|  |  | 
|  | /* Complex object implementation */ | 
|  |  | 
|  | /* Borrows heavily from floatobject.c */ | 
|  |  | 
|  | /* Submitted by Jim Hugunin */ | 
|  |  | 
|  | #include "Python.h" | 
|  | #include "structmember.h" | 
|  |  | 
|  | /* elementary operations on complex numbers */ | 
|  |  | 
|  | static Py_complex c_1 = {1., 0.}; | 
|  |  | 
|  | Py_complex | 
|  | _Py_c_sum(Py_complex a, Py_complex b) | 
|  | { | 
|  | Py_complex r; | 
|  | r.real = a.real + b.real; | 
|  | r.imag = a.imag + b.imag; | 
|  | return r; | 
|  | } | 
|  |  | 
|  | Py_complex | 
|  | _Py_c_diff(Py_complex a, Py_complex b) | 
|  | { | 
|  | Py_complex r; | 
|  | r.real = a.real - b.real; | 
|  | r.imag = a.imag - b.imag; | 
|  | return r; | 
|  | } | 
|  |  | 
|  | Py_complex | 
|  | _Py_c_neg(Py_complex a) | 
|  | { | 
|  | Py_complex r; | 
|  | r.real = -a.real; | 
|  | r.imag = -a.imag; | 
|  | return r; | 
|  | } | 
|  |  | 
|  | Py_complex | 
|  | _Py_c_prod(Py_complex a, Py_complex b) | 
|  | { | 
|  | Py_complex r; | 
|  | r.real = a.real*b.real - a.imag*b.imag; | 
|  | r.imag = a.real*b.imag + a.imag*b.real; | 
|  | return r; | 
|  | } | 
|  |  | 
|  | Py_complex | 
|  | _Py_c_quot(Py_complex a, Py_complex b) | 
|  | { | 
|  | /****************************************************************** | 
|  | This was the original algorithm.  It's grossly prone to spurious | 
|  | overflow and underflow errors.  It also merrily divides by 0 despite | 
|  | checking for that(!).  The code still serves a doc purpose here, as | 
|  | the algorithm following is a simple by-cases transformation of this | 
|  | one: | 
|  |  | 
|  | Py_complex r; | 
|  | double d = b.real*b.real + b.imag*b.imag; | 
|  | if (d == 0.) | 
|  | errno = EDOM; | 
|  | r.real = (a.real*b.real + a.imag*b.imag)/d; | 
|  | r.imag = (a.imag*b.real - a.real*b.imag)/d; | 
|  | return r; | 
|  | ******************************************************************/ | 
|  |  | 
|  | /* This algorithm is better, and is pretty obvious:  first divide the | 
|  | * numerators and denominator by whichever of {b.real, b.imag} has | 
|  | * larger magnitude.  The earliest reference I found was to CACM | 
|  | * Algorithm 116 (Complex Division, Robert L. Smith, Stanford | 
|  | * University).  As usual, though, we're still ignoring all IEEE | 
|  | * endcases. | 
|  | */ | 
|  | Py_complex r;      /* the result */ | 
|  | const double abs_breal = b.real < 0 ? -b.real : b.real; | 
|  | const double abs_bimag = b.imag < 0 ? -b.imag : b.imag; | 
|  |  | 
|  | if (abs_breal >= abs_bimag) { | 
|  | /* divide tops and bottom by b.real */ | 
|  | if (abs_breal == 0.0) { | 
|  | errno = EDOM; | 
|  | r.real = r.imag = 0.0; | 
|  | } | 
|  | else { | 
|  | const double ratio = b.imag / b.real; | 
|  | const double denom = b.real + b.imag * ratio; | 
|  | r.real = (a.real + a.imag * ratio) / denom; | 
|  | r.imag = (a.imag - a.real * ratio) / denom; | 
|  | } | 
|  | } | 
|  | else if (abs_bimag >= abs_breal) { | 
|  | /* divide tops and bottom by b.imag */ | 
|  | const double ratio = b.real / b.imag; | 
|  | const double denom = b.real * ratio + b.imag; | 
|  | assert(b.imag != 0.0); | 
|  | r.real = (a.real * ratio + a.imag) / denom; | 
|  | r.imag = (a.imag * ratio - a.real) / denom; | 
|  | } | 
|  | else { | 
|  | /* At least one of b.real or b.imag is a NaN */ | 
|  | r.real = r.imag = Py_NAN; | 
|  | } | 
|  | return r; | 
|  | } | 
|  |  | 
|  | Py_complex | 
|  | _Py_c_pow(Py_complex a, Py_complex b) | 
|  | { | 
|  | Py_complex r; | 
|  | double vabs,len,at,phase; | 
|  | if (b.real == 0. && b.imag == 0.) { | 
|  | r.real = 1.; | 
|  | r.imag = 0.; | 
|  | } | 
|  | else if (a.real == 0. && a.imag == 0.) { | 
|  | if (b.imag != 0. || b.real < 0.) | 
|  | errno = EDOM; | 
|  | r.real = 0.; | 
|  | r.imag = 0.; | 
|  | } | 
|  | else { | 
|  | vabs = hypot(a.real,a.imag); | 
|  | len = pow(vabs,b.real); | 
|  | at = atan2(a.imag, a.real); | 
|  | phase = at*b.real; | 
|  | if (b.imag != 0.0) { | 
|  | len /= exp(at*b.imag); | 
|  | phase += b.imag*log(vabs); | 
|  | } | 
|  | r.real = len*cos(phase); | 
|  | r.imag = len*sin(phase); | 
|  | } | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static Py_complex | 
|  | c_powu(Py_complex x, long n) | 
|  | { | 
|  | Py_complex r, p; | 
|  | long mask = 1; | 
|  | r = c_1; | 
|  | p = x; | 
|  | while (mask > 0 && n >= mask) { | 
|  | if (n & mask) | 
|  | r = _Py_c_prod(r,p); | 
|  | mask <<= 1; | 
|  | p = _Py_c_prod(p,p); | 
|  | } | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static Py_complex | 
|  | c_powi(Py_complex x, long n) | 
|  | { | 
|  | Py_complex cn; | 
|  |  | 
|  | if (n > 100 || n < -100) { | 
|  | cn.real = (double) n; | 
|  | cn.imag = 0.; | 
|  | return _Py_c_pow(x,cn); | 
|  | } | 
|  | else if (n > 0) | 
|  | return c_powu(x,n); | 
|  | else | 
|  | return _Py_c_quot(c_1, c_powu(x,-n)); | 
|  |  | 
|  | } | 
|  |  | 
|  | double | 
|  | _Py_c_abs(Py_complex z) | 
|  | { | 
|  | /* sets errno = ERANGE on overflow;  otherwise errno = 0 */ | 
|  | double result; | 
|  |  | 
|  | if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) { | 
|  | /* C99 rules: if either the real or the imaginary part is an | 
|  | infinity, return infinity, even if the other part is a | 
|  | NaN. */ | 
|  | if (Py_IS_INFINITY(z.real)) { | 
|  | result = fabs(z.real); | 
|  | errno = 0; | 
|  | return result; | 
|  | } | 
|  | if (Py_IS_INFINITY(z.imag)) { | 
|  | result = fabs(z.imag); | 
|  | errno = 0; | 
|  | return result; | 
|  | } | 
|  | /* either the real or imaginary part is a NaN, | 
|  | and neither is infinite. Result should be NaN. */ | 
|  | return Py_NAN; | 
|  | } | 
|  | result = hypot(z.real, z.imag); | 
|  | if (!Py_IS_FINITE(result)) | 
|  | errno = ERANGE; | 
|  | else | 
|  | errno = 0; | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static PyObject * | 
|  | complex_subtype_from_c_complex(PyTypeObject *type, Py_complex cval) | 
|  | { | 
|  | PyObject *op; | 
|  |  | 
|  | op = type->tp_alloc(type, 0); | 
|  | if (op != NULL) | 
|  | ((PyComplexObject *)op)->cval = cval; | 
|  | return op; | 
|  | } | 
|  |  | 
|  | PyObject * | 
|  | PyComplex_FromCComplex(Py_complex cval) | 
|  | { | 
|  | PyComplexObject *op; | 
|  |  | 
|  | /* Inline PyObject_New */ | 
|  | op = (PyComplexObject *) PyObject_MALLOC(sizeof(PyComplexObject)); | 
|  | if (op == NULL) | 
|  | return PyErr_NoMemory(); | 
|  | (void)PyObject_INIT(op, &PyComplex_Type); | 
|  | op->cval = cval; | 
|  | return (PyObject *) op; | 
|  | } | 
|  |  | 
|  | static PyObject * | 
|  | complex_subtype_from_doubles(PyTypeObject *type, double real, double imag) | 
|  | { | 
|  | Py_complex c; | 
|  | c.real = real; | 
|  | c.imag = imag; | 
|  | return complex_subtype_from_c_complex(type, c); | 
|  | } | 
|  |  | 
|  | PyObject * | 
|  | PyComplex_FromDoubles(double real, double imag) | 
|  | { | 
|  | Py_complex c; | 
|  | c.real = real; | 
|  | c.imag = imag; | 
|  | return PyComplex_FromCComplex(c); | 
|  | } | 
|  |  | 
|  | double | 
|  | PyComplex_RealAsDouble(PyObject *op) | 
|  | { | 
|  | if (PyComplex_Check(op)) { | 
|  | return ((PyComplexObject *)op)->cval.real; | 
|  | } | 
|  | else { | 
|  | return PyFloat_AsDouble(op); | 
|  | } | 
|  | } | 
|  |  | 
|  | double | 
|  | PyComplex_ImagAsDouble(PyObject *op) | 
|  | { | 
|  | if (PyComplex_Check(op)) { | 
|  | return ((PyComplexObject *)op)->cval.imag; | 
|  | } | 
|  | else { | 
|  | return 0.0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static PyObject * | 
|  | try_complex_special_method(PyObject *op) { | 
|  | PyObject *f; | 
|  | _Py_IDENTIFIER(__complex__); | 
|  |  | 
|  | f = _PyObject_LookupSpecial(op, &PyId___complex__); | 
|  | if (f) { | 
|  | PyObject *res = PyObject_CallFunctionObjArgs(f, NULL); | 
|  | Py_DECREF(f); | 
|  | if (res != NULL && !PyComplex_Check(res)) { | 
|  | PyErr_SetString(PyExc_TypeError, | 
|  | "__complex__ should return a complex object"); | 
|  | Py_DECREF(res); | 
|  | return NULL; | 
|  | } | 
|  | return res; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | Py_complex | 
|  | PyComplex_AsCComplex(PyObject *op) | 
|  | { | 
|  | Py_complex cv; | 
|  | PyObject *newop = NULL; | 
|  |  | 
|  | assert(op); | 
|  | /* If op is already of type PyComplex_Type, return its value */ | 
|  | if (PyComplex_Check(op)) { | 
|  | return ((PyComplexObject *)op)->cval; | 
|  | } | 
|  | /* If not, use op's __complex__  method, if it exists */ | 
|  |  | 
|  | /* return -1 on failure */ | 
|  | cv.real = -1.; | 
|  | cv.imag = 0.; | 
|  |  | 
|  | newop = try_complex_special_method(op); | 
|  |  | 
|  | if (newop) { | 
|  | cv = ((PyComplexObject *)newop)->cval; | 
|  | Py_DECREF(newop); | 
|  | return cv; | 
|  | } | 
|  | else if (PyErr_Occurred()) { | 
|  | return cv; | 
|  | } | 
|  | /* If neither of the above works, interpret op as a float giving the | 
|  | real part of the result, and fill in the imaginary part as 0. */ | 
|  | else { | 
|  | /* PyFloat_AsDouble will return -1 on failure */ | 
|  | cv.real = PyFloat_AsDouble(op); | 
|  | return cv; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | complex_dealloc(PyObject *op) | 
|  | { | 
|  | op->ob_type->tp_free(op); | 
|  | } | 
|  |  | 
|  | static PyObject * | 
|  | complex_repr(PyComplexObject *v) | 
|  | { | 
|  | int precision = 0; | 
|  | char format_code = 'r'; | 
|  | PyObject *result = NULL; | 
|  |  | 
|  | /* If these are non-NULL, they'll need to be freed. */ | 
|  | char *pre = NULL; | 
|  | char *im = NULL; | 
|  |  | 
|  | /* These do not need to be freed. re is either an alias | 
|  | for pre or a pointer to a constant.  lead and tail | 
|  | are pointers to constants. */ | 
|  | char *re = NULL; | 
|  | char *lead = ""; | 
|  | char *tail = ""; | 
|  |  | 
|  | if (v->cval.real == 0. && copysign(1.0, v->cval.real)==1.0) { | 
|  | /* Real part is +0: just output the imaginary part and do not | 
|  | include parens. */ | 
|  | re = ""; | 
|  | im = PyOS_double_to_string(v->cval.imag, format_code, | 
|  | precision, 0, NULL); | 
|  | if (!im) { | 
|  | PyErr_NoMemory(); | 
|  | goto done; | 
|  | } | 
|  | } else { | 
|  | /* Format imaginary part with sign, real part without. Include | 
|  | parens in the result. */ | 
|  | pre = PyOS_double_to_string(v->cval.real, format_code, | 
|  | precision, 0, NULL); | 
|  | if (!pre) { | 
|  | PyErr_NoMemory(); | 
|  | goto done; | 
|  | } | 
|  | re = pre; | 
|  |  | 
|  | im = PyOS_double_to_string(v->cval.imag, format_code, | 
|  | precision, Py_DTSF_SIGN, NULL); | 
|  | if (!im) { | 
|  | PyErr_NoMemory(); | 
|  | goto done; | 
|  | } | 
|  | lead = "("; | 
|  | tail = ")"; | 
|  | } | 
|  | result = PyUnicode_FromFormat("%s%s%sj%s", lead, re, im, tail); | 
|  | done: | 
|  | PyMem_Free(im); | 
|  | PyMem_Free(pre); | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static Py_hash_t | 
|  | complex_hash(PyComplexObject *v) | 
|  | { | 
|  | Py_uhash_t hashreal, hashimag, combined; | 
|  | hashreal = (Py_uhash_t)_Py_HashDouble(v->cval.real); | 
|  | if (hashreal == (Py_uhash_t)-1) | 
|  | return -1; | 
|  | hashimag = (Py_uhash_t)_Py_HashDouble(v->cval.imag); | 
|  | if (hashimag == (Py_uhash_t)-1) | 
|  | return -1; | 
|  | /* Note:  if the imaginary part is 0, hashimag is 0 now, | 
|  | * so the following returns hashreal unchanged.  This is | 
|  | * important because numbers of different types that | 
|  | * compare equal must have the same hash value, so that | 
|  | * hash(x + 0*j) must equal hash(x). | 
|  | */ | 
|  | combined = hashreal + _PyHASH_IMAG * hashimag; | 
|  | if (combined == (Py_uhash_t)-1) | 
|  | combined = (Py_uhash_t)-2; | 
|  | return (Py_hash_t)combined; | 
|  | } | 
|  |  | 
|  | /* This macro may return! */ | 
|  | #define TO_COMPLEX(obj, c) \ | 
|  | if (PyComplex_Check(obj)) \ | 
|  | c = ((PyComplexObject *)(obj))->cval; \ | 
|  | else if (to_complex(&(obj), &(c)) < 0) \ | 
|  | return (obj) | 
|  |  | 
|  | static int | 
|  | to_complex(PyObject **pobj, Py_complex *pc) | 
|  | { | 
|  | PyObject *obj = *pobj; | 
|  |  | 
|  | pc->real = pc->imag = 0.0; | 
|  | if (PyLong_Check(obj)) { | 
|  | pc->real = PyLong_AsDouble(obj); | 
|  | if (pc->real == -1.0 && PyErr_Occurred()) { | 
|  | *pobj = NULL; | 
|  | return -1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | if (PyFloat_Check(obj)) { | 
|  | pc->real = PyFloat_AsDouble(obj); | 
|  | return 0; | 
|  | } | 
|  | Py_INCREF(Py_NotImplemented); | 
|  | *pobj = Py_NotImplemented; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  |  | 
|  | static PyObject * | 
|  | complex_add(PyObject *v, PyObject *w) | 
|  | { | 
|  | Py_complex result; | 
|  | Py_complex a, b; | 
|  | TO_COMPLEX(v, a); | 
|  | TO_COMPLEX(w, b); | 
|  | PyFPE_START_PROTECT("complex_add", return 0) | 
|  | result = _Py_c_sum(a, b); | 
|  | PyFPE_END_PROTECT(result) | 
|  | return PyComplex_FromCComplex(result); | 
|  | } | 
|  |  | 
|  | static PyObject * | 
|  | complex_sub(PyObject *v, PyObject *w) | 
|  | { | 
|  | Py_complex result; | 
|  | Py_complex a, b; | 
|  | TO_COMPLEX(v, a); | 
|  | TO_COMPLEX(w, b); | 
|  | PyFPE_START_PROTECT("complex_sub", return 0) | 
|  | result = _Py_c_diff(a, b); | 
|  | PyFPE_END_PROTECT(result) | 
|  | return PyComplex_FromCComplex(result); | 
|  | } | 
|  |  | 
|  | static PyObject * | 
|  | complex_mul(PyObject *v, PyObject *w) | 
|  | { | 
|  | Py_complex result; | 
|  | Py_complex a, b; | 
|  | TO_COMPLEX(v, a); | 
|  | TO_COMPLEX(w, b); | 
|  | PyFPE_START_PROTECT("complex_mul", return 0) | 
|  | result = _Py_c_prod(a, b); | 
|  | PyFPE_END_PROTECT(result) | 
|  | return PyComplex_FromCComplex(result); | 
|  | } | 
|  |  | 
|  | static PyObject * | 
|  | complex_div(PyObject *v, PyObject *w) | 
|  | { | 
|  | Py_complex quot; | 
|  | Py_complex a, b; | 
|  | TO_COMPLEX(v, a); | 
|  | TO_COMPLEX(w, b); | 
|  | PyFPE_START_PROTECT("complex_div", return 0) | 
|  | errno = 0; | 
|  | quot = _Py_c_quot(a, b); | 
|  | PyFPE_END_PROTECT(quot) | 
|  | if (errno == EDOM) { | 
|  | PyErr_SetString(PyExc_ZeroDivisionError, "complex division by zero"); | 
|  | return NULL; | 
|  | } | 
|  | return PyComplex_FromCComplex(quot); | 
|  | } | 
|  |  | 
|  | static PyObject * | 
|  | complex_remainder(PyObject *v, PyObject *w) | 
|  | { | 
|  | PyErr_SetString(PyExc_TypeError, | 
|  | "can't mod complex numbers."); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  |  | 
|  | static PyObject * | 
|  | complex_divmod(PyObject *v, PyObject *w) | 
|  | { | 
|  | PyErr_SetString(PyExc_TypeError, | 
|  | "can't take floor or mod of complex number."); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static PyObject * | 
|  | complex_pow(PyObject *v, PyObject *w, PyObject *z) | 
|  | { | 
|  | Py_complex p; | 
|  | Py_complex exponent; | 
|  | long int_exponent; | 
|  | Py_complex a, b; | 
|  | TO_COMPLEX(v, a); | 
|  | TO_COMPLEX(w, b); | 
|  |  | 
|  | if (z != Py_None) { | 
|  | PyErr_SetString(PyExc_ValueError, "complex modulo"); | 
|  | return NULL; | 
|  | } | 
|  | PyFPE_START_PROTECT("complex_pow", return 0) | 
|  | errno = 0; | 
|  | exponent = b; | 
|  | int_exponent = (long)exponent.real; | 
|  | if (exponent.imag == 0. && exponent.real == int_exponent) | 
|  | p = c_powi(a, int_exponent); | 
|  | else | 
|  | p = _Py_c_pow(a, exponent); | 
|  |  | 
|  | PyFPE_END_PROTECT(p) | 
|  | Py_ADJUST_ERANGE2(p.real, p.imag); | 
|  | if (errno == EDOM) { | 
|  | PyErr_SetString(PyExc_ZeroDivisionError, | 
|  | "0.0 to a negative or complex power"); | 
|  | return NULL; | 
|  | } | 
|  | else if (errno == ERANGE) { | 
|  | PyErr_SetString(PyExc_OverflowError, | 
|  | "complex exponentiation"); | 
|  | return NULL; | 
|  | } | 
|  | return PyComplex_FromCComplex(p); | 
|  | } | 
|  |  | 
|  | static PyObject * | 
|  | complex_int_div(PyObject *v, PyObject *w) | 
|  | { | 
|  | PyErr_SetString(PyExc_TypeError, | 
|  | "can't take floor of complex number."); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static PyObject * | 
|  | complex_neg(PyComplexObject *v) | 
|  | { | 
|  | Py_complex neg; | 
|  | neg.real = -v->cval.real; | 
|  | neg.imag = -v->cval.imag; | 
|  | return PyComplex_FromCComplex(neg); | 
|  | } | 
|  |  | 
|  | static PyObject * | 
|  | complex_pos(PyComplexObject *v) | 
|  | { | 
|  | if (PyComplex_CheckExact(v)) { | 
|  | Py_INCREF(v); | 
|  | return (PyObject *)v; | 
|  | } | 
|  | else | 
|  | return PyComplex_FromCComplex(v->cval); | 
|  | } | 
|  |  | 
|  | static PyObject * | 
|  | complex_abs(PyComplexObject *v) | 
|  | { | 
|  | double result; | 
|  |  | 
|  | PyFPE_START_PROTECT("complex_abs", return 0) | 
|  | result = _Py_c_abs(v->cval); | 
|  | PyFPE_END_PROTECT(result) | 
|  |  | 
|  | if (errno == ERANGE) { | 
|  | PyErr_SetString(PyExc_OverflowError, | 
|  | "absolute value too large"); | 
|  | return NULL; | 
|  | } | 
|  | return PyFloat_FromDouble(result); | 
|  | } | 
|  |  | 
|  | static int | 
|  | complex_bool(PyComplexObject *v) | 
|  | { | 
|  | return v->cval.real != 0.0 || v->cval.imag != 0.0; | 
|  | } | 
|  |  | 
|  | static PyObject * | 
|  | complex_richcompare(PyObject *v, PyObject *w, int op) | 
|  | { | 
|  | PyObject *res; | 
|  | Py_complex i; | 
|  | int equal; | 
|  |  | 
|  | if (op != Py_EQ && op != Py_NE) { | 
|  | goto Unimplemented; | 
|  | } | 
|  |  | 
|  | assert(PyComplex_Check(v)); | 
|  | TO_COMPLEX(v, i); | 
|  |  | 
|  | if (PyLong_Check(w)) { | 
|  | /* Check for 0.0 imaginary part first to avoid the rich | 
|  | * comparison when possible. | 
|  | */ | 
|  | if (i.imag == 0.0) { | 
|  | PyObject *j, *sub_res; | 
|  | j = PyFloat_FromDouble(i.real); | 
|  | if (j == NULL) | 
|  | return NULL; | 
|  |  | 
|  | sub_res = PyObject_RichCompare(j, w, op); | 
|  | Py_DECREF(j); | 
|  | return sub_res; | 
|  | } | 
|  | else { | 
|  | equal = 0; | 
|  | } | 
|  | } | 
|  | else if (PyFloat_Check(w)) { | 
|  | equal = (i.real == PyFloat_AsDouble(w) && i.imag == 0.0); | 
|  | } | 
|  | else if (PyComplex_Check(w)) { | 
|  | Py_complex j; | 
|  |  | 
|  | TO_COMPLEX(w, j); | 
|  | equal = (i.real == j.real && i.imag == j.imag); | 
|  | } | 
|  | else { | 
|  | goto Unimplemented; | 
|  | } | 
|  |  | 
|  | if (equal == (op == Py_EQ)) | 
|  | res = Py_True; | 
|  | else | 
|  | res = Py_False; | 
|  |  | 
|  | Py_INCREF(res); | 
|  | return res; | 
|  |  | 
|  | Unimplemented: | 
|  | Py_RETURN_NOTIMPLEMENTED; | 
|  | } | 
|  |  | 
|  | static PyObject * | 
|  | complex_int(PyObject *v) | 
|  | { | 
|  | PyErr_SetString(PyExc_TypeError, | 
|  | "can't convert complex to int"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static PyObject * | 
|  | complex_float(PyObject *v) | 
|  | { | 
|  | PyErr_SetString(PyExc_TypeError, | 
|  | "can't convert complex to float"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static PyObject * | 
|  | complex_conjugate(PyObject *self) | 
|  | { | 
|  | Py_complex c; | 
|  | c = ((PyComplexObject *)self)->cval; | 
|  | c.imag = -c.imag; | 
|  | return PyComplex_FromCComplex(c); | 
|  | } | 
|  |  | 
|  | PyDoc_STRVAR(complex_conjugate_doc, | 
|  | "complex.conjugate() -> complex\n" | 
|  | "\n" | 
|  | "Return the complex conjugate of its argument. (3-4j).conjugate() == 3+4j."); | 
|  |  | 
|  | static PyObject * | 
|  | complex_getnewargs(PyComplexObject *v) | 
|  | { | 
|  | Py_complex c = v->cval; | 
|  | return Py_BuildValue("(dd)", c.real, c.imag); | 
|  | } | 
|  |  | 
|  | PyDoc_STRVAR(complex__format__doc, | 
|  | "complex.__format__() -> str\n" | 
|  | "\n" | 
|  | "Convert to a string according to format_spec."); | 
|  |  | 
|  | static PyObject * | 
|  | complex__format__(PyObject* self, PyObject* args) | 
|  | { | 
|  | PyObject *format_spec; | 
|  | _PyUnicodeWriter writer; | 
|  | int ret; | 
|  |  | 
|  | if (!PyArg_ParseTuple(args, "U:__format__", &format_spec)) | 
|  | return NULL; | 
|  |  | 
|  | _PyUnicodeWriter_Init(&writer); | 
|  | ret = _PyComplex_FormatAdvancedWriter( | 
|  | &writer, | 
|  | self, | 
|  | format_spec, 0, PyUnicode_GET_LENGTH(format_spec)); | 
|  | if (ret == -1) { | 
|  | _PyUnicodeWriter_Dealloc(&writer); | 
|  | return NULL; | 
|  | } | 
|  | return _PyUnicodeWriter_Finish(&writer); | 
|  | } | 
|  |  | 
|  | #if 0 | 
|  | static PyObject * | 
|  | complex_is_finite(PyObject *self) | 
|  | { | 
|  | Py_complex c; | 
|  | c = ((PyComplexObject *)self)->cval; | 
|  | return PyBool_FromLong((long)(Py_IS_FINITE(c.real) && | 
|  | Py_IS_FINITE(c.imag))); | 
|  | } | 
|  |  | 
|  | PyDoc_STRVAR(complex_is_finite_doc, | 
|  | "complex.is_finite() -> bool\n" | 
|  | "\n" | 
|  | "Returns True if the real and the imaginary part is finite."); | 
|  | #endif | 
|  |  | 
|  | static PyMethodDef complex_methods[] = { | 
|  | {"conjugate",       (PyCFunction)complex_conjugate, METH_NOARGS, | 
|  | complex_conjugate_doc}, | 
|  | #if 0 | 
|  | {"is_finite",       (PyCFunction)complex_is_finite, METH_NOARGS, | 
|  | complex_is_finite_doc}, | 
|  | #endif | 
|  | {"__getnewargs__",          (PyCFunction)complex_getnewargs,        METH_NOARGS}, | 
|  | {"__format__",          (PyCFunction)complex__format__, | 
|  | METH_VARARGS, complex__format__doc}, | 
|  | {NULL,              NULL}           /* sentinel */ | 
|  | }; | 
|  |  | 
|  | static PyMemberDef complex_members[] = { | 
|  | {"real", T_DOUBLE, offsetof(PyComplexObject, cval.real), READONLY, | 
|  | "the real part of a complex number"}, | 
|  | {"imag", T_DOUBLE, offsetof(PyComplexObject, cval.imag), READONLY, | 
|  | "the imaginary part of a complex number"}, | 
|  | {0}, | 
|  | }; | 
|  |  | 
|  | static PyObject * | 
|  | complex_subtype_from_string(PyTypeObject *type, PyObject *v) | 
|  | { | 
|  | const char *s, *start; | 
|  | char *end; | 
|  | double x=0.0, y=0.0, z; | 
|  | int got_bracket=0; | 
|  | PyObject *s_buffer = NULL; | 
|  | Py_ssize_t len; | 
|  |  | 
|  | if (PyUnicode_Check(v)) { | 
|  | s_buffer = _PyUnicode_TransformDecimalAndSpaceToASCII(v); | 
|  | if (s_buffer == NULL) | 
|  | return NULL; | 
|  | s = PyUnicode_AsUTF8AndSize(s_buffer, &len); | 
|  | if (s == NULL) | 
|  | goto error; | 
|  | } | 
|  | else { | 
|  | PyErr_Format(PyExc_TypeError, | 
|  | "complex() argument must be a string or a number, not '%.200s'", | 
|  | Py_TYPE(v)->tp_name); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* position on first nonblank */ | 
|  | start = s; | 
|  | while (Py_ISSPACE(*s)) | 
|  | s++; | 
|  | if (*s == '(') { | 
|  | /* Skip over possible bracket from repr(). */ | 
|  | got_bracket = 1; | 
|  | s++; | 
|  | while (Py_ISSPACE(*s)) | 
|  | s++; | 
|  | } | 
|  |  | 
|  | /* a valid complex string usually takes one of the three forms: | 
|  |  | 
|  | <float>                  - real part only | 
|  | <float>j                 - imaginary part only | 
|  | <float><signed-float>j   - real and imaginary parts | 
|  |  | 
|  | where <float> represents any numeric string that's accepted by the | 
|  | float constructor (including 'nan', 'inf', 'infinity', etc.), and | 
|  | <signed-float> is any string of the form <float> whose first | 
|  | character is '+' or '-'. | 
|  |  | 
|  | For backwards compatibility, the extra forms | 
|  |  | 
|  | <float><sign>j | 
|  | <sign>j | 
|  | j | 
|  |  | 
|  | are also accepted, though support for these forms may be removed from | 
|  | a future version of Python. | 
|  | */ | 
|  |  | 
|  | /* first look for forms starting with <float> */ | 
|  | z = PyOS_string_to_double(s, &end, NULL); | 
|  | if (z == -1.0 && PyErr_Occurred()) { | 
|  | if (PyErr_ExceptionMatches(PyExc_ValueError)) | 
|  | PyErr_Clear(); | 
|  | else | 
|  | goto error; | 
|  | } | 
|  | if (end != s) { | 
|  | /* all 4 forms starting with <float> land here */ | 
|  | s = end; | 
|  | if (*s == '+' || *s == '-') { | 
|  | /* <float><signed-float>j | <float><sign>j */ | 
|  | x = z; | 
|  | y = PyOS_string_to_double(s, &end, NULL); | 
|  | if (y == -1.0 && PyErr_Occurred()) { | 
|  | if (PyErr_ExceptionMatches(PyExc_ValueError)) | 
|  | PyErr_Clear(); | 
|  | else | 
|  | goto error; | 
|  | } | 
|  | if (end != s) | 
|  | /* <float><signed-float>j */ | 
|  | s = end; | 
|  | else { | 
|  | /* <float><sign>j */ | 
|  | y = *s == '+' ? 1.0 : -1.0; | 
|  | s++; | 
|  | } | 
|  | if (!(*s == 'j' || *s == 'J')) | 
|  | goto parse_error; | 
|  | s++; | 
|  | } | 
|  | else if (*s == 'j' || *s == 'J') { | 
|  | /* <float>j */ | 
|  | s++; | 
|  | y = z; | 
|  | } | 
|  | else | 
|  | /* <float> */ | 
|  | x = z; | 
|  | } | 
|  | else { | 
|  | /* not starting with <float>; must be <sign>j or j */ | 
|  | if (*s == '+' || *s == '-') { | 
|  | /* <sign>j */ | 
|  | y = *s == '+' ? 1.0 : -1.0; | 
|  | s++; | 
|  | } | 
|  | else | 
|  | /* j */ | 
|  | y = 1.0; | 
|  | if (!(*s == 'j' || *s == 'J')) | 
|  | goto parse_error; | 
|  | s++; | 
|  | } | 
|  |  | 
|  | /* trailing whitespace and closing bracket */ | 
|  | while (Py_ISSPACE(*s)) | 
|  | s++; | 
|  | if (got_bracket) { | 
|  | /* if there was an opening parenthesis, then the corresponding | 
|  | closing parenthesis should be right here */ | 
|  | if (*s != ')') | 
|  | goto parse_error; | 
|  | s++; | 
|  | while (Py_ISSPACE(*s)) | 
|  | s++; | 
|  | } | 
|  |  | 
|  | /* we should now be at the end of the string */ | 
|  | if (s-start != len) | 
|  | goto parse_error; | 
|  |  | 
|  | Py_XDECREF(s_buffer); | 
|  | return complex_subtype_from_doubles(type, x, y); | 
|  |  | 
|  | parse_error: | 
|  | PyErr_SetString(PyExc_ValueError, | 
|  | "complex() arg is a malformed string"); | 
|  | error: | 
|  | Py_XDECREF(s_buffer); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static PyObject * | 
|  | complex_new(PyTypeObject *type, PyObject *args, PyObject *kwds) | 
|  | { | 
|  | PyObject *r, *i, *tmp; | 
|  | PyNumberMethods *nbr, *nbi = NULL; | 
|  | Py_complex cr, ci; | 
|  | int own_r = 0; | 
|  | int cr_is_complex = 0; | 
|  | int ci_is_complex = 0; | 
|  | static char *kwlist[] = {"real", "imag", 0}; | 
|  |  | 
|  | r = Py_False; | 
|  | i = NULL; | 
|  | if (!PyArg_ParseTupleAndKeywords(args, kwds, "|OO:complex", kwlist, | 
|  | &r, &i)) | 
|  | return NULL; | 
|  |  | 
|  | /* Special-case for a single argument when type(arg) is complex. */ | 
|  | if (PyComplex_CheckExact(r) && i == NULL && | 
|  | type == &PyComplex_Type) { | 
|  | /* Note that we can't know whether it's safe to return | 
|  | a complex *subclass* instance as-is, hence the restriction | 
|  | to exact complexes here.  If either the input or the | 
|  | output is a complex subclass, it will be handled below | 
|  | as a non-orthogonal vector.  */ | 
|  | Py_INCREF(r); | 
|  | return r; | 
|  | } | 
|  | if (PyUnicode_Check(r)) { | 
|  | if (i != NULL) { | 
|  | PyErr_SetString(PyExc_TypeError, | 
|  | "complex() can't take second arg" | 
|  | " if first is a string"); | 
|  | return NULL; | 
|  | } | 
|  | return complex_subtype_from_string(type, r); | 
|  | } | 
|  | if (i != NULL && PyUnicode_Check(i)) { | 
|  | PyErr_SetString(PyExc_TypeError, | 
|  | "complex() second arg can't be a string"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | tmp = try_complex_special_method(r); | 
|  | if (tmp) { | 
|  | r = tmp; | 
|  | own_r = 1; | 
|  | } | 
|  | else if (PyErr_Occurred()) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | nbr = r->ob_type->tp_as_number; | 
|  | if (nbr == NULL || nbr->nb_float == NULL) { | 
|  | PyErr_Format(PyExc_TypeError, | 
|  | "complex() first argument must be a string or a number, " | 
|  | "not '%.200s'", | 
|  | Py_TYPE(r)->tp_name); | 
|  | if (own_r) { | 
|  | Py_DECREF(r); | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  | if (i != NULL) { | 
|  | nbi = i->ob_type->tp_as_number; | 
|  | if (nbi == NULL || nbi->nb_float == NULL) { | 
|  | PyErr_Format(PyExc_TypeError, | 
|  | "complex() second argument must be a number, " | 
|  | "not '%.200s'", | 
|  | Py_TYPE(i)->tp_name); | 
|  | if (own_r) { | 
|  | Py_DECREF(r); | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If we get this far, then the "real" and "imag" parts should | 
|  | both be treated as numbers, and the constructor should return a | 
|  | complex number equal to (real + imag*1j). | 
|  |  | 
|  | Note that we do NOT assume the input to already be in canonical | 
|  | form; the "real" and "imag" parts might themselves be complex | 
|  | numbers, which slightly complicates the code below. */ | 
|  | if (PyComplex_Check(r)) { | 
|  | /* Note that if r is of a complex subtype, we're only | 
|  | retaining its real & imag parts here, and the return | 
|  | value is (properly) of the builtin complex type. */ | 
|  | cr = ((PyComplexObject*)r)->cval; | 
|  | cr_is_complex = 1; | 
|  | if (own_r) { | 
|  | Py_DECREF(r); | 
|  | } | 
|  | } | 
|  | else { | 
|  | /* The "real" part really is entirely real, and contributes | 
|  | nothing in the imaginary direction. | 
|  | Just treat it as a double. */ | 
|  | tmp = PyNumber_Float(r); | 
|  | if (own_r) { | 
|  | /* r was a newly created complex number, rather | 
|  | than the original "real" argument. */ | 
|  | Py_DECREF(r); | 
|  | } | 
|  | if (tmp == NULL) | 
|  | return NULL; | 
|  | if (!PyFloat_Check(tmp)) { | 
|  | PyErr_SetString(PyExc_TypeError, | 
|  | "float(r) didn't return a float"); | 
|  | Py_DECREF(tmp); | 
|  | return NULL; | 
|  | } | 
|  | cr.real = PyFloat_AsDouble(tmp); | 
|  | cr.imag = 0.0; | 
|  | Py_DECREF(tmp); | 
|  | } | 
|  | if (i == NULL) { | 
|  | ci.real = cr.imag; | 
|  | } | 
|  | else if (PyComplex_Check(i)) { | 
|  | ci = ((PyComplexObject*)i)->cval; | 
|  | ci_is_complex = 1; | 
|  | } else { | 
|  | /* The "imag" part really is entirely imaginary, and | 
|  | contributes nothing in the real direction. | 
|  | Just treat it as a double. */ | 
|  | tmp = (*nbi->nb_float)(i); | 
|  | if (tmp == NULL) | 
|  | return NULL; | 
|  | ci.real = PyFloat_AsDouble(tmp); | 
|  | Py_DECREF(tmp); | 
|  | } | 
|  | /*  If the input was in canonical form, then the "real" and "imag" | 
|  | parts are real numbers, so that ci.imag and cr.imag are zero. | 
|  | We need this correction in case they were not real numbers. */ | 
|  |  | 
|  | if (ci_is_complex) { | 
|  | cr.real -= ci.imag; | 
|  | } | 
|  | if (cr_is_complex && i != NULL) { | 
|  | ci.real += cr.imag; | 
|  | } | 
|  | return complex_subtype_from_doubles(type, cr.real, ci.real); | 
|  | } | 
|  |  | 
|  | PyDoc_STRVAR(complex_doc, | 
|  | "complex(real[, imag]) -> complex number\n" | 
|  | "\n" | 
|  | "Create a complex number from a real part and an optional imaginary part.\n" | 
|  | "This is equivalent to (real + imag*1j) where imag defaults to 0."); | 
|  |  | 
|  | static PyNumberMethods complex_as_number = { | 
|  | (binaryfunc)complex_add,                    /* nb_add */ | 
|  | (binaryfunc)complex_sub,                    /* nb_subtract */ | 
|  | (binaryfunc)complex_mul,                    /* nb_multiply */ | 
|  | (binaryfunc)complex_remainder,              /* nb_remainder */ | 
|  | (binaryfunc)complex_divmod,                 /* nb_divmod */ | 
|  | (ternaryfunc)complex_pow,                   /* nb_power */ | 
|  | (unaryfunc)complex_neg,                     /* nb_negative */ | 
|  | (unaryfunc)complex_pos,                     /* nb_positive */ | 
|  | (unaryfunc)complex_abs,                     /* nb_absolute */ | 
|  | (inquiry)complex_bool,                      /* nb_bool */ | 
|  | 0,                                          /* nb_invert */ | 
|  | 0,                                          /* nb_lshift */ | 
|  | 0,                                          /* nb_rshift */ | 
|  | 0,                                          /* nb_and */ | 
|  | 0,                                          /* nb_xor */ | 
|  | 0,                                          /* nb_or */ | 
|  | complex_int,                                /* nb_int */ | 
|  | 0,                                          /* nb_reserved */ | 
|  | complex_float,                              /* nb_float */ | 
|  | 0,                                          /* nb_inplace_add */ | 
|  | 0,                                          /* nb_inplace_subtract */ | 
|  | 0,                                          /* nb_inplace_multiply*/ | 
|  | 0,                                          /* nb_inplace_remainder */ | 
|  | 0,                                          /* nb_inplace_power */ | 
|  | 0,                                          /* nb_inplace_lshift */ | 
|  | 0,                                          /* nb_inplace_rshift */ | 
|  | 0,                                          /* nb_inplace_and */ | 
|  | 0,                                          /* nb_inplace_xor */ | 
|  | 0,                                          /* nb_inplace_or */ | 
|  | (binaryfunc)complex_int_div,                /* nb_floor_divide */ | 
|  | (binaryfunc)complex_div,                    /* nb_true_divide */ | 
|  | 0,                                          /* nb_inplace_floor_divide */ | 
|  | 0,                                          /* nb_inplace_true_divide */ | 
|  | }; | 
|  |  | 
|  | PyTypeObject PyComplex_Type = { | 
|  | PyVarObject_HEAD_INIT(&PyType_Type, 0) | 
|  | "complex", | 
|  | sizeof(PyComplexObject), | 
|  | 0, | 
|  | complex_dealloc,                            /* tp_dealloc */ | 
|  | 0,                                          /* tp_print */ | 
|  | 0,                                          /* tp_getattr */ | 
|  | 0,                                          /* tp_setattr */ | 
|  | 0,                                          /* tp_reserved */ | 
|  | (reprfunc)complex_repr,                     /* tp_repr */ | 
|  | &complex_as_number,                         /* tp_as_number */ | 
|  | 0,                                          /* tp_as_sequence */ | 
|  | 0,                                          /* tp_as_mapping */ | 
|  | (hashfunc)complex_hash,                     /* tp_hash */ | 
|  | 0,                                          /* tp_call */ | 
|  | (reprfunc)complex_repr,                     /* tp_str */ | 
|  | PyObject_GenericGetAttr,                    /* tp_getattro */ | 
|  | 0,                                          /* tp_setattro */ | 
|  | 0,                                          /* tp_as_buffer */ | 
|  | Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */ | 
|  | complex_doc,                                /* tp_doc */ | 
|  | 0,                                          /* tp_traverse */ | 
|  | 0,                                          /* tp_clear */ | 
|  | complex_richcompare,                        /* tp_richcompare */ | 
|  | 0,                                          /* tp_weaklistoffset */ | 
|  | 0,                                          /* tp_iter */ | 
|  | 0,                                          /* tp_iternext */ | 
|  | complex_methods,                            /* tp_methods */ | 
|  | complex_members,                            /* tp_members */ | 
|  | 0,                                          /* tp_getset */ | 
|  | 0,                                          /* tp_base */ | 
|  | 0,                                          /* tp_dict */ | 
|  | 0,                                          /* tp_descr_get */ | 
|  | 0,                                          /* tp_descr_set */ | 
|  | 0,                                          /* tp_dictoffset */ | 
|  | 0,                                          /* tp_init */ | 
|  | PyType_GenericAlloc,                        /* tp_alloc */ | 
|  | complex_new,                                /* tp_new */ | 
|  | PyObject_Del,                               /* tp_free */ | 
|  | }; |