": 28, "end_col_offset": 34}]}, {"opcode": 173, "opname": "FOR_ITER_RANGE (FOR_ITER)", "base_opname": "FOR_ITER", "is_specialized": true, "samples": 14, "locations": [{"end_lineno": 71, "col_offset": 44, "end_col_offset": 54}]}, {"opcode": 112, "opname": "STORE_FAST", "base_opname": "STORE_FAST", "is_specialized": false, "samples": 12, "locations": [{"end_lineno": 71, "col_offset": 8, "end_col_offset": 12}]}, {"opcode": 176, "opname": "JUMP_BACKWARD_NO_JIT (JUMP_BACKWARD)", "base_opname": "JUMP_BACKWARD", "is_specialized": true, "samples": 6, "locations": [{"end_lineno": 71, "col_offset": 16, "end_col_offset": 34}]}, {"opcode": 86, "opname": "LOAD_FAST_BORROW", "base_opname": "LOAD_FAST_BORROW", "is_specialized": false, "samples": 3, "locations": [{"end_lineno": 71, "col_offset": 28, "end_col_offset": 29}]}, {"opcode": 82, "opname": "LOAD_CONST", "base_opname": "LOAD_CONST", "is_specialized": false, "samples": 1, "locations": [{"end_lineno": 71, "col_offset": 18, "end_col_offset": 22}]}]' data-spec-pct="9" onclick="toggleBytecode(this)" title="Show bytecode">▶</button> |
| <div class="line-content"> <span class="instr-span" data-col-start="8" data-col-end="12" data-samples="12" data-max-samples="62" data-pct="5" data-opcodes="STORE_FAST">data</span> = {<span class="instr-span" data-col-start="16" data-col-end="26" data-samples="37" data-max-samples="62" data-pct="17" data-opcodes="BUILD_STRING">f"</span><span class="instr-span" data-col-start="18" data-col-end="22" data-samples="1" data-max-samples="62" data-pct="0" data-opcodes="LOAD_CONST">key_</span><span class="instr-span" data-col-start="22" data-col-end="25" data-samples="56" data-max-samples="62" data-pct="27" data-opcodes="FORMAT_SIMPLE">{i}</span><span class="instr-span" data-col-start="16" data-col-end="26" data-samples="37" data-max-samples="62" data-pct="17" data-opcodes="BUILD_STRING">"</span><span class="instr-span" data-col-start="16" data-col-end="34" data-samples="62" data-max-samples="62" data-pct="30" data-opcodes="MAP_ADD, JUMP_BACKWARD_NO_JIT (JUMP_BACKWARD)">: </span><span class="instr-span" data-col-start="28" data-col-end="29" data-samples="3" data-max-samples="62" data-pct="1" data-opcodes="LOAD_FAST_BORROW">i</span><span class="instr-span" data-col-start="28" data-col-end="34" data-samples="21" data-max-samples="62" data-pct="10" data-opcodes="BINARY_OP"> ** 2</span> for i in <span class="instr-span" data-col-start="44" data-col-end="54" data-samples="14" data-max-samples="62" data-pct="6" data-opcodes="FOR_ITER_RANGE (FOR_ITER)">range(200)</span>}</div> |
| <div class="line-nav-buttons"><button class="nav-btn caller" data-nav='{"link": "#line-90", "func": "data_processing"}' title="Go to caller: data_processing (369 samples)">â–²</button></div> |
| </div> |
| <div class="bytecode-panel" id="bytecode-71" style="display:none;"></div> |
| <div class="code-line" data-self-intensity="0.951" data-cumulative-intensity="0.728" data-spec-color="rgba(223, 172, 84, 0.235)" id="line-72" title="Self: 158, Total: 158"> |
| <div class="line-number">72</div> |
| <div class="line-samples-self">158</div> |
| <div class="line-samples-cumulative">158</div> |
| <button class="bytecode-toggle" data-bytecode='[{"opcode": 12, "opname": "FORMAT_SIMPLE", "base_opname": "FORMAT_SIMPLE", "is_specialized": false, "samples": 50, "locations": [{"end_lineno": 72, "col_offset": 29, "end_col_offset": 32}]}, {"opcode": 135, "opname": "BINARY_OP_SUBSCR_DICT (BINARY_OP)", "base_opname": "BINARY_OP", "is_specialized": true, "samples": 50, "locations": [{"end_lineno": 72, "col_offset": 18, "end_col_offset": 34}]}, {"opcode": 50, "opname": "BUILD_STRING", "base_opname": "BUILD_STRING", "is_specialized": false, "samples": 43, "locations": [{"end_lineno": 72, "col_offset": 23, "end_col_offset": 33}]}, {"opcode": 112, "opname": "STORE_FAST", "base_opname": "STORE_FAST", "is_specialized": false, "samples": 4, "locations": [{"end_lineno": 72, "col_offset": 8, "end_col_offset": 14}]}, {"opcode": 113, "opname": "STORE_FAST_LOAD_FAST", "base_opname": "STORE_FAST_LOAD_FAST", "is_specialized": false, "samples": 4, "locations": [{"end_lineno": 72, "col_offset": 39, "end_col_offset": 40}]}, {"opcode": 173, "opname": "FOR_ITER_RANGE (FOR_ITER)", "base_opname": "FOR_ITER", "is_specialized": true, "samples": 4, "locations": [{"end_lineno": 72, "col_offset": 44, "end_col_offset": 54}]}, {"opcode": 78, "opname": "LIST_APPEND", "base_opname": "LIST_APPEND", "is_specialized": false, "samples": 2, "locations": [{"end_lineno": 72, "col_offset": 18, "end_col_offset": 34}]}, {"opcode": 86, "opname": "LOAD_FAST_BORROW", "base_opname": "LOAD_FAST_BORROW", "is_specialized": false, "samples": 1, "locations": [{"end_lineno": 72, "col_offset": 30, "end_col_offset": 31}]}]' data-spec-pct="34" onclick="toggleBytecode(this)" title="Show bytecode">▶</button> |
| <div class="line-content"> <span class="instr-span" data-col-start="8" data-col-end="14" data-samples="4" data-max-samples="52" data-pct="2" data-opcodes="STORE_FAST">values</span> = [<span class="instr-span" data-col-start="18" data-col-end="34" data-samples="52" data-max-samples="52" data-pct="32" data-opcodes="BINARY_OP_SUBSCR_DICT (BINARY_OP), LIST_APPEND">data[</span><span class="instr-span" data-col-start="23" data-col-end="33" data-samples="43" data-max-samples="52" data-pct="27" data-opcodes="BUILD_STRING">f"key_</span><span class="instr-span" data-col-start="29" data-col-end="32" data-samples="50" data-max-samples="52" data-pct="31" data-opcodes="FORMAT_SIMPLE">{</span><span class="instr-span" data-col-start="30" data-col-end="31" data-samples="1" data-max-samples="52" data-pct="0" data-opcodes="LOAD_FAST_BORROW">i</span><span class="instr-span" data-col-start="29" data-col-end="32" data-samples="50" data-max-samples="52" data-pct="31" data-opcodes="FORMAT_SIMPLE">}</span><span class="instr-span" data-col-start="23" data-col-end="33" data-samples="43" data-max-samples="52" data-pct="27" data-opcodes="BUILD_STRING">"</span><span class="instr-span" data-col-start="18" data-col-end="34" data-samples="52" data-max-samples="52" data-pct="32" data-opcodes="BINARY_OP_SUBSCR_DICT (BINARY_OP), LIST_APPEND">]</span> for <span class="instr-span" data-col-start="39" data-col-end="40" data-samples="4" data-max-samples="52" data-pct="2" data-opcodes="STORE_FAST_LOAD_FAST">i</span> in <span class="instr-span" data-col-start="44" data-col-end="54" data-samples="4" data-max-samples="52" data-pct="2" data-opcodes="FOR_ITER_RANGE (FOR_ITER)">range(200)</span>]</div> |
| |
| </div> |
| <div class="bytecode-panel" id="bytecode-72" style="display:none;"></div> |
| <div class="code-line" data-self-intensity="0.336" data-cumulative-intensity="0.257" data-spec-color="rgba(0, 255, 0, 0.4)" id="line-73" title="Self: 5, Total: 5"> |
| <div class="line-number">73</div> |
| <div class="line-samples-self">5</div> |
| <div class="line-samples-cumulative">5</div> |
| <button class="bytecode-toggle" data-bytecode='[{"opcode": 148, "opname": "CALL_BUILTIN_FAST_WITH_KEYWORDS (CALL)", "base_opname": "CALL", "is_specialized": true, "samples": 5, "locations": [{"end_lineno": 73, "col_offset": 16, "end_col_offset": 27}]}]' data-spec-pct="100" onclick="toggleBytecode(this)" title="Show bytecode">▶</button> |
| <div class="line-content"> total = <span class="instr-span" data-col-start="16" data-col-end="27" data-samples="5" data-max-samples="5" data-pct="100" data-opcodes="CALL_BUILTIN_FAST_WITH_KEYWORDS (CALL)">sum(values)</span></div> |
| |
| </div> |
| <div class="bytecode-panel" id="bytecode-73" style="display:none;"></div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-74"> |
| <div class="line-number">74</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"></div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-75"> |
| <div class="line-number">75</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"></div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-76"> |
| <div class="line-number">76</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content">def compute_heavy():</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-77"> |
| <div class="line-number">77</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"> """CPU-intensive computation section."""</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.130" data-cumulative-intensity="0.820" data-spec-color="rgba(158, 158, 158, 0.15)" id="line-78" title="Self: 1, Total: 301"> |
| <div class="line-number">78</div> |
| <div class="line-samples-self">1</div> |
| <div class="line-samples-cumulative">301</div> |
| <button class="bytecode-toggle" data-bytecode='[{"opcode": 52, "opname": "CALL", "base_opname": "CALL", "is_specialized": false, "samples": 301, "locations": [{"end_lineno": 78, "col_offset": 4, "end_col_offset": 17}]}]' data-spec-pct="0" onclick="toggleBytecode(this)" title="Show bytecode">▶</button> |
| <div class="line-content"> <span class="instr-span" data-col-start="4" data-col-end="17" data-samples="301" data-max-samples="301" data-pct="100" data-opcodes="CALL">fibonacci(30)</span></div> |
| <div class="line-nav-buttons"><button class="nav-btn caller" data-nav='{"link": "#line-102", "func": "main"}' title="Go to caller: main (301 samples)">â–²</button><button class="nav-btn callee" data-nav-multi='[{"file": "tachyon_selfcontained.py", "func": "fibonacci", "count": 227, "link": "#line-10"}, {"file": "tachyon_selfcontained.py", "func": "matrix_multiply", "count": 70, "link": "#line-33"}, {"file": "tachyon_selfcontained.py", "func": "prime_sieve", "count": 3, "link": "#line-44"}]' title="3 callees (300 samples)">â–¼</button></div> |
| </div> |
| <div class="bytecode-panel" id="bytecode-78" style="display:none;"></div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-79"> |
| <div class="line-number">79</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"></div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-80"> |
| <div class="line-number">80</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"> size = 60</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-81"> |
| <div class="line-number">81</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"> a = [[i + j for j in range(size)] for i in range(size)]</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-82"> |
| <div class="line-number">82</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"> b = [[i * j for j in range(size)] for i in range(size)]</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-83"> |
| <div class="line-number">83</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"> matrix_multiply(a, b)</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-84"> |
| <div class="line-number">84</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"></div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-85"> |
| <div class="line-number">85</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"> prime_sieve(10000)</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-86"> |
| <div class="line-number">86</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"></div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-87"> |
| <div class="line-number">87</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"></div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-88"> |
| <div class="line-number">88</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content">def data_processing():</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-89"> |
| <div class="line-number">89</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"> """Data structure operations."""</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.952" data-spec-color="rgba(158, 158, 158, 0.15)" id="line-90" title="Self: 0, Total: 753"> |
| <div class="line-number">90</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative">753</div> |
| <button class="bytecode-toggle" data-bytecode='[{"opcode": 52, "opname": "CALL", "base_opname": "CALL", "is_specialized": false, "samples": 753, "locations": [{"end_lineno": 90, "col_offset": 4, "end_col_offset": 27}]}]' data-spec-pct="0" onclick="toggleBytecode(this)" title="Show bytecode">▶</button> |
| <div class="line-content"> <span class="instr-span" data-col-start="4" data-col-end="27" data-samples="753" data-max-samples="753" data-pct="100" data-opcodes="CALL">string_processing(2000)</span></div> |
| <div class="line-nav-buttons"><button class="nav-btn caller" data-nav='{"link": "#line-102", "func": "main"}' title="Go to caller: main (753 samples)">â–²</button><button class="nav-btn callee" data-nav-multi='[{"file": "tachyon_selfcontained.py", "func": "dict_operations", "count": 369, "link": "#line-71"}, {"file": "tachyon_selfcontained.py", "func": "list_operations", "count": 249, "link": "#line-64"}, {"file": "tachyon_selfcontained.py", "func": "string_processing", "count": 123, "link": "#line-55"}, {"file": "tachyon_selfcontained.py", "func": "bubble_sort", "count": 12, "link": "#line-19"}]' title="4 callees (753 samples)">â–¼</button></div> |
| </div> |
| <div class="bytecode-panel" id="bytecode-90" style="display:none;"></div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-91"> |
| <div class="line-number">91</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"> list_operations(1500)</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-92"> |
| <div class="line-number">92</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"> dict_operations(1000)</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-93"> |
| <div class="line-number">93</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"></div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-94"> |
| <div class="line-number">94</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"> data = list(range(800))</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-95"> |
| <div class="line-number">95</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"> for _ in range(3):</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-96"> |
| <div class="line-number">96</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"> data = data[::-1]</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-97"> |
| <div class="line-number">97</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"> bubble_sort(data[:200])</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-98"> |
| <div class="line-number">98</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"></div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-99"> |
| <div class="line-number">99</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"></div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-100"> |
| <div class="line-number">100</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content">def main():</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-101"> |
| <div class="line-number">101</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"> """Main entry point."""</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="1.000" data-spec-color="rgba(158, 158, 158, 0.15)" id="line-102" title="Self: 0, Total: 1,054"> |
| <div class="line-number">102</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative">1,054</div> |
| <button class="bytecode-toggle" data-bytecode='[{"opcode": 52, "opname": "CALL", "base_opname": "CALL", "is_specialized": false, "samples": 1054, "locations": [{"end_lineno": 102, "col_offset": 4, "end_col_offset": 19}]}]' data-spec-pct="0" onclick="toggleBytecode(this)" title="Show bytecode">▶</button> |
| <div class="line-content"> <span class="instr-span" data-col-start="4" data-col-end="19" data-samples="1054" data-max-samples="1054" data-pct="100" data-opcodes="CALL">compute_heavy()</span></div> |
| <div class="line-nav-buttons"><button class="nav-btn caller" data-nav='{"link": "#line-107", "func": "<module>"}' title="Go to caller: <module> (1,054 samples)">â–²</button><button class="nav-btn callee" data-nav-multi='[{"file": "tachyon_selfcontained.py", "func": "data_processing", "count": 753, "link": "#line-90"}, {"file": "tachyon_selfcontained.py", "func": "compute_heavy", "count": 301, "link": "#line-78"}]' title="2 callees (1,054 samples)">â–¼</button></div> |
| </div> |
| <div class="bytecode-panel" id="bytecode-102" style="display:none;"></div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-103"> |
| <div class="line-number">103</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"> data_processing()</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-104"> |
| <div class="line-number">104</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"></div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-105"> |
| <div class="line-number">105</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content"></div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="0.000" id="line-106"> |
| <div class="line-number">106</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative"></div> |
| <div class="bytecode-spacer"></div> |
| <div class="line-content">if __name__ == "__main__":</div> |
| |
| </div> |
| <div class="code-line" data-self-intensity="0.000" data-cumulative-intensity="1.000" data-spec-color="rgba(158, 158, 158, 0.15)" id="line-107" title="Self: 0, Total: 1,054"> |
| <div class="line-number">107</div> |
| <div class="line-samples-self"></div> |
| <div class="line-samples-cumulative">1,054</div> |
| <button class="bytecode-toggle" data-bytecode='[{"opcode": 52, "opname": "CALL", "base_opname": "CALL", "is_specialized": false, "samples": 1054, "locations": [{"end_lineno": 107, "col_offset": 4, "end_col_offset": 10}]}]' data-spec-pct="0" onclick="toggleBytecode(this)" title="Show bytecode">▶</button> |
| <div class="line-content"> <span class="instr-span" data-col-start="4" data-col-end="10" data-samples="1054" data-max-samples="1054" data-pct="100" data-opcodes="CALL">main()</span></div> |
| <div class="line-nav-buttons"><button class="nav-btn callee" data-nav='{"link": "#line-102", "func": "main"}' title="Go to callee: main (1,054 samples)">â–¼</button></div> |
| </div> |
| <div class="bytecode-panel" id="bytecode-107" style="display:none;"></div> |
| |
| </div> |
| </div> |
| |
| <script> |
| // Tachyon Profiler - Shared Heatmap JavaScript |
| // Common utilities shared between index and file views |
| |
| // ============================================================================ |
| // Heat Level Mapping (Single source of truth for intensity thresholds) |
| // ============================================================================ |
| |
| // Maps intensity (0-1) to heat level (0-8). Level 0 = no heat, 1-8 = heat levels. |
| function intensityToHeatLevel(intensity) { |
| if (intensity <= 0) return 0; |
| if (intensity <= 0.125) return 1; |
| if (intensity <= 0.25) return 2; |
| if (intensity <= 0.375) return 3; |
| if (intensity <= 0.5) return 4; |
| if (intensity <= 0.625) return 5; |
| if (intensity <= 0.75) return 6; |
| if (intensity <= 0.875) return 7; |
| return 8; |
| } |
| |
| // Class names corresponding to heat levels 1-8 (used by scroll marker) |
| const HEAT_CLASS_NAMES = ['cold', 'cool', 'mild', 'warm', 'hot', 'very-hot', 'intense', 'extreme']; |
| |
| function intensityToClass(intensity) { |
| const level = intensityToHeatLevel(intensity); |
| return level === 0 ? null : HEAT_CLASS_NAMES[level - 1]; |
| } |
| |
| // ============================================================================ |
| // Color Mapping (Intensity to Heat Color) |
| // ============================================================================ |
| |
| function intensityToColor(intensity) { |
| const level = intensityToHeatLevel(intensity); |
| if (level === 0) { |
| return 'transparent'; |
| } |
| const rootStyle = getComputedStyle(document.documentElement); |
| return rootStyle.getPropertyValue(`--heat-${level}`).trim(); |
| } |
| |
| // ============================================================================ |
| // Favicon (Reuse logo image as favicon) |
| // ============================================================================ |
| |
| (function() { |
| const logo = document.querySelector('.brand-logo img'); |
| if (logo) { |
| const favicon = document.createElement('link'); |
| favicon.rel = 'icon'; |
| favicon.type = 'image/png'; |
| favicon.href = logo.src; |
| document.head.appendChild(favicon); |
| } |
| })(); |
| |
| // Tachyon Profiler - Heatmap JavaScript |
| // Interactive features for the heatmap visualization |
| // Aligned with Flamegraph viewer design patterns |
| |
| // ============================================================================ |
| // State Management |
| // ============================================================================ |
| |
| let currentMenu = null; |
| let colorMode = 'self'; // 'self' or 'cumulative' - default to self |
| let coldCodeHidden = false; |
| |
| // ============================================================================ |
| // Theme Support |
| // ============================================================================ |
| |
| function toggleTheme() { |
| const html = document.documentElement; |
| const current = html.getAttribute('data-theme') || 'light'; |
| const next = current === 'light' ? 'dark' : 'light'; |
| html.setAttribute('data-theme', next); |
| localStorage.setItem('heatmap-theme', next); |
| |
| // Update theme button icon |
| const btn = document.getElementById('theme-btn'); |
| if (btn) { |
| btn.querySelector('.icon-moon').style.display = next === 'dark' ? 'none' : ''; |
| btn.querySelector('.icon-sun').style.display = next === 'dark' ? '' : 'none'; |
| } |
| applyLineColors(); |
| |
| // Rebuild scroll marker with new theme colors |
| buildScrollMarker(); |
| } |
| |
| function restoreUIState() { |
| // Restore theme |
| const savedTheme = localStorage.getItem('heatmap-theme'); |
| if (savedTheme) { |
| document.documentElement.setAttribute('data-theme', savedTheme); |
| const btn = document.getElementById('theme-btn'); |
| if (btn) { |
| btn.querySelector('.icon-moon').style.display = savedTheme === 'dark' ? 'none' : ''; |
| btn.querySelector('.icon-sun').style.display = savedTheme === 'dark' ? '' : 'none'; |
| } |
| } |
| } |
| |
| // ============================================================================ |
| // Utility Functions |
| // ============================================================================ |
| |
| function createElement(tag, className, textContent = '') { |
| const el = document.createElement(tag); |
| if (className) el.className = className; |
| if (textContent) el.textContent = textContent; |
| return el; |
| } |
| |
| function calculateMenuPosition(buttonRect, menuWidth, menuHeight) { |
| const viewport = { width: window.innerWidth, height: window.innerHeight }; |
| const scroll = { |
| x: window.pageXOffset || document.documentElement.scrollLeft, |
| y: window.pageYOffset || document.documentElement.scrollTop |
| }; |
| |
| const left = buttonRect.right + menuWidth + 10 < viewport.width |
| ? buttonRect.right + scroll.x + 10 |
| : Math.max(scroll.x + 10, buttonRect.left + scroll.x - menuWidth - 10); |
| |
| const top = buttonRect.bottom + menuHeight + 10 < viewport.height |
| ? buttonRect.bottom + scroll.y + 5 |
| : Math.max(scroll.y + 10, buttonRect.top + scroll.y - menuHeight - 10); |
| |
| return { left, top }; |
| } |
| |
| // ============================================================================ |
| // Menu Management |
| // ============================================================================ |
| |
| function closeMenu() { |
| if (currentMenu) { |
| currentMenu.remove(); |
| currentMenu = null; |
| } |
| } |
| |
| function showNavigationMenu(button, items, title) { |
| closeMenu(); |
| |
| const menu = createElement('div', 'callee-menu'); |
| menu.appendChild(createElement('div', 'callee-menu-header', title)); |
| |
| items.forEach(linkData => { |
| const item = createElement('div', 'callee-menu-item'); |
| |
| const funcDiv = createElement('div', 'callee-menu-func'); |
| funcDiv.textContent = linkData.func; |
| |
| if (linkData.count !== undefined && linkData.count > 0) { |
| const countBadge = createElement('span', 'count-badge'); |
| countBadge.textContent = linkData.count.toLocaleString(); |
| countBadge.title = `${linkData.count.toLocaleString()} samples`; |
| funcDiv.appendChild(document.createTextNode(' ')); |
| funcDiv.appendChild(countBadge); |
| } |
| |
| item.appendChild(funcDiv); |
| item.appendChild(createElement('div', 'callee-menu-file', linkData.file)); |
| item.addEventListener('click', () => window.location.href = linkData.link); |
| menu.appendChild(item); |
| }); |
| |
| const pos = calculateMenuPosition(button.getBoundingClientRect(), 350, 300); |
| menu.style.left = `${pos.left}px`; |
| menu.style.top = `${pos.top}px`; |
| |
| document.body.appendChild(menu); |
| currentMenu = menu; |
| } |
| |
| // ============================================================================ |
| // Navigation |
| // ============================================================================ |
| |
| function handleNavigationClick(button, e) { |
| e.stopPropagation(); |
| |
| const navData = button.getAttribute('data-nav'); |
| if (navData) { |
| window.location.href = JSON.parse(navData).link; |
| return; |
| } |
| |
| const navMulti = button.getAttribute('data-nav-multi'); |
| if (navMulti) { |
| const items = JSON.parse(navMulti); |
| const title = button.classList.contains('caller') ? 'Choose a caller:' : 'Choose a callee:'; |
| showNavigationMenu(button, items, title); |
| } |
| } |
| |
| function scrollToTargetLine() { |
| if (!window.location.hash) return; |
| const target = document.querySelector(window.location.hash); |
| if (target) { |
| target.scrollIntoView({ behavior: 'smooth', block: 'start' }); |
| } |
| } |
| |
| // ============================================================================ |
| // Sample Count & Intensity |
| // ============================================================================ |
| |
| function getSampleCount(line) { |
| let text; |
| if (colorMode === 'self') { |
| text = line.querySelector('.line-samples-self')?.textContent.trim().replace(/,/g, ''); |
| } else { |
| text = line.querySelector('.line-samples-cumulative')?.textContent.trim().replace(/,/g, ''); |
| } |
| return parseInt(text) || 0; |
| } |
| |
| // ============================================================================ |
| // Scroll Minimap |
| // ============================================================================ |
| |
| function buildScrollMarker() { |
| const existing = document.getElementById('scroll_marker'); |
| if (existing) existing.remove(); |
| |
| if (document.body.scrollHeight <= window.innerHeight) return; |
| |
| const allLines = document.querySelectorAll('.code-line'); |
| const lines = Array.from(allLines).filter(line => line.style.display !== 'none'); |
| const markerScale = window.innerHeight / document.body.scrollHeight; |
| const lineHeight = Math.min(Math.max(3, window.innerHeight / lines.length), 10); |
| const maxSamples = Math.max(...Array.from(lines, getSampleCount)); |
| |
| const scrollMarker = createElement('div', ''); |
| scrollMarker.id = 'scroll_marker'; |
| |
| let prevLine = -99, lastMark, lastTop; |
| |
| lines.forEach((line, index) => { |
| const samples = getSampleCount(line); |
| if (samples === 0) return; |
| |
| const lineTop = Math.floor(line.offsetTop * markerScale); |
| const lineNumber = index + 1; |
| const intensityClass = maxSamples > 0 ? (intensityToClass(samples / maxSamples) || 'cold') : 'cold'; |
| |
| if (lineNumber === prevLine + 1 && lastMark?.classList.contains(intensityClass)) { |
| lastMark.style.height = `${lineTop + lineHeight - lastTop}px`; |
| } else { |
| lastMark = createElement('div', `marker ${intensityClass}`); |
| lastMark.style.height = `${lineHeight}px`; |
| lastMark.style.top = `${lineTop}px`; |
| scrollMarker.appendChild(lastMark); |
| lastTop = lineTop; |
| } |
| |
| prevLine = lineNumber; |
| }); |
| |
| document.body.appendChild(scrollMarker); |
| } |
| |
| function applyLineColors() { |
| const lines = document.querySelectorAll('.code-line'); |
| lines.forEach(line => { |
| let intensity; |
| if (colorMode === 'self') { |
| intensity = parseFloat(line.getAttribute('data-self-intensity')) || 0; |
| } else { |
| intensity = parseFloat(line.getAttribute('data-cumulative-intensity')) || 0; |
| } |
| |
| const color = intensityToColor(intensity); |
| line.style.background = color; |
| }); |
| } |
| |
| // ============================================================================ |
| // Toggle Controls |
| // ============================================================================ |
| |
| function updateToggleUI(toggleId, isOn) { |
| const toggle = document.getElementById(toggleId); |
| if (toggle) { |
| const track = toggle.querySelector('.toggle-track'); |
| const labels = toggle.querySelectorAll('.toggle-label'); |
| if (isOn) { |
| track.classList.add('on'); |
| labels[0].classList.remove('active'); |
| labels[1].classList.add('active'); |
| } else { |
| track.classList.remove('on'); |
| labels[0].classList.add('active'); |
| labels[1].classList.remove('active'); |
| } |
| } |
| } |
| |
| function toggleColdCode() { |
| coldCodeHidden = !coldCodeHidden; |
| applyHotFilter(); |
| updateToggleUI('toggle-cold', coldCodeHidden); |
| buildScrollMarker(); |
| } |
| |
| function applyHotFilter() { |
| const lines = document.querySelectorAll('.code-line'); |
| |
| lines.forEach(line => { |
| const selfSamples = line.querySelector('.line-samples-self')?.textContent.trim(); |
| const cumulativeSamples = line.querySelector('.line-samples-cumulative')?.textContent.trim(); |
| |
| let isCold; |
| if (colorMode === 'self') { |
| isCold = !selfSamples || selfSamples === ''; |
| } else { |
| isCold = !cumulativeSamples || cumulativeSamples === ''; |
| } |
| |
| if (isCold) { |
| line.style.display = coldCodeHidden ? 'none' : 'flex'; |
| } else { |
| line.style.display = 'flex'; |
| } |
| }); |
| } |
| |
| function toggleColorMode() { |
| colorMode = colorMode === 'self' ? 'cumulative' : 'self'; |
| applyLineColors(); |
| |
| updateToggleUI('toggle-color-mode', colorMode === 'cumulative'); |
| |
| if (coldCodeHidden) { |
| applyHotFilter(); |
| } |
| |
| buildScrollMarker(); |
| } |
| |
| // ============================================================================ |
| // Initialization |
| // ============================================================================ |
| |
| document.addEventListener('DOMContentLoaded', function() { |
| restoreUIState(); |
| applyLineColors(); |
| |
| // Initialize navigation buttons |
| document.querySelectorAll('.nav-btn').forEach(button => { |
| button.addEventListener('click', e => handleNavigationClick(button, e)); |
| }); |
| |
| // Initialize line number permalink handlers |
| document.querySelectorAll('.line-number').forEach(lineNum => { |
| lineNum.style.cursor = 'pointer'; |
| lineNum.addEventListener('click', e => { |
| window.location.hash = `line-${e.target.textContent.trim()}`; |
| }); |
| }); |
| |
| // Initialize toggle buttons |
| const toggleColdBtn = document.getElementById('toggle-cold'); |
| if (toggleColdBtn) toggleColdBtn.addEventListener('click', toggleColdCode); |
| |
| const colorModeBtn = document.getElementById('toggle-color-mode'); |
| if (colorModeBtn) colorModeBtn.addEventListener('click', toggleColorMode); |
| |
| // Initialize specialization view toggle (hide if no bytecode data) |
| const hasBytecode = document.querySelectorAll('.bytecode-toggle').length > 0; |
| |
| const specViewBtn = document.getElementById('toggle-spec-view'); |
| if (specViewBtn) { |
| if (hasBytecode) { |
| specViewBtn.addEventListener('click', toggleSpecView); |
| } else { |
| specViewBtn.style.display = 'none'; |
| } |
| } |
| |
| // Initialize expand-all bytecode button |
| const expandAllBtn = document.getElementById('toggle-all-bytecode'); |
| if (expandAllBtn) { |
| if (hasBytecode) { |
| expandAllBtn.addEventListener('click', toggleAllBytecode); |
| } else { |
| expandAllBtn.style.display = 'none'; |
| } |
| } |
| |
| // Initialize span tooltips |
| initSpanTooltips(); |
| |
| // Build scroll marker and scroll to target |
| setTimeout(buildScrollMarker, 200); |
| setTimeout(scrollToTargetLine, 100); |
| }); |
| |
| // Close menu when clicking outside |
| document.addEventListener('click', e => { |
| if (currentMenu && !currentMenu.contains(e.target) && !e.target.classList.contains('nav-btn')) { |
| closeMenu(); |
| } |
| }); |
| |
| // ======================================== |
| // SPECIALIZATION VIEW TOGGLE |
| // ======================================== |
| |
| let specViewEnabled = false; |
| |
| /** |
| * Calculate heat color for given intensity (0-1) |
| * Hot spans (>30%) get warm orange, cold spans get dimmed gray |
| * @param {number} intensity - Value between 0 and 1 |
| * @returns {string} rgba color string |
| */ |
| function calculateHeatColor(intensity) { |
| // Hot threshold: only spans with >30% of max samples get color |
| if (intensity > 0.3) { |
| // Normalize intensity above threshold to 0-1 |
| const normalizedIntensity = (intensity - 0.3) / 0.7; |
| // Warm orange-red with increasing opacity for hotter spans |
| const alpha = 0.25 + normalizedIntensity * 0.35; // 0.25 to 0.6 |
| const hotColor = getComputedStyle(document.documentElement).getPropertyValue('--span-hot-base').trim(); |
| return `rgba(${hotColor}, ${alpha})`; |
| } else if (intensity > 0) { |
| // Cold spans: very subtle gray, almost invisible |
| const coldColor = getComputedStyle(document.documentElement).getPropertyValue('--span-cold-base').trim(); |
| return `rgba(${coldColor}, 0.1)`; |
| } |
| return 'transparent'; |
| } |
| |
| /** |
| * Apply intensity-based heat colors to source spans |
| * Hot spans get orange highlight, cold spans get dimmed |
| * @param {boolean} enable - Whether to enable or disable span coloring |
| */ |
| function applySpanHeatColors(enable) { |
| document.querySelectorAll('.instr-span').forEach(span => { |
| const samples = enable ? (parseInt(span.dataset.samples) || 0) : 0; |
| if (samples > 0) { |
| const intensity = samples / (parseInt(span.dataset.maxSamples) || 1); |
| span.style.backgroundColor = calculateHeatColor(intensity); |
| span.style.borderRadius = '2px'; |
| span.style.padding = '0 1px'; |
| span.style.cursor = 'pointer'; |
| } else { |
| span.style.cssText = ''; |
| } |
| }); |
| } |
| |
| // ======================================== |
| // SPAN TOOLTIPS |
| // ======================================== |
| |
| let activeTooltip = null; |
| |
| /** |
| * Create and show tooltip for a span |
| */ |
| function showSpanTooltip(span) { |
| hideSpanTooltip(); |
| |
| const samples = parseInt(span.dataset.samples) || 0; |
| const maxSamples = parseInt(span.dataset.maxSamples) || 1; |
| const pct = span.dataset.pct || '0'; |
| const opcodes = span.dataset.opcodes || ''; |
| |
| if (samples === 0) return; |
| |
| const intensity = samples / maxSamples; |
| const isHot = intensity > 0.7; |
| const isWarm = intensity > 0.3; |
| const hotnessText = isHot ? 'Hot' : isWarm ? 'Warm' : 'Cold'; |
| const hotnessClass = isHot ? 'hot' : isWarm ? 'warm' : 'cold'; |
| |
| // Build opcodes rows - each opcode on its own row |
| let opcodesHtml = ''; |
| if (opcodes) { |
| const opcodeList = opcodes.split(',').map(op => op.trim()).filter(op => op); |
| if (opcodeList.length > 0) { |
| opcodesHtml = ` |
| <div class="span-tooltip-section">Opcodes:</div> |
| ${opcodeList.map(op => `<div class="span-tooltip-opcode">${op}</div>`).join('')} |
| `; |
| } |
| } |
| |
| const tooltip = document.createElement('div'); |
| tooltip.className = 'span-tooltip'; |
| tooltip.innerHTML = ` |
| <div class="span-tooltip-header ${hotnessClass}">${hotnessText}</div> |
| <div class="span-tooltip-row"> |
| <span class="span-tooltip-label">Samples:</span> |
| <span class="span-tooltip-value${isHot ? ' highlight' : ''}">${samples.toLocaleString()}</span> |
| </div> |
| <div class="span-tooltip-row"> |
| <span class="span-tooltip-label">% of line:</span> |
| <span class="span-tooltip-value">${pct}%</span> |
| </div> |
| ${opcodesHtml} |
| `; |
| |
| document.body.appendChild(tooltip); |
| activeTooltip = tooltip; |
| |
| // Position tooltip above the span |
| const rect = span.getBoundingClientRect(); |
| const tooltipRect = tooltip.getBoundingClientRect(); |
| |
| let left = rect.left + (rect.width / 2) - (tooltipRect.width / 2); |
| let top = rect.top - tooltipRect.height - 8; |
| |
| // Keep tooltip in viewport |
| if (left < 5) left = 5; |
| if (left + tooltipRect.width > window.innerWidth - 5) { |
| left = window.innerWidth - tooltipRect.width - 5; |
| } |
| if (top < 5) { |
| top = rect.bottom + 8; // Show below if no room above |
| } |
| |
| tooltip.style.left = `${left + window.scrollX}px`; |
| tooltip.style.top = `${top + window.scrollY}px`; |
| } |
| |
| /** |
| * Hide active tooltip |
| */ |
| function hideSpanTooltip() { |
| if (activeTooltip) { |
| activeTooltip.remove(); |
| activeTooltip = null; |
| } |
| } |
| |
| /** |
| * Initialize span tooltip handlers |
| */ |
| function initSpanTooltips() { |
| document.addEventListener('mouseover', (e) => { |
| const span = e.target.closest('.instr-span'); |
| if (span && specViewEnabled) { |
| showSpanTooltip(span); |
| } |
| }); |
| |
| document.addEventListener('mouseout', (e) => { |
| const span = e.target.closest('.instr-span'); |
| if (span) { |
| hideSpanTooltip(); |
| } |
| }); |
| } |
| |
| function toggleSpecView() { |
| specViewEnabled = !specViewEnabled; |
| const lines = document.querySelectorAll('.code-line'); |
| |
| if (specViewEnabled) { |
| lines.forEach(line => { |
| const specColor = line.getAttribute('data-spec-color'); |
| line.style.background = specColor || 'transparent'; |
| }); |
| } else { |
| applyLineColors(); |
| } |
| |
| applySpanHeatColors(specViewEnabled); |
| updateToggleUI('toggle-spec-view', specViewEnabled); |
| |
| // Disable/enable color mode toggle based on spec view state |
| const colorModeToggle = document.getElementById('toggle-color-mode'); |
| if (colorModeToggle) { |
| colorModeToggle.classList.toggle('disabled', specViewEnabled); |
| } |
| |
| buildScrollMarker(); |
| } |
| |
| // ======================================== |
| // BYTECODE PANEL TOGGLE |
| // ======================================== |
| |
| /** |
| * Toggle bytecode panel visibility for a source line |
| * @param {HTMLElement} button - The toggle button that was clicked |
| */ |
| function toggleBytecode(button) { |
| const lineDiv = button.closest('.code-line'); |
| const lineId = lineDiv.id; |
| const lineNum = lineId.replace('line-', ''); |
| const panel = document.getElementById(`bytecode-${lineNum}`); |
| |
| if (!panel) return; |
| |
| const isExpanded = panel.style.display !== 'none'; |
| |
| if (isExpanded) { |
| panel.style.display = 'none'; |
| button.classList.remove('expanded'); |
| button.innerHTML = '▶'; // Right arrow |
| } else { |
| if (!panel.dataset.populated) { |
| populateBytecodePanel(panel, button); |
| } |
| panel.style.display = 'block'; |
| button.classList.add('expanded'); |
| button.innerHTML = '▼'; // Down arrow |
| } |
| } |
| |
| /** |
| * Populate bytecode panel with instruction data |
| * @param {HTMLElement} panel - The panel element to populate |
| * @param {HTMLElement} button - The button containing the bytecode data |
| */ |
| function populateBytecodePanel(panel, button) { |
| const bytecodeJson = button.getAttribute('data-bytecode'); |
| if (!bytecodeJson) return; |
| |
| // Get line number from parent |
| const lineDiv = button.closest('.code-line'); |
| const lineNum = lineDiv ? lineDiv.id.replace('line-', '') : null; |
| |
| try { |
| const instructions = JSON.parse(bytecodeJson); |
| if (!instructions.length) { |
| panel.innerHTML = '<div class="bytecode-empty">No bytecode data</div>'; |
| panel.dataset.populated = 'true'; |
| return; |
| } |
| |
| const maxSamples = Math.max(...instructions.map(i => i.samples), 1); |
| |
| // Calculate specialization stats |
| const totalSamples = instructions.reduce((sum, i) => sum + i.samples, 0); |
| const specializedSamples = instructions |
| .filter(i => i.is_specialized) |
| .reduce((sum, i) => sum + i.samples, 0); |
| const specPct = totalSamples > 0 ? Math.round(100 * specializedSamples / totalSamples) : 0; |
| const specializedCount = instructions.filter(i => i.is_specialized).length; |
| |
| // Determine specialization level class |
| let specClass = 'low'; |
| if (specPct >= 67) specClass = 'high'; |
| else if (specPct >= 33) specClass = 'medium'; |
| |
| // Build specialization summary |
| let html = `<div class="bytecode-spec-summary ${specClass}"> |
| <span class="spec-pct">${specPct}%</span> |
| <span class="spec-label">specialized</span> |
| <span class="spec-detail">(${specializedCount}/${instructions.length} instructions, ${specializedSamples.toLocaleString()}/${totalSamples.toLocaleString()} samples)</span> |
| </div>`; |
| |
| html += '<div class="bytecode-header">' + |
| '<span class="bytecode-opname">Instruction</span>' + |
| '<span class="bytecode-samples">Samples</span>' + |
| '<span>Heat</span></div>'; |
| |
| for (const instr of instructions) { |
| const heatPct = (instr.samples / maxSamples) * 100; |
| const isHot = heatPct > 50; |
| const specializedClass = instr.is_specialized ? ' specialized' : ''; |
| const baseOpHtml = instr.is_specialized |
| ? `<span class="base-op">(${escapeHtml(instr.base_opname)})</span>` : ''; |
| const badge = instr.is_specialized |
| ? '<span class="specialization-badge">SPECIALIZED</span>' : ''; |
| |
| // Build location data attributes for cross-referencing with source spans |
| const hasLocations = instr.locations && instr.locations.length > 0; |
| const locationData = hasLocations |
| ? `data-locations='${JSON.stringify(instr.locations)}' data-line="${lineNum}" data-opcode="${instr.opcode}"` |
| : ''; |
| |
| html += `<div class="bytecode-instruction" ${locationData}> |
| <span class="bytecode-opname${specializedClass}">${escapeHtml(instr.opname)}${baseOpHtml}${badge}</span> |
| <span class="bytecode-samples${isHot ? ' hot' : ''}">${instr.samples.toLocaleString()}</span> |
| <div class="bytecode-heatbar"><div class="bytecode-heatbar-fill" style="width:${heatPct}%"></div></div> |
| </div>`; |
| } |
| |
| panel.innerHTML = html; |
| panel.dataset.populated = 'true'; |
| |
| // Add hover handlers for bytecode instructions to highlight source spans |
| panel.querySelectorAll('.bytecode-instruction[data-locations]').forEach(instrEl => { |
| instrEl.addEventListener('mouseenter', highlightSourceFromBytecode); |
| instrEl.addEventListener('mouseleave', unhighlightSourceFromBytecode); |
| }); |
| } catch (e) { |
| panel.innerHTML = '<div class="bytecode-error">Error loading bytecode</div>'; |
| console.error('Error parsing bytecode data:', e); |
| } |
| } |
| |
| /** |
| * Highlight source spans when hovering over bytecode instruction |
| */ |
| function highlightSourceFromBytecode(e) { |
| const instrEl = e.currentTarget; |
| const lineNum = instrEl.dataset.line; |
| const locationsStr = instrEl.dataset.locations; |
| |
| if (!lineNum) return; |
| |
| const lineDiv = document.getElementById(`line-${lineNum}`); |
| if (!lineDiv) return; |
| |
| // Parse locations and highlight matching spans by column range |
| try { |
| const locations = JSON.parse(locationsStr || '[]'); |
| const spans = lineDiv.querySelectorAll('.instr-span'); |
| spans.forEach(span => { |
| const spanStart = parseInt(span.dataset.colStart); |
| const spanEnd = parseInt(span.dataset.colEnd); |
| for (const loc of locations) { |
| // Match if span's range matches instruction's location |
| if (spanStart === loc.col_offset && spanEnd === loc.end_col_offset) { |
| span.classList.add('highlight-from-bytecode'); |
| break; |
| } |
| } |
| }); |
| } catch (err) { |
| console.error('Error parsing locations:', err); |
| } |
| |
| // Also highlight the instruction row itself |
| instrEl.classList.add('highlight'); |
| } |
| |
| /** |
| * Remove highlighting from source spans |
| */ |
| function unhighlightSourceFromBytecode(e) { |
| const instrEl = e.currentTarget; |
| const lineNum = instrEl.dataset.line; |
| |
| if (!lineNum) return; |
| |
| const lineDiv = document.getElementById(`line-${lineNum}`); |
| if (!lineDiv) return; |
| |
| const spans = lineDiv.querySelectorAll('.instr-span.highlight-from-bytecode'); |
| spans.forEach(span => { |
| span.classList.remove('highlight-from-bytecode'); |
| }); |
| |
| instrEl.classList.remove('highlight'); |
| } |
| |
| /** |
| * Escape HTML special characters |
| * @param {string} text - Text to escape |
| * @returns {string} Escaped HTML |
| */ |
| function escapeHtml(text) { |
| const div = document.createElement('div'); |
| div.textContent = text; |
| return div.innerHTML; |
| } |
| |
| /** |
| * Toggle all bytecode panels at once |
| */ |
| function toggleAllBytecode() { |
| const buttons = document.querySelectorAll('.bytecode-toggle'); |
| if (buttons.length === 0) return; |
| |
| const someExpanded = Array.from(buttons).some(b => b.classList.contains('expanded')); |
| const expandAllBtn = document.getElementById('toggle-all-bytecode'); |
| |
| buttons.forEach(button => { |
| const isExpanded = button.classList.contains('expanded'); |
| if (someExpanded ? isExpanded : !isExpanded) { |
| toggleBytecode(button); |
| } |
| }); |
| |
| // Update the expand-all button state |
| if (expandAllBtn) { |
| expandAllBtn.classList.toggle('expanded', !someExpanded); |
| } |
| } |
| |
| // Keyboard shortcut: 'b' toggles all bytecode panels, Enter/Space activates toggle switches |
| document.addEventListener('keydown', function(e) { |
| if (e.target.tagName === 'INPUT' || e.target.tagName === 'TEXTAREA') { |
| return; |
| } |
| if (e.key === 'b' && !e.ctrlKey && !e.altKey && !e.metaKey) { |
| toggleAllBytecode(); |
| } |
| if ((e.key === 'Enter' || e.key === ' ') && e.target.classList.contains('toggle-switch')) { |
| e.preventDefault(); |
| e.target.click(); |
| } |
| }); |
| |
| // Handle hash changes |
| window.addEventListener('hashchange', () => setTimeout(scrollToTargetLine, 50)); |
| |
| // Rebuild scroll marker on resize |
| window.addEventListener('resize', buildScrollMarker); |
| |
| </script> |
| </body> |
| </html> |