|  | # Copyright (c) 2004 Python Software Foundation. | 
|  | # All rights reserved. | 
|  |  | 
|  | # Written by Eric Price <eprice at tjhsst.edu> | 
|  | #    and Facundo Batista <facundo at taniquetil.com.ar> | 
|  | #    and Raymond Hettinger <python at rcn.com> | 
|  | #    and Aahz <aahz at pobox.com> | 
|  | #    and Tim Peters | 
|  |  | 
|  | # This module should be kept in sync with the latest updates of the | 
|  | # IBM specification as it evolves.  Those updates will be treated | 
|  | # as bug fixes (deviation from the spec is a compatibility, usability | 
|  | # bug) and will be backported.  At this point the spec is stabilizing | 
|  | # and the updates are becoming fewer, smaller, and less significant. | 
|  |  | 
|  | """ | 
|  | This is an implementation of decimal floating point arithmetic based on | 
|  | the General Decimal Arithmetic Specification: | 
|  |  | 
|  | http://speleotrove.com/decimal/decarith.html | 
|  |  | 
|  | and IEEE standard 854-1987: | 
|  |  | 
|  | http://en.wikipedia.org/wiki/IEEE_854-1987 | 
|  |  | 
|  | Decimal floating point has finite precision with arbitrarily large bounds. | 
|  |  | 
|  | The purpose of this module is to support arithmetic using familiar | 
|  | "schoolhouse" rules and to avoid some of the tricky representation | 
|  | issues associated with binary floating point.  The package is especially | 
|  | useful for financial applications or for contexts where users have | 
|  | expectations that are at odds with binary floating point (for instance, | 
|  | in binary floating point, 1.00 % 0.1 gives 0.09999999999999995 instead | 
|  | of 0.0; Decimal('1.00') % Decimal('0.1') returns the expected | 
|  | Decimal('0.00')). | 
|  |  | 
|  | Here are some examples of using the decimal module: | 
|  |  | 
|  | >>> from decimal import * | 
|  | >>> setcontext(ExtendedContext) | 
|  | >>> Decimal(0) | 
|  | Decimal('0') | 
|  | >>> Decimal('1') | 
|  | Decimal('1') | 
|  | >>> Decimal('-.0123') | 
|  | Decimal('-0.0123') | 
|  | >>> Decimal(123456) | 
|  | Decimal('123456') | 
|  | >>> Decimal('123.45e12345678') | 
|  | Decimal('1.2345E+12345680') | 
|  | >>> Decimal('1.33') + Decimal('1.27') | 
|  | Decimal('2.60') | 
|  | >>> Decimal('12.34') + Decimal('3.87') - Decimal('18.41') | 
|  | Decimal('-2.20') | 
|  | >>> dig = Decimal(1) | 
|  | >>> print(dig / Decimal(3)) | 
|  | 0.333333333 | 
|  | >>> getcontext().prec = 18 | 
|  | >>> print(dig / Decimal(3)) | 
|  | 0.333333333333333333 | 
|  | >>> print(dig.sqrt()) | 
|  | 1 | 
|  | >>> print(Decimal(3).sqrt()) | 
|  | 1.73205080756887729 | 
|  | >>> print(Decimal(3) ** 123) | 
|  | 4.85192780976896427E+58 | 
|  | >>> inf = Decimal(1) / Decimal(0) | 
|  | >>> print(inf) | 
|  | Infinity | 
|  | >>> neginf = Decimal(-1) / Decimal(0) | 
|  | >>> print(neginf) | 
|  | -Infinity | 
|  | >>> print(neginf + inf) | 
|  | NaN | 
|  | >>> print(neginf * inf) | 
|  | -Infinity | 
|  | >>> print(dig / 0) | 
|  | Infinity | 
|  | >>> getcontext().traps[DivisionByZero] = 1 | 
|  | >>> print(dig / 0) | 
|  | Traceback (most recent call last): | 
|  | ... | 
|  | ... | 
|  | ... | 
|  | decimal.DivisionByZero: x / 0 | 
|  | >>> c = Context() | 
|  | >>> c.traps[InvalidOperation] = 0 | 
|  | >>> print(c.flags[InvalidOperation]) | 
|  | 0 | 
|  | >>> c.divide(Decimal(0), Decimal(0)) | 
|  | Decimal('NaN') | 
|  | >>> c.traps[InvalidOperation] = 1 | 
|  | >>> print(c.flags[InvalidOperation]) | 
|  | 1 | 
|  | >>> c.flags[InvalidOperation] = 0 | 
|  | >>> print(c.flags[InvalidOperation]) | 
|  | 0 | 
|  | >>> print(c.divide(Decimal(0), Decimal(0))) | 
|  | Traceback (most recent call last): | 
|  | ... | 
|  | ... | 
|  | ... | 
|  | decimal.InvalidOperation: 0 / 0 | 
|  | >>> print(c.flags[InvalidOperation]) | 
|  | 1 | 
|  | >>> c.flags[InvalidOperation] = 0 | 
|  | >>> c.traps[InvalidOperation] = 0 | 
|  | >>> print(c.divide(Decimal(0), Decimal(0))) | 
|  | NaN | 
|  | >>> print(c.flags[InvalidOperation]) | 
|  | 1 | 
|  | >>> | 
|  | """ | 
|  |  | 
|  | __all__ = [ | 
|  | # Two major classes | 
|  | 'Decimal', 'Context', | 
|  |  | 
|  | # Named tuple representation | 
|  | 'DecimalTuple', | 
|  |  | 
|  | # Contexts | 
|  | 'DefaultContext', 'BasicContext', 'ExtendedContext', | 
|  |  | 
|  | # Exceptions | 
|  | 'DecimalException', 'Clamped', 'InvalidOperation', 'DivisionByZero', | 
|  | 'Inexact', 'Rounded', 'Subnormal', 'Overflow', 'Underflow', | 
|  | 'FloatOperation', | 
|  |  | 
|  | # Exceptional conditions that trigger InvalidOperation | 
|  | 'DivisionImpossible', 'InvalidContext', 'ConversionSyntax', 'DivisionUndefined', | 
|  |  | 
|  | # Constants for use in setting up contexts | 
|  | 'ROUND_DOWN', 'ROUND_HALF_UP', 'ROUND_HALF_EVEN', 'ROUND_CEILING', | 
|  | 'ROUND_FLOOR', 'ROUND_UP', 'ROUND_HALF_DOWN', 'ROUND_05UP', | 
|  |  | 
|  | # Functions for manipulating contexts | 
|  | 'setcontext', 'getcontext', 'localcontext', | 
|  |  | 
|  | # Limits for the C version for compatibility | 
|  | 'MAX_PREC',  'MAX_EMAX', 'MIN_EMIN', 'MIN_ETINY', | 
|  |  | 
|  | # C version: compile time choice that enables the thread local context | 
|  | 'HAVE_THREADS' | 
|  | ] | 
|  |  | 
|  | __xname__ = __name__    # sys.modules lookup (--without-threads) | 
|  | __name__ = 'decimal'    # For pickling | 
|  | __version__ = '1.70'    # Highest version of the spec this complies with | 
|  | # See http://speleotrove.com/decimal/ | 
|  | __libmpdec_version__ = "2.4.2" # compatible libmpdec version | 
|  |  | 
|  | import math as _math | 
|  | import numbers as _numbers | 
|  | import sys | 
|  |  | 
|  | try: | 
|  | from collections import namedtuple as _namedtuple | 
|  | DecimalTuple = _namedtuple('DecimalTuple', 'sign digits exponent') | 
|  | except ImportError: | 
|  | DecimalTuple = lambda *args: args | 
|  |  | 
|  | # Rounding | 
|  | ROUND_DOWN = 'ROUND_DOWN' | 
|  | ROUND_HALF_UP = 'ROUND_HALF_UP' | 
|  | ROUND_HALF_EVEN = 'ROUND_HALF_EVEN' | 
|  | ROUND_CEILING = 'ROUND_CEILING' | 
|  | ROUND_FLOOR = 'ROUND_FLOOR' | 
|  | ROUND_UP = 'ROUND_UP' | 
|  | ROUND_HALF_DOWN = 'ROUND_HALF_DOWN' | 
|  | ROUND_05UP = 'ROUND_05UP' | 
|  |  | 
|  | # Compatibility with the C version | 
|  | HAVE_THREADS = True | 
|  | if sys.maxsize == 2**63-1: | 
|  | MAX_PREC = 999999999999999999 | 
|  | MAX_EMAX = 999999999999999999 | 
|  | MIN_EMIN = -999999999999999999 | 
|  | else: | 
|  | MAX_PREC = 425000000 | 
|  | MAX_EMAX = 425000000 | 
|  | MIN_EMIN = -425000000 | 
|  |  | 
|  | MIN_ETINY = MIN_EMIN - (MAX_PREC-1) | 
|  |  | 
|  | # Errors | 
|  |  | 
|  | class DecimalException(ArithmeticError): | 
|  | """Base exception class. | 
|  |  | 
|  | Used exceptions derive from this. | 
|  | If an exception derives from another exception besides this (such as | 
|  | Underflow (Inexact, Rounded, Subnormal) that indicates that it is only | 
|  | called if the others are present.  This isn't actually used for | 
|  | anything, though. | 
|  |  | 
|  | handle  -- Called when context._raise_error is called and the | 
|  | trap_enabler is not set.  First argument is self, second is the | 
|  | context.  More arguments can be given, those being after | 
|  | the explanation in _raise_error (For example, | 
|  | context._raise_error(NewError, '(-x)!', self._sign) would | 
|  | call NewError().handle(context, self._sign).) | 
|  |  | 
|  | To define a new exception, it should be sufficient to have it derive | 
|  | from DecimalException. | 
|  | """ | 
|  | def handle(self, context, *args): | 
|  | pass | 
|  |  | 
|  |  | 
|  | class Clamped(DecimalException): | 
|  | """Exponent of a 0 changed to fit bounds. | 
|  |  | 
|  | This occurs and signals clamped if the exponent of a result has been | 
|  | altered in order to fit the constraints of a specific concrete | 
|  | representation.  This may occur when the exponent of a zero result would | 
|  | be outside the bounds of a representation, or when a large normal | 
|  | number would have an encoded exponent that cannot be represented.  In | 
|  | this latter case, the exponent is reduced to fit and the corresponding | 
|  | number of zero digits are appended to the coefficient ("fold-down"). | 
|  | """ | 
|  |  | 
|  | class InvalidOperation(DecimalException): | 
|  | """An invalid operation was performed. | 
|  |  | 
|  | Various bad things cause this: | 
|  |  | 
|  | Something creates a signaling NaN | 
|  | -INF + INF | 
|  | 0 * (+-)INF | 
|  | (+-)INF / (+-)INF | 
|  | x % 0 | 
|  | (+-)INF % x | 
|  | x._rescale( non-integer ) | 
|  | sqrt(-x) , x > 0 | 
|  | 0 ** 0 | 
|  | x ** (non-integer) | 
|  | x ** (+-)INF | 
|  | An operand is invalid | 
|  |  | 
|  | The result of the operation after these is a quiet positive NaN, | 
|  | except when the cause is a signaling NaN, in which case the result is | 
|  | also a quiet NaN, but with the original sign, and an optional | 
|  | diagnostic information. | 
|  | """ | 
|  | def handle(self, context, *args): | 
|  | if args: | 
|  | ans = _dec_from_triple(args[0]._sign, args[0]._int, 'n', True) | 
|  | return ans._fix_nan(context) | 
|  | return _NaN | 
|  |  | 
|  | class ConversionSyntax(InvalidOperation): | 
|  | """Trying to convert badly formed string. | 
|  |  | 
|  | This occurs and signals invalid-operation if a string is being | 
|  | converted to a number and it does not conform to the numeric string | 
|  | syntax.  The result is [0,qNaN]. | 
|  | """ | 
|  | def handle(self, context, *args): | 
|  | return _NaN | 
|  |  | 
|  | class DivisionByZero(DecimalException, ZeroDivisionError): | 
|  | """Division by 0. | 
|  |  | 
|  | This occurs and signals division-by-zero if division of a finite number | 
|  | by zero was attempted (during a divide-integer or divide operation, or a | 
|  | power operation with negative right-hand operand), and the dividend was | 
|  | not zero. | 
|  |  | 
|  | The result of the operation is [sign,inf], where sign is the exclusive | 
|  | or of the signs of the operands for divide, or is 1 for an odd power of | 
|  | -0, for power. | 
|  | """ | 
|  |  | 
|  | def handle(self, context, sign, *args): | 
|  | return _SignedInfinity[sign] | 
|  |  | 
|  | class DivisionImpossible(InvalidOperation): | 
|  | """Cannot perform the division adequately. | 
|  |  | 
|  | This occurs and signals invalid-operation if the integer result of a | 
|  | divide-integer or remainder operation had too many digits (would be | 
|  | longer than precision).  The result is [0,qNaN]. | 
|  | """ | 
|  |  | 
|  | def handle(self, context, *args): | 
|  | return _NaN | 
|  |  | 
|  | class DivisionUndefined(InvalidOperation, ZeroDivisionError): | 
|  | """Undefined result of division. | 
|  |  | 
|  | This occurs and signals invalid-operation if division by zero was | 
|  | attempted (during a divide-integer, divide, or remainder operation), and | 
|  | the dividend is also zero.  The result is [0,qNaN]. | 
|  | """ | 
|  |  | 
|  | def handle(self, context, *args): | 
|  | return _NaN | 
|  |  | 
|  | class Inexact(DecimalException): | 
|  | """Had to round, losing information. | 
|  |  | 
|  | This occurs and signals inexact whenever the result of an operation is | 
|  | not exact (that is, it needed to be rounded and any discarded digits | 
|  | were non-zero), or if an overflow or underflow condition occurs.  The | 
|  | result in all cases is unchanged. | 
|  |  | 
|  | The inexact signal may be tested (or trapped) to determine if a given | 
|  | operation (or sequence of operations) was inexact. | 
|  | """ | 
|  |  | 
|  | class InvalidContext(InvalidOperation): | 
|  | """Invalid context.  Unknown rounding, for example. | 
|  |  | 
|  | This occurs and signals invalid-operation if an invalid context was | 
|  | detected during an operation.  This can occur if contexts are not checked | 
|  | on creation and either the precision exceeds the capability of the | 
|  | underlying concrete representation or an unknown or unsupported rounding | 
|  | was specified.  These aspects of the context need only be checked when | 
|  | the values are required to be used.  The result is [0,qNaN]. | 
|  | """ | 
|  |  | 
|  | def handle(self, context, *args): | 
|  | return _NaN | 
|  |  | 
|  | class Rounded(DecimalException): | 
|  | """Number got rounded (not  necessarily changed during rounding). | 
|  |  | 
|  | This occurs and signals rounded whenever the result of an operation is | 
|  | rounded (that is, some zero or non-zero digits were discarded from the | 
|  | coefficient), or if an overflow or underflow condition occurs.  The | 
|  | result in all cases is unchanged. | 
|  |  | 
|  | The rounded signal may be tested (or trapped) to determine if a given | 
|  | operation (or sequence of operations) caused a loss of precision. | 
|  | """ | 
|  |  | 
|  | class Subnormal(DecimalException): | 
|  | """Exponent < Emin before rounding. | 
|  |  | 
|  | This occurs and signals subnormal whenever the result of a conversion or | 
|  | operation is subnormal (that is, its adjusted exponent is less than | 
|  | Emin, before any rounding).  The result in all cases is unchanged. | 
|  |  | 
|  | The subnormal signal may be tested (or trapped) to determine if a given | 
|  | or operation (or sequence of operations) yielded a subnormal result. | 
|  | """ | 
|  |  | 
|  | class Overflow(Inexact, Rounded): | 
|  | """Numerical overflow. | 
|  |  | 
|  | This occurs and signals overflow if the adjusted exponent of a result | 
|  | (from a conversion or from an operation that is not an attempt to divide | 
|  | by zero), after rounding, would be greater than the largest value that | 
|  | can be handled by the implementation (the value Emax). | 
|  |  | 
|  | The result depends on the rounding mode: | 
|  |  | 
|  | For round-half-up and round-half-even (and for round-half-down and | 
|  | round-up, if implemented), the result of the operation is [sign,inf], | 
|  | where sign is the sign of the intermediate result.  For round-down, the | 
|  | result is the largest finite number that can be represented in the | 
|  | current precision, with the sign of the intermediate result.  For | 
|  | round-ceiling, the result is the same as for round-down if the sign of | 
|  | the intermediate result is 1, or is [0,inf] otherwise.  For round-floor, | 
|  | the result is the same as for round-down if the sign of the intermediate | 
|  | result is 0, or is [1,inf] otherwise.  In all cases, Inexact and Rounded | 
|  | will also be raised. | 
|  | """ | 
|  |  | 
|  | def handle(self, context, sign, *args): | 
|  | if context.rounding in (ROUND_HALF_UP, ROUND_HALF_EVEN, | 
|  | ROUND_HALF_DOWN, ROUND_UP): | 
|  | return _SignedInfinity[sign] | 
|  | if sign == 0: | 
|  | if context.rounding == ROUND_CEILING: | 
|  | return _SignedInfinity[sign] | 
|  | return _dec_from_triple(sign, '9'*context.prec, | 
|  | context.Emax-context.prec+1) | 
|  | if sign == 1: | 
|  | if context.rounding == ROUND_FLOOR: | 
|  | return _SignedInfinity[sign] | 
|  | return _dec_from_triple(sign, '9'*context.prec, | 
|  | context.Emax-context.prec+1) | 
|  |  | 
|  |  | 
|  | class Underflow(Inexact, Rounded, Subnormal): | 
|  | """Numerical underflow with result rounded to 0. | 
|  |  | 
|  | This occurs and signals underflow if a result is inexact and the | 
|  | adjusted exponent of the result would be smaller (more negative) than | 
|  | the smallest value that can be handled by the implementation (the value | 
|  | Emin).  That is, the result is both inexact and subnormal. | 
|  |  | 
|  | The result after an underflow will be a subnormal number rounded, if | 
|  | necessary, so that its exponent is not less than Etiny.  This may result | 
|  | in 0 with the sign of the intermediate result and an exponent of Etiny. | 
|  |  | 
|  | In all cases, Inexact, Rounded, and Subnormal will also be raised. | 
|  | """ | 
|  |  | 
|  | class FloatOperation(DecimalException, TypeError): | 
|  | """Enable stricter semantics for mixing floats and Decimals. | 
|  |  | 
|  | If the signal is not trapped (default), mixing floats and Decimals is | 
|  | permitted in the Decimal() constructor, context.create_decimal() and | 
|  | all comparison operators. Both conversion and comparisons are exact. | 
|  | Any occurrence of a mixed operation is silently recorded by setting | 
|  | FloatOperation in the context flags.  Explicit conversions with | 
|  | Decimal.from_float() or context.create_decimal_from_float() do not | 
|  | set the flag. | 
|  |  | 
|  | Otherwise (the signal is trapped), only equality comparisons and explicit | 
|  | conversions are silent. All other mixed operations raise FloatOperation. | 
|  | """ | 
|  |  | 
|  | # List of public traps and flags | 
|  | _signals = [Clamped, DivisionByZero, Inexact, Overflow, Rounded, | 
|  | Underflow, InvalidOperation, Subnormal, FloatOperation] | 
|  |  | 
|  | # Map conditions (per the spec) to signals | 
|  | _condition_map = {ConversionSyntax:InvalidOperation, | 
|  | DivisionImpossible:InvalidOperation, | 
|  | DivisionUndefined:InvalidOperation, | 
|  | InvalidContext:InvalidOperation} | 
|  |  | 
|  | # Valid rounding modes | 
|  | _rounding_modes = (ROUND_DOWN, ROUND_HALF_UP, ROUND_HALF_EVEN, ROUND_CEILING, | 
|  | ROUND_FLOOR, ROUND_UP, ROUND_HALF_DOWN, ROUND_05UP) | 
|  |  | 
|  | ##### Context Functions ################################################## | 
|  |  | 
|  | # The getcontext() and setcontext() function manage access to a thread-local | 
|  | # current context. | 
|  |  | 
|  | import contextvars | 
|  |  | 
|  | _current_context_var = contextvars.ContextVar('decimal_context') | 
|  |  | 
|  | def getcontext(): | 
|  | """Returns this thread's context. | 
|  |  | 
|  | If this thread does not yet have a context, returns | 
|  | a new context and sets this thread's context. | 
|  | New contexts are copies of DefaultContext. | 
|  | """ | 
|  | try: | 
|  | return _current_context_var.get() | 
|  | except LookupError: | 
|  | context = Context() | 
|  | _current_context_var.set(context) | 
|  | return context | 
|  |  | 
|  | def setcontext(context): | 
|  | """Set this thread's context to context.""" | 
|  | if context in (DefaultContext, BasicContext, ExtendedContext): | 
|  | context = context.copy() | 
|  | context.clear_flags() | 
|  | _current_context_var.set(context) | 
|  |  | 
|  | del contextvars        # Don't contaminate the namespace | 
|  |  | 
|  | def localcontext(ctx=None): | 
|  | """Return a context manager for a copy of the supplied context | 
|  |  | 
|  | Uses a copy of the current context if no context is specified | 
|  | The returned context manager creates a local decimal context | 
|  | in a with statement: | 
|  | def sin(x): | 
|  | with localcontext() as ctx: | 
|  | ctx.prec += 2 | 
|  | # Rest of sin calculation algorithm | 
|  | # uses a precision 2 greater than normal | 
|  | return +s  # Convert result to normal precision | 
|  |  | 
|  | def sin(x): | 
|  | with localcontext(ExtendedContext): | 
|  | # Rest of sin calculation algorithm | 
|  | # uses the Extended Context from the | 
|  | # General Decimal Arithmetic Specification | 
|  | return +s  # Convert result to normal context | 
|  |  | 
|  | >>> setcontext(DefaultContext) | 
|  | >>> print(getcontext().prec) | 
|  | 28 | 
|  | >>> with localcontext(): | 
|  | ...     ctx = getcontext() | 
|  | ...     ctx.prec += 2 | 
|  | ...     print(ctx.prec) | 
|  | ... | 
|  | 30 | 
|  | >>> with localcontext(ExtendedContext): | 
|  | ...     print(getcontext().prec) | 
|  | ... | 
|  | 9 | 
|  | >>> print(getcontext().prec) | 
|  | 28 | 
|  | """ | 
|  | if ctx is None: ctx = getcontext() | 
|  | return _ContextManager(ctx) | 
|  |  | 
|  |  | 
|  | ##### Decimal class ####################################################### | 
|  |  | 
|  | # Do not subclass Decimal from numbers.Real and do not register it as such | 
|  | # (because Decimals are not interoperable with floats).  See the notes in | 
|  | # numbers.py for more detail. | 
|  |  | 
|  | class Decimal(object): | 
|  | """Floating point class for decimal arithmetic.""" | 
|  |  | 
|  | __slots__ = ('_exp','_int','_sign', '_is_special') | 
|  | # Generally, the value of the Decimal instance is given by | 
|  | #  (-1)**_sign * _int * 10**_exp | 
|  | # Special values are signified by _is_special == True | 
|  |  | 
|  | # We're immutable, so use __new__ not __init__ | 
|  | def __new__(cls, value="0", context=None): | 
|  | """Create a decimal point instance. | 
|  |  | 
|  | >>> Decimal('3.14')              # string input | 
|  | Decimal('3.14') | 
|  | >>> Decimal((0, (3, 1, 4), -2))  # tuple (sign, digit_tuple, exponent) | 
|  | Decimal('3.14') | 
|  | >>> Decimal(314)                 # int | 
|  | Decimal('314') | 
|  | >>> Decimal(Decimal(314))        # another decimal instance | 
|  | Decimal('314') | 
|  | >>> Decimal('  3.14  \\n')        # leading and trailing whitespace okay | 
|  | Decimal('3.14') | 
|  | """ | 
|  |  | 
|  | # Note that the coefficient, self._int, is actually stored as | 
|  | # a string rather than as a tuple of digits.  This speeds up | 
|  | # the "digits to integer" and "integer to digits" conversions | 
|  | # that are used in almost every arithmetic operation on | 
|  | # Decimals.  This is an internal detail: the as_tuple function | 
|  | # and the Decimal constructor still deal with tuples of | 
|  | # digits. | 
|  |  | 
|  | self = object.__new__(cls) | 
|  |  | 
|  | # From a string | 
|  | # REs insist on real strings, so we can too. | 
|  | if isinstance(value, str): | 
|  | m = _parser(value.strip().replace("_", "")) | 
|  | if m is None: | 
|  | if context is None: | 
|  | context = getcontext() | 
|  | return context._raise_error(ConversionSyntax, | 
|  | "Invalid literal for Decimal: %r" % value) | 
|  |  | 
|  | if m.group('sign') == "-": | 
|  | self._sign = 1 | 
|  | else: | 
|  | self._sign = 0 | 
|  | intpart = m.group('int') | 
|  | if intpart is not None: | 
|  | # finite number | 
|  | fracpart = m.group('frac') or '' | 
|  | exp = int(m.group('exp') or '0') | 
|  | self._int = str(int(intpart+fracpart)) | 
|  | self._exp = exp - len(fracpart) | 
|  | self._is_special = False | 
|  | else: | 
|  | diag = m.group('diag') | 
|  | if diag is not None: | 
|  | # NaN | 
|  | self._int = str(int(diag or '0')).lstrip('0') | 
|  | if m.group('signal'): | 
|  | self._exp = 'N' | 
|  | else: | 
|  | self._exp = 'n' | 
|  | else: | 
|  | # infinity | 
|  | self._int = '0' | 
|  | self._exp = 'F' | 
|  | self._is_special = True | 
|  | return self | 
|  |  | 
|  | # From an integer | 
|  | if isinstance(value, int): | 
|  | if value >= 0: | 
|  | self._sign = 0 | 
|  | else: | 
|  | self._sign = 1 | 
|  | self._exp = 0 | 
|  | self._int = str(abs(value)) | 
|  | self._is_special = False | 
|  | return self | 
|  |  | 
|  | # From another decimal | 
|  | if isinstance(value, Decimal): | 
|  | self._exp  = value._exp | 
|  | self._sign = value._sign | 
|  | self._int  = value._int | 
|  | self._is_special  = value._is_special | 
|  | return self | 
|  |  | 
|  | # From an internal working value | 
|  | if isinstance(value, _WorkRep): | 
|  | self._sign = value.sign | 
|  | self._int = str(value.int) | 
|  | self._exp = int(value.exp) | 
|  | self._is_special = False | 
|  | return self | 
|  |  | 
|  | # tuple/list conversion (possibly from as_tuple()) | 
|  | if isinstance(value, (list,tuple)): | 
|  | if len(value) != 3: | 
|  | raise ValueError('Invalid tuple size in creation of Decimal ' | 
|  | 'from list or tuple.  The list or tuple ' | 
|  | 'should have exactly three elements.') | 
|  | # process sign.  The isinstance test rejects floats | 
|  | if not (isinstance(value[0], int) and value[0] in (0,1)): | 
|  | raise ValueError("Invalid sign.  The first value in the tuple " | 
|  | "should be an integer; either 0 for a " | 
|  | "positive number or 1 for a negative number.") | 
|  | self._sign = value[0] | 
|  | if value[2] == 'F': | 
|  | # infinity: value[1] is ignored | 
|  | self._int = '0' | 
|  | self._exp = value[2] | 
|  | self._is_special = True | 
|  | else: | 
|  | # process and validate the digits in value[1] | 
|  | digits = [] | 
|  | for digit in value[1]: | 
|  | if isinstance(digit, int) and 0 <= digit <= 9: | 
|  | # skip leading zeros | 
|  | if digits or digit != 0: | 
|  | digits.append(digit) | 
|  | else: | 
|  | raise ValueError("The second value in the tuple must " | 
|  | "be composed of integers in the range " | 
|  | "0 through 9.") | 
|  | if value[2] in ('n', 'N'): | 
|  | # NaN: digits form the diagnostic | 
|  | self._int = ''.join(map(str, digits)) | 
|  | self._exp = value[2] | 
|  | self._is_special = True | 
|  | elif isinstance(value[2], int): | 
|  | # finite number: digits give the coefficient | 
|  | self._int = ''.join(map(str, digits or [0])) | 
|  | self._exp = value[2] | 
|  | self._is_special = False | 
|  | else: | 
|  | raise ValueError("The third value in the tuple must " | 
|  | "be an integer, or one of the " | 
|  | "strings 'F', 'n', 'N'.") | 
|  | return self | 
|  |  | 
|  | if isinstance(value, float): | 
|  | if context is None: | 
|  | context = getcontext() | 
|  | context._raise_error(FloatOperation, | 
|  | "strict semantics for mixing floats and Decimals are " | 
|  | "enabled") | 
|  | value = Decimal.from_float(value) | 
|  | self._exp  = value._exp | 
|  | self._sign = value._sign | 
|  | self._int  = value._int | 
|  | self._is_special  = value._is_special | 
|  | return self | 
|  |  | 
|  | raise TypeError("Cannot convert %r to Decimal" % value) | 
|  |  | 
|  | @classmethod | 
|  | def from_float(cls, f): | 
|  | """Converts a float to a decimal number, exactly. | 
|  |  | 
|  | Note that Decimal.from_float(0.1) is not the same as Decimal('0.1'). | 
|  | Since 0.1 is not exactly representable in binary floating point, the | 
|  | value is stored as the nearest representable value which is | 
|  | 0x1.999999999999ap-4.  The exact equivalent of the value in decimal | 
|  | is 0.1000000000000000055511151231257827021181583404541015625. | 
|  |  | 
|  | >>> Decimal.from_float(0.1) | 
|  | Decimal('0.1000000000000000055511151231257827021181583404541015625') | 
|  | >>> Decimal.from_float(float('nan')) | 
|  | Decimal('NaN') | 
|  | >>> Decimal.from_float(float('inf')) | 
|  | Decimal('Infinity') | 
|  | >>> Decimal.from_float(-float('inf')) | 
|  | Decimal('-Infinity') | 
|  | >>> Decimal.from_float(-0.0) | 
|  | Decimal('-0') | 
|  |  | 
|  | """ | 
|  | if isinstance(f, int):                # handle integer inputs | 
|  | sign = 0 if f >= 0 else 1 | 
|  | k = 0 | 
|  | coeff = str(abs(f)) | 
|  | elif isinstance(f, float): | 
|  | if _math.isinf(f) or _math.isnan(f): | 
|  | return cls(repr(f)) | 
|  | if _math.copysign(1.0, f) == 1.0: | 
|  | sign = 0 | 
|  | else: | 
|  | sign = 1 | 
|  | n, d = abs(f).as_integer_ratio() | 
|  | k = d.bit_length() - 1 | 
|  | coeff = str(n*5**k) | 
|  | else: | 
|  | raise TypeError("argument must be int or float.") | 
|  |  | 
|  | result = _dec_from_triple(sign, coeff, -k) | 
|  | if cls is Decimal: | 
|  | return result | 
|  | else: | 
|  | return cls(result) | 
|  |  | 
|  | def _isnan(self): | 
|  | """Returns whether the number is not actually one. | 
|  |  | 
|  | 0 if a number | 
|  | 1 if NaN | 
|  | 2 if sNaN | 
|  | """ | 
|  | if self._is_special: | 
|  | exp = self._exp | 
|  | if exp == 'n': | 
|  | return 1 | 
|  | elif exp == 'N': | 
|  | return 2 | 
|  | return 0 | 
|  |  | 
|  | def _isinfinity(self): | 
|  | """Returns whether the number is infinite | 
|  |  | 
|  | 0 if finite or not a number | 
|  | 1 if +INF | 
|  | -1 if -INF | 
|  | """ | 
|  | if self._exp == 'F': | 
|  | if self._sign: | 
|  | return -1 | 
|  | return 1 | 
|  | return 0 | 
|  |  | 
|  | def _check_nans(self, other=None, context=None): | 
|  | """Returns whether the number is not actually one. | 
|  |  | 
|  | if self, other are sNaN, signal | 
|  | if self, other are NaN return nan | 
|  | return 0 | 
|  |  | 
|  | Done before operations. | 
|  | """ | 
|  |  | 
|  | self_is_nan = self._isnan() | 
|  | if other is None: | 
|  | other_is_nan = False | 
|  | else: | 
|  | other_is_nan = other._isnan() | 
|  |  | 
|  | if self_is_nan or other_is_nan: | 
|  | if context is None: | 
|  | context = getcontext() | 
|  |  | 
|  | if self_is_nan == 2: | 
|  | return context._raise_error(InvalidOperation, 'sNaN', | 
|  | self) | 
|  | if other_is_nan == 2: | 
|  | return context._raise_error(InvalidOperation, 'sNaN', | 
|  | other) | 
|  | if self_is_nan: | 
|  | return self._fix_nan(context) | 
|  |  | 
|  | return other._fix_nan(context) | 
|  | return 0 | 
|  |  | 
|  | def _compare_check_nans(self, other, context): | 
|  | """Version of _check_nans used for the signaling comparisons | 
|  | compare_signal, __le__, __lt__, __ge__, __gt__. | 
|  |  | 
|  | Signal InvalidOperation if either self or other is a (quiet | 
|  | or signaling) NaN.  Signaling NaNs take precedence over quiet | 
|  | NaNs. | 
|  |  | 
|  | Return 0 if neither operand is a NaN. | 
|  |  | 
|  | """ | 
|  | if context is None: | 
|  | context = getcontext() | 
|  |  | 
|  | if self._is_special or other._is_special: | 
|  | if self.is_snan(): | 
|  | return context._raise_error(InvalidOperation, | 
|  | 'comparison involving sNaN', | 
|  | self) | 
|  | elif other.is_snan(): | 
|  | return context._raise_error(InvalidOperation, | 
|  | 'comparison involving sNaN', | 
|  | other) | 
|  | elif self.is_qnan(): | 
|  | return context._raise_error(InvalidOperation, | 
|  | 'comparison involving NaN', | 
|  | self) | 
|  | elif other.is_qnan(): | 
|  | return context._raise_error(InvalidOperation, | 
|  | 'comparison involving NaN', | 
|  | other) | 
|  | return 0 | 
|  |  | 
|  | def __bool__(self): | 
|  | """Return True if self is nonzero; otherwise return False. | 
|  |  | 
|  | NaNs and infinities are considered nonzero. | 
|  | """ | 
|  | return self._is_special or self._int != '0' | 
|  |  | 
|  | def _cmp(self, other): | 
|  | """Compare the two non-NaN decimal instances self and other. | 
|  |  | 
|  | Returns -1 if self < other, 0 if self == other and 1 | 
|  | if self > other.  This routine is for internal use only.""" | 
|  |  | 
|  | if self._is_special or other._is_special: | 
|  | self_inf = self._isinfinity() | 
|  | other_inf = other._isinfinity() | 
|  | if self_inf == other_inf: | 
|  | return 0 | 
|  | elif self_inf < other_inf: | 
|  | return -1 | 
|  | else: | 
|  | return 1 | 
|  |  | 
|  | # check for zeros;  Decimal('0') == Decimal('-0') | 
|  | if not self: | 
|  | if not other: | 
|  | return 0 | 
|  | else: | 
|  | return -((-1)**other._sign) | 
|  | if not other: | 
|  | return (-1)**self._sign | 
|  |  | 
|  | # If different signs, neg one is less | 
|  | if other._sign < self._sign: | 
|  | return -1 | 
|  | if self._sign < other._sign: | 
|  | return 1 | 
|  |  | 
|  | self_adjusted = self.adjusted() | 
|  | other_adjusted = other.adjusted() | 
|  | if self_adjusted == other_adjusted: | 
|  | self_padded = self._int + '0'*(self._exp - other._exp) | 
|  | other_padded = other._int + '0'*(other._exp - self._exp) | 
|  | if self_padded == other_padded: | 
|  | return 0 | 
|  | elif self_padded < other_padded: | 
|  | return -(-1)**self._sign | 
|  | else: | 
|  | return (-1)**self._sign | 
|  | elif self_adjusted > other_adjusted: | 
|  | return (-1)**self._sign | 
|  | else: # self_adjusted < other_adjusted | 
|  | return -((-1)**self._sign) | 
|  |  | 
|  | # Note: The Decimal standard doesn't cover rich comparisons for | 
|  | # Decimals.  In particular, the specification is silent on the | 
|  | # subject of what should happen for a comparison involving a NaN. | 
|  | # We take the following approach: | 
|  | # | 
|  | #   == comparisons involving a quiet NaN always return False | 
|  | #   != comparisons involving a quiet NaN always return True | 
|  | #   == or != comparisons involving a signaling NaN signal | 
|  | #      InvalidOperation, and return False or True as above if the | 
|  | #      InvalidOperation is not trapped. | 
|  | #   <, >, <= and >= comparisons involving a (quiet or signaling) | 
|  | #      NaN signal InvalidOperation, and return False if the | 
|  | #      InvalidOperation is not trapped. | 
|  | # | 
|  | # This behavior is designed to conform as closely as possible to | 
|  | # that specified by IEEE 754. | 
|  |  | 
|  | def __eq__(self, other, context=None): | 
|  | self, other = _convert_for_comparison(self, other, equality_op=True) | 
|  | if other is NotImplemented: | 
|  | return other | 
|  | if self._check_nans(other, context): | 
|  | return False | 
|  | return self._cmp(other) == 0 | 
|  |  | 
|  | def __lt__(self, other, context=None): | 
|  | self, other = _convert_for_comparison(self, other) | 
|  | if other is NotImplemented: | 
|  | return other | 
|  | ans = self._compare_check_nans(other, context) | 
|  | if ans: | 
|  | return False | 
|  | return self._cmp(other) < 0 | 
|  |  | 
|  | def __le__(self, other, context=None): | 
|  | self, other = _convert_for_comparison(self, other) | 
|  | if other is NotImplemented: | 
|  | return other | 
|  | ans = self._compare_check_nans(other, context) | 
|  | if ans: | 
|  | return False | 
|  | return self._cmp(other) <= 0 | 
|  |  | 
|  | def __gt__(self, other, context=None): | 
|  | self, other = _convert_for_comparison(self, other) | 
|  | if other is NotImplemented: | 
|  | return other | 
|  | ans = self._compare_check_nans(other, context) | 
|  | if ans: | 
|  | return False | 
|  | return self._cmp(other) > 0 | 
|  |  | 
|  | def __ge__(self, other, context=None): | 
|  | self, other = _convert_for_comparison(self, other) | 
|  | if other is NotImplemented: | 
|  | return other | 
|  | ans = self._compare_check_nans(other, context) | 
|  | if ans: | 
|  | return False | 
|  | return self._cmp(other) >= 0 | 
|  |  | 
|  | def compare(self, other, context=None): | 
|  | """Compare self to other.  Return a decimal value: | 
|  |  | 
|  | a or b is a NaN ==> Decimal('NaN') | 
|  | a < b           ==> Decimal('-1') | 
|  | a == b          ==> Decimal('0') | 
|  | a > b           ==> Decimal('1') | 
|  | """ | 
|  | other = _convert_other(other, raiseit=True) | 
|  |  | 
|  | # Compare(NaN, NaN) = NaN | 
|  | if (self._is_special or other and other._is_special): | 
|  | ans = self._check_nans(other, context) | 
|  | if ans: | 
|  | return ans | 
|  |  | 
|  | return Decimal(self._cmp(other)) | 
|  |  | 
|  | def __hash__(self): | 
|  | """x.__hash__() <==> hash(x)""" | 
|  |  | 
|  | # In order to make sure that the hash of a Decimal instance | 
|  | # agrees with the hash of a numerically equal integer, float | 
|  | # or Fraction, we follow the rules for numeric hashes outlined | 
|  | # in the documentation.  (See library docs, 'Built-in Types'). | 
|  | if self._is_special: | 
|  | if self.is_snan(): | 
|  | raise TypeError('Cannot hash a signaling NaN value.') | 
|  | elif self.is_nan(): | 
|  | return _PyHASH_NAN | 
|  | else: | 
|  | if self._sign: | 
|  | return -_PyHASH_INF | 
|  | else: | 
|  | return _PyHASH_INF | 
|  |  | 
|  | if self._exp >= 0: | 
|  | exp_hash = pow(10, self._exp, _PyHASH_MODULUS) | 
|  | else: | 
|  | exp_hash = pow(_PyHASH_10INV, -self._exp, _PyHASH_MODULUS) | 
|  | hash_ = int(self._int) * exp_hash % _PyHASH_MODULUS | 
|  | ans = hash_ if self >= 0 else -hash_ | 
|  | return -2 if ans == -1 else ans | 
|  |  | 
|  | def as_tuple(self): | 
|  | """Represents the number as a triple tuple. | 
|  |  | 
|  | To show the internals exactly as they are. | 
|  | """ | 
|  | return DecimalTuple(self._sign, tuple(map(int, self._int)), self._exp) | 
|  |  | 
|  | def as_integer_ratio(self): | 
|  | """Express a finite Decimal instance in the form n / d. | 
|  |  | 
|  | Returns a pair (n, d) of integers.  When called on an infinity | 
|  | or NaN, raises OverflowError or ValueError respectively. | 
|  |  | 
|  | >>> Decimal('3.14').as_integer_ratio() | 
|  | (157, 50) | 
|  | >>> Decimal('-123e5').as_integer_ratio() | 
|  | (-12300000, 1) | 
|  | >>> Decimal('0.00').as_integer_ratio() | 
|  | (0, 1) | 
|  |  | 
|  | """ | 
|  | if self._is_special: | 
|  | if self.is_nan(): | 
|  | raise ValueError("cannot convert NaN to integer ratio") | 
|  | else: | 
|  | raise OverflowError("cannot convert Infinity to integer ratio") | 
|  |  | 
|  | if not self: | 
|  | return 0, 1 | 
|  |  | 
|  | # Find n, d in lowest terms such that abs(self) == n / d; | 
|  | # we'll deal with the sign later. | 
|  | n = int(self._int) | 
|  | if self._exp >= 0: | 
|  | # self is an integer. | 
|  | n, d = n * 10**self._exp, 1 | 
|  | else: | 
|  | # Find d2, d5 such that abs(self) = n / (2**d2 * 5**d5). | 
|  | d5 = -self._exp | 
|  | while d5 > 0 and n % 5 == 0: | 
|  | n //= 5 | 
|  | d5 -= 1 | 
|  |  | 
|  | # (n & -n).bit_length() - 1 counts trailing zeros in binary | 
|  | # representation of n (provided n is nonzero). | 
|  | d2 = -self._exp | 
|  | shift2 = min((n & -n).bit_length() - 1, d2) | 
|  | if shift2: | 
|  | n >>= shift2 | 
|  | d2 -= shift2 | 
|  |  | 
|  | d = 5**d5 << d2 | 
|  |  | 
|  | if self._sign: | 
|  | n = -n | 
|  | return n, d | 
|  |  | 
|  | def __repr__(self): | 
|  | """Represents the number as an instance of Decimal.""" | 
|  | # Invariant:  eval(repr(d)) == d | 
|  | return "Decimal('%s')" % str(self) | 
|  |  | 
|  | def __str__(self, eng=False, context=None): | 
|  | """Return string representation of the number in scientific notation. | 
|  |  | 
|  | Captures all of the information in the underlying representation. | 
|  | """ | 
|  |  | 
|  | sign = ['', '-'][self._sign] | 
|  | if self._is_special: | 
|  | if self._exp == 'F': | 
|  | return sign + 'Infinity' | 
|  | elif self._exp == 'n': | 
|  | return sign + 'NaN' + self._int | 
|  | else: # self._exp == 'N' | 
|  | return sign + 'sNaN' + self._int | 
|  |  | 
|  | # number of digits of self._int to left of decimal point | 
|  | leftdigits = self._exp + len(self._int) | 
|  |  | 
|  | # dotplace is number of digits of self._int to the left of the | 
|  | # decimal point in the mantissa of the output string (that is, | 
|  | # after adjusting the exponent) | 
|  | if self._exp <= 0 and leftdigits > -6: | 
|  | # no exponent required | 
|  | dotplace = leftdigits | 
|  | elif not eng: | 
|  | # usual scientific notation: 1 digit on left of the point | 
|  | dotplace = 1 | 
|  | elif self._int == '0': | 
|  | # engineering notation, zero | 
|  | dotplace = (leftdigits + 1) % 3 - 1 | 
|  | else: | 
|  | # engineering notation, nonzero | 
|  | dotplace = (leftdigits - 1) % 3 + 1 | 
|  |  | 
|  | if dotplace <= 0: | 
|  | intpart = '0' | 
|  | fracpart = '.' + '0'*(-dotplace) + self._int | 
|  | elif dotplace >= len(self._int): | 
|  | intpart = self._int+'0'*(dotplace-len(self._int)) | 
|  | fracpart = '' | 
|  | else: | 
|  | intpart = self._int[:dotplace] | 
|  | fracpart = '.' + self._int[dotplace:] | 
|  | if leftdigits == dotplace: | 
|  | exp = '' | 
|  | else: | 
|  | if context is None: | 
|  | context = getcontext() | 
|  | exp = ['e', 'E'][context.capitals] + "%+d" % (leftdigits-dotplace) | 
|  |  | 
|  | return sign + intpart + fracpart + exp | 
|  |  | 
|  | def to_eng_string(self, context=None): | 
|  | """Convert to a string, using engineering notation if an exponent is needed. | 
|  |  | 
|  | Engineering notation has an exponent which is a multiple of 3.  This | 
|  | can leave up to 3 digits to the left of the decimal place and may | 
|  | require the addition of either one or two trailing zeros. | 
|  | """ | 
|  | return self.__str__(eng=True, context=context) | 
|  |  | 
|  | def __neg__(self, context=None): | 
|  | """Returns a copy with the sign switched. | 
|  |  | 
|  | Rounds, if it has reason. | 
|  | """ | 
|  | if self._is_special: | 
|  | ans = self._check_nans(context=context) | 
|  | if ans: | 
|  | return ans | 
|  |  | 
|  | if context is None: | 
|  | context = getcontext() | 
|  |  | 
|  | if not self and context.rounding != ROUND_FLOOR: | 
|  | # -Decimal('0') is Decimal('0'), not Decimal('-0'), except | 
|  | # in ROUND_FLOOR rounding mode. | 
|  | ans = self.copy_abs() | 
|  | else: | 
|  | ans = self.copy_negate() | 
|  |  | 
|  | return ans._fix(context) | 
|  |  | 
|  | def __pos__(self, context=None): | 
|  | """Returns a copy, unless it is a sNaN. | 
|  |  | 
|  | Rounds the number (if more than precision digits) | 
|  | """ | 
|  | if self._is_special: | 
|  | ans = self._check_nans(context=context) | 
|  | if ans: | 
|  | return ans | 
|  |  | 
|  | if context is None: | 
|  | context = getcontext() | 
|  |  | 
|  | if not self and context.rounding != ROUND_FLOOR: | 
|  | # + (-0) = 0, except in ROUND_FLOOR rounding mode. | 
|  | ans = self.copy_abs() | 
|  | else: | 
|  | ans = Decimal(self) | 
|  |  | 
|  | return ans._fix(context) | 
|  |  | 
|  | def __abs__(self, round=True, context=None): | 
|  | """Returns the absolute value of self. | 
|  |  | 
|  | If the keyword argument 'round' is false, do not round.  The | 
|  | expression self.__abs__(round=False) is equivalent to | 
|  | self.copy_abs(). | 
|  | """ | 
|  | if not round: | 
|  | return self.copy_abs() | 
|  |  | 
|  | if self._is_special: | 
|  | ans = self._check_nans(context=context) | 
|  | if ans: | 
|  | return ans | 
|  |  | 
|  | if self._sign: | 
|  | ans = self.__neg__(context=context) | 
|  | else: | 
|  | ans = self.__pos__(context=context) | 
|  |  | 
|  | return ans | 
|  |  | 
|  | def __add__(self, other, context=None): | 
|  | """Returns self + other. | 
|  |  | 
|  | -INF + INF (or the reverse) cause InvalidOperation errors. | 
|  | """ | 
|  | other = _convert_other(other) | 
|  | if other is NotImplemented: | 
|  | return other | 
|  |  | 
|  | if context is None: | 
|  | context = getcontext() | 
|  |  | 
|  | if self._is_special or other._is_special: | 
|  | ans = self._check_nans(other, context) | 
|  | if ans: | 
|  | return ans | 
|  |  | 
|  | if self._isinfinity(): | 
|  | # If both INF, same sign => same as both, opposite => error. | 
|  | if self._sign != other._sign and other._isinfinity(): | 
|  | return context._raise_error(InvalidOperation, '-INF + INF') | 
|  | return Decimal(self) | 
|  | if other._isinfinity(): | 
|  | return Decimal(other)  # Can't both be infinity here | 
|  |  | 
|  | exp = min(self._exp, other._exp) | 
|  | negativezero = 0 | 
|  | if context.rounding == ROUND_FLOOR and self._sign != other._sign: | 
|  | # If the answer is 0, the sign should be negative, in this case. | 
|  | negativezero = 1 | 
|  |  | 
|  | if not self and not other: | 
|  | sign = min(self._sign, other._sign) | 
|  | if negativezero: | 
|  | sign = 1 | 
|  | ans = _dec_from_triple(sign, '0', exp) | 
|  | ans = ans._fix(context) | 
|  | return ans | 
|  | if not self: | 
|  | exp = max(exp, other._exp - context.prec-1) | 
|  | ans = other._rescale(exp, context.rounding) | 
|  | ans = ans._fix(context) | 
|  | return ans | 
|  | if not other: | 
|  | exp = max(exp, self._exp - context.prec-1) | 
|  | ans = self._rescale(exp, context.rounding) | 
|  | ans = ans._fix(context) | 
|  | return ans | 
|  |  | 
|  | op1 = _WorkRep(self) | 
|  | op2 = _WorkRep(other) | 
|  | op1, op2 = _normalize(op1, op2, context.prec) | 
|  |  | 
|  | result = _WorkRep() | 
|  | if op1.sign != op2.sign: | 
|  | # Equal and opposite | 
|  | if op1.int == op2.int: | 
|  | ans = _dec_from_triple(negativezero, '0', exp) | 
|  | ans = ans._fix(context) | 
|  | return ans | 
|  | if op1.int < op2.int: | 
|  | op1, op2 = op2, op1 | 
|  | # OK, now abs(op1) > abs(op2) | 
|  | if op1.sign == 1: | 
|  | result.sign = 1 | 
|  | op1.sign, op2.sign = op2.sign, op1.sign | 
|  | else: | 
|  | result.sign = 0 | 
|  | # So we know the sign, and op1 > 0. | 
|  | elif op1.sign == 1: | 
|  | result.sign = 1 | 
|  | op1.sign, op2.sign = (0, 0) | 
|  | else: | 
|  | result.sign = 0 | 
|  | # Now, op1 > abs(op2) > 0 | 
|  |  | 
|  | if op2.sign == 0: | 
|  | result.int = op1.int + op2.int | 
|  | else: | 
|  | result.int = op1.int - op2.int | 
|  |  | 
|  | result.exp = op1.exp | 
|  | ans = Decimal(result) | 
|  | ans = ans._fix(context) | 
|  | return ans | 
|  |  | 
|  | __radd__ = __add__ | 
|  |  | 
|  | def __sub__(self, other, context=None): | 
|  | """Return self - other""" | 
|  | other = _convert_other(other) | 
|  | if other is NotImplemented: | 
|  | return other | 
|  |  | 
|  | if self._is_special or other._is_special: | 
|  | ans = self._check_nans(other, context=context) | 
|  | if ans: | 
|  | return ans | 
|  |  | 
|  | # self - other is computed as self + other.copy_negate() | 
|  | return self.__add__(other.copy_negate(), context=context) | 
|  |  | 
|  | def __rsub__(self, other, context=None): | 
|  | """Return other - self""" | 
|  | other = _convert_other(other) | 
|  | if other is NotImplemented: | 
|  | return other | 
|  |  | 
|  | return other.__sub__(self, context=context) | 
|  |  | 
|  | def __mul__(self, other, context=None): | 
|  | """Return self * other. | 
|  |  | 
|  | (+-) INF * 0 (or its reverse) raise InvalidOperation. | 
|  | """ | 
|  | other = _convert_other(other) | 
|  | if other is NotImplemented: | 
|  | return other | 
|  |  | 
|  | if context is None: | 
|  | context = getcontext() | 
|  |  | 
|  | resultsign = self._sign ^ other._sign | 
|  |  | 
|  | if self._is_special or other._is_special: | 
|  | ans = self._check_nans(other, context) | 
|  | if ans: | 
|  | return ans | 
|  |  | 
|  | if self._isinfinity(): | 
|  | if not other: | 
|  | return context._raise_error(InvalidOperation, '(+-)INF * 0') | 
|  | return _SignedInfinity[resultsign] | 
|  |  | 
|  | if other._isinfinity(): | 
|  | if not self: | 
|  | return context._raise_error(InvalidOperation, '0 * (+-)INF') | 
|  | return _SignedInfinity[resultsign] | 
|  |  | 
|  | resultexp = self._exp + other._exp | 
|  |  | 
|  | # Special case for multiplying by zero | 
|  | if not self or not other: | 
|  | ans = _dec_from_triple(resultsign, '0', resultexp) | 
|  | # Fixing in case the exponent is out of bounds | 
|  | ans = ans._fix(context) | 
|  | return ans | 
|  |  | 
|  | # Special case for multiplying by power of 10 | 
|  | if self._int == '1': | 
|  | ans = _dec_from_triple(resultsign, other._int, resultexp) | 
|  | ans = ans._fix(context) | 
|  | return ans | 
|  | if other._int == '1': | 
|  | ans = _dec_from_triple(resultsign, self._int, resultexp) | 
|  | ans = ans._fix(context) | 
|  | return ans | 
|  |  | 
|  | op1 = _WorkRep(self) | 
|  | op2 = _WorkRep(other) | 
|  |  | 
|  | ans = _dec_from_triple(resultsign, str(op1.int * op2.int), resultexp) | 
|  | ans = ans._fix(context) | 
|  |  | 
|  | return ans | 
|  | __rmul__ = __mul__ | 
|  |  | 
|  | def __truediv__(self, other, context=None): | 
|  | """Return self / other.""" | 
|  | other = _convert_other(other) | 
|  | if other is NotImplemented: | 
|  | return NotImplemented | 
|  |  | 
|  | if context is None: | 
|  | context = getcontext() | 
|  |  | 
|  | sign = self._sign ^ other._sign | 
|  |  | 
|  | if self._is_special or other._is_special: | 
|  | ans = self._check_nans(other, context) | 
|  | if ans: | 
|  | return ans | 
|  |  | 
|  | if self._isinfinity() and other._isinfinity(): | 
|  | return context._raise_error(InvalidOperation, '(+-)INF/(+-)INF') | 
|  |  | 
|  | if self._isinfinity(): | 
|  | return _SignedInfinity[sign] | 
|  |  | 
|  | if other._isinfinity(): | 
|  | context._raise_error(Clamped, 'Division by infinity') | 
|  | return _dec_from_triple(sign, '0', context.Etiny()) | 
|  |  | 
|  | # Special cases for zeroes | 
|  | if not other: | 
|  | if not self: | 
|  | return context._raise_error(DivisionUndefined, '0 / 0') | 
|  | return context._raise_error(DivisionByZero, 'x / 0', sign) | 
|  |  | 
|  | if not self: | 
|  | exp = self._exp - other._exp | 
|  | coeff = 0 | 
|  | else: | 
|  | # OK, so neither = 0, INF or NaN | 
|  | shift = len(other._int) - len(self._int) + context.prec + 1 | 
|  | exp = self._exp - other._exp - shift | 
|  | op1 = _WorkRep(self) | 
|  | op2 = _WorkRep(other) | 
|  | if shift >= 0: | 
|  | coeff, remainder = divmod(op1.int * 10**shift, op2.int) | 
|  | else: | 
|  | coeff, remainder = divmod(op1.int, op2.int * 10**-shift) | 
|  | if remainder: | 
|  | # result is not exact; adjust to ensure correct rounding | 
|  | if coeff % 5 == 0: | 
|  | coeff += 1 | 
|  | else: | 
|  | # result is exact; get as close to ideal exponent as possible | 
|  | ideal_exp = self._exp - other._exp | 
|  | while exp < ideal_exp and coeff % 10 == 0: | 
|  | coeff //= 10 | 
|  | exp += 1 | 
|  |  | 
|  | ans = _dec_from_triple(sign, str(coeff), exp) | 
|  | return ans._fix(context) | 
|  |  | 
|  | def _divide(self, other, context): | 
|  | """Return (self // other, self % other), to context.prec precision. | 
|  |  | 
|  | Assumes that neither self nor other is a NaN, that self is not | 
|  | infinite and that other is nonzero. | 
|  | """ | 
|  | sign = self._sign ^ other._sign | 
|  | if other._isinfinity(): | 
|  | ideal_exp = self._exp | 
|  | else: | 
|  | ideal_exp = min(self._exp, other._exp) | 
|  |  | 
|  | expdiff = self.adjusted() - other.adjusted() | 
|  | if not self or other._isinfinity() or expdiff <= -2: | 
|  | return (_dec_from_triple(sign, '0', 0), | 
|  | self._rescale(ideal_exp, context.rounding)) | 
|  | if expdiff <= context.prec: | 
|  | op1 = _WorkRep(self) | 
|  | op2 = _WorkRep(other) | 
|  | if op1.exp >= op2.exp: | 
|  | op1.int *= 10**(op1.exp - op2.exp) | 
|  | else: | 
|  | op2.int *= 10**(op2.exp - op1.exp) | 
|  | q, r = divmod(op1.int, op2.int) | 
|  | if q < 10**context.prec: | 
|  | return (_dec_from_triple(sign, str(q), 0), | 
|  | _dec_from_triple(self._sign, str(r), ideal_exp)) | 
|  |  | 
|  | # Here the quotient is too large to be representable | 
|  | ans = context._raise_error(DivisionImpossible, | 
|  | 'quotient too large in //, % or divmod') | 
|  | return ans, ans | 
|  |  | 
|  | def __rtruediv__(self, other, context=None): | 
|  | """Swaps self/other and returns __truediv__.""" | 
|  | other = _convert_other(other) | 
|  | if other is NotImplemented: | 
|  | return other | 
|  | return other.__truediv__(self, context=context) | 
|  |  | 
|  | def __divmod__(self, other, context=None): | 
|  | """ | 
|  | Return (self // other, self % other) | 
|  | """ | 
|  | other = _convert_other(other) | 
|  | if other is NotImplemented: | 
|  | return other | 
|  |  | 
|  | if context is None: | 
|  | context = getcontext() | 
|  |  | 
|  | ans = self._check_nans(other, context) | 
|  | if ans: | 
|  | return (ans, ans) | 
|  |  | 
|  | sign = self._sign ^ other._sign | 
|  | if self._isinfinity(): | 
|  | if other._isinfinity(): | 
|  | ans = context._raise_error(InvalidOperation, 'divmod(INF, INF)') | 
|  | return ans, ans | 
|  | else: | 
|  | return (_SignedInfinity[sign], | 
|  | context._raise_error(InvalidOperation, 'INF % x')) | 
|  |  | 
|  | if not other: | 
|  | if not self: | 
|  | ans = context._raise_error(DivisionUndefined, 'divmod(0, 0)') | 
|  | return ans, ans | 
|  | else: | 
|  | return (context._raise_error(DivisionByZero, 'x // 0', sign), | 
|  | context._raise_error(InvalidOperation, 'x % 0')) | 
|  |  | 
|  | quotient, remainder = self._divide(other, context) | 
|  | remainder = remainder._fix(context) | 
|  | return quotient, remainder | 
|  |  | 
|  | def __rdivmod__(self, other, context=None): | 
|  | """Swaps self/other and returns __divmod__.""" | 
|  | other = _convert_other(other) | 
|  | if other is NotImplemented: | 
|  | return other | 
|  | return other.__divmod__(self, context=context) | 
|  |  | 
|  | def __mod__(self, other, context=None): | 
|  | """ | 
|  | self % other | 
|  | """ | 
|  | other = _convert_other(other) | 
|  | if other is NotImplemented: | 
|  | return other | 
|  |  | 
|  | if context is None: | 
|  | context = getcontext() | 
|  |  | 
|  | ans = self._check_nans(other, context) | 
|  | if ans: | 
|  | return ans | 
|  |  | 
|  | if self._isinfinity(): | 
|  | return context._raise_error(InvalidOperation, 'INF % x') | 
|  | elif not other: | 
|  | if self: | 
|  | return context._raise_error(InvalidOperation, 'x % 0') | 
|  | else: | 
|  | return context._raise_error(DivisionUndefined, '0 % 0') | 
|  |  | 
|  | remainder = self._divide(other, context)[1] | 
|  | remainder = remainder._fix(context) | 
|  | return remainder | 
|  |  | 
|  | def __rmod__(self, other, context=None): | 
|  | """Swaps self/other and returns __mod__.""" | 
|  | other = _convert_other(other) | 
|  | if other is NotImplemented: | 
|  | return other | 
|  | return other.__mod__(self, context=context) | 
|  |  | 
|  | def remainder_near(self, other, context=None): | 
|  | """ | 
|  | Remainder nearest to 0-  abs(remainder-near) <= other/2 | 
|  | """ | 
|  | if context is None: | 
|  | context = getcontext() | 
|  |  | 
|  | other = _convert_other(other, raiseit=True) | 
|  |  | 
|  | ans = self._check_nans(other, context) | 
|  | if ans: | 
|  | return ans | 
|  |  | 
|  | # self == +/-infinity -> InvalidOperation | 
|  | if self._isinfinity(): | 
|  | return context._raise_error(InvalidOperation, | 
|  | 'remainder_near(infinity, x)') | 
|  |  | 
|  | # other == 0 -> either InvalidOperation or DivisionUndefined | 
|  | if not other: | 
|  | if self: | 
|  | return context._raise_error(InvalidOperation, | 
|  | 'remainder_near(x, 0)') | 
|  | else: | 
|  | return context._raise_error(DivisionUndefined, | 
|  | 'remainder_near(0, 0)') | 
|  |  | 
|  | # other = +/-infinity -> remainder = self | 
|  | if other._isinfinity(): | 
|  | ans = Decimal(self) | 
|  | return ans._fix(context) | 
|  |  | 
|  | # self = 0 -> remainder = self, with ideal exponent | 
|  | ideal_exponent = min(self._exp, other._exp) | 
|  | if not self: | 
|  | ans = _dec_from_triple(self._sign, '0', ideal_exponent) | 
|  | return ans._fix(context) | 
|  |  | 
|  | # catch most cases of large or small quotient | 
|  | expdiff = self.adjusted() - other.adjusted() | 
|  | if expdiff >= context.prec + 1: | 
|  | # expdiff >= prec+1 => abs(self/other) > 10**prec | 
|  | return context._raise_error(DivisionImpossible) | 
|  | if expdiff <= -2: | 
|  | # expdiff <= -2 => abs(self/other) < 0.1 | 
|  | ans = self._rescale(ideal_exponent, context.rounding) | 
|  | return ans._fix(context) | 
|  |  | 
|  | # adjust both arguments to have the same exponent, then divide | 
|  | op1 = _WorkRep(self) | 
|  | op2 = _WorkRep(other) | 
|  | if op1.exp >= op2.exp: | 
|  | op1.int *= 10**(op1.exp - op2.exp) | 
|  | else: | 
|  | op2.int *= 10**(op2.exp - op1.exp) | 
|  | q, r = divmod(op1.int, op2.int) | 
|  | # remainder is r*10**ideal_exponent; other is +/-op2.int * | 
|  | # 10**ideal_exponent.   Apply correction to ensure that | 
|  | # abs(remainder) <= abs(other)/2 | 
|  | if 2*r + (q&1) > op2.int: | 
|  | r -= op2.int | 
|  | q += 1 | 
|  |  | 
|  | if q >= 10**context.prec: | 
|  | return context._raise_error(DivisionImpossible) | 
|  |  | 
|  | # result has same sign as self unless r is negative | 
|  | sign = self._sign | 
|  | if r < 0: | 
|  | sign = 1-sign | 
|  | r = -r | 
|  |  | 
|  | ans = _dec_from_triple(sign, str(r), ideal_exponent) | 
|  | return ans._fix(context) | 
|  |  | 
|  | def __floordiv__(self, other, context=None): | 
|  | """self // other""" | 
|  | other = _convert_other(other) | 
|  | if other is NotImplemented: | 
|  | return other | 
|  |  | 
|  | if context is None: | 
|  | context = getcontext() | 
|  |  | 
|  | ans = self._check_nans(other, context) | 
|  | if ans: | 
|  | return ans | 
|  |  | 
|  | if self._isinfinity(): | 
|  | if other._isinfinity(): | 
|  | return context._raise_error(InvalidOperation, 'INF // INF') | 
|  | else: | 
|  | return _SignedInfinity[self._sign ^ other._sign] | 
|  |  | 
|  | if not other: | 
|  | if self: | 
|  | return context._raise_error(DivisionByZero, 'x // 0', | 
|  | self._sign ^ other._sign) | 
|  | else: | 
|  | return context._raise_error(DivisionUndefined, '0 // 0') | 
|  |  | 
|  | return self._divide(other, context)[0] | 
|  |  | 
|  | def __rfloordiv__(self, other, context=None): | 
|  | """Swaps self/other and returns __floordiv__.""" | 
|  | other = _convert_other(other) | 
|  | if other is NotImplemented: | 
|  | return other | 
|  | return other.__floordiv__(self, context=context) | 
|  |  | 
|  | def __float__(self): | 
|  | """Float representation.""" | 
|  | if self._isnan(): | 
|  | if self.is_snan(): | 
|  | raise ValueError("Cannot convert signaling NaN to float") | 
|  | s = "-nan" if self._sign else "nan" | 
|  | else: | 
|  | s = str(self) | 
|  | return float(s) | 
|  |  | 
|  | def __int__(self): | 
|  | """Converts self to an int, truncating if necessary.""" | 
|  | if self._is_special: | 
|  | if self._isnan(): | 
|  | raise ValueError("Cannot convert NaN to integer") | 
|  | elif self._isinfinity(): | 
|  | raise OverflowError("Cannot convert infinity to integer") | 
|  | s = (-1)**self._sign | 
|  | if self._exp >= 0: | 
|  | return s*int(self._int)*10**self._exp | 
|  | else: | 
|  | return s*int(self._int[:self._exp] or '0') | 
|  |  | 
|  | __trunc__ = __int__ | 
|  |  | 
|  | @property | 
|  | def real(self): | 
|  | return self | 
|  |  | 
|  | @property | 
|  | def imag(self): | 
|  | return Decimal(0) | 
|  |  | 
|  | def conjugate(self): | 
|  | return self | 
|  |  | 
|  | def __complex__(self): | 
|  | return complex(float(self)) | 
|  |  | 
|  | def _fix_nan(self, context): | 
|  | """Decapitate the payload of a NaN to fit the context""" | 
|  | payload = self._int | 
|  |  | 
|  | # maximum length of payload is precision if clamp=0, | 
|  | # precision-1 if clamp=1. | 
|  | max_payload_len = context.prec - context.clamp | 
|  | if len(payload) > max_payload_len: | 
|  | payload = payload[len(payload)-max_payload_len:].lstrip('0') | 
|  | return _dec_from_triple(self._sign, payload, self._exp, True) | 
|  | return Decimal(self) | 
|  |  | 
|  | def _fix(self, context): | 
|  | """Round if it is necessary to keep self within prec precision. | 
|  |  | 
|  | Rounds and fixes the exponent.  Does not raise on a sNaN. | 
|  |  | 
|  | Arguments: | 
|  | self - Decimal instance | 
|  | context - context used. | 
|  | """ | 
|  |  | 
|  | if self._is_special: | 
|  | if self._isnan(): | 
|  | # decapitate payload if necessary | 
|  | return self._fix_nan(context) | 
|  | else: | 
|  | # self is +/-Infinity; return unaltered | 
|  | return Decimal(self) | 
|  |  | 
|  | # if self is zero then exponent should be between Etiny and | 
|  | # Emax if clamp==0, and between Etiny and Etop if clamp==1. | 
|  | Etiny = context.Etiny() | 
|  | Etop = context.Etop() | 
|  | if not self: | 
|  | exp_max = [context.Emax, Etop][context.clamp] | 
|  | new_exp = min(max(self._exp, Etiny), exp_max) | 
|  | if new_exp != self._exp: | 
|  | context._raise_error(Clamped) | 
|  | return _dec_from_triple(self._sign, '0', new_exp) | 
|  | else: | 
|  | return Decimal(self) | 
|  |  | 
|  | # exp_min is the smallest allowable exponent of the result, | 
|  | # equal to max(self.adjusted()-context.prec+1, Etiny) | 
|  | exp_min = len(self._int) + self._exp - context.prec | 
|  | if exp_min > Etop: | 
|  | # overflow: exp_min > Etop iff self.adjusted() > Emax | 
|  | ans = context._raise_error(Overflow, 'above Emax', self._sign) | 
|  | context._raise_error(Inexact) | 
|  | context._raise_error(Rounded) | 
|  | return ans | 
|  |  | 
|  | self_is_subnormal = exp_min < Etiny | 
|  | if self_is_subnormal: | 
|  | exp_min = Etiny | 
|  |  | 
|  | # round if self has too many digits | 
|  | if self._exp < exp_min: | 
|  | digits = len(self._int) + self._exp - exp_min | 
|  | if digits < 0: | 
|  | self = _dec_from_triple(self._sign, '1', exp_min-1) | 
|  | digits = 0 | 
|  | rounding_method = self._pick_rounding_function[context.rounding] | 
|  | changed = rounding_method(self, digits) | 
|  | coeff = self._int[:digits] or '0' | 
|  | if changed > 0: | 
|  | coeff = str(int(coeff)+1) | 
|  | if len(coeff) > context.prec: | 
|  | coeff = coeff[:-1] | 
|  | exp_min += 1 | 
|  |  | 
|  | # check whether the rounding pushed the exponent out of range | 
|  | if exp_min > Etop: | 
|  | ans = context._raise_error(Overflow, 'above Emax', self._sign) | 
|  | else: | 
|  | ans = _dec_from_triple(self._sign, coeff, exp_min) | 
|  |  | 
|  | # raise the appropriate signals, taking care to respect | 
|  | # the precedence described in the specification | 
|  | if changed and self_is_subnormal: | 
|  | context._raise_error(Underflow) | 
|  | if self_is_subnormal: | 
|  | context._raise_error(Subnormal) | 
|  | if changed: | 
|  | context._raise_error(Inexact) | 
|  | context._raise_error(Rounded) | 
|  | if not ans: | 
|  | # raise Clamped on underflow to 0 | 
|  | context._raise_error(Clamped) | 
|  | return ans | 
|  |  | 
|  | if self_is_subnormal: | 
|  | context._raise_error(Subnormal) | 
|  |  | 
|  | # fold down if clamp == 1 and self has too few digits | 
|  | if context.clamp == 1 and self._exp > Etop: | 
|  | context._raise_error(Clamped) | 
|  | self_padded = self._int + '0'*(self._exp - Etop) | 
|  | return _dec_from_triple(self._sign, self_padded, Etop) | 
|  |  | 
|  | # here self was representable to begin with; return unchanged | 
|  | return Decimal(self) | 
|  |  | 
|  | # for each of the rounding functions below: | 
|  | #   self is a finite, nonzero Decimal | 
|  | #   prec is an integer satisfying 0 <= prec < len(self._int) | 
|  | # | 
|  | # each function returns either -1, 0, or 1, as follows: | 
|  | #   1 indicates that self should be rounded up (away from zero) | 
|  | #   0 indicates that self should be truncated, and that all the | 
|  | #     digits to be truncated are zeros (so the value is unchanged) | 
|  | #  -1 indicates that there are nonzero digits to be truncated | 
|  |  | 
|  | def _round_down(self, prec): | 
|  | """Also known as round-towards-0, truncate.""" | 
|  | if _all_zeros(self._int, prec): | 
|  | return 0 | 
|  | else: | 
|  | return -1 | 
|  |  | 
|  | def _round_up(self, prec): | 
|  | """Rounds away from 0.""" | 
|  | return -self._round_down(prec) | 
|  |  | 
|  | def _round_half_up(self, prec): | 
|  | """Rounds 5 up (away from 0)""" | 
|  | if self._int[prec] in '56789': | 
|  | return 1 | 
|  | elif _all_zeros(self._int, prec): | 
|  | return 0 | 
|  | else: | 
|  | return -1 | 
|  |  | 
|  | def _round_half_down(self, prec): | 
|  | """Round 5 down""" | 
|  | if _exact_half(self._int, prec): | 
|  | return -1 | 
|  | else: | 
|  | return self._round_half_up(prec) | 
|  |  | 
|  | def _round_half_even(self, prec): | 
|  | """Round 5 to even, rest to nearest.""" | 
|  | if _exact_half(self._int, prec) and \ | 
|  | (prec == 0 or self._int[prec-1] in '02468'): | 
|  | return -1 | 
|  | else: | 
|  | return self._round_half_up(prec) | 
|  |  | 
|  | def _round_ceiling(self, prec): | 
|  | """Rounds up (not away from 0 if negative.)""" | 
|  | if self._sign: | 
|  | return self._round_down(prec) | 
|  | else: | 
|  | return -self._round_down(prec) | 
|  |  | 
|  | def _round_floor(self, prec): | 
|  | """Rounds down (not towards 0 if negative)""" | 
|  | if not self._sign: | 
|  | return self._round_down(prec) | 
|  | else: | 
|  | return -self._round_down(prec) | 
|  |  | 
|  | def _round_05up(self, prec): | 
|  | """Round down unless digit prec-1 is 0 or 5.""" | 
|  | if prec and self._int[prec-1] not in '05': | 
|  | return self._round_down(prec) | 
|  | else: | 
|  | return -self._round_down(prec) | 
|  |  | 
|  | _pick_rounding_function = dict( | 
|  | ROUND_DOWN = _round_down, | 
|  | ROUND_UP = _round_up, | 
|  | ROUND_HALF_UP = _round_half_up, | 
|  | ROUND_HALF_DOWN = _round_half_down, | 
|  | ROUND_HALF_EVEN = _round_half_even, | 
|  | ROUND_CEILING = _round_ceiling, | 
|  | ROUND_FLOOR = _round_floor, | 
|  | ROUND_05UP = _round_05up, | 
|  | ) | 
|  |  | 
|  | def __round__(self, n=None): | 
|  | """Round self to the nearest integer, or to a given precision. | 
|  |  | 
|  | If only one argument is supplied, round a finite Decimal | 
|  | instance self to the nearest integer.  If self is infinite or | 
|  | a NaN then a Python exception is raised.  If self is finite | 
|  | and lies exactly halfway between two integers then it is | 
|  | rounded to the integer with even last digit. | 
|  |  | 
|  | >>> round(Decimal('123.456')) | 
|  | 123 | 
|  | >>> round(Decimal('-456.789')) | 
|  | -457 | 
|  | >>> round(Decimal('-3.0')) | 
|  | -3 | 
|  | >>> round(Decimal('2.5')) | 
|  | 2 | 
|  | >>> round(Decimal('3.5')) | 
|  | 4 | 
|  | >>> round(Decimal('Inf')) | 
|  | Traceback (most recent call last): | 
|  | ... | 
|  | OverflowError: cannot round an infinity | 
|  | >>> round(Decimal('NaN')) | 
|  | Traceback (most recent call last): | 
|  | ... | 
|  | ValueError: cannot round a NaN | 
|  |  | 
|  | If a second argument n is supplied, self is rounded to n | 
|  | decimal places using the rounding mode for the current | 
|  | context. | 
|  |  | 
|  | For an integer n, round(self, -n) is exactly equivalent to | 
|  | self.quantize(Decimal('1En')). | 
|  |  | 
|  | >>> round(Decimal('123.456'), 0) | 
|  | Decimal('123') | 
|  | >>> round(Decimal('123.456'), 2) | 
|  | Decimal('123.46') | 
|  | >>> round(Decimal('123.456'), -2) | 
|  | Decimal('1E+2') | 
|  | >>> round(Decimal('-Infinity'), 37) | 
|  | Decimal('NaN') | 
|  | >>> round(Decimal('sNaN123'), 0) | 
|  | Decimal('NaN123') | 
|  |  | 
|  | """ | 
|  | if n is not None: | 
|  | # two-argument form: use the equivalent quantize call | 
|  | if not isinstance(n, int): | 
|  | raise TypeError('Second argument to round should be integral') | 
|  | exp = _dec_from_triple(0, '1', -n) | 
|  | return self.quantize(exp) | 
|  |  | 
|  | # one-argument form | 
|  | if self._is_special: | 
|  | if self.is_nan(): | 
|  | raise ValueError("cannot round a NaN") | 
|  | else: | 
|  | raise OverflowError("cannot round an infinity") | 
|  | return int(self._rescale(0, ROUND_HALF_EVEN)) | 
|  |  | 
|  | def __floor__(self): | 
|  | """Return the floor of self, as an integer. | 
|  |  | 
|  | For a finite Decimal instance self, return the greatest | 
|  | integer n such that n <= self.  If self is infinite or a NaN | 
|  | then a Python exception is raised. | 
|  |  | 
|  | """ | 
|  | if self._is_special: | 
|  | if self.is_nan(): | 
|  | raise ValueError("cannot round a NaN") | 
|  | else: | 
|  | raise OverflowError("cannot round an infinity") | 
|  | return int(self._rescale(0, ROUND_FLOOR)) | 
|  |  | 
|  | def __ceil__(self): | 
|  | """Return the ceiling of self, as an integer. | 
|  |  | 
|  | For a finite Decimal instance self, return the least integer n | 
|  | such that n >= self.  If self is infinite or a NaN then a | 
|  | Python exception is raised. | 
|  |  | 
|  | """ | 
|  | if self._is_special: | 
|  | if self.is_nan(): | 
|  | raise ValueError("cannot round a NaN") | 
|  | else: | 
|  | raise OverflowError("cannot round an infinity") | 
|  | return int(self._rescale(0, ROUND_CEILING)) | 
|  |  | 
|  | def fma(self, other, third, context=None): | 
|  | """Fused multiply-add. | 
|  |  | 
|  | Returns self*other+third with no rounding of the intermediate | 
|  | product self*other. | 
|  |  | 
|  | self and other are multiplied together, with no rounding of | 
|  | the result.  The third operand is then added to the result, | 
|  | and a single final rounding is performed. | 
|  | """ | 
|  |  | 
|  | other = _convert_other(other, raiseit=True) | 
|  | third = _convert_other(third, raiseit=True) | 
|  |  | 
|  | # compute product; raise InvalidOperation if either operand is | 
|  | # a signaling NaN or if the product is zero times infinity. | 
|  | if self._is_special or other._is_special: | 
|  | if context is None: | 
|  | context = getcontext() | 
|  | if self._exp == 'N': | 
|  | return context._raise_error(InvalidOperation, 'sNaN', self) | 
|  | if other._exp == 'N': | 
|  | return context._raise_error(InvalidOperation, 'sNaN', other) | 
|  | if self._exp == 'n': | 
|  | product = self | 
|  | elif other._exp == 'n': | 
|  | product = other | 
|  | elif self._exp == 'F': | 
|  | if not other: | 
|  | return context._raise_error(InvalidOperation, | 
|  | 'INF * 0 in fma') | 
|  | product = _SignedInfinity[self._sign ^ other._sign] | 
|  | elif other._exp == 'F': | 
|  | if not self: | 
|  | return context._raise_error(InvalidOperation, | 
|  | '0 * INF in fma') | 
|  | product = _SignedInfinity[self._sign ^ other._sign] | 
|  | else: | 
|  | product = _dec_from_triple(self._sign ^ other._sign, | 
|  | str(int(self._int) * int(other._int)), | 
|  | self._exp + other._exp) | 
|  |  | 
|  | return product.__add__(third, context) | 
|  |  | 
|  | def _power_modulo(self, other, modulo, context=None): | 
|  | """Three argument version of __pow__""" | 
|  |  | 
|  | other = _convert_other(other) | 
|  | if other is NotImplemented: | 
|  | return other | 
|  | modulo = _convert_other(modulo) | 
|  | if modulo is NotImplemented: | 
|  | return modulo | 
|  |  | 
|  | if context is None: | 
|  | context = getcontext() | 
|  |  | 
|  | # deal with NaNs: if there are any sNaNs then first one wins, | 
|  | # (i.e. behaviour for NaNs is identical to that of fma) | 
|  | self_is_nan = self._isnan() | 
|  | other_is_nan = other._isnan() | 
|  | modulo_is_nan = modulo._isnan() | 
|  | if self_is_nan or other_is_nan or modulo_is_nan: | 
|  | if self_is_nan == 2: | 
|  | return context._raise_error(InvalidOperation, 'sNaN', | 
|  | self) | 
|  | if other_is_nan == 2: | 
|  | return context._raise_error(InvalidOperation, 'sNaN', | 
|  | other) | 
|  | if modulo_is_nan == 2: | 
|  | return context._raise_error(InvalidOperation, 'sNaN', | 
|  | modulo) | 
|  | if self_is_nan: | 
|  | return self._fix_nan(context) | 
|  | if other_is_nan: | 
|  | return other._fix_nan(context) | 
|  | return modulo._fix_nan(context) | 
|  |  | 
|  | # check inputs: we apply same restrictions as Python's pow() | 
|  | if not (self._isinteger() and | 
|  | other._isinteger() and | 
|  | modulo._isinteger()): | 
|  | return context._raise_error(InvalidOperation, | 
|  | 'pow() 3rd argument not allowed ' | 
|  | 'unless all arguments are integers') | 
|  | if other < 0: | 
|  | return context._raise_error(InvalidOperation, | 
|  | 'pow() 2nd argument cannot be ' | 
|  | 'negative when 3rd argument specified') | 
|  | if not modulo: | 
|  | return context._raise_error(InvalidOperation, | 
|  | 'pow() 3rd argument cannot be 0') | 
|  |  | 
|  | # additional restriction for decimal: the modulus must be less | 
|  | # than 10**prec in absolute value | 
|  | if modulo.adjusted() >= context.prec: | 
|  | return context._raise_error(InvalidOperation, | 
|  | 'insufficient precision: pow() 3rd ' | 
|  | 'argument must not have more than ' | 
|  | 'precision digits') | 
|  |  | 
|  | # define 0**0 == NaN, for consistency with two-argument pow | 
|  | # (even though it hurts!) | 
|  | if not other and not self: | 
|  | return context._raise_error(InvalidOperation, | 
|  | 'at least one of pow() 1st argument ' | 
|  | 'and 2nd argument must be nonzero ;' | 
|  | '0**0 is not defined') | 
|  |  | 
|  | # compute sign of result | 
|  | if other._iseven(): | 
|  | sign = 0 | 
|  | else: | 
|  | sign = self._sign | 
|  |  | 
|  | # convert modulo to a Python integer, and self and other to | 
|  | # Decimal integers (i.e. force their exponents to be >= 0) | 
|  | modulo = abs(int(modulo)) | 
|  | base = _WorkRep(self.to_integral_value()) | 
|  | exponent = _WorkRep(other.to_integral_value()) | 
|  |  | 
|  | # compute result using integer pow() | 
|  | base = (base.int % modulo * pow(10, base.exp, modulo)) % modulo | 
|  | for i in range(exponent.exp): | 
|  | base = pow(base, 10, modulo) | 
|  | base = pow(base, exponent.int, modulo) | 
|  |  | 
|  | return _dec_from_triple(sign, str(base), 0) | 
|  |  | 
|  | def _power_exact(self, other, p): | 
|  | """Attempt to compute self**other exactly. | 
|  |  | 
|  | Given Decimals self and other and an integer p, attempt to | 
|  | compute an exact result for the power self**other, with p | 
|  | digits of precision.  Return None if self**other is not | 
|  | exactly representable in p digits. | 
|  |  | 
|  | Assumes that elimination of special cases has already been | 
|  | performed: self and other must both be nonspecial; self must | 
|  | be positive and not numerically equal to 1; other must be | 
|  | nonzero.  For efficiency, other._exp should not be too large, | 
|  | so that 10**abs(other._exp) is a feasible calculation.""" | 
|  |  | 
|  | # In the comments below, we write x for the value of self and y for the | 
|  | # value of other.  Write x = xc*10**xe and abs(y) = yc*10**ye, with xc | 
|  | # and yc positive integers not divisible by 10. | 
|  |  | 
|  | # The main purpose of this method is to identify the *failure* | 
|  | # of x**y to be exactly representable with as little effort as | 
|  | # possible.  So we look for cheap and easy tests that | 
|  | # eliminate the possibility of x**y being exact.  Only if all | 
|  | # these tests are passed do we go on to actually compute x**y. | 
|  |  | 
|  | # Here's the main idea.  Express y as a rational number m/n, with m and | 
|  | # n relatively prime and n>0.  Then for x**y to be exactly | 
|  | # representable (at *any* precision), xc must be the nth power of a | 
|  | # positive integer and xe must be divisible by n.  If y is negative | 
|  | # then additionally xc must be a power of either 2 or 5, hence a power | 
|  | # of 2**n or 5**n. | 
|  | # | 
|  | # There's a limit to how small |y| can be: if y=m/n as above | 
|  | # then: | 
|  | # | 
|  | #  (1) if xc != 1 then for the result to be representable we | 
|  | #      need xc**(1/n) >= 2, and hence also xc**|y| >= 2.  So | 
|  | #      if |y| <= 1/nbits(xc) then xc < 2**nbits(xc) <= | 
|  | #      2**(1/|y|), hence xc**|y| < 2 and the result is not | 
|  | #      representable. | 
|  | # | 
|  | #  (2) if xe != 0, |xe|*(1/n) >= 1, so |xe|*|y| >= 1.  Hence if | 
|  | #      |y| < 1/|xe| then the result is not representable. | 
|  | # | 
|  | # Note that since x is not equal to 1, at least one of (1) and | 
|  | # (2) must apply.  Now |y| < 1/nbits(xc) iff |yc|*nbits(xc) < | 
|  | # 10**-ye iff len(str(|yc|*nbits(xc)) <= -ye. | 
|  | # | 
|  | # There's also a limit to how large y can be, at least if it's | 
|  | # positive: the normalized result will have coefficient xc**y, | 
|  | # so if it's representable then xc**y < 10**p, and y < | 
|  | # p/log10(xc).  Hence if y*log10(xc) >= p then the result is | 
|  | # not exactly representable. | 
|  |  | 
|  | # if len(str(abs(yc*xe)) <= -ye then abs(yc*xe) < 10**-ye, | 
|  | # so |y| < 1/xe and the result is not representable. | 
|  | # Similarly, len(str(abs(yc)*xc_bits)) <= -ye implies |y| | 
|  | # < 1/nbits(xc). | 
|  |  | 
|  | x = _WorkRep(self) | 
|  | xc, xe = x.int, x.exp | 
|  | while xc % 10 == 0: | 
|  | xc //= 10 | 
|  | xe += 1 | 
|  |  | 
|  | y = _WorkRep(other) | 
|  | yc, ye = y.int, y.exp | 
|  | while yc % 10 == 0: | 
|  | yc //= 10 | 
|  | ye += 1 | 
|  |  | 
|  | # case where xc == 1: result is 10**(xe*y), with xe*y | 
|  | # required to be an integer | 
|  | if xc == 1: | 
|  | xe *= yc | 
|  | # result is now 10**(xe * 10**ye);  xe * 10**ye must be integral | 
|  | while xe % 10 == 0: | 
|  | xe //= 10 | 
|  | ye += 1 | 
|  | if ye < 0: | 
|  | return None | 
|  | exponent = xe * 10**ye | 
|  | if y.sign == 1: | 
|  | exponent = -exponent | 
|  | # if other is a nonnegative integer, use ideal exponent | 
|  | if other._isinteger() and other._sign == 0: | 
|  | ideal_exponent = self._exp*int(other) | 
|  | zeros = min(exponent-ideal_exponent, p-1) | 
|  | else: | 
|  | zeros = 0 | 
|  | return _dec_from_triple(0, '1' + '0'*zeros, exponent-zeros) | 
|  |  | 
|  | # case where y is negative: xc must be either a power | 
|  | # of 2 or a power of 5. | 
|  | if y.sign == 1: | 
|  | last_digit = xc % 10 | 
|  | if last_digit in (2,4,6,8): | 
|  | # quick test for power of 2 | 
|  | if xc & -xc != xc: | 
|  | return None | 
|  | # now xc is a power of 2; e is its exponent | 
|  | e = _nbits(xc)-1 | 
|  |  | 
|  | # We now have: | 
|  | # | 
|  | #   x = 2**e * 10**xe, e > 0, and y < 0. | 
|  | # | 
|  | # The exact result is: | 
|  | # | 
|  | #   x**y = 5**(-e*y) * 10**(e*y + xe*y) | 
|  | # | 
|  | # provided that both e*y and xe*y are integers.  Note that if | 
|  | # 5**(-e*y) >= 10**p, then the result can't be expressed | 
|  | # exactly with p digits of precision. | 
|  | # | 
|  | # Using the above, we can guard against large values of ye. | 
|  | # 93/65 is an upper bound for log(10)/log(5), so if | 
|  | # | 
|  | #   ye >= len(str(93*p//65)) | 
|  | # | 
|  | # then | 
|  | # | 
|  | #   -e*y >= -y >= 10**ye > 93*p/65 > p*log(10)/log(5), | 
|  | # | 
|  | # so 5**(-e*y) >= 10**p, and the coefficient of the result | 
|  | # can't be expressed in p digits. | 
|  |  | 
|  | # emax >= largest e such that 5**e < 10**p. | 
|  | emax = p*93//65 | 
|  | if ye >= len(str(emax)): | 
|  | return None | 
|  |  | 
|  | # Find -e*y and -xe*y; both must be integers | 
|  | e = _decimal_lshift_exact(e * yc, ye) | 
|  | xe = _decimal_lshift_exact(xe * yc, ye) | 
|  | if e is None or xe is None: | 
|  | return None | 
|  |  | 
|  | if e > emax: | 
|  | return None | 
|  | xc = 5**e | 
|  |  | 
|  | elif last_digit == 5: | 
|  | # e >= log_5(xc) if xc is a power of 5; we have | 
|  | # equality all the way up to xc=5**2658 | 
|  | e = _nbits(xc)*28//65 | 
|  | xc, remainder = divmod(5**e, xc) | 
|  | if remainder: | 
|  | return None | 
|  | while xc % 5 == 0: | 
|  | xc //= 5 | 
|  | e -= 1 | 
|  |  | 
|  | # Guard against large values of ye, using the same logic as in | 
|  | # the 'xc is a power of 2' branch.  10/3 is an upper bound for | 
|  | # log(10)/log(2). | 
|  | emax = p*10//3 | 
|  | if ye >= len(str(emax)): | 
|  | return None | 
|  |  | 
|  | e = _decimal_lshift_exact(e * yc, ye) | 
|  | xe = _decimal_lshift_exact(xe * yc, ye) | 
|  | if e is None or xe is None: | 
|  | return None | 
|  |  | 
|  | if e > emax: | 
|  | return None | 
|  | xc = 2**e | 
|  | else: | 
|  | return None | 
|  |  | 
|  | if xc >= 10**p: | 
|  | return None | 
|  | xe = -e-xe | 
|  | return _dec_from_triple(0, str(xc), xe) | 
|  |  | 
|  | # now y is positive; find m and n such that y = m/n | 
|  | if ye >= 0: | 
|  | m, n = yc*10**ye, 1 | 
|  | else: | 
|  | if xe != 0 and len(str(abs(yc*xe))) <= -ye: | 
|  | return None | 
|  | xc_bits = _nbits(xc) | 
|  | if xc != 1 and len(str(abs(yc)*xc_bits)) <= -ye: | 
|  | return None | 
|  | m, n = yc, 10**(-ye) | 
|  | while m % 2 == n % 2 == 0: | 
|  | m //= 2 | 
|  | n //= 2 | 
|  | while m % 5 == n % 5 == 0: | 
|  | m //= 5 | 
|  | n //= 5 | 
|  |  | 
|  | # compute nth root of xc*10**xe | 
|  | if n > 1: | 
|  | # if 1 < xc < 2**n then xc isn't an nth power | 
|  | if xc != 1 and xc_bits <= n: | 
|  | return None | 
|  |  | 
|  | xe, rem = divmod(xe, n) | 
|  | if rem != 0: | 
|  | return None | 
|  |  | 
|  | # compute nth root of xc using Newton's method | 
|  | a = 1 << -(-_nbits(xc)//n) # initial estimate | 
|  | while True: | 
|  | q, r = divmod(xc, a**(n-1)) | 
|  | if a <= q: | 
|  | break | 
|  | else: | 
|  | a = (a*(n-1) + q)//n | 
|  | if not (a == q and r == 0): | 
|  | return None | 
|  | xc = a | 
|  |  | 
|  | # now xc*10**xe is the nth root of the original xc*10**xe | 
|  | # compute mth power of xc*10**xe | 
|  |  | 
|  | # if m > p*100//_log10_lb(xc) then m > p/log10(xc), hence xc**m > | 
|  | # 10**p and the result is not representable. | 
|  | if xc > 1 and m > p*100//_log10_lb(xc): | 
|  | return None | 
|  | xc = xc**m | 
|  | xe *= m | 
|  | if xc > 10**p: | 
|  | return None | 
|  |  | 
|  | # by this point the result *is* exactly representable | 
|  | # adjust the exponent to get as close as possible to the ideal | 
|  | # exponent, if necessary | 
|  | str_xc = str(xc) | 
|  | if other._isinteger() and other._sign == 0: | 
|  | ideal_exponent = self._exp*int(other) | 
|  | zeros = min(xe-ideal_exponent, p-len(str_xc)) | 
|  | else: | 
|  | zeros = 0 | 
|  | return _dec_from_triple(0, str_xc+'0'*zeros, xe-zeros) | 
|  |  | 
|  | def __pow__(self, other, modulo=None, context=None): | 
|  | """Return self ** other [ % modulo]. | 
|  |  | 
|  | With two arguments, compute self**other. | 
|  |  | 
|  | With three arguments, compute (self**other) % modulo.  For the | 
|  | three argument form, the following restrictions on the | 
|  | arguments hold: | 
|  |  | 
|  | - all three arguments must be integral | 
|  | - other must be nonnegative | 
|  | - either self or other (or both) must be nonzero | 
|  | - modulo must be nonzero and must have at most p digits, | 
|  | where p is the context precision. | 
|  |  | 
|  | If any of these restrictions is violated the InvalidOperation | 
|  | flag is raised. | 
|  |  | 
|  | The result of pow(self, other, modulo) is identical to the | 
|  | result that would be obtained by computing (self**other) % | 
|  | modulo with unbounded precision, but is computed more | 
|  | efficiently.  It is always exact. | 
|  | """ | 
|  |  | 
|  | if modulo is not None: | 
|  | return self._power_modulo(other, modulo, context) | 
|  |  | 
|  | other = _convert_other(other) | 
|  | if other is NotImplemented: | 
|  | return other | 
|  |  | 
|  | if context is None: | 
|  | context = getcontext() | 
|  |  | 
|  | # either argument is a NaN => result is NaN | 
|  | ans = self._check_nans(other, context) | 
|  | if ans: | 
|  | return ans | 
|  |  | 
|  | # 0**0 = NaN (!), x**0 = 1 for nonzero x (including +/-Infinity) | 
|  | if not other: | 
|  | if not self: | 
|  | return context._raise_error(InvalidOperation, '0 ** 0') | 
|  | else: | 
|  | return _One | 
|  |  | 
|  | # result has sign 1 iff self._sign is 1 and other is an odd integer | 
|  | result_sign = 0 | 
|  | if self._sign == 1: | 
|  | if other._isinteger(): | 
|  | if not other._iseven(): | 
|  | result_sign = 1 | 
|  | else: | 
|  | # -ve**noninteger = NaN | 
|  | # (-0)**noninteger = 0**noninteger | 
|  | if self: | 
|  | return context._raise_error(InvalidOperation, | 
|  | 'x ** y with x negative and y not an integer') | 
|  | # negate self, without doing any unwanted rounding | 
|  | self = self.copy_negate() | 
|  |  | 
|  | # 0**(+ve or Inf)= 0; 0**(-ve or -Inf) = Infinity | 
|  | if not self: | 
|  | if other._sign == 0: | 
|  | return _dec_from_triple(result_sign, '0', 0) | 
|  | else: | 
|  | return _SignedInfinity[result_sign] | 
|  |  | 
|  | # Inf**(+ve or Inf) = Inf; Inf**(-ve or -Inf) = 0 | 
|  | if self._isinfinity(): | 
|  | if other._sign == 0: | 
|  | return _SignedInfinity[result_sign] | 
|  | else: | 
|  | return _dec_from_triple(result_sign, '0', 0) | 
|  |  | 
|  | # 1**other = 1, but the choice of exponent and the flags | 
|  | # depend on the exponent of self, and on whether other is a | 
|  | # positive integer, a negative integer, or neither | 
|  | if self == _One: | 
|  | if other._isinteger(): | 
|  | # exp = max(self._exp*max(int(other), 0), | 
|  | # 1-context.prec) but evaluating int(other) directly | 
|  | # is dangerous until we know other is small (other | 
|  | # could be 1e999999999) | 
|  | if other._sign == 1: | 
|  | multiplier = 0 | 
|  | elif other > context.prec: | 
|  | multiplier = context.prec | 
|  | else: | 
|  | multiplier = int(other) | 
|  |  | 
|  | exp = self._exp * multiplier | 
|  | if exp < 1-context.prec: | 
|  | exp = 1-context.prec | 
|  | context._raise_error(Rounded) | 
|  | else: | 
|  | context._raise_error(Inexact) | 
|  | context._raise_error(Rounded) | 
|  | exp = 1-context.prec | 
|  |  | 
|  | return _dec_from_triple(result_sign, '1'+'0'*-exp, exp) | 
|  |  | 
|  | # compute adjusted exponent of self | 
|  | self_adj = self.adjusted() | 
|  |  | 
|  | # self ** infinity is infinity if self > 1, 0 if self < 1 | 
|  | # self ** -infinity is infinity if self < 1, 0 if self > 1 | 
|  | if other._isinfinity(): | 
|  | if (other._sign == 0) == (self_adj < 0): | 
|  | return _dec_from_triple(result_sign, '0', 0) | 
|  | else: | 
|  | return _SignedInfinity[result_sign] | 
|  |  | 
|  | # from here on, the result always goes through the call | 
|  | # to _fix at the end of this function. | 
|  | ans = None | 
|  | exact = False | 
|  |  | 
|  | # crude test to catch cases of extreme overflow/underflow.  If | 
|  | # log10(self)*other >= 10**bound and bound >= len(str(Emax)) | 
|  | # then 10**bound >= 10**len(str(Emax)) >= Emax+1 and hence | 
|  | # self**other >= 10**(Emax+1), so overflow occurs.  The test | 
|  | # for underflow is similar. | 
|  | bound = self._log10_exp_bound() + other.adjusted() | 
|  | if (self_adj >= 0) == (other._sign == 0): | 
|  | # self > 1 and other +ve, or self < 1 and other -ve | 
|  | # possibility of overflow | 
|  | if bound >= len(str(context.Emax)): | 
|  | ans = _dec_from_triple(result_sign, '1', context.Emax+1) | 
|  | else: | 
|  | # self > 1 and other -ve, or self < 1 and other +ve | 
|  | # possibility of underflow to 0 | 
|  | Etiny = context.Etiny() | 
|  | if bound >= len(str(-Etiny)): | 
|  | ans = _dec_from_triple(result_sign, '1', Etiny-1) | 
|  |  | 
|  | # try for an exact result with precision +1 | 
|  | if ans is None: | 
|  | ans = self._power_exact(other, context.prec + 1) | 
|  | if ans is not None: | 
|  | if result_sign == 1: | 
|  | ans = _dec_from_triple(1, ans._int, ans._exp) | 
|  | exact = True | 
|  |  | 
|  | # usual case: inexact result, x**y computed directly as exp(y*log(x)) | 
|  | if ans is None: | 
|  | p = context.prec | 
|  | x = _WorkRep(self) | 
|  | xc, xe = x.int, x.exp | 
|  | y = _WorkRep(other) | 
|  | yc, ye = y.int, y.exp | 
|  | if y.sign == 1: | 
|  | yc = -yc | 
|  |  | 
|  | # compute correctly rounded result:  start with precision +3, | 
|  | # then increase precision until result is unambiguously roundable | 
|  | extra = 3 | 
|  | while True: | 
|  | coeff, exp = _dpower(xc, xe, yc, ye, p+extra) | 
|  | if coeff % (5*10**(len(str(coeff))-p-1)): | 
|  | break | 
|  | extra += 3 | 
|  |  | 
|  | ans = _dec_from_triple(result_sign, str(coeff), exp) | 
|  |  | 
|  | # unlike exp, ln and log10, the power function respects the | 
|  | # rounding mode; no need to switch to ROUND_HALF_EVEN here | 
|  |  | 
|  | # There's a difficulty here when 'other' is not an integer and | 
|  | # the result is exact.  In this case, the specification | 
|  | # requires that the Inexact flag be raised (in spite of | 
|  | # exactness), but since the result is exact _fix won't do this | 
|  | # for us.  (Correspondingly, the Underflow signal should also | 
|  | # be raised for subnormal results.)  We can't directly raise | 
|  | # these signals either before or after calling _fix, since | 
|  | # that would violate the precedence for signals.  So we wrap | 
|  | # the ._fix call in a temporary context, and reraise | 
|  | # afterwards. | 
|  | if exact and not other._isinteger(): | 
|  | # pad with zeros up to length context.prec+1 if necessary; this | 
|  | # ensures that the Rounded signal will be raised. | 
|  | if len(ans._int) <= context.prec: | 
|  | expdiff = context.prec + 1 - len(ans._int) | 
|  | ans = _dec_from_triple(ans._sign, ans._int+'0'*expdiff, | 
|  | ans._exp-expdiff) | 
|  |  | 
|  | # create a copy of the current context, with cleared flags/traps | 
|  | newcontext = context.copy() | 
|  | newcontext.clear_flags() | 
|  | for exception in _signals: | 
|  | newcontext.traps[exception] = 0 | 
|  |  | 
|  | # round in the new context | 
|  | ans = ans._fix(newcontext) | 
|  |  | 
|  | # raise Inexact, and if necessary, Underflow | 
|  | newcontext._raise_error(Inexact) | 
|  | if newcontext.flags[Subnormal]: | 
|  | newcontext._raise_error(Underflow) | 
|  |  | 
|  | # propagate signals to the original context; _fix could | 
|  | # have raised any of Overflow, Underflow, Subnormal, | 
|  | # Inexact, Rounded, Clamped.  Overflow needs the correct | 
|  | # arguments.  Note that the order of the exceptions is | 
|  | # important here. | 
|  | if newcontext.flags[Overflow]: | 
|  | context._raise_error(Overflow, 'above Emax', ans._sign) | 
|  | for exception in Underflow, Subnormal, Inexact, Rounded, Clamped: | 
|  | if newcontext.flags[exception]: | 
|  | context._raise_error(exception) | 
|  |  | 
|  | else: | 
|  | ans = ans._fix(context) | 
|  |  | 
|  | return ans | 
|  |  | 
|  | def __rpow__(self, other, context=None): | 
|  | """Swaps self/other and returns __pow__.""" | 
|  | other = _convert_other(other) | 
|  | if other is NotImplemented: | 
|  | return other | 
|  | return other.__pow__(self, context=context) | 
|  |  | 
|  | def normalize(self, context=None): | 
|  | """Normalize- strip trailing 0s, change anything equal to 0 to 0e0""" | 
|  |  | 
|  | if context is None: | 
|  | context = getcontext() | 
|  |  | 
|  | if self._is_special: | 
|  | ans = self._check_nans(context=context) | 
|  | if ans: | 
|  | return ans | 
|  |  | 
|  | dup = self._fix(context) | 
|  | if dup._isinfinity(): | 
|  | return dup | 
|  |  | 
|  | if not dup: | 
|  | return _dec_from_triple(dup._sign, '0', 0) | 
|  | exp_max = [context.Emax, context.Etop()][context.clamp] | 
|  | end = len(dup._int) | 
|  | exp = dup._exp | 
|  | while dup._int[end-1] == '0' and exp < exp_max: | 
|  | exp += 1 | 
|  | end -= 1 | 
|  | return _dec_from_triple(dup._sign, dup._int[:end], exp) | 
|  |  | 
|  | def quantize(self, exp, rounding=None, context=None): | 
|  | """Quantize self so its exponent is the same as that of exp. | 
|  |  | 
|  | Similar to self._rescale(exp._exp) but with error checking. | 
|  | """ | 
|  | exp = _convert_other(exp, raiseit=True) | 
|  |  | 
|  | if context is None: | 
|  | context = getcontext() | 
|  | if rounding is None: | 
|  | rounding = context.rounding | 
|  |  | 
|  | if self._is_special or exp._is_special: | 
|  | ans = self._check_nans(exp, context) | 
|  | if ans: | 
|  | return ans | 
|  |  | 
|  | if exp._isinfinity() or self._isinfinity(): | 
|  | if exp._isinfinity() and self._isinfinity(): | 
|  | return Decimal(self)  # if both are inf, it is OK | 
|  | return context._raise_error(InvalidOperation, | 
|  | 'quantize with one INF') | 
|  |  | 
|  | # exp._exp should be between Etiny and Emax | 
|  | if not (context.Etiny() <= exp._exp <= context.Emax): | 
|  | return context._raise_error(InvalidOperation, | 
|  | 'target exponent out of bounds in quantize') | 
|  |  | 
|  | if not self: | 
|  | ans = _dec_from_triple(self._sign, '0', exp._exp) | 
|  | return ans._fix(context) | 
|  |  | 
|  | self_adjusted = self.adjusted() | 
|  | if self_adjusted > context.Emax: | 
|  | return context._raise_error(InvalidOperation, | 
|  | 'exponent of quantize result too large for current context') | 
|  | if self_adjusted - exp._exp + 1 > context.prec: | 
|  | return context._raise_error(InvalidOperation, | 
|  | 'quantize result has too many digits for current context') | 
|  |  | 
|  | ans = self._rescale(exp._exp, rounding) | 
|  | if ans.adjusted() > context.Emax: | 
|  | return context._raise_error(InvalidOperation, | 
|  | 'exponent of quantize result too large for current context') | 
|  | if len(ans._int) > context.prec: | 
|  | return context._raise_error(InvalidOperation, | 
|  | 'quantize result has too many digits for current context') | 
|  |  | 
|  | # raise appropriate flags | 
|  | if ans and ans.adjusted() < context.Emin: | 
|  | context._raise_error(Subnormal) | 
|  | if ans._exp > self._exp: | 
|  | if ans != self: | 
|  | context._raise_error(Inexact) | 
|  | context._raise_error(Rounded) | 
|  |  | 
|  | # call to fix takes care of any necessary folddown, and | 
|  | # signals Clamped if necessary | 
|  | ans = ans._fix(context) | 
|  | return ans | 
|  |  | 
|  | def same_quantum(self, other, context=None): | 
|  | """Return True if self and other have the same exponent; otherwise | 
|  | return False. | 
|  |  | 
|  | If either operand is a special value, the following rules are used: | 
|  | * return True if both operands are infinities | 
|  | * return True if both operands are NaNs | 
|  | * otherwise, return False. | 
|  | """ | 
|  | other = _convert_other(other, raiseit=True) | 
|  | if self._is_special or other._is_special: | 
|  | return (self.is_nan() and other.is_nan() or | 
|  | self.is_infinite() and other.is_infinite()) | 
|  | return self._exp == other._exp | 
|  |  | 
|  | def _rescale(self, exp, rounding): | 
|  | """Rescale self so that the exponent is exp, either by padding with zeros | 
|  | or by truncating digits, using the given rounding mode. | 
|  |  | 
|  | Specials are returned without change.  This operation is | 
|  | quiet: it raises no flags, and uses no information from the | 
|  | context. | 
|  |  | 
|  | exp = exp to scale to (an integer) | 
|  | rounding = rounding mode | 
|  | """ | 
|  | if self._is_special: | 
|  | return Decimal(self) | 
|  | if not self: | 
|  | return _dec_from_triple(self._sign, '0', exp) | 
|  |  | 
|  | if self._exp >= exp: | 
|  | # pad answer with zeros if necessary | 
|  | return _dec_from_triple(self._sign, | 
|  | self._int + '0'*(self._exp - exp), exp) | 
|  |  | 
|  | # too many digits; round and lose data.  If self.adjusted() < | 
|  | # exp-1, replace self by 10**(exp-1) before rounding | 
|  | digits = len(self._int) + self._exp - exp | 
|  | if digits < 0: | 
|  | self = _dec_from_triple(self._sign, '1', exp-1) | 
|  | digits = 0 | 
|  | this_function = self._pick_rounding_function[rounding] | 
|  | changed = this_function(self, digits) | 
|  | coeff = self._int[:digits] or '0' | 
|  | if changed == 1: | 
|  | coeff = str(int(coeff)+1) | 
|  | return _dec_from_triple(self._sign, coeff, exp) | 
|  |  | 
|  | def _round(self, places, rounding): | 
|  | """Round a nonzero, nonspecial Decimal to a fixed number of | 
|  | significant figures, using the given rounding mode. | 
|  |  | 
|  | Infinities, NaNs and zeros are returned unaltered. | 
|  |  | 
|  | This operation is quiet: it raises no flags, and uses no | 
|  | information from the context. | 
|  |  | 
|  | """ | 
|  | if places <= 0: | 
|  | raise ValueError("argument should be at least 1 in _round") | 
|  | if self._is_special or not self: | 
|  | return Decimal(self) | 
|  | ans = self._rescale(self.adjusted()+1-places, rounding) | 
|  | # it can happen that the rescale alters the adjusted exponent; | 
|  | # for example when rounding 99.97 to 3 significant figures. | 
|  | # When this happens we end up with an extra 0 at the end of | 
|  | # the number; a second rescale fixes this. | 
|  | if ans.adjusted() != self.adjusted(): | 
|  | ans = ans._rescale(ans.adjusted()+1-places, rounding) | 
|  | return ans | 
|  |  | 
|  | def to_integral_exact(self, rounding=None, context=None): | 
|  | """Rounds to a nearby integer. | 
|  |  | 
|  | If no rounding mode is specified, take the rounding mode from | 
|  | the context.  This method raises the Rounded and Inexact flags | 
|  | when appropriate. | 
|  |  | 
|  | See also: to_integral_value, which does exactly the same as | 
|  | this method except that it doesn't raise Inexact or Rounded. | 
|  | """ | 
|  | if self._is_special: | 
|  | ans = self._check_nans(context=context) | 
|  | if ans: | 
|  | return ans | 
|  | return Decimal(self) | 
|  | if self._exp >= 0: | 
|  | return Decimal(self) | 
|  | if not self: | 
|  | return _dec_from_triple(self._sign, '0', 0) | 
|  | if context is None: | 
|  | context = getcontext() | 
|  | if rounding is None: | 
|  | rounding = context.rounding | 
|  | ans = self._rescale(0, rounding) | 
|  | if ans != self: | 
|  | context._raise_error(Inexact) | 
|  | context._raise_error(Rounded) | 
|  | return ans | 
|  |  | 
|  | def to_integral_value(self, rounding=None, context=None): | 
|  | """Rounds to the nearest integer, without raising inexact, rounded.""" | 
|  | if context is None: | 
|  | context = getcontext() | 
|  | if rounding is None: | 
|  | rounding = context.rounding | 
|  | if self._is_special: | 
|  | ans = self._check_nans(context=context) | 
|  | if ans: | 
|  | return ans | 
|  | return Decimal(self) | 
|  | if self._exp >= 0: | 
|  | return Decimal(self) | 
|  | else: | 
|  | return self._rescale(0, rounding) | 
|  |  | 
|  | # the method name changed, but we provide also the old one, for compatibility | 
|  | to_integral = to_integral_value | 
|  |  | 
|  | def sqrt(self, context=None): | 
|  | """Return the square root of self.""" | 
|  | if context is None: | 
|  | context = getcontext() | 
|  |  | 
|  | if self._is_special: | 
|  | ans = self._check_nans(context=context) | 
|  | if ans: | 
|  | return ans | 
|  |  | 
|  | if self._isinfinity() and self._sign == 0: | 
|  | return Decimal(self) | 
|  |  | 
|  | if not self: | 
|  | # exponent = self._exp // 2.  sqrt(-0) = -0 | 
|  | ans = _dec_from_triple(self._sign, '0', self._exp // 2) | 
|  | return ans._fix(context) | 
|  |  | 
|  | if self._sign == 1: | 
|  | return context._raise_error(InvalidOperation, 'sqrt(-x), x > 0') | 
|  |  | 
|  | # At this point self represents a positive number.  Let p be | 
|  | # the desired precision and express self in the form c*100**e | 
|  | # with c a positive real number and e an integer, c and e | 
|  | # being chosen so that 100**(p-1) <= c < 100**p.  Then the | 
|  | # (exact) square root of self is sqrt(c)*10**e, and 10**(p-1) | 
|  | # <= sqrt(c) < 10**p, so the closest representable Decimal at | 
|  | # precision p is n*10**e where n = round_half_even(sqrt(c)), | 
|  | # the closest integer to sqrt(c) with the even integer chosen | 
|  | # in the case of a tie. | 
|  | # | 
|  | # To ensure correct rounding in all cases, we use the | 
|  | # following trick: we compute the square root to an extra | 
|  | # place (precision p+1 instead of precision p), rounding down. | 
|  | # Then, if the result is inexact and its last digit is 0 or 5, | 
|  | # we increase the last digit to 1 or 6 respectively; if it's | 
|  | # exact we leave the last digit alone.  Now the final round to | 
|  | # p places (or fewer in the case of underflow) will round | 
|  | # correctly and raise the appropriate flags. | 
|  |  | 
|  | # use an extra digit of precision | 
|  | prec = context.prec+1 | 
|  |  | 
|  | # write argument in the form c*100**e where e = self._exp//2 | 
|  | # is the 'ideal' exponent, to be used if the square root is | 
|  | # exactly representable.  l is the number of 'digits' of c in | 
|  | # base 100, so that 100**(l-1) <= c < 100**l. | 
|  | op = _WorkRep(self) | 
|  | e = op.exp >> 1 | 
|  | if op.exp & 1: | 
|  | c = op.int * 10 | 
|  | l = (len(self._int) >> 1) + 1 | 
|  | else: | 
|  | c = op.int | 
|  | l = len(self._int)+1 >> 1 | 
|  |  | 
|  | # rescale so that c has exactly prec base 100 'digits' | 
|  | shift = prec-l | 
|  | if shift >= 0: | 
|  | c *= 100**shift | 
|  | exact = True | 
|  | else: | 
|  | c, remainder = divmod(c, 100**-shift) | 
|  | exact = not remainder | 
|  | e -= shift | 
|  |  | 
|  | # find n = floor(sqrt(c)) using Newton's method | 
|  | n = 10**prec | 
|  | while True: | 
|  | q = c//n | 
|  | if n <= q: | 
|  | break | 
|  | else: | 
|  | n = n + q >> 1 | 
|  | exact = exact and n*n == c | 
|  |  | 
|  | if exact: | 
|  | # result is exact; rescale to use ideal exponent e | 
|  | if shift >= 0: | 
|  | # assert n % 10**shift == 0 | 
|  | n //= 10**shift | 
|  | else: | 
|  | n *= 10**-shift | 
|  | e += shift | 
|  | else: | 
|  | # result is not exact; fix last digit as described above | 
|  | if n % 5 == 0: | 
|  | n += 1 | 
|  |  | 
|  | ans = _dec_from_triple(0, str(n), e) | 
|  |  | 
|  | # round, and fit to current context | 
|  | context = context._shallow_copy() | 
|  | rounding = context._set_rounding(ROUND_HALF_EVEN) | 
|  | ans = ans._fix(context) | 
|  | context.rounding = rounding | 
|  |  | 
|  | return ans | 
|  |  | 
|  | def max(self, other, context=None): | 
|  | """Returns the larger value. | 
|  |  | 
|  | Like max(self, other) except if one is not a number, returns | 
|  | NaN (and signals if one is sNaN).  Also rounds. | 
|  | """ | 
|  | other = _convert_other(other, raiseit=True) | 
|  |  | 
|  | if context is None: | 
|  | context = getcontext() | 
|  |  | 
|  | if self._is_special or other._is_special: | 
|  | # If one operand is a quiet NaN and the other is number, then the | 
|  | # number is always returned | 
|  | sn = self._isnan() | 
|  | on = other._isnan() | 
|  | if sn or on: | 
|  | if on == 1 and sn == 0: | 
|  | return self._fix(context) | 
|  | if sn == 1 and on == 0: | 
|  | return other._fix(context) | 
|  | return self._check_nans(other, context) | 
|  |  | 
|  | c = self._cmp(other) | 
|  | if c == 0: | 
|  | # If both operands are finite and equal in numerical value | 
|  | # then an ordering is applied: | 
|  | # | 
|  | # If the signs differ then max returns the operand with the | 
|  | # positive sign and min returns the operand with the negative sign | 
|  | # | 
|  | # If the signs are the same then the exponent is used to select | 
|  | # the result.  This is exactly the ordering used in compare_total. | 
|  | c = self.compare_total(other) | 
|  |  | 
|  | if c == -1: | 
|  | ans = other | 
|  | else: | 
|  | ans = self | 
|  |  | 
|  | return ans._fix(context) | 
|  |  | 
|  | def min(self, other, context=None): | 
|  | """Returns the smaller value. | 
|  |  | 
|  | Like min(self, other) except if one is not a number, returns | 
|  | NaN (and signals if one is sNaN).  Also rounds. | 
|  | """ | 
|  | other = _convert_other(other, raiseit=True) | 
|  |  | 
|  | if context is None: | 
|  | context = getcontext() | 
|  |  | 
|  | if self._is_special or other._is_special: | 
|  | # If one operand is a quiet NaN and the other is number, then the | 
|  | # number is always returned | 
|  | sn = self._isnan() | 
|  | on = other._isnan() | 
|  | if sn or on: | 
|  | if on == 1 and sn == 0: | 
|  | return self._fix(context) | 
|  | if sn == 1 and on == 0: | 
|  | return other._fix(context) | 
|  | return self._check_nans(other, context) | 
|  |  | 
|  | c = self._cmp(other) | 
|  | if c == 0: | 
|  | c = self.compare_total(other) | 
|  |  | 
|  | if c == -1: | 
|  | ans = self | 
|  | else: | 
|  | ans = other | 
|  |  | 
|  | return ans._fix(context) | 
|  |  | 
|  | def _isinteger(self): | 
|  | """Returns whether self is an integer""" | 
|  | if self._is_special: | 
|  | return False | 
|  | if self._exp >= 0: | 
|  | return True | 
|  | rest = self._int[self._exp:] | 
|  | return rest == '0'*len(rest) | 
|  |  | 
|  | def _iseven(self): | 
|  | """Returns True if self is even.  Assumes self is an integer.""" | 
|  | if not self or self._exp > 0: | 
|  | return True | 
|  | return self._int[-1+self._exp] in '02468' | 
|  |  | 
|  | def adjusted(self): | 
|  | """Return the adjusted exponent of self""" | 
|  | try: | 
|  | return self._exp + len(self._int) - 1 | 
|  | # If NaN or Infinity, self._exp is string | 
|  | except TypeError: | 
|  | return 0 | 
|  |  | 
|  | def canonical(self): | 
|  | """Returns the same Decimal object. | 
|  |  | 
|  | As we do not have different encodings for the same number, the | 
|  | received object already is in its canonical form. | 
|  | """ | 
|  | return self | 
|  |  | 
|  | def compare_signal(self, other, context=None): | 
|  | """Compares self to the other operand numerically. | 
|  |  | 
|  | It's pretty much like compare(), but all NaNs signal, with signaling | 
|  | NaNs taking precedence over quiet NaNs. | 
|  | """ | 
|  | other = _convert_other(other, raiseit = True) | 
|  | ans = self._compare_check_nans(other, context) | 
|  | if ans: | 
|  | return ans | 
|  | return self.compare(other, context=context) | 
|  |  | 
|  | def compare_total(self, other, context=None): | 
|  | """Compares self to other using the abstract representations. | 
|  |  | 
|  | This is not like the standard compare, which use their numerical | 
|  | value. Note that a total ordering is defined for all possible abstract | 
|  | representations. | 
|  | """ | 
|  | other = _convert_other(other, raiseit=True) | 
|  |  | 
|  | # if one is negative and the other is positive, it's easy | 
|  | if self._sign and not other._sign: | 
|  | return _NegativeOne | 
|  | if not self._sign and other._sign: | 
|  | return _One | 
|  | sign = self._sign | 
|  |  | 
|  | # let's handle both NaN types | 
|  | self_nan = self._isnan() | 
|  | other_nan = other._isnan() | 
|  | if self_nan or other_nan: | 
|  | if self_nan == other_nan: | 
|  | # compare payloads as though they're integers | 
|  | self_key = len(self._int), self._int | 
|  | other_key = len(other._int), other._int | 
|  | if self_key < other_key: | 
|  | if sign: | 
|  | return _One | 
|  | else: | 
|  | return _NegativeOne | 
|  | if self_key > other_key: | 
|  | if sign: | 
|  | return _NegativeOne | 
|  | else: | 
|  | return _One | 
|  | return _Zero | 
|  |  | 
|  | if sign: | 
|  | if self_nan == 1: | 
|  | return _NegativeOne | 
|  | if other_nan == 1: | 
|  | return _One | 
|  | if self_nan == 2: | 
|  | return _NegativeOne | 
|  | if other_nan == 2: | 
|  | return _One | 
|  | else: | 
|  | if self_nan == 1: | 
|  | return _One | 
|  | if other_nan == 1: | 
|  | return _NegativeOne | 
|  | if self_nan == 2: | 
|  | return _One | 
|  | if other_nan == 2: | 
|  | return _NegativeOne | 
|  |  | 
|  | if self < other: | 
|  | return _NegativeOne | 
|  | if self > other: | 
|  | return _One | 
|  |  | 
|  | if self._exp < other._exp: | 
|  | if sign: | 
|  | return _One | 
|  | else: | 
|  | return _NegativeOne | 
|  | if self._exp > other._exp: | 
|  | if sign: | 
|  | return _NegativeOne | 
|  | else: | 
|  | return _One | 
|  | return _Zero | 
|  |  | 
|  |  | 
|  | def compare_total_mag(self, other, context=None): | 
|  | """Compares self to other using abstract repr., ignoring sign. | 
|  |  | 
|  | Like compare_total, but with operand's sign ignored and assumed to be 0. | 
|  | """ | 
|  | other = _convert_other(other, raiseit=True) | 
|  |  | 
|  | s = self.copy_abs() | 
|  | o = other.copy_abs() | 
|  | return s.compare_total(o) | 
|  |  | 
|  | def copy_abs(self): | 
|  | """Returns a copy with the sign set to 0. """ | 
|  | return _dec_from_triple(0, self._int, self._exp, self._is_special) | 
|  |  | 
|  | def copy_negate(self): | 
|  | """Returns a copy with the sign inverted.""" | 
|  | if self._sign: | 
|  | return _dec_from_triple(0, self._int, self._exp, self._is_special) | 
|  | else: | 
|  | return _dec_from_triple(1, self._int, self._exp, self._is_special) | 
|  |  | 
|  | def copy_sign(self, other, context=None): | 
|  | """Returns self with the sign of other.""" | 
|  | other = _convert_other(other, raiseit=True) | 
|  | return _dec_from_triple(other._sign, self._int, | 
|  | self._exp, self._is_special) | 
|  |  | 
|  | def exp(self, context=None): | 
|  | """Returns e ** self.""" | 
|  |  | 
|  | if context is None: | 
|  | context = getcontext() | 
|  |  | 
|  | # exp(NaN) = NaN | 
|  | ans = self._check_nans(context=context) | 
|  | if ans: | 
|  | return ans | 
|  |  | 
|  | # exp(-Infinity) = 0 | 
|  | if self._isinfinity() == -1: | 
|  | return _Zero | 
|  |  | 
|  | # exp(0) = 1 | 
|  | if not self: | 
|  | return _One | 
|  |  | 
|  | # exp(Infinity) = Infinity | 
|  | if self._isinfinity() == 1: | 
|  | return Decimal(self) | 
|  |  | 
|  | # the result is now guaranteed to be inexact (the true | 
|  | # mathematical result is transcendental). There's no need to | 
|  | # raise Rounded and Inexact here---they'll always be raised as | 
|  | # a result of the call to _fix. | 
|  | p = context.prec | 
|  | adj = self.adjusted() | 
|  |  | 
|  | # we only need to do any computation for quite a small range | 
|  | # of adjusted exponents---for example, -29 <= adj <= 10 for | 
|  | # the default context.  For smaller exponent the result is | 
|  | # indistinguishable from 1 at the given precision, while for | 
|  | # larger exponent the result either overflows or underflows. | 
|  | if self._sign == 0 and adj > len(str((context.Emax+1)*3)): | 
|  | # overflow | 
|  | ans = _dec_from_triple(0, '1', context.Emax+1) | 
|  | elif self._sign == 1 and adj > len(str((-context.Etiny()+1)*3)): | 
|  | # underflow to 0 | 
|  | ans = _dec_from_triple(0, '1', context.Etiny()-1) | 
|  | elif self._sign == 0 and adj < -p: | 
|  | # p+1 digits; final round will raise correct flags | 
|  | ans = _dec_from_triple(0, '1' + '0'*(p-1) + '1', -p) | 
|  | elif self._sign == 1 and adj < -p-1: | 
|  | # p+1 digits; final round will raise correct flags | 
|  | ans = _dec_from_triple(0, '9'*(p+1), -p-1) | 
|  | # general case | 
|  | else: | 
|  | op = _WorkRep(self) | 
|  | c, e = op.int, op.exp | 
|  | if op.sign == 1: | 
|  | c = -c | 
|  |  | 
|  | # compute correctly rounded result: increase precision by | 
|  | # 3 digits at a time until we get an unambiguously | 
|  | # roundable result | 
|  | extra = 3 | 
|  | while True: | 
|  | coeff, exp = _dexp(c, e, p+extra) | 
|  | if coeff % (5*10**(len(str(coeff))-p-1)): | 
|  | break | 
|  | extra += 3 | 
|  |  | 
|  | ans = _dec_from_triple(0, str(coeff), exp) | 
|  |  | 
|  | # at this stage, ans should round correctly with *any* | 
|  | # rounding mode, not just with ROUND_HALF_EVEN | 
|  | context = context._shallow_copy() | 
|  | rounding = context._set_rounding(ROUND_HALF_EVEN) | 
|  | ans = ans._fix(context) | 
|  | context.rounding = rounding | 
|  |  | 
|  | return ans | 
|  |  | 
|  | def is_canonical(self): | 
|  | """Return True if self is canonical; otherwise return False. | 
|  |  | 
|  | Currently, the encoding of a Decimal instance is always | 
|  | canonical, so this method returns True for any Decimal. | 
|  | """ | 
|  | return True | 
|  |  | 
|  | def is_finite(self): | 
|  | """Return True if self is finite; otherwise return False. | 
|  |  | 
|  | A Decimal instance is considered finite if it is neither | 
|  | infinite nor a NaN. | 
|  | """ | 
|  | return not self._is_special | 
|  |  | 
|  | def is_infinite(self): | 
|  | """Return True if self is infinite; otherwise return False.""" | 
|  | return self._exp == 'F' | 
|  |  | 
|  | def is_nan(self): | 
|  | """Return True if self is a qNaN or sNaN; otherwise return False.""" | 
|  | return self._exp in ('n', 'N') | 
|  |  | 
|  | def is_normal(self, context=None): | 
|  | """Return True if self is a normal number; otherwise return False.""" | 
|  | if self._is_special or not self: | 
|  | return False | 
|  | if context is None: | 
|  | context = getcontext() | 
|  | return context.Emin <= self.adjusted() | 
|  |  | 
|  | def is_qnan(self): | 
|  | """Return True if self is a quiet NaN; otherwise return False.""" | 
|  | return self._exp == 'n' | 
|  |  | 
|  | def is_signed(self): | 
|  | """Return True if self is negative; otherwise return False.""" | 
|  | return self._sign == 1 | 
|  |  | 
|  | def is_snan(self): | 
|  | """Return True if self is a signaling NaN; otherwise return False.""" | 
|  | return self._exp == 'N' | 
|  |  | 
|  | def is_subnormal(self, context=None): | 
|  | """Return True if self is subnormal; otherwise return False.""" | 
|  | if self._is_special or not self: | 
|  | return False | 
|  | if context is None: | 
|  | context = getcontext() | 
|  | return self.adjusted() < context.Emin | 
|  |  | 
|  | def is_zero(self): | 
|  | """Return True if self is a zero; otherwise return False.""" | 
|  | return not self._is_special and self._int == '0' | 
|  |  | 
|  | def _ln_exp_bound(self): | 
|  | """Compute a lower bound for the adjusted exponent of self.ln(). | 
|  | In other words, compute r such that self.ln() >= 10**r.  Assumes | 
|  | that self is finite and positive and that self != 1. | 
|  | """ | 
|  |  | 
|  | # for 0.1 <= x <= 10 we use the inequalities 1-1/x <= ln(x) <= x-1 | 
|  | adj = self._exp + len(self._int) - 1 | 
|  | if adj >= 1: | 
|  | # argument >= 10; we use 23/10 = 2.3 as a lower bound for ln(10) | 
|  | return len(str(adj*23//10)) - 1 | 
|  | if adj <= -2: | 
|  | # argument <= 0.1 | 
|  | return len(str((-1-adj)*23//10)) - 1 | 
|  | op = _WorkRep(self) | 
|  | c, e = op.int, op.exp | 
|  | if adj == 0: | 
|  | # 1 < self < 10 | 
|  | num = str(c-10**-e) | 
|  | den = str(c) | 
|  | return len(num) - len(den) - (num < den) | 
|  | # adj == -1, 0.1 <= self < 1 | 
|  | return e + len(str(10**-e - c)) - 1 | 
|  |  | 
|  |  | 
|  | def ln(self, context=None): | 
|  | """Returns the natural (base e) logarithm of self.""" | 
|  |  | 
|  | if context is None: | 
|  | context = getcontext() | 
|  |  | 
|  | # ln(NaN) = NaN | 
|  | ans = self._check_nans(context=context) | 
|  | if ans: | 
|  | return ans | 
|  |  | 
|  | # ln(0.0) == -Infinity | 
|  | if not self: | 
|  | return _NegativeInfinity | 
|  |  | 
|  | # ln(Infinity) = Infinity | 
|  | if self._isinfinity() == 1: | 
|  | return _Infinity | 
|  |  | 
|  | # ln(1.0) == 0.0 | 
|  | if self == _One: | 
|  | return _Zero | 
|  |  | 
|  | # ln(negative) raises InvalidOperation | 
|  | if self._sign == 1: | 
|  | return context._raise_error(InvalidOperation, | 
|  | 'ln of a negative value') | 
|  |  | 
|  | # result is irrational, so necessarily inexact | 
|  | op = _WorkRep(self) | 
|  | c, e = op.int, op.exp | 
|  | p = context.prec | 
|  |  | 
|  | # correctly rounded result: repeatedly increase precision by 3 | 
|  | # until we get an unambiguously roundable result | 
|  | places = p - self._ln_exp_bound() + 2 # at least p+3 places | 
|  | while True: | 
|  | coeff = _dlog(c, e, places) | 
|  | # assert len(str(abs(coeff)))-p >= 1 | 
|  | if coeff % (5*10**(len(str(abs(coeff)))-p-1)): | 
|  | break | 
|  | places += 3 | 
|  | ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places) | 
|  |  | 
|  | context = context._shallow_copy() | 
|  | rounding = context._set_rounding(ROUND_HALF_EVEN) | 
|  | ans = ans._fix(context) | 
|  | context.rounding = rounding | 
|  | return ans | 
|  |  | 
|  | def _log10_exp_bound(self): | 
|  | """Compute a lower bound for the adjusted exponent of self.log10(). | 
|  | In other words, find r such that self.log10() >= 10**r. | 
|  | Assumes that self is finite and positive and that self != 1. | 
|  | """ | 
|  |  | 
|  | # For x >= 10 or x < 0.1 we only need a bound on the integer | 
|  | # part of log10(self), and this comes directly from the | 
|  | # exponent of x.  For 0.1 <= x <= 10 we use the inequalities | 
|  | # 1-1/x <= log(x) <= x-1. If x > 1 we have |log10(x)| > | 
|  | # (1-1/x)/2.31 > 0.  If x < 1 then |log10(x)| > (1-x)/2.31 > 0 | 
|  |  | 
|  | adj = self._exp + len(self._int) - 1 | 
|  | if adj >= 1: | 
|  | # self >= 10 | 
|  | return len(str(adj))-1 | 
|  | if adj <= -2: | 
|  | # self < 0.1 | 
|  | return len(str(-1-adj))-1 | 
|  | op = _WorkRep(self) | 
|  | c, e = op.int, op.exp | 
|  | if adj == 0: | 
|  | # 1 < self < 10 | 
|  | num = str(c-10**-e) | 
|  | den = str(231*c) | 
|  | return len(num) - len(den) - (num < den) + 2 | 
|  | # adj == -1, 0.1 <= self < 1 | 
|  | num = str(10**-e-c) | 
|  | return len(num) + e - (num < "231") - 1 | 
|  |  | 
|  | def log10(self, context=None): | 
|  | """Returns the base 10 logarithm of self.""" | 
|  |  | 
|  | if context is None: | 
|  | context = getcontext() | 
|  |  | 
|  | # log10(NaN) = NaN | 
|  | ans = self._check_nans(context=context) | 
|  | if ans: | 
|  | return ans | 
|  |  | 
|  | # log10(0.0) == -Infinity | 
|  | if not self: | 
|  | return _NegativeInfinity | 
|  |  | 
|  | # log10(Infinity) = Infinity | 
|  | if self._isinfinity() == 1: | 
|  | return _Infinity | 
|  |  | 
|  | # log10(negative or -Infinity) raises InvalidOperation | 
|  | if self._sign == 1: | 
|  | return context._raise_error(InvalidOperation, | 
|  | 'log10 of a negative value') | 
|  |  | 
|  | # log10(10**n) = n | 
|  | if self._int[0] == '1' and self._int[1:] == '0'*(len(self._int) - 1): | 
|  | # answer may need rounding | 
|  | ans = Decimal(self._exp + len(self._int) - 1) | 
|  | else: | 
|  | # result is irrational, so necessarily inexact | 
|  | op = _WorkRep(self) | 
|  | c, e = op.int, op.exp | 
|  | p = context.prec | 
|  |  | 
|  | # correctly rounded result: repeatedly increase precision | 
|  | # until result is unambiguously roundable | 
|  | places = p-self._log10_exp_bound()+2 | 
|  | while True: | 
|  | coeff = _dlog10(c, e, places) | 
|  | # assert len(str(abs(coeff)))-p >= 1 | 
|  | if coeff % (5*10**(len(str(abs(coeff)))-p-1)): | 
|  | break | 
|  | places += 3 | 
|  | ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places) | 
|  |  | 
|  | context = context._shallow_copy() | 
|  | rounding = context._set_rounding(ROUND_HALF_EVEN) | 
|  | ans = ans._fix(context) | 
|  | context.rounding = rounding | 
|  | return ans | 
|  |  | 
|  | def logb(self, context=None): | 
|  | """ Returns the exponent of the magnitude of self's MSD. | 
|  |  | 
|  | The result is the integer which is the exponent of the magnitude | 
|  | of the most significant digit of self (as though it were truncated | 
|  | to a single digit while maintaining the value of that digit and | 
|  | without limiting the resulting exponent). | 
|  | """ | 
|  | # logb(NaN) = NaN | 
|  | ans = self._check_nans(context=context) | 
|  | if ans: | 
|  | return ans | 
|  |  | 
|  | if context is None: | 
|  | context = getcontext() | 
|  |  | 
|  | # logb(+/-Inf) = +Inf | 
|  | if self._isinfinity(): | 
|  | return _Infinity | 
|  |  | 
|  | # logb(0) = -Inf, DivisionByZero | 
|  | if not self: | 
|  | return context._raise_error(DivisionByZero, 'logb(0)', 1) | 
|  |  | 
|  | # otherwise, simply return the adjusted exponent of self, as a | 
|  | # Decimal.  Note that no attempt is made to fit the result | 
|  | # into the current context. | 
|  | ans = Decimal(self.adjusted()) | 
|  | return ans._fix(context) | 
|  |  | 
|  | def _islogical(self): | 
|  | """Return True if self is a logical operand. | 
|  |  | 
|  | For being logical, it must be a finite number with a sign of 0, | 
|  | an exponent of 0, and a coefficient whose digits must all be | 
|  | either 0 or 1. | 
|  | """ | 
|  | if self._sign != 0 or self._exp != 0: | 
|  | return False | 
|  | for dig in self._int: | 
|  | if dig not in '01': | 
|  | return False | 
|  | return True | 
|  |  | 
|  | def _fill_logical(self, context, opa, opb): | 
|  | dif = context.prec - len(opa) | 
|  | if dif > 0: | 
|  | opa = '0'*dif + opa | 
|  | elif dif < 0: | 
|  | opa = opa[-context.prec:] | 
|  | dif = context.prec - len(opb) | 
|  | if dif > 0: | 
|  | opb = '0'*dif + opb | 
|  | elif dif < 0: | 
|  | opb = opb[-context.prec:] | 
|  | return opa, opb | 
|  |  | 
|  | def logical_and(self, other, context=None): | 
|  | """Applies an 'and' operation between self and other's digits.""" | 
|  | if context is None: | 
|  | context = getcontext() | 
|  |  | 
|  | other = _convert_other(other, raiseit=True) | 
|  |  | 
|  | if not self._islogical() or not other._islogical(): | 
|  | return context._raise_error(InvalidOperation) | 
|  |  | 
|  | # fill to context.prec | 
|  | (opa, opb) = self._fill_logical(context, self._int, other._int) | 
|  |  | 
|  | # make the operation, and clean starting zeroes | 
|  | result = "".join([str(int(a)&int(b)) for a,b in zip(opa,opb)]) | 
|  | return _dec_from_triple(0, result.lstrip('0') or '0', 0) | 
|  |  | 
|  | def logical_invert(self, context=None): | 
|  | """Invert all its digits.""" | 
|  | if context is None: | 
|  | context = getcontext() | 
|  | return self.logical_xor(_dec_from_triple(0,'1'*context.prec,0), | 
|  | context) | 
|  |  | 
|  | def logical_or(self, other, context=None): | 
|  | """Applies an 'or' operation between self and other's digits.""" | 
|  | if context is None: | 
|  | context = getcontext() | 
|  |  | 
|  | other = _convert_other(other, raiseit=True) | 
|  |  | 
|  | if not self._islogical() or not other._islogical(): | 
|  | return context._raise_error(InvalidOperation) | 
|  |  | 
|  | # fill to context.prec | 
|  | (opa, opb) = self._fill_logical(context, self._int, other._int) | 
|  |  | 
|  | # make the operation, and clean starting zeroes | 
|  | result = "".join([str(int(a)|int(b)) for a,b in zip(opa,opb)]) | 
|  | return _dec_from_triple(0, result.lstrip('0') or '0', 0) | 
|  |  | 
|  | def logical_xor(self, other, context=None): | 
|  | """Applies an 'xor' operation between self and other's digits.""" | 
|  | if context is None: | 
|  | context = getcontext() | 
|  |  | 
|  | other = _convert_other(other, raiseit=True) | 
|  |  | 
|  | if not self._islogical() or not other._islogical(): | 
|  | return context._raise_error(InvalidOperation) | 
|  |  | 
|  | # fill to context.prec | 
|  | (opa, opb) = self._fill_logical(context, self._int, other._int) | 
|  |  | 
|  | # make the operation, and clean starting zeroes | 
|  | result = "".join([str(int(a)^int(b)) for a,b in zip(opa,opb)]) | 
|  | return _dec_from_triple(0, result.lstrip('0') or '0', 0) | 
|  |  | 
|  | def max_mag(self, other, context=None): | 
|  | """Compares the values numerically with their sign ignored.""" | 
|  | other = _convert_other(other, raiseit=True) | 
|  |  | 
|  | if context is None: | 
|  | context = getcontext() | 
|  |  | 
|  | if self._is_special or other._is_special: | 
|  | # If one operand is a quiet NaN and the other is number, then the | 
|  | # number is always returned | 
|  | sn = self._isnan() | 
|  | on = other._isnan() | 
|  | if sn or on: | 
|  | if on == 1 and sn == 0: | 
|  | return self._fix(context) | 
|  | if sn == 1 and on == 0: | 
|  | return other._fix(context) | 
|  | return self._check_nans(other, context) | 
|  |  | 
|  | c = self.copy_abs()._cmp(other.copy_abs()) | 
|  | if c == 0: | 
|  | c = self.compare_total(other) | 
|  |  | 
|  | if c == -1: | 
|  | ans = other | 
|  | else: | 
|  | ans = self | 
|  |  | 
|  | return ans._fix(context) | 
|  |  | 
|  | def min_mag(self, other, context=None): | 
|  | """Compares the values numerically with their sign ignored.""" | 
|  | other = _convert_other(other, raiseit=True) | 
|  |  | 
|  | if context is None: | 
|  | context = getcontext() | 
|  |  | 
|  | if self._is_special or other._is_special: | 
|  | # If one operand is a quiet NaN and the other is number, then the | 
|  | # number is always returned | 
|  | sn = self._isnan() | 
|  | on = other._isnan() | 
|  | if sn or on: | 
|  | if on == 1 and sn == 0: | 
|  | return self._fix(context) | 
|  | if sn == 1 and on == 0: | 
|  | return other._fix(context) | 
|  | return self._check_nans(other, context) | 
|  |  | 
|  | c = self.copy_abs()._cmp(other.copy_abs()) | 
|  | if c == 0: | 
|  | c = self.compare_total(other) | 
|  |  | 
|  | if c == -1: | 
|  | ans = self | 
|  | else: | 
|  | ans = other | 
|  |  | 
|  | return ans._fix(context) | 
|  |  | 
|  | def next_minus(self, context=None): | 
|  | """Returns the largest representable number smaller than itself.""" | 
|  | if context is None: | 
|  | context = getcontext() | 
|  |  | 
|  | ans = self._check_nans(context=context) | 
|  | if ans: | 
|  | return ans | 
|  |  | 
|  | if self._isinfinity() == -1: | 
|  | return _NegativeInfinity | 
|  | if self._isinfinity() == 1: | 
|  | return _dec_from_triple(0, '9'*context.prec, context.Etop()) | 
|  |  | 
|  | context = context.copy() | 
|  | context._set_rounding(ROUND_FLOOR) | 
|  | context._ignore_all_flags() | 
|  | new_self = self._fix(context) | 
|  | if new_self != self: | 
|  | return new_self | 
|  | return self.__sub__(_dec_from_triple(0, '1', context.Etiny()-1), | 
|  | context) | 
|  |  | 
|  | def next_plus(self, context=None): | 
|  | """Returns the smallest representable number larger than itself.""" | 
|  | if context is None: | 
|  | context = getcontext() | 
|  |  | 
|  | ans = self._check_nans(context=context) | 
|  | if ans: | 
|  | return ans | 
|  |  | 
|  | if self._isinfinity() == 1: | 
|  | return _Infinity | 
|  | if self._isinfinity() == -1: | 
|  | return _dec_from_triple(1, '9'*context.prec, context.Etop()) | 
|  |  | 
|  | context = context.copy() | 
|  | context._set_rounding(ROUND_CEILING) | 
|  | context._ignore_all_flags() | 
|  | new_self = self._fix(context) | 
|  | if new_self != self: | 
|  | return new_self | 
|  | return self.__add__(_dec_from_triple(0, '1', context.Etiny()-1), | 
|  | context) | 
|  |  | 
|  | def next_toward(self, other, context=None): | 
|  | """Returns the number closest to self, in the direction towards other. | 
|  |  | 
|  | The result is the closest representable number to self | 
|  | (excluding self) that is in the direction towards other, | 
|  | unless both have the same value.  If the two operands are | 
|  | numerically equal, then the result is a copy of self with the | 
|  | sign set to be the same as the sign of other. | 
|  | """ | 
|  | other = _convert_other(other, raiseit=True) | 
|  |  | 
|  | if context is None: | 
|  | context = getcontext() | 
|  |  | 
|  | ans = self._check_nans(other, context) | 
|  | if ans: | 
|  | return ans | 
|  |  | 
|  | comparison = self._cmp(other) | 
|  | if comparison == 0: | 
|  | return self.copy_sign(other) | 
|  |  | 
|  | if comparison == -1: | 
|  | ans = self.next_plus(context) | 
|  | else: # comparison == 1 | 
|  | ans = self.next_minus(context) | 
|  |  | 
|  | # decide which flags to raise using value of ans | 
|  | if ans._isinfinity(): | 
|  | context._raise_error(Overflow, | 
|  | 'Infinite result from next_toward', | 
|  | ans._sign) | 
|  | context._raise_error(Inexact) | 
|  | context._raise_error(Rounded) | 
|  | elif ans.adjusted() < context.Emin: | 
|  | context._raise_error(Underflow) | 
|  | context._raise_error(Subnormal) | 
|  | context._raise_error(Inexact) | 
|  | context._raise_error(Rounded) | 
|  | # if precision == 1 then we don't raise Clamped for a | 
|  | # result 0E-Etiny. | 
|  | if not ans: | 
|  | context._raise_error(Clamped) | 
|  |  | 
|  | return ans | 
|  |  | 
|  | def number_class(self, context=None): | 
|  | """Returns an indication of the class of self. | 
|  |  | 
|  | The class is one of the following strings: | 
|  | sNaN | 
|  | NaN | 
|  | -Infinity | 
|  | -Normal | 
|  | -Subnormal | 
|  | -Zero | 
|  | +Zero | 
|  | +Subnormal | 
|  | +Normal | 
|  | +Infinity | 
|  | """ | 
|  | if self.is_snan(): | 
|  | return "sNaN" | 
|  | if self.is_qnan(): | 
|  | return "NaN" | 
|  | inf = self._isinfinity() | 
|  | if inf == 1: | 
|  | return "+Infinity" | 
|  | if inf == -1: | 
|  | return "-Infinity" | 
|  | if self.is_zero(): | 
|  | if self._sign: | 
|  | return "-Zero" | 
|  | else: | 
|  | return "+Zero" | 
|  | if context is None: | 
|  | context = getcontext() | 
|  | if self.is_subnormal(context=context): | 
|  | if self._sign: | 
|  | return "-Subnormal" | 
|  | else: | 
|  | return "+Subnormal" | 
|  | # just a normal, regular, boring number, :) | 
|  | if self._sign: | 
|  | return "-Normal" | 
|  | else: | 
|  | return "+Normal" | 
|  |  | 
|  | def radix(self): | 
|  | """Just returns 10, as this is Decimal, :)""" | 
|  | return Decimal(10) | 
|  |  | 
|  | def rotate(self, other, context=None): | 
|  | """Returns a rotated copy of self, value-of-other times.""" | 
|  | if context is None: | 
|  | context = getcontext() | 
|  |  | 
|  | other = _convert_other(other, raiseit=True) | 
|  |  | 
|  | ans = self._check_nans(other, context) | 
|  | if ans: | 
|  | return ans | 
|  |  | 
|  | if other._exp != 0: | 
|  | return context._raise_error(InvalidOperation) | 
|  | if not (-context.prec <= int(other) <= context.prec): | 
|  | return context._raise_error(InvalidOperation) | 
|  |  | 
|  | if self._isinfinity(): | 
|  | return Decimal(self) | 
|  |  | 
|  | # get values, pad if necessary | 
|  | torot = int(other) | 
|  | rotdig = self._int | 
|  | topad = context.prec - len(rotdig) | 
|  | if topad > 0: | 
|  | rotdig = '0'*topad + rotdig | 
|  | elif topad < 0: | 
|  | rotdig = rotdig[-topad:] | 
|  |  | 
|  | # let's rotate! | 
|  | rotated = rotdig[torot:] + rotdig[:torot] | 
|  | return _dec_from_triple(self._sign, | 
|  | rotated.lstrip('0') or '0', self._exp) | 
|  |  | 
|  | def scaleb(self, other, context=None): | 
|  | """Returns self operand after adding the second value to its exp.""" | 
|  | if context is None: | 
|  | context = getcontext() | 
|  |  | 
|  | other = _convert_other(other, raiseit=True) | 
|  |  | 
|  | ans = self._check_nans(other, context) | 
|  | if ans: | 
|  | return ans | 
|  |  | 
|  | if other._exp != 0: | 
|  | return context._raise_error(InvalidOperation) | 
|  | liminf = -2 * (context.Emax + context.prec) | 
|  | limsup =  2 * (context.Emax + context.prec) | 
|  | if not (liminf <= int(other) <= limsup): | 
|  | return context._raise_error(InvalidOperation) | 
|  |  | 
|  | if self._isinfinity(): | 
|  | return Decimal(self) | 
|  |  | 
|  | d = _dec_from_triple(self._sign, self._int, self._exp + int(other)) | 
|  | d = d._fix(context) | 
|  | return d | 
|  |  | 
|  | def shift(self, other, context=None): | 
|  | """Returns a shifted copy of self, value-of-other times.""" | 
|  | if context is None: | 
|  | context = getcontext() | 
|  |  | 
|  | other = _convert_other(other, raiseit=True) | 
|  |  | 
|  | ans = self._check_nans(other, context) | 
|  | if ans: | 
|  | return ans | 
|  |  | 
|  | if other._exp != 0: | 
|  | return context._raise_error(InvalidOperation) | 
|  | if not (-context.prec <= int(other) <= context.prec): | 
|  | return context._raise_error(InvalidOperation) | 
|  |  | 
|  | if self._isinfinity(): | 
|  | return Decimal(self) | 
|  |  | 
|  | # get values, pad if necessary | 
|  | torot = int(other) | 
|  | rotdig = self._int | 
|  | topad = context.prec - len(rotdig) | 
|  | if topad > 0: | 
|  | rotdig = '0'*topad + rotdig | 
|  | elif topad < 0: | 
|  | rotdig = rotdig[-topad:] | 
|  |  | 
|  | # let's shift! | 
|  | if torot < 0: | 
|  | shifted = rotdig[:torot] | 
|  | else: | 
|  | shifted = rotdig + '0'*torot | 
|  | shifted = shifted[-context.prec:] | 
|  |  | 
|  | return _dec_from_triple(self._sign, | 
|  | shifted.lstrip('0') or '0', self._exp) | 
|  |  | 
|  | # Support for pickling, copy, and deepcopy | 
|  | def __reduce__(self): | 
|  | return (self.__class__, (str(self),)) | 
|  |  | 
|  | def __copy__(self): | 
|  | if type(self) is Decimal: | 
|  | return self     # I'm immutable; therefore I am my own clone | 
|  | return self.__class__(str(self)) | 
|  |  | 
|  | def __deepcopy__(self, memo): | 
|  | if type(self) is Decimal: | 
|  | return self     # My components are also immutable | 
|  | return self.__class__(str(self)) | 
|  |  | 
|  | # PEP 3101 support.  the _localeconv keyword argument should be | 
|  | # considered private: it's provided for ease of testing only. | 
|  | def __format__(self, specifier, context=None, _localeconv=None): | 
|  | """Format a Decimal instance according to the given specifier. | 
|  |  | 
|  | The specifier should be a standard format specifier, with the | 
|  | form described in PEP 3101.  Formatting types 'e', 'E', 'f', | 
|  | 'F', 'g', 'G', 'n' and '%' are supported.  If the formatting | 
|  | type is omitted it defaults to 'g' or 'G', depending on the | 
|  | value of context.capitals. | 
|  | """ | 
|  |  | 
|  | # Note: PEP 3101 says that if the type is not present then | 
|  | # there should be at least one digit after the decimal point. | 
|  | # We take the liberty of ignoring this requirement for | 
|  | # Decimal---it's presumably there to make sure that | 
|  | # format(float, '') behaves similarly to str(float). | 
|  | if context is None: | 
|  | context = getcontext() | 
|  |  | 
|  | spec = _parse_format_specifier(specifier, _localeconv=_localeconv) | 
|  |  | 
|  | # special values don't care about the type or precision | 
|  | if self._is_special: | 
|  | sign = _format_sign(self._sign, spec) | 
|  | body = str(self.copy_abs()) | 
|  | if spec['type'] == '%': | 
|  | body += '%' | 
|  | return _format_align(sign, body, spec) | 
|  |  | 
|  | # a type of None defaults to 'g' or 'G', depending on context | 
|  | if spec['type'] is None: | 
|  | spec['type'] = ['g', 'G'][context.capitals] | 
|  |  | 
|  | # if type is '%', adjust exponent of self accordingly | 
|  | if spec['type'] == '%': | 
|  | self = _dec_from_triple(self._sign, self._int, self._exp+2) | 
|  |  | 
|  | # round if necessary, taking rounding mode from the context | 
|  | rounding = context.rounding | 
|  | precision = spec['precision'] | 
|  | if precision is not None: | 
|  | if spec['type'] in 'eE': | 
|  | self = self._round(precision+1, rounding) | 
|  | elif spec['type'] in 'fF%': | 
|  | self = self._rescale(-precision, rounding) | 
|  | elif spec['type'] in 'gG' and len(self._int) > precision: | 
|  | self = self._round(precision, rounding) | 
|  | # special case: zeros with a positive exponent can't be | 
|  | # represented in fixed point; rescale them to 0e0. | 
|  | if not self and self._exp > 0 and spec['type'] in 'fF%': | 
|  | self = self._rescale(0, rounding) | 
|  |  | 
|  | # figure out placement of the decimal point | 
|  | leftdigits = self._exp + len(self._int) | 
|  | if spec['type'] in 'eE': | 
|  | if not self and precision is not None: | 
|  | dotplace = 1 - precision | 
|  | else: | 
|  | dotplace = 1 | 
|  | elif spec['type'] in 'fF%': | 
|  | dotplace = leftdigits | 
|  | elif spec['type'] in 'gG': | 
|  | if self._exp <= 0 and leftdigits > -6: | 
|  | dotplace = leftdigits | 
|  | else: | 
|  | dotplace = 1 | 
|  |  | 
|  | # find digits before and after decimal point, and get exponent | 
|  | if dotplace < 0: | 
|  | intpart = '0' | 
|  | fracpart = '0'*(-dotplace) + self._int | 
|  | elif dotplace > len(self._int): | 
|  | intpart = self._int + '0'*(dotplace-len(self._int)) | 
|  | fracpart = '' | 
|  | else: | 
|  | intpart = self._int[:dotplace] or '0' | 
|  | fracpart = self._int[dotplace:] | 
|  | exp = leftdigits-dotplace | 
|  |  | 
|  | # done with the decimal-specific stuff;  hand over the rest | 
|  | # of the formatting to the _format_number function | 
|  | return _format_number(self._sign, intpart, fracpart, exp, spec) | 
|  |  | 
|  | def _dec_from_triple(sign, coefficient, exponent, special=False): | 
|  | """Create a decimal instance directly, without any validation, | 
|  | normalization (e.g. removal of leading zeros) or argument | 
|  | conversion. | 
|  |  | 
|  | This function is for *internal use only*. | 
|  | """ | 
|  |  | 
|  | self = object.__new__(Decimal) | 
|  | self._sign = sign | 
|  | self._int = coefficient | 
|  | self._exp = exponent | 
|  | self._is_special = special | 
|  |  | 
|  | return self | 
|  |  | 
|  | # Register Decimal as a kind of Number (an abstract base class). | 
|  | # However, do not register it as Real (because Decimals are not | 
|  | # interoperable with floats). | 
|  | _numbers.Number.register(Decimal) | 
|  |  | 
|  |  | 
|  | ##### Context class ####################################################### | 
|  |  | 
|  | class _ContextManager(object): | 
|  | """Context manager class to support localcontext(). | 
|  |  | 
|  | Sets a copy of the supplied context in __enter__() and restores | 
|  | the previous decimal context in __exit__() | 
|  | """ | 
|  | def __init__(self, new_context): | 
|  | self.new_context = new_context.copy() | 
|  | def __enter__(self): | 
|  | self.saved_context = getcontext() | 
|  | setcontext(self.new_context) | 
|  | return self.new_context | 
|  | def __exit__(self, t, v, tb): | 
|  | setcontext(self.saved_context) | 
|  |  | 
|  | class Context(object): | 
|  | """Contains the context for a Decimal instance. | 
|  |  | 
|  | Contains: | 
|  | prec - precision (for use in rounding, division, square roots..) | 
|  | rounding - rounding type (how you round) | 
|  | traps - If traps[exception] = 1, then the exception is | 
|  | raised when it is caused.  Otherwise, a value is | 
|  | substituted in. | 
|  | flags  - When an exception is caused, flags[exception] is set. | 
|  | (Whether or not the trap_enabler is set) | 
|  | Should be reset by user of Decimal instance. | 
|  | Emin -   Minimum exponent | 
|  | Emax -   Maximum exponent | 
|  | capitals -      If 1, 1*10^1 is printed as 1E+1. | 
|  | If 0, printed as 1e1 | 
|  | clamp -  If 1, change exponents if too high (Default 0) | 
|  | """ | 
|  |  | 
|  | def __init__(self, prec=None, rounding=None, Emin=None, Emax=None, | 
|  | capitals=None, clamp=None, flags=None, traps=None, | 
|  | _ignored_flags=None): | 
|  | # Set defaults; for everything except flags and _ignored_flags, | 
|  | # inherit from DefaultContext. | 
|  | try: | 
|  | dc = DefaultContext | 
|  | except NameError: | 
|  | pass | 
|  |  | 
|  | self.prec = prec if prec is not None else dc.prec | 
|  | self.rounding = rounding if rounding is not None else dc.rounding | 
|  | self.Emin = Emin if Emin is not None else dc.Emin | 
|  | self.Emax = Emax if Emax is not None else dc.Emax | 
|  | self.capitals = capitals if capitals is not None else dc.capitals | 
|  | self.clamp = clamp if clamp is not None else dc.clamp | 
|  |  | 
|  | if _ignored_flags is None: | 
|  | self._ignored_flags = [] | 
|  | else: | 
|  | self._ignored_flags = _ignored_flags | 
|  |  | 
|  | if traps is None: | 
|  | self.traps = dc.traps.copy() | 
|  | elif not isinstance(traps, dict): | 
|  | self.traps = dict((s, int(s in traps)) for s in _signals + traps) | 
|  | else: | 
|  | self.traps = traps | 
|  |  | 
|  | if flags is None: | 
|  | self.flags = dict.fromkeys(_signals, 0) | 
|  | elif not isinstance(flags, dict): | 
|  | self.flags = dict((s, int(s in flags)) for s in _signals + flags) | 
|  | else: | 
|  | self.flags = flags | 
|  |  | 
|  | def _set_integer_check(self, name, value, vmin, vmax): | 
|  | if not isinstance(value, int): | 
|  | raise TypeError("%s must be an integer" % name) | 
|  | if vmin == '-inf': | 
|  | if value > vmax: | 
|  | raise ValueError("%s must be in [%s, %d]. got: %s" % (name, vmin, vmax, value)) | 
|  | elif vmax == 'inf': | 
|  | if value < vmin: | 
|  | raise ValueError("%s must be in [%d, %s]. got: %s" % (name, vmin, vmax, value)) | 
|  | else: | 
|  | if value < vmin or value > vmax: | 
|  | raise ValueError("%s must be in [%d, %d]. got %s" % (name, vmin, vmax, value)) | 
|  | return object.__setattr__(self, name, value) | 
|  |  | 
|  | def _set_signal_dict(self, name, d): | 
|  | if not isinstance(d, dict): | 
|  | raise TypeError("%s must be a signal dict" % d) | 
|  | for key in d: | 
|  | if not key in _signals: | 
|  | raise KeyError("%s is not a valid signal dict" % d) | 
|  | for key in _signals: | 
|  | if not key in d: | 
|  | raise KeyError("%s is not a valid signal dict" % d) | 
|  | return object.__setattr__(self, name, d) | 
|  |  | 
|  | def __setattr__(self, name, value): | 
|  | if name == 'prec': | 
|  | return self._set_integer_check(name, value, 1, 'inf') | 
|  | elif name == 'Emin': | 
|  | return self._set_integer_check(name, value, '-inf', 0) | 
|  | elif name == 'Emax': | 
|  | return self._set_integer_check(name, value, 0, 'inf') | 
|  | elif name == 'capitals': | 
|  | return self._set_integer_check(name, value, 0, 1) | 
|  | elif name == 'clamp': | 
|  | return self._set_integer_check(name, value, 0, 1) | 
|  | elif name == 'rounding': | 
|  | if not value in _rounding_modes: | 
|  | # raise TypeError even for strings to have consistency | 
|  | # among various implementations. | 
|  | raise TypeError("%s: invalid rounding mode" % value) | 
|  | return object.__setattr__(self, name, value) | 
|  | elif name == 'flags' or name == 'traps': | 
|  | return self._set_signal_dict(name, value) | 
|  | elif name == '_ignored_flags': | 
|  | return object.__setattr__(self, name, value) | 
|  | else: | 
|  | raise AttributeError( | 
|  | "'decimal.Context' object has no attribute '%s'" % name) | 
|  |  | 
|  | def __delattr__(self, name): | 
|  | raise AttributeError("%s cannot be deleted" % name) | 
|  |  | 
|  | # Support for pickling, copy, and deepcopy | 
|  | def __reduce__(self): | 
|  | flags = [sig for sig, v in self.flags.items() if v] | 
|  | traps = [sig for sig, v in self.traps.items() if v] | 
|  | return (self.__class__, | 
|  | (self.prec, self.rounding, self.Emin, self.Emax, | 
|  | self.capitals, self.clamp, flags, traps)) | 
|  |  | 
|  | def __repr__(self): | 
|  | """Show the current context.""" | 
|  | s = [] | 
|  | s.append('Context(prec=%(prec)d, rounding=%(rounding)s, ' | 
|  | 'Emin=%(Emin)d, Emax=%(Emax)d, capitals=%(capitals)d, ' | 
|  | 'clamp=%(clamp)d' | 
|  | % vars(self)) | 
|  | names = [f.__name__ for f, v in self.flags.items() if v] | 
|  | s.append('flags=[' + ', '.join(names) + ']') | 
|  | names = [t.__name__ for t, v in self.traps.items() if v] | 
|  | s.append('traps=[' + ', '.join(names) + ']') | 
|  | return ', '.join(s) + ')' | 
|  |  | 
|  | def clear_flags(self): | 
|  | """Reset all flags to zero""" | 
|  | for flag in self.flags: | 
|  | self.flags[flag] = 0 | 
|  |  | 
|  | def clear_traps(self): | 
|  | """Reset all traps to zero""" | 
|  | for flag in self.traps: | 
|  | self.traps[flag] = 0 | 
|  |  | 
|  | def _shallow_copy(self): | 
|  | """Returns a shallow copy from self.""" | 
|  | nc = Context(self.prec, self.rounding, self.Emin, self.Emax, | 
|  | self.capitals, self.clamp, self.flags, self.traps, | 
|  | self._ignored_flags) | 
|  | return nc | 
|  |  | 
|  | def copy(self): | 
|  | """Returns a deep copy from self.""" | 
|  | nc = Context(self.prec, self.rounding, self.Emin, self.Emax, | 
|  | self.capitals, self.clamp, | 
|  | self.flags.copy(), self.traps.copy(), | 
|  | self._ignored_flags) | 
|  | return nc | 
|  | __copy__ = copy | 
|  |  | 
|  | def _raise_error(self, condition, explanation = None, *args): | 
|  | """Handles an error | 
|  |  | 
|  | If the flag is in _ignored_flags, returns the default response. | 
|  | Otherwise, it sets the flag, then, if the corresponding | 
|  | trap_enabler is set, it reraises the exception.  Otherwise, it returns | 
|  | the default value after setting the flag. | 
|  | """ | 
|  | error = _condition_map.get(condition, condition) | 
|  | if error in self._ignored_flags: | 
|  | # Don't touch the flag | 
|  | return error().handle(self, *args) | 
|  |  | 
|  | self.flags[error] = 1 | 
|  | if not self.traps[error]: | 
|  | # The errors define how to handle themselves. | 
|  | return condition().handle(self, *args) | 
|  |  | 
|  | # Errors should only be risked on copies of the context | 
|  | # self._ignored_flags = [] | 
|  | raise error(explanation) | 
|  |  | 
|  | def _ignore_all_flags(self): | 
|  | """Ignore all flags, if they are raised""" | 
|  | return self._ignore_flags(*_signals) | 
|  |  | 
|  | def _ignore_flags(self, *flags): | 
|  | """Ignore the flags, if they are raised""" | 
|  | # Do not mutate-- This way, copies of a context leave the original | 
|  | # alone. | 
|  | self._ignored_flags = (self._ignored_flags + list(flags)) | 
|  | return list(flags) | 
|  |  | 
|  | def _regard_flags(self, *flags): | 
|  | """Stop ignoring the flags, if they are raised""" | 
|  | if flags and isinstance(flags[0], (tuple,list)): | 
|  | flags = flags[0] | 
|  | for flag in flags: | 
|  | self._ignored_flags.remove(flag) | 
|  |  | 
|  | # We inherit object.__hash__, so we must deny this explicitly | 
|  | __hash__ = None | 
|  |  | 
|  | def Etiny(self): | 
|  | """Returns Etiny (= Emin - prec + 1)""" | 
|  | return int(self.Emin - self.prec + 1) | 
|  |  | 
|  | def Etop(self): | 
|  | """Returns maximum exponent (= Emax - prec + 1)""" | 
|  | return int(self.Emax - self.prec + 1) | 
|  |  | 
|  | def _set_rounding(self, type): | 
|  | """Sets the rounding type. | 
|  |  | 
|  | Sets the rounding type, and returns the current (previous) | 
|  | rounding type.  Often used like: | 
|  |  | 
|  | context = context.copy() | 
|  | # so you don't change the calling context | 
|  | # if an error occurs in the middle. | 
|  | rounding = context._set_rounding(ROUND_UP) | 
|  | val = self.__sub__(other, context=context) | 
|  | context._set_rounding(rounding) | 
|  |  | 
|  | This will make it round up for that operation. | 
|  | """ | 
|  | rounding = self.rounding | 
|  | self.rounding = type | 
|  | return rounding | 
|  |  | 
|  | def create_decimal(self, num='0'): | 
|  | """Creates a new Decimal instance but using self as context. | 
|  |  | 
|  | This method implements the to-number operation of the | 
|  | IBM Decimal specification.""" | 
|  |  | 
|  | if isinstance(num, str) and (num != num.strip() or '_' in num): | 
|  | return self._raise_error(ConversionSyntax, | 
|  | "trailing or leading whitespace and " | 
|  | "underscores are not permitted.") | 
|  |  | 
|  | d = Decimal(num, context=self) | 
|  | if d._isnan() and len(d._int) > self.prec - self.clamp: | 
|  | return self._raise_error(ConversionSyntax, | 
|  | "diagnostic info too long in NaN") | 
|  | return d._fix(self) | 
|  |  | 
|  | def create_decimal_from_float(self, f): | 
|  | """Creates a new Decimal instance from a float but rounding using self | 
|  | as the context. | 
|  |  | 
|  | >>> context = Context(prec=5, rounding=ROUND_DOWN) | 
|  | >>> context.create_decimal_from_float(3.1415926535897932) | 
|  | Decimal('3.1415') | 
|  | >>> context = Context(prec=5, traps=[Inexact]) | 
|  | >>> context.create_decimal_from_float(3.1415926535897932) | 
|  | Traceback (most recent call last): | 
|  | ... | 
|  | decimal.Inexact: None | 
|  |  | 
|  | """ | 
|  | d = Decimal.from_float(f)       # An exact conversion | 
|  | return d._fix(self)             # Apply the context rounding | 
|  |  | 
|  | # Methods | 
|  | def abs(self, a): | 
|  | """Returns the absolute value of the operand. | 
|  |  | 
|  | If the operand is negative, the result is the same as using the minus | 
|  | operation on the operand.  Otherwise, the result is the same as using | 
|  | the plus operation on the operand. | 
|  |  | 
|  | >>> ExtendedContext.abs(Decimal('2.1')) | 
|  | Decimal('2.1') | 
|  | >>> ExtendedContext.abs(Decimal('-100')) | 
|  | Decimal('100') | 
|  | >>> ExtendedContext.abs(Decimal('101.5')) | 
|  | Decimal('101.5') | 
|  | >>> ExtendedContext.abs(Decimal('-101.5')) | 
|  | Decimal('101.5') | 
|  | >>> ExtendedContext.abs(-1) | 
|  | Decimal('1') | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | return a.__abs__(context=self) | 
|  |  | 
|  | def add(self, a, b): | 
|  | """Return the sum of the two operands. | 
|  |  | 
|  | >>> ExtendedContext.add(Decimal('12'), Decimal('7.00')) | 
|  | Decimal('19.00') | 
|  | >>> ExtendedContext.add(Decimal('1E+2'), Decimal('1.01E+4')) | 
|  | Decimal('1.02E+4') | 
|  | >>> ExtendedContext.add(1, Decimal(2)) | 
|  | Decimal('3') | 
|  | >>> ExtendedContext.add(Decimal(8), 5) | 
|  | Decimal('13') | 
|  | >>> ExtendedContext.add(5, 5) | 
|  | Decimal('10') | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | r = a.__add__(b, context=self) | 
|  | if r is NotImplemented: | 
|  | raise TypeError("Unable to convert %s to Decimal" % b) | 
|  | else: | 
|  | return r | 
|  |  | 
|  | def _apply(self, a): | 
|  | return str(a._fix(self)) | 
|  |  | 
|  | def canonical(self, a): | 
|  | """Returns the same Decimal object. | 
|  |  | 
|  | As we do not have different encodings for the same number, the | 
|  | received object already is in its canonical form. | 
|  |  | 
|  | >>> ExtendedContext.canonical(Decimal('2.50')) | 
|  | Decimal('2.50') | 
|  | """ | 
|  | if not isinstance(a, Decimal): | 
|  | raise TypeError("canonical requires a Decimal as an argument.") | 
|  | return a.canonical() | 
|  |  | 
|  | def compare(self, a, b): | 
|  | """Compares values numerically. | 
|  |  | 
|  | If the signs of the operands differ, a value representing each operand | 
|  | ('-1' if the operand is less than zero, '0' if the operand is zero or | 
|  | negative zero, or '1' if the operand is greater than zero) is used in | 
|  | place of that operand for the comparison instead of the actual | 
|  | operand. | 
|  |  | 
|  | The comparison is then effected by subtracting the second operand from | 
|  | the first and then returning a value according to the result of the | 
|  | subtraction: '-1' if the result is less than zero, '0' if the result is | 
|  | zero or negative zero, or '1' if the result is greater than zero. | 
|  |  | 
|  | >>> ExtendedContext.compare(Decimal('2.1'), Decimal('3')) | 
|  | Decimal('-1') | 
|  | >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.1')) | 
|  | Decimal('0') | 
|  | >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.10')) | 
|  | Decimal('0') | 
|  | >>> ExtendedContext.compare(Decimal('3'), Decimal('2.1')) | 
|  | Decimal('1') | 
|  | >>> ExtendedContext.compare(Decimal('2.1'), Decimal('-3')) | 
|  | Decimal('1') | 
|  | >>> ExtendedContext.compare(Decimal('-3'), Decimal('2.1')) | 
|  | Decimal('-1') | 
|  | >>> ExtendedContext.compare(1, 2) | 
|  | Decimal('-1') | 
|  | >>> ExtendedContext.compare(Decimal(1), 2) | 
|  | Decimal('-1') | 
|  | >>> ExtendedContext.compare(1, Decimal(2)) | 
|  | Decimal('-1') | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | return a.compare(b, context=self) | 
|  |  | 
|  | def compare_signal(self, a, b): | 
|  | """Compares the values of the two operands numerically. | 
|  |  | 
|  | It's pretty much like compare(), but all NaNs signal, with signaling | 
|  | NaNs taking precedence over quiet NaNs. | 
|  |  | 
|  | >>> c = ExtendedContext | 
|  | >>> c.compare_signal(Decimal('2.1'), Decimal('3')) | 
|  | Decimal('-1') | 
|  | >>> c.compare_signal(Decimal('2.1'), Decimal('2.1')) | 
|  | Decimal('0') | 
|  | >>> c.flags[InvalidOperation] = 0 | 
|  | >>> print(c.flags[InvalidOperation]) | 
|  | 0 | 
|  | >>> c.compare_signal(Decimal('NaN'), Decimal('2.1')) | 
|  | Decimal('NaN') | 
|  | >>> print(c.flags[InvalidOperation]) | 
|  | 1 | 
|  | >>> c.flags[InvalidOperation] = 0 | 
|  | >>> print(c.flags[InvalidOperation]) | 
|  | 0 | 
|  | >>> c.compare_signal(Decimal('sNaN'), Decimal('2.1')) | 
|  | Decimal('NaN') | 
|  | >>> print(c.flags[InvalidOperation]) | 
|  | 1 | 
|  | >>> c.compare_signal(-1, 2) | 
|  | Decimal('-1') | 
|  | >>> c.compare_signal(Decimal(-1), 2) | 
|  | Decimal('-1') | 
|  | >>> c.compare_signal(-1, Decimal(2)) | 
|  | Decimal('-1') | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | return a.compare_signal(b, context=self) | 
|  |  | 
|  | def compare_total(self, a, b): | 
|  | """Compares two operands using their abstract representation. | 
|  |  | 
|  | This is not like the standard compare, which use their numerical | 
|  | value. Note that a total ordering is defined for all possible abstract | 
|  | representations. | 
|  |  | 
|  | >>> ExtendedContext.compare_total(Decimal('12.73'), Decimal('127.9')) | 
|  | Decimal('-1') | 
|  | >>> ExtendedContext.compare_total(Decimal('-127'),  Decimal('12')) | 
|  | Decimal('-1') | 
|  | >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.3')) | 
|  | Decimal('-1') | 
|  | >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.30')) | 
|  | Decimal('0') | 
|  | >>> ExtendedContext.compare_total(Decimal('12.3'),  Decimal('12.300')) | 
|  | Decimal('1') | 
|  | >>> ExtendedContext.compare_total(Decimal('12.3'),  Decimal('NaN')) | 
|  | Decimal('-1') | 
|  | >>> ExtendedContext.compare_total(1, 2) | 
|  | Decimal('-1') | 
|  | >>> ExtendedContext.compare_total(Decimal(1), 2) | 
|  | Decimal('-1') | 
|  | >>> ExtendedContext.compare_total(1, Decimal(2)) | 
|  | Decimal('-1') | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | return a.compare_total(b) | 
|  |  | 
|  | def compare_total_mag(self, a, b): | 
|  | """Compares two operands using their abstract representation ignoring sign. | 
|  |  | 
|  | Like compare_total, but with operand's sign ignored and assumed to be 0. | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | return a.compare_total_mag(b) | 
|  |  | 
|  | def copy_abs(self, a): | 
|  | """Returns a copy of the operand with the sign set to 0. | 
|  |  | 
|  | >>> ExtendedContext.copy_abs(Decimal('2.1')) | 
|  | Decimal('2.1') | 
|  | >>> ExtendedContext.copy_abs(Decimal('-100')) | 
|  | Decimal('100') | 
|  | >>> ExtendedContext.copy_abs(-1) | 
|  | Decimal('1') | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | return a.copy_abs() | 
|  |  | 
|  | def copy_decimal(self, a): | 
|  | """Returns a copy of the decimal object. | 
|  |  | 
|  | >>> ExtendedContext.copy_decimal(Decimal('2.1')) | 
|  | Decimal('2.1') | 
|  | >>> ExtendedContext.copy_decimal(Decimal('-1.00')) | 
|  | Decimal('-1.00') | 
|  | >>> ExtendedContext.copy_decimal(1) | 
|  | Decimal('1') | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | return Decimal(a) | 
|  |  | 
|  | def copy_negate(self, a): | 
|  | """Returns a copy of the operand with the sign inverted. | 
|  |  | 
|  | >>> ExtendedContext.copy_negate(Decimal('101.5')) | 
|  | Decimal('-101.5') | 
|  | >>> ExtendedContext.copy_negate(Decimal('-101.5')) | 
|  | Decimal('101.5') | 
|  | >>> ExtendedContext.copy_negate(1) | 
|  | Decimal('-1') | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | return a.copy_negate() | 
|  |  | 
|  | def copy_sign(self, a, b): | 
|  | """Copies the second operand's sign to the first one. | 
|  |  | 
|  | In detail, it returns a copy of the first operand with the sign | 
|  | equal to the sign of the second operand. | 
|  |  | 
|  | >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('7.33')) | 
|  | Decimal('1.50') | 
|  | >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('7.33')) | 
|  | Decimal('1.50') | 
|  | >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('-7.33')) | 
|  | Decimal('-1.50') | 
|  | >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('-7.33')) | 
|  | Decimal('-1.50') | 
|  | >>> ExtendedContext.copy_sign(1, -2) | 
|  | Decimal('-1') | 
|  | >>> ExtendedContext.copy_sign(Decimal(1), -2) | 
|  | Decimal('-1') | 
|  | >>> ExtendedContext.copy_sign(1, Decimal(-2)) | 
|  | Decimal('-1') | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | return a.copy_sign(b) | 
|  |  | 
|  | def divide(self, a, b): | 
|  | """Decimal division in a specified context. | 
|  |  | 
|  | >>> ExtendedContext.divide(Decimal('1'), Decimal('3')) | 
|  | Decimal('0.333333333') | 
|  | >>> ExtendedContext.divide(Decimal('2'), Decimal('3')) | 
|  | Decimal('0.666666667') | 
|  | >>> ExtendedContext.divide(Decimal('5'), Decimal('2')) | 
|  | Decimal('2.5') | 
|  | >>> ExtendedContext.divide(Decimal('1'), Decimal('10')) | 
|  | Decimal('0.1') | 
|  | >>> ExtendedContext.divide(Decimal('12'), Decimal('12')) | 
|  | Decimal('1') | 
|  | >>> ExtendedContext.divide(Decimal('8.00'), Decimal('2')) | 
|  | Decimal('4.00') | 
|  | >>> ExtendedContext.divide(Decimal('2.400'), Decimal('2.0')) | 
|  | Decimal('1.20') | 
|  | >>> ExtendedContext.divide(Decimal('1000'), Decimal('100')) | 
|  | Decimal('10') | 
|  | >>> ExtendedContext.divide(Decimal('1000'), Decimal('1')) | 
|  | Decimal('1000') | 
|  | >>> ExtendedContext.divide(Decimal('2.40E+6'), Decimal('2')) | 
|  | Decimal('1.20E+6') | 
|  | >>> ExtendedContext.divide(5, 5) | 
|  | Decimal('1') | 
|  | >>> ExtendedContext.divide(Decimal(5), 5) | 
|  | Decimal('1') | 
|  | >>> ExtendedContext.divide(5, Decimal(5)) | 
|  | Decimal('1') | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | r = a.__truediv__(b, context=self) | 
|  | if r is NotImplemented: | 
|  | raise TypeError("Unable to convert %s to Decimal" % b) | 
|  | else: | 
|  | return r | 
|  |  | 
|  | def divide_int(self, a, b): | 
|  | """Divides two numbers and returns the integer part of the result. | 
|  |  | 
|  | >>> ExtendedContext.divide_int(Decimal('2'), Decimal('3')) | 
|  | Decimal('0') | 
|  | >>> ExtendedContext.divide_int(Decimal('10'), Decimal('3')) | 
|  | Decimal('3') | 
|  | >>> ExtendedContext.divide_int(Decimal('1'), Decimal('0.3')) | 
|  | Decimal('3') | 
|  | >>> ExtendedContext.divide_int(10, 3) | 
|  | Decimal('3') | 
|  | >>> ExtendedContext.divide_int(Decimal(10), 3) | 
|  | Decimal('3') | 
|  | >>> ExtendedContext.divide_int(10, Decimal(3)) | 
|  | Decimal('3') | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | r = a.__floordiv__(b, context=self) | 
|  | if r is NotImplemented: | 
|  | raise TypeError("Unable to convert %s to Decimal" % b) | 
|  | else: | 
|  | return r | 
|  |  | 
|  | def divmod(self, a, b): | 
|  | """Return (a // b, a % b). | 
|  |  | 
|  | >>> ExtendedContext.divmod(Decimal(8), Decimal(3)) | 
|  | (Decimal('2'), Decimal('2')) | 
|  | >>> ExtendedContext.divmod(Decimal(8), Decimal(4)) | 
|  | (Decimal('2'), Decimal('0')) | 
|  | >>> ExtendedContext.divmod(8, 4) | 
|  | (Decimal('2'), Decimal('0')) | 
|  | >>> ExtendedContext.divmod(Decimal(8), 4) | 
|  | (Decimal('2'), Decimal('0')) | 
|  | >>> ExtendedContext.divmod(8, Decimal(4)) | 
|  | (Decimal('2'), Decimal('0')) | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | r = a.__divmod__(b, context=self) | 
|  | if r is NotImplemented: | 
|  | raise TypeError("Unable to convert %s to Decimal" % b) | 
|  | else: | 
|  | return r | 
|  |  | 
|  | def exp(self, a): | 
|  | """Returns e ** a. | 
|  |  | 
|  | >>> c = ExtendedContext.copy() | 
|  | >>> c.Emin = -999 | 
|  | >>> c.Emax = 999 | 
|  | >>> c.exp(Decimal('-Infinity')) | 
|  | Decimal('0') | 
|  | >>> c.exp(Decimal('-1')) | 
|  | Decimal('0.367879441') | 
|  | >>> c.exp(Decimal('0')) | 
|  | Decimal('1') | 
|  | >>> c.exp(Decimal('1')) | 
|  | Decimal('2.71828183') | 
|  | >>> c.exp(Decimal('0.693147181')) | 
|  | Decimal('2.00000000') | 
|  | >>> c.exp(Decimal('+Infinity')) | 
|  | Decimal('Infinity') | 
|  | >>> c.exp(10) | 
|  | Decimal('22026.4658') | 
|  | """ | 
|  | a =_convert_other(a, raiseit=True) | 
|  | return a.exp(context=self) | 
|  |  | 
|  | def fma(self, a, b, c): | 
|  | """Returns a multiplied by b, plus c. | 
|  |  | 
|  | The first two operands are multiplied together, using multiply, | 
|  | the third operand is then added to the result of that | 
|  | multiplication, using add, all with only one final rounding. | 
|  |  | 
|  | >>> ExtendedContext.fma(Decimal('3'), Decimal('5'), Decimal('7')) | 
|  | Decimal('22') | 
|  | >>> ExtendedContext.fma(Decimal('3'), Decimal('-5'), Decimal('7')) | 
|  | Decimal('-8') | 
|  | >>> ExtendedContext.fma(Decimal('888565290'), Decimal('1557.96930'), Decimal('-86087.7578')) | 
|  | Decimal('1.38435736E+12') | 
|  | >>> ExtendedContext.fma(1, 3, 4) | 
|  | Decimal('7') | 
|  | >>> ExtendedContext.fma(1, Decimal(3), 4) | 
|  | Decimal('7') | 
|  | >>> ExtendedContext.fma(1, 3, Decimal(4)) | 
|  | Decimal('7') | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | return a.fma(b, c, context=self) | 
|  |  | 
|  | def is_canonical(self, a): | 
|  | """Return True if the operand is canonical; otherwise return False. | 
|  |  | 
|  | Currently, the encoding of a Decimal instance is always | 
|  | canonical, so this method returns True for any Decimal. | 
|  |  | 
|  | >>> ExtendedContext.is_canonical(Decimal('2.50')) | 
|  | True | 
|  | """ | 
|  | if not isinstance(a, Decimal): | 
|  | raise TypeError("is_canonical requires a Decimal as an argument.") | 
|  | return a.is_canonical() | 
|  |  | 
|  | def is_finite(self, a): | 
|  | """Return True if the operand is finite; otherwise return False. | 
|  |  | 
|  | A Decimal instance is considered finite if it is neither | 
|  | infinite nor a NaN. | 
|  |  | 
|  | >>> ExtendedContext.is_finite(Decimal('2.50')) | 
|  | True | 
|  | >>> ExtendedContext.is_finite(Decimal('-0.3')) | 
|  | True | 
|  | >>> ExtendedContext.is_finite(Decimal('0')) | 
|  | True | 
|  | >>> ExtendedContext.is_finite(Decimal('Inf')) | 
|  | False | 
|  | >>> ExtendedContext.is_finite(Decimal('NaN')) | 
|  | False | 
|  | >>> ExtendedContext.is_finite(1) | 
|  | True | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | return a.is_finite() | 
|  |  | 
|  | def is_infinite(self, a): | 
|  | """Return True if the operand is infinite; otherwise return False. | 
|  |  | 
|  | >>> ExtendedContext.is_infinite(Decimal('2.50')) | 
|  | False | 
|  | >>> ExtendedContext.is_infinite(Decimal('-Inf')) | 
|  | True | 
|  | >>> ExtendedContext.is_infinite(Decimal('NaN')) | 
|  | False | 
|  | >>> ExtendedContext.is_infinite(1) | 
|  | False | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | return a.is_infinite() | 
|  |  | 
|  | def is_nan(self, a): | 
|  | """Return True if the operand is a qNaN or sNaN; | 
|  | otherwise return False. | 
|  |  | 
|  | >>> ExtendedContext.is_nan(Decimal('2.50')) | 
|  | False | 
|  | >>> ExtendedContext.is_nan(Decimal('NaN')) | 
|  | True | 
|  | >>> ExtendedContext.is_nan(Decimal('-sNaN')) | 
|  | True | 
|  | >>> ExtendedContext.is_nan(1) | 
|  | False | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | return a.is_nan() | 
|  |  | 
|  | def is_normal(self, a): | 
|  | """Return True if the operand is a normal number; | 
|  | otherwise return False. | 
|  |  | 
|  | >>> c = ExtendedContext.copy() | 
|  | >>> c.Emin = -999 | 
|  | >>> c.Emax = 999 | 
|  | >>> c.is_normal(Decimal('2.50')) | 
|  | True | 
|  | >>> c.is_normal(Decimal('0.1E-999')) | 
|  | False | 
|  | >>> c.is_normal(Decimal('0.00')) | 
|  | False | 
|  | >>> c.is_normal(Decimal('-Inf')) | 
|  | False | 
|  | >>> c.is_normal(Decimal('NaN')) | 
|  | False | 
|  | >>> c.is_normal(1) | 
|  | True | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | return a.is_normal(context=self) | 
|  |  | 
|  | def is_qnan(self, a): | 
|  | """Return True if the operand is a quiet NaN; otherwise return False. | 
|  |  | 
|  | >>> ExtendedContext.is_qnan(Decimal('2.50')) | 
|  | False | 
|  | >>> ExtendedContext.is_qnan(Decimal('NaN')) | 
|  | True | 
|  | >>> ExtendedContext.is_qnan(Decimal('sNaN')) | 
|  | False | 
|  | >>> ExtendedContext.is_qnan(1) | 
|  | False | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | return a.is_qnan() | 
|  |  | 
|  | def is_signed(self, a): | 
|  | """Return True if the operand is negative; otherwise return False. | 
|  |  | 
|  | >>> ExtendedContext.is_signed(Decimal('2.50')) | 
|  | False | 
|  | >>> ExtendedContext.is_signed(Decimal('-12')) | 
|  | True | 
|  | >>> ExtendedContext.is_signed(Decimal('-0')) | 
|  | True | 
|  | >>> ExtendedContext.is_signed(8) | 
|  | False | 
|  | >>> ExtendedContext.is_signed(-8) | 
|  | True | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | return a.is_signed() | 
|  |  | 
|  | def is_snan(self, a): | 
|  | """Return True if the operand is a signaling NaN; | 
|  | otherwise return False. | 
|  |  | 
|  | >>> ExtendedContext.is_snan(Decimal('2.50')) | 
|  | False | 
|  | >>> ExtendedContext.is_snan(Decimal('NaN')) | 
|  | False | 
|  | >>> ExtendedContext.is_snan(Decimal('sNaN')) | 
|  | True | 
|  | >>> ExtendedContext.is_snan(1) | 
|  | False | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | return a.is_snan() | 
|  |  | 
|  | def is_subnormal(self, a): | 
|  | """Return True if the operand is subnormal; otherwise return False. | 
|  |  | 
|  | >>> c = ExtendedContext.copy() | 
|  | >>> c.Emin = -999 | 
|  | >>> c.Emax = 999 | 
|  | >>> c.is_subnormal(Decimal('2.50')) | 
|  | False | 
|  | >>> c.is_subnormal(Decimal('0.1E-999')) | 
|  | True | 
|  | >>> c.is_subnormal(Decimal('0.00')) | 
|  | False | 
|  | >>> c.is_subnormal(Decimal('-Inf')) | 
|  | False | 
|  | >>> c.is_subnormal(Decimal('NaN')) | 
|  | False | 
|  | >>> c.is_subnormal(1) | 
|  | False | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | return a.is_subnormal(context=self) | 
|  |  | 
|  | def is_zero(self, a): | 
|  | """Return True if the operand is a zero; otherwise return False. | 
|  |  | 
|  | >>> ExtendedContext.is_zero(Decimal('0')) | 
|  | True | 
|  | >>> ExtendedContext.is_zero(Decimal('2.50')) | 
|  | False | 
|  | >>> ExtendedContext.is_zero(Decimal('-0E+2')) | 
|  | True | 
|  | >>> ExtendedContext.is_zero(1) | 
|  | False | 
|  | >>> ExtendedContext.is_zero(0) | 
|  | True | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | return a.is_zero() | 
|  |  | 
|  | def ln(self, a): | 
|  | """Returns the natural (base e) logarithm of the operand. | 
|  |  | 
|  | >>> c = ExtendedContext.copy() | 
|  | >>> c.Emin = -999 | 
|  | >>> c.Emax = 999 | 
|  | >>> c.ln(Decimal('0')) | 
|  | Decimal('-Infinity') | 
|  | >>> c.ln(Decimal('1.000')) | 
|  | Decimal('0') | 
|  | >>> c.ln(Decimal('2.71828183')) | 
|  | Decimal('1.00000000') | 
|  | >>> c.ln(Decimal('10')) | 
|  | Decimal('2.30258509') | 
|  | >>> c.ln(Decimal('+Infinity')) | 
|  | Decimal('Infinity') | 
|  | >>> c.ln(1) | 
|  | Decimal('0') | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | return a.ln(context=self) | 
|  |  | 
|  | def log10(self, a): | 
|  | """Returns the base 10 logarithm of the operand. | 
|  |  | 
|  | >>> c = ExtendedContext.copy() | 
|  | >>> c.Emin = -999 | 
|  | >>> c.Emax = 999 | 
|  | >>> c.log10(Decimal('0')) | 
|  | Decimal('-Infinity') | 
|  | >>> c.log10(Decimal('0.001')) | 
|  | Decimal('-3') | 
|  | >>> c.log10(Decimal('1.000')) | 
|  | Decimal('0') | 
|  | >>> c.log10(Decimal('2')) | 
|  | Decimal('0.301029996') | 
|  | >>> c.log10(Decimal('10')) | 
|  | Decimal('1') | 
|  | >>> c.log10(Decimal('70')) | 
|  | Decimal('1.84509804') | 
|  | >>> c.log10(Decimal('+Infinity')) | 
|  | Decimal('Infinity') | 
|  | >>> c.log10(0) | 
|  | Decimal('-Infinity') | 
|  | >>> c.log10(1) | 
|  | Decimal('0') | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | return a.log10(context=self) | 
|  |  | 
|  | def logb(self, a): | 
|  | """ Returns the exponent of the magnitude of the operand's MSD. | 
|  |  | 
|  | The result is the integer which is the exponent of the magnitude | 
|  | of the most significant digit of the operand (as though the | 
|  | operand were truncated to a single digit while maintaining the | 
|  | value of that digit and without limiting the resulting exponent). | 
|  |  | 
|  | >>> ExtendedContext.logb(Decimal('250')) | 
|  | Decimal('2') | 
|  | >>> ExtendedContext.logb(Decimal('2.50')) | 
|  | Decimal('0') | 
|  | >>> ExtendedContext.logb(Decimal('0.03')) | 
|  | Decimal('-2') | 
|  | >>> ExtendedContext.logb(Decimal('0')) | 
|  | Decimal('-Infinity') | 
|  | >>> ExtendedContext.logb(1) | 
|  | Decimal('0') | 
|  | >>> ExtendedContext.logb(10) | 
|  | Decimal('1') | 
|  | >>> ExtendedContext.logb(100) | 
|  | Decimal('2') | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | return a.logb(context=self) | 
|  |  | 
|  | def logical_and(self, a, b): | 
|  | """Applies the logical operation 'and' between each operand's digits. | 
|  |  | 
|  | The operands must be both logical numbers. | 
|  |  | 
|  | >>> ExtendedContext.logical_and(Decimal('0'), Decimal('0')) | 
|  | Decimal('0') | 
|  | >>> ExtendedContext.logical_and(Decimal('0'), Decimal('1')) | 
|  | Decimal('0') | 
|  | >>> ExtendedContext.logical_and(Decimal('1'), Decimal('0')) | 
|  | Decimal('0') | 
|  | >>> ExtendedContext.logical_and(Decimal('1'), Decimal('1')) | 
|  | Decimal('1') | 
|  | >>> ExtendedContext.logical_and(Decimal('1100'), Decimal('1010')) | 
|  | Decimal('1000') | 
|  | >>> ExtendedContext.logical_and(Decimal('1111'), Decimal('10')) | 
|  | Decimal('10') | 
|  | >>> ExtendedContext.logical_and(110, 1101) | 
|  | Decimal('100') | 
|  | >>> ExtendedContext.logical_and(Decimal(110), 1101) | 
|  | Decimal('100') | 
|  | >>> ExtendedContext.logical_and(110, Decimal(1101)) | 
|  | Decimal('100') | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | return a.logical_and(b, context=self) | 
|  |  | 
|  | def logical_invert(self, a): | 
|  | """Invert all the digits in the operand. | 
|  |  | 
|  | The operand must be a logical number. | 
|  |  | 
|  | >>> ExtendedContext.logical_invert(Decimal('0')) | 
|  | Decimal('111111111') | 
|  | >>> ExtendedContext.logical_invert(Decimal('1')) | 
|  | Decimal('111111110') | 
|  | >>> ExtendedContext.logical_invert(Decimal('111111111')) | 
|  | Decimal('0') | 
|  | >>> ExtendedContext.logical_invert(Decimal('101010101')) | 
|  | Decimal('10101010') | 
|  | >>> ExtendedContext.logical_invert(1101) | 
|  | Decimal('111110010') | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | return a.logical_invert(context=self) | 
|  |  | 
|  | def logical_or(self, a, b): | 
|  | """Applies the logical operation 'or' between each operand's digits. | 
|  |  | 
|  | The operands must be both logical numbers. | 
|  |  | 
|  | >>> ExtendedContext.logical_or(Decimal('0'), Decimal('0')) | 
|  | Decimal('0') | 
|  | >>> ExtendedContext.logical_or(Decimal('0'), Decimal('1')) | 
|  | Decimal('1') | 
|  | >>> ExtendedContext.logical_or(Decimal('1'), Decimal('0')) | 
|  | Decimal('1') | 
|  | >>> ExtendedContext.logical_or(Decimal('1'), Decimal('1')) | 
|  | Decimal('1') | 
|  | >>> ExtendedContext.logical_or(Decimal('1100'), Decimal('1010')) | 
|  | Decimal('1110') | 
|  | >>> ExtendedContext.logical_or(Decimal('1110'), Decimal('10')) | 
|  | Decimal('1110') | 
|  | >>> ExtendedContext.logical_or(110, 1101) | 
|  | Decimal('1111') | 
|  | >>> ExtendedContext.logical_or(Decimal(110), 1101) | 
|  | Decimal('1111') | 
|  | >>> ExtendedContext.logical_or(110, Decimal(1101)) | 
|  | Decimal('1111') | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | return a.logical_or(b, context=self) | 
|  |  | 
|  | def logical_xor(self, a, b): | 
|  | """Applies the logical operation 'xor' between each operand's digits. | 
|  |  | 
|  | The operands must be both logical numbers. | 
|  |  | 
|  | >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('0')) | 
|  | Decimal('0') | 
|  | >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('1')) | 
|  | Decimal('1') | 
|  | >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('0')) | 
|  | Decimal('1') | 
|  | >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('1')) | 
|  | Decimal('0') | 
|  | >>> ExtendedContext.logical_xor(Decimal('1100'), Decimal('1010')) | 
|  | Decimal('110') | 
|  | >>> ExtendedContext.logical_xor(Decimal('1111'), Decimal('10')) | 
|  | Decimal('1101') | 
|  | >>> ExtendedContext.logical_xor(110, 1101) | 
|  | Decimal('1011') | 
|  | >>> ExtendedContext.logical_xor(Decimal(110), 1101) | 
|  | Decimal('1011') | 
|  | >>> ExtendedContext.logical_xor(110, Decimal(1101)) | 
|  | Decimal('1011') | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | return a.logical_xor(b, context=self) | 
|  |  | 
|  | def max(self, a, b): | 
|  | """max compares two values numerically and returns the maximum. | 
|  |  | 
|  | If either operand is a NaN then the general rules apply. | 
|  | Otherwise, the operands are compared as though by the compare | 
|  | operation.  If they are numerically equal then the left-hand operand | 
|  | is chosen as the result.  Otherwise the maximum (closer to positive | 
|  | infinity) of the two operands is chosen as the result. | 
|  |  | 
|  | >>> ExtendedContext.max(Decimal('3'), Decimal('2')) | 
|  | Decimal('3') | 
|  | >>> ExtendedContext.max(Decimal('-10'), Decimal('3')) | 
|  | Decimal('3') | 
|  | >>> ExtendedContext.max(Decimal('1.0'), Decimal('1')) | 
|  | Decimal('1') | 
|  | >>> ExtendedContext.max(Decimal('7'), Decimal('NaN')) | 
|  | Decimal('7') | 
|  | >>> ExtendedContext.max(1, 2) | 
|  | Decimal('2') | 
|  | >>> ExtendedContext.max(Decimal(1), 2) | 
|  | Decimal('2') | 
|  | >>> ExtendedContext.max(1, Decimal(2)) | 
|  | Decimal('2') | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | return a.max(b, context=self) | 
|  |  | 
|  | def max_mag(self, a, b): | 
|  | """Compares the values numerically with their sign ignored. | 
|  |  | 
|  | >>> ExtendedContext.max_mag(Decimal('7'), Decimal('NaN')) | 
|  | Decimal('7') | 
|  | >>> ExtendedContext.max_mag(Decimal('7'), Decimal('-10')) | 
|  | Decimal('-10') | 
|  | >>> ExtendedContext.max_mag(1, -2) | 
|  | Decimal('-2') | 
|  | >>> ExtendedContext.max_mag(Decimal(1), -2) | 
|  | Decimal('-2') | 
|  | >>> ExtendedContext.max_mag(1, Decimal(-2)) | 
|  | Decimal('-2') | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | return a.max_mag(b, context=self) | 
|  |  | 
|  | def min(self, a, b): | 
|  | """min compares two values numerically and returns the minimum. | 
|  |  | 
|  | If either operand is a NaN then the general rules apply. | 
|  | Otherwise, the operands are compared as though by the compare | 
|  | operation.  If they are numerically equal then the left-hand operand | 
|  | is chosen as the result.  Otherwise the minimum (closer to negative | 
|  | infinity) of the two operands is chosen as the result. | 
|  |  | 
|  | >>> ExtendedContext.min(Decimal('3'), Decimal('2')) | 
|  | Decimal('2') | 
|  | >>> ExtendedContext.min(Decimal('-10'), Decimal('3')) | 
|  | Decimal('-10') | 
|  | >>> ExtendedContext.min(Decimal('1.0'), Decimal('1')) | 
|  | Decimal('1.0') | 
|  | >>> ExtendedContext.min(Decimal('7'), Decimal('NaN')) | 
|  | Decimal('7') | 
|  | >>> ExtendedContext.min(1, 2) | 
|  | Decimal('1') | 
|  | >>> ExtendedContext.min(Decimal(1), 2) | 
|  | Decimal('1') | 
|  | >>> ExtendedContext.min(1, Decimal(29)) | 
|  | Decimal('1') | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | return a.min(b, context=self) | 
|  |  | 
|  | def min_mag(self, a, b): | 
|  | """Compares the values numerically with their sign ignored. | 
|  |  | 
|  | >>> ExtendedContext.min_mag(Decimal('3'), Decimal('-2')) | 
|  | Decimal('-2') | 
|  | >>> ExtendedContext.min_mag(Decimal('-3'), Decimal('NaN')) | 
|  | Decimal('-3') | 
|  | >>> ExtendedContext.min_mag(1, -2) | 
|  | Decimal('1') | 
|  | >>> ExtendedContext.min_mag(Decimal(1), -2) | 
|  | Decimal('1') | 
|  | >>> ExtendedContext.min_mag(1, Decimal(-2)) | 
|  | Decimal('1') | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | return a.min_mag(b, context=self) | 
|  |  | 
|  | def minus(self, a): | 
|  | """Minus corresponds to unary prefix minus in Python. | 
|  |  | 
|  | The operation is evaluated using the same rules as subtract; the | 
|  | operation minus(a) is calculated as subtract('0', a) where the '0' | 
|  | has the same exponent as the operand. | 
|  |  | 
|  | >>> ExtendedContext.minus(Decimal('1.3')) | 
|  | Decimal('-1.3') | 
|  | >>> ExtendedContext.minus(Decimal('-1.3')) | 
|  | Decimal('1.3') | 
|  | >>> ExtendedContext.minus(1) | 
|  | Decimal('-1') | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | return a.__neg__(context=self) | 
|  |  | 
|  | def multiply(self, a, b): | 
|  | """multiply multiplies two operands. | 
|  |  | 
|  | If either operand is a special value then the general rules apply. | 
|  | Otherwise, the operands are multiplied together | 
|  | ('long multiplication'), resulting in a number which may be as long as | 
|  | the sum of the lengths of the two operands. | 
|  |  | 
|  | >>> ExtendedContext.multiply(Decimal('1.20'), Decimal('3')) | 
|  | Decimal('3.60') | 
|  | >>> ExtendedContext.multiply(Decimal('7'), Decimal('3')) | 
|  | Decimal('21') | 
|  | >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('0.8')) | 
|  | Decimal('0.72') | 
|  | >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('-0')) | 
|  | Decimal('-0.0') | 
|  | >>> ExtendedContext.multiply(Decimal('654321'), Decimal('654321')) | 
|  | Decimal('4.28135971E+11') | 
|  | >>> ExtendedContext.multiply(7, 7) | 
|  | Decimal('49') | 
|  | >>> ExtendedContext.multiply(Decimal(7), 7) | 
|  | Decimal('49') | 
|  | >>> ExtendedContext.multiply(7, Decimal(7)) | 
|  | Decimal('49') | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | r = a.__mul__(b, context=self) | 
|  | if r is NotImplemented: | 
|  | raise TypeError("Unable to convert %s to Decimal" % b) | 
|  | else: | 
|  | return r | 
|  |  | 
|  | def next_minus(self, a): | 
|  | """Returns the largest representable number smaller than a. | 
|  |  | 
|  | >>> c = ExtendedContext.copy() | 
|  | >>> c.Emin = -999 | 
|  | >>> c.Emax = 999 | 
|  | >>> ExtendedContext.next_minus(Decimal('1')) | 
|  | Decimal('0.999999999') | 
|  | >>> c.next_minus(Decimal('1E-1007')) | 
|  | Decimal('0E-1007') | 
|  | >>> ExtendedContext.next_minus(Decimal('-1.00000003')) | 
|  | Decimal('-1.00000004') | 
|  | >>> c.next_minus(Decimal('Infinity')) | 
|  | Decimal('9.99999999E+999') | 
|  | >>> c.next_minus(1) | 
|  | Decimal('0.999999999') | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | return a.next_minus(context=self) | 
|  |  | 
|  | def next_plus(self, a): | 
|  | """Returns the smallest representable number larger than a. | 
|  |  | 
|  | >>> c = ExtendedContext.copy() | 
|  | >>> c.Emin = -999 | 
|  | >>> c.Emax = 999 | 
|  | >>> ExtendedContext.next_plus(Decimal('1')) | 
|  | Decimal('1.00000001') | 
|  | >>> c.next_plus(Decimal('-1E-1007')) | 
|  | Decimal('-0E-1007') | 
|  | >>> ExtendedContext.next_plus(Decimal('-1.00000003')) | 
|  | Decimal('-1.00000002') | 
|  | >>> c.next_plus(Decimal('-Infinity')) | 
|  | Decimal('-9.99999999E+999') | 
|  | >>> c.next_plus(1) | 
|  | Decimal('1.00000001') | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | return a.next_plus(context=self) | 
|  |  | 
|  | def next_toward(self, a, b): | 
|  | """Returns the number closest to a, in direction towards b. | 
|  |  | 
|  | The result is the closest representable number from the first | 
|  | operand (but not the first operand) that is in the direction | 
|  | towards the second operand, unless the operands have the same | 
|  | value. | 
|  |  | 
|  | >>> c = ExtendedContext.copy() | 
|  | >>> c.Emin = -999 | 
|  | >>> c.Emax = 999 | 
|  | >>> c.next_toward(Decimal('1'), Decimal('2')) | 
|  | Decimal('1.00000001') | 
|  | >>> c.next_toward(Decimal('-1E-1007'), Decimal('1')) | 
|  | Decimal('-0E-1007') | 
|  | >>> c.next_toward(Decimal('-1.00000003'), Decimal('0')) | 
|  | Decimal('-1.00000002') | 
|  | >>> c.next_toward(Decimal('1'), Decimal('0')) | 
|  | Decimal('0.999999999') | 
|  | >>> c.next_toward(Decimal('1E-1007'), Decimal('-100')) | 
|  | Decimal('0E-1007') | 
|  | >>> c.next_toward(Decimal('-1.00000003'), Decimal('-10')) | 
|  | Decimal('-1.00000004') | 
|  | >>> c.next_toward(Decimal('0.00'), Decimal('-0.0000')) | 
|  | Decimal('-0.00') | 
|  | >>> c.next_toward(0, 1) | 
|  | Decimal('1E-1007') | 
|  | >>> c.next_toward(Decimal(0), 1) | 
|  | Decimal('1E-1007') | 
|  | >>> c.next_toward(0, Decimal(1)) | 
|  | Decimal('1E-1007') | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | return a.next_toward(b, context=self) | 
|  |  | 
|  | def normalize(self, a): | 
|  | """normalize reduces an operand to its simplest form. | 
|  |  | 
|  | Essentially a plus operation with all trailing zeros removed from the | 
|  | result. | 
|  |  | 
|  | >>> ExtendedContext.normalize(Decimal('2.1')) | 
|  | Decimal('2.1') | 
|  | >>> ExtendedContext.normalize(Decimal('-2.0')) | 
|  | Decimal('-2') | 
|  | >>> ExtendedContext.normalize(Decimal('1.200')) | 
|  | Decimal('1.2') | 
|  | >>> ExtendedContext.normalize(Decimal('-120')) | 
|  | Decimal('-1.2E+2') | 
|  | >>> ExtendedContext.normalize(Decimal('120.00')) | 
|  | Decimal('1.2E+2') | 
|  | >>> ExtendedContext.normalize(Decimal('0.00')) | 
|  | Decimal('0') | 
|  | >>> ExtendedContext.normalize(6) | 
|  | Decimal('6') | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | return a.normalize(context=self) | 
|  |  | 
|  | def number_class(self, a): | 
|  | """Returns an indication of the class of the operand. | 
|  |  | 
|  | The class is one of the following strings: | 
|  | -sNaN | 
|  | -NaN | 
|  | -Infinity | 
|  | -Normal | 
|  | -Subnormal | 
|  | -Zero | 
|  | +Zero | 
|  | +Subnormal | 
|  | +Normal | 
|  | +Infinity | 
|  |  | 
|  | >>> c = ExtendedContext.copy() | 
|  | >>> c.Emin = -999 | 
|  | >>> c.Emax = 999 | 
|  | >>> c.number_class(Decimal('Infinity')) | 
|  | '+Infinity' | 
|  | >>> c.number_class(Decimal('1E-10')) | 
|  | '+Normal' | 
|  | >>> c.number_class(Decimal('2.50')) | 
|  | '+Normal' | 
|  | >>> c.number_class(Decimal('0.1E-999')) | 
|  | '+Subnormal' | 
|  | >>> c.number_class(Decimal('0')) | 
|  | '+Zero' | 
|  | >>> c.number_class(Decimal('-0')) | 
|  | '-Zero' | 
|  | >>> c.number_class(Decimal('-0.1E-999')) | 
|  | '-Subnormal' | 
|  | >>> c.number_class(Decimal('-1E-10')) | 
|  | '-Normal' | 
|  | >>> c.number_class(Decimal('-2.50')) | 
|  | '-Normal' | 
|  | >>> c.number_class(Decimal('-Infinity')) | 
|  | '-Infinity' | 
|  | >>> c.number_class(Decimal('NaN')) | 
|  | 'NaN' | 
|  | >>> c.number_class(Decimal('-NaN')) | 
|  | 'NaN' | 
|  | >>> c.number_class(Decimal('sNaN')) | 
|  | 'sNaN' | 
|  | >>> c.number_class(123) | 
|  | '+Normal' | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | return a.number_class(context=self) | 
|  |  | 
|  | def plus(self, a): | 
|  | """Plus corresponds to unary prefix plus in Python. | 
|  |  | 
|  | The operation is evaluated using the same rules as add; the | 
|  | operation plus(a) is calculated as add('0', a) where the '0' | 
|  | has the same exponent as the operand. | 
|  |  | 
|  | >>> ExtendedContext.plus(Decimal('1.3')) | 
|  | Decimal('1.3') | 
|  | >>> ExtendedContext.plus(Decimal('-1.3')) | 
|  | Decimal('-1.3') | 
|  | >>> ExtendedContext.plus(-1) | 
|  | Decimal('-1') | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | return a.__pos__(context=self) | 
|  |  | 
|  | def power(self, a, b, modulo=None): | 
|  | """Raises a to the power of b, to modulo if given. | 
|  |  | 
|  | With two arguments, compute a**b.  If a is negative then b | 
|  | must be integral.  The result will be inexact unless b is | 
|  | integral and the result is finite and can be expressed exactly | 
|  | in 'precision' digits. | 
|  |  | 
|  | With three arguments, compute (a**b) % modulo.  For the | 
|  | three argument form, the following restrictions on the | 
|  | arguments hold: | 
|  |  | 
|  | - all three arguments must be integral | 
|  | - b must be nonnegative | 
|  | - at least one of a or b must be nonzero | 
|  | - modulo must be nonzero and have at most 'precision' digits | 
|  |  | 
|  | The result of pow(a, b, modulo) is identical to the result | 
|  | that would be obtained by computing (a**b) % modulo with | 
|  | unbounded precision, but is computed more efficiently.  It is | 
|  | always exact. | 
|  |  | 
|  | >>> c = ExtendedContext.copy() | 
|  | >>> c.Emin = -999 | 
|  | >>> c.Emax = 999 | 
|  | >>> c.power(Decimal('2'), Decimal('3')) | 
|  | Decimal('8') | 
|  | >>> c.power(Decimal('-2'), Decimal('3')) | 
|  | Decimal('-8') | 
|  | >>> c.power(Decimal('2'), Decimal('-3')) | 
|  | Decimal('0.125') | 
|  | >>> c.power(Decimal('1.7'), Decimal('8')) | 
|  | Decimal('69.7575744') | 
|  | >>> c.power(Decimal('10'), Decimal('0.301029996')) | 
|  | Decimal('2.00000000') | 
|  | >>> c.power(Decimal('Infinity'), Decimal('-1')) | 
|  | Decimal('0') | 
|  | >>> c.power(Decimal('Infinity'), Decimal('0')) | 
|  | Decimal('1') | 
|  | >>> c.power(Decimal('Infinity'), Decimal('1')) | 
|  | Decimal('Infinity') | 
|  | >>> c.power(Decimal('-Infinity'), Decimal('-1')) | 
|  | Decimal('-0') | 
|  | >>> c.power(Decimal('-Infinity'), Decimal('0')) | 
|  | Decimal('1') | 
|  | >>> c.power(Decimal('-Infinity'), Decimal('1')) | 
|  | Decimal('-Infinity') | 
|  | >>> c.power(Decimal('-Infinity'), Decimal('2')) | 
|  | Decimal('Infinity') | 
|  | >>> c.power(Decimal('0'), Decimal('0')) | 
|  | Decimal('NaN') | 
|  |  | 
|  | >>> c.power(Decimal('3'), Decimal('7'), Decimal('16')) | 
|  | Decimal('11') | 
|  | >>> c.power(Decimal('-3'), Decimal('7'), Decimal('16')) | 
|  | Decimal('-11') | 
|  | >>> c.power(Decimal('-3'), Decimal('8'), Decimal('16')) | 
|  | Decimal('1') | 
|  | >>> c.power(Decimal('3'), Decimal('7'), Decimal('-16')) | 
|  | Decimal('11') | 
|  | >>> c.power(Decimal('23E12345'), Decimal('67E189'), Decimal('123456789')) | 
|  | Decimal('11729830') | 
|  | >>> c.power(Decimal('-0'), Decimal('17'), Decimal('1729')) | 
|  | Decimal('-0') | 
|  | >>> c.power(Decimal('-23'), Decimal('0'), Decimal('65537')) | 
|  | Decimal('1') | 
|  | >>> ExtendedContext.power(7, 7) | 
|  | Decimal('823543') | 
|  | >>> ExtendedContext.power(Decimal(7), 7) | 
|  | Decimal('823543') | 
|  | >>> ExtendedContext.power(7, Decimal(7), 2) | 
|  | Decimal('1') | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | r = a.__pow__(b, modulo, context=self) | 
|  | if r is NotImplemented: | 
|  | raise TypeError("Unable to convert %s to Decimal" % b) | 
|  | else: | 
|  | return r | 
|  |  | 
|  | def quantize(self, a, b): | 
|  | """Returns a value equal to 'a' (rounded), having the exponent of 'b'. | 
|  |  | 
|  | The coefficient of the result is derived from that of the left-hand | 
|  | operand.  It may be rounded using the current rounding setting (if the | 
|  | exponent is being increased), multiplied by a positive power of ten (if | 
|  | the exponent is being decreased), or is unchanged (if the exponent is | 
|  | already equal to that of the right-hand operand). | 
|  |  | 
|  | Unlike other operations, if the length of the coefficient after the | 
|  | quantize operation would be greater than precision then an Invalid | 
|  | operation condition is raised.  This guarantees that, unless there is | 
|  | an error condition, the exponent of the result of a quantize is always | 
|  | equal to that of the right-hand operand. | 
|  |  | 
|  | Also unlike other operations, quantize will never raise Underflow, even | 
|  | if the result is subnormal and inexact. | 
|  |  | 
|  | >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.001')) | 
|  | Decimal('2.170') | 
|  | >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.01')) | 
|  | Decimal('2.17') | 
|  | >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.1')) | 
|  | Decimal('2.2') | 
|  | >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+0')) | 
|  | Decimal('2') | 
|  | >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+1')) | 
|  | Decimal('0E+1') | 
|  | >>> ExtendedContext.quantize(Decimal('-Inf'), Decimal('Infinity')) | 
|  | Decimal('-Infinity') | 
|  | >>> ExtendedContext.quantize(Decimal('2'), Decimal('Infinity')) | 
|  | Decimal('NaN') | 
|  | >>> ExtendedContext.quantize(Decimal('-0.1'), Decimal('1')) | 
|  | Decimal('-0') | 
|  | >>> ExtendedContext.quantize(Decimal('-0'), Decimal('1e+5')) | 
|  | Decimal('-0E+5') | 
|  | >>> ExtendedContext.quantize(Decimal('+35236450.6'), Decimal('1e-2')) | 
|  | Decimal('NaN') | 
|  | >>> ExtendedContext.quantize(Decimal('-35236450.6'), Decimal('1e-2')) | 
|  | Decimal('NaN') | 
|  | >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-1')) | 
|  | Decimal('217.0') | 
|  | >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-0')) | 
|  | Decimal('217') | 
|  | >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+1')) | 
|  | Decimal('2.2E+2') | 
|  | >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+2')) | 
|  | Decimal('2E+2') | 
|  | >>> ExtendedContext.quantize(1, 2) | 
|  | Decimal('1') | 
|  | >>> ExtendedContext.quantize(Decimal(1), 2) | 
|  | Decimal('1') | 
|  | >>> ExtendedContext.quantize(1, Decimal(2)) | 
|  | Decimal('1') | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | return a.quantize(b, context=self) | 
|  |  | 
|  | def radix(self): | 
|  | """Just returns 10, as this is Decimal, :) | 
|  |  | 
|  | >>> ExtendedContext.radix() | 
|  | Decimal('10') | 
|  | """ | 
|  | return Decimal(10) | 
|  |  | 
|  | def remainder(self, a, b): | 
|  | """Returns the remainder from integer division. | 
|  |  | 
|  | The result is the residue of the dividend after the operation of | 
|  | calculating integer division as described for divide-integer, rounded | 
|  | to precision digits if necessary.  The sign of the result, if | 
|  | non-zero, is the same as that of the original dividend. | 
|  |  | 
|  | This operation will fail under the same conditions as integer division | 
|  | (that is, if integer division on the same two operands would fail, the | 
|  | remainder cannot be calculated). | 
|  |  | 
|  | >>> ExtendedContext.remainder(Decimal('2.1'), Decimal('3')) | 
|  | Decimal('2.1') | 
|  | >>> ExtendedContext.remainder(Decimal('10'), Decimal('3')) | 
|  | Decimal('1') | 
|  | >>> ExtendedContext.remainder(Decimal('-10'), Decimal('3')) | 
|  | Decimal('-1') | 
|  | >>> ExtendedContext.remainder(Decimal('10.2'), Decimal('1')) | 
|  | Decimal('0.2') | 
|  | >>> ExtendedContext.remainder(Decimal('10'), Decimal('0.3')) | 
|  | Decimal('0.1') | 
|  | >>> ExtendedContext.remainder(Decimal('3.6'), Decimal('1.3')) | 
|  | Decimal('1.0') | 
|  | >>> ExtendedContext.remainder(22, 6) | 
|  | Decimal('4') | 
|  | >>> ExtendedContext.remainder(Decimal(22), 6) | 
|  | Decimal('4') | 
|  | >>> ExtendedContext.remainder(22, Decimal(6)) | 
|  | Decimal('4') | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | r = a.__mod__(b, context=self) | 
|  | if r is NotImplemented: | 
|  | raise TypeError("Unable to convert %s to Decimal" % b) | 
|  | else: | 
|  | return r | 
|  |  | 
|  | def remainder_near(self, a, b): | 
|  | """Returns to be "a - b * n", where n is the integer nearest the exact | 
|  | value of "x / b" (if two integers are equally near then the even one | 
|  | is chosen).  If the result is equal to 0 then its sign will be the | 
|  | sign of a. | 
|  |  | 
|  | This operation will fail under the same conditions as integer division | 
|  | (that is, if integer division on the same two operands would fail, the | 
|  | remainder cannot be calculated). | 
|  |  | 
|  | >>> ExtendedContext.remainder_near(Decimal('2.1'), Decimal('3')) | 
|  | Decimal('-0.9') | 
|  | >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('6')) | 
|  | Decimal('-2') | 
|  | >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('3')) | 
|  | Decimal('1') | 
|  | >>> ExtendedContext.remainder_near(Decimal('-10'), Decimal('3')) | 
|  | Decimal('-1') | 
|  | >>> ExtendedContext.remainder_near(Decimal('10.2'), Decimal('1')) | 
|  | Decimal('0.2') | 
|  | >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('0.3')) | 
|  | Decimal('0.1') | 
|  | >>> ExtendedContext.remainder_near(Decimal('3.6'), Decimal('1.3')) | 
|  | Decimal('-0.3') | 
|  | >>> ExtendedContext.remainder_near(3, 11) | 
|  | Decimal('3') | 
|  | >>> ExtendedContext.remainder_near(Decimal(3), 11) | 
|  | Decimal('3') | 
|  | >>> ExtendedContext.remainder_near(3, Decimal(11)) | 
|  | Decimal('3') | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | return a.remainder_near(b, context=self) | 
|  |  | 
|  | def rotate(self, a, b): | 
|  | """Returns a rotated copy of a, b times. | 
|  |  | 
|  | The coefficient of the result is a rotated copy of the digits in | 
|  | the coefficient of the first operand.  The number of places of | 
|  | rotation is taken from the absolute value of the second operand, | 
|  | with the rotation being to the left if the second operand is | 
|  | positive or to the right otherwise. | 
|  |  | 
|  | >>> ExtendedContext.rotate(Decimal('34'), Decimal('8')) | 
|  | Decimal('400000003') | 
|  | >>> ExtendedContext.rotate(Decimal('12'), Decimal('9')) | 
|  | Decimal('12') | 
|  | >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('-2')) | 
|  | Decimal('891234567') | 
|  | >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('0')) | 
|  | Decimal('123456789') | 
|  | >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('+2')) | 
|  | Decimal('345678912') | 
|  | >>> ExtendedContext.rotate(1333333, 1) | 
|  | Decimal('13333330') | 
|  | >>> ExtendedContext.rotate(Decimal(1333333), 1) | 
|  | Decimal('13333330') | 
|  | >>> ExtendedContext.rotate(1333333, Decimal(1)) | 
|  | Decimal('13333330') | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | return a.rotate(b, context=self) | 
|  |  | 
|  | def same_quantum(self, a, b): | 
|  | """Returns True if the two operands have the same exponent. | 
|  |  | 
|  | The result is never affected by either the sign or the coefficient of | 
|  | either operand. | 
|  |  | 
|  | >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.001')) | 
|  | False | 
|  | >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.01')) | 
|  | True | 
|  | >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('1')) | 
|  | False | 
|  | >>> ExtendedContext.same_quantum(Decimal('Inf'), Decimal('-Inf')) | 
|  | True | 
|  | >>> ExtendedContext.same_quantum(10000, -1) | 
|  | True | 
|  | >>> ExtendedContext.same_quantum(Decimal(10000), -1) | 
|  | True | 
|  | >>> ExtendedContext.same_quantum(10000, Decimal(-1)) | 
|  | True | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | return a.same_quantum(b) | 
|  |  | 
|  | def scaleb (self, a, b): | 
|  | """Returns the first operand after adding the second value its exp. | 
|  |  | 
|  | >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('-2')) | 
|  | Decimal('0.0750') | 
|  | >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('0')) | 
|  | Decimal('7.50') | 
|  | >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('3')) | 
|  | Decimal('7.50E+3') | 
|  | >>> ExtendedContext.scaleb(1, 4) | 
|  | Decimal('1E+4') | 
|  | >>> ExtendedContext.scaleb(Decimal(1), 4) | 
|  | Decimal('1E+4') | 
|  | >>> ExtendedContext.scaleb(1, Decimal(4)) | 
|  | Decimal('1E+4') | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | return a.scaleb(b, context=self) | 
|  |  | 
|  | def shift(self, a, b): | 
|  | """Returns a shifted copy of a, b times. | 
|  |  | 
|  | The coefficient of the result is a shifted copy of the digits | 
|  | in the coefficient of the first operand.  The number of places | 
|  | to shift is taken from the absolute value of the second operand, | 
|  | with the shift being to the left if the second operand is | 
|  | positive or to the right otherwise.  Digits shifted into the | 
|  | coefficient are zeros. | 
|  |  | 
|  | >>> ExtendedContext.shift(Decimal('34'), Decimal('8')) | 
|  | Decimal('400000000') | 
|  | >>> ExtendedContext.shift(Decimal('12'), Decimal('9')) | 
|  | Decimal('0') | 
|  | >>> ExtendedContext.shift(Decimal('123456789'), Decimal('-2')) | 
|  | Decimal('1234567') | 
|  | >>> ExtendedContext.shift(Decimal('123456789'), Decimal('0')) | 
|  | Decimal('123456789') | 
|  | >>> ExtendedContext.shift(Decimal('123456789'), Decimal('+2')) | 
|  | Decimal('345678900') | 
|  | >>> ExtendedContext.shift(88888888, 2) | 
|  | Decimal('888888800') | 
|  | >>> ExtendedContext.shift(Decimal(88888888), 2) | 
|  | Decimal('888888800') | 
|  | >>> ExtendedContext.shift(88888888, Decimal(2)) | 
|  | Decimal('888888800') | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | return a.shift(b, context=self) | 
|  |  | 
|  | def sqrt(self, a): | 
|  | """Square root of a non-negative number to context precision. | 
|  |  | 
|  | If the result must be inexact, it is rounded using the round-half-even | 
|  | algorithm. | 
|  |  | 
|  | >>> ExtendedContext.sqrt(Decimal('0')) | 
|  | Decimal('0') | 
|  | >>> ExtendedContext.sqrt(Decimal('-0')) | 
|  | Decimal('-0') | 
|  | >>> ExtendedContext.sqrt(Decimal('0.39')) | 
|  | Decimal('0.624499800') | 
|  | >>> ExtendedContext.sqrt(Decimal('100')) | 
|  | Decimal('10') | 
|  | >>> ExtendedContext.sqrt(Decimal('1')) | 
|  | Decimal('1') | 
|  | >>> ExtendedContext.sqrt(Decimal('1.0')) | 
|  | Decimal('1.0') | 
|  | >>> ExtendedContext.sqrt(Decimal('1.00')) | 
|  | Decimal('1.0') | 
|  | >>> ExtendedContext.sqrt(Decimal('7')) | 
|  | Decimal('2.64575131') | 
|  | >>> ExtendedContext.sqrt(Decimal('10')) | 
|  | Decimal('3.16227766') | 
|  | >>> ExtendedContext.sqrt(2) | 
|  | Decimal('1.41421356') | 
|  | >>> ExtendedContext.prec | 
|  | 9 | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | return a.sqrt(context=self) | 
|  |  | 
|  | def subtract(self, a, b): | 
|  | """Return the difference between the two operands. | 
|  |  | 
|  | >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.07')) | 
|  | Decimal('0.23') | 
|  | >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.30')) | 
|  | Decimal('0.00') | 
|  | >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('2.07')) | 
|  | Decimal('-0.77') | 
|  | >>> ExtendedContext.subtract(8, 5) | 
|  | Decimal('3') | 
|  | >>> ExtendedContext.subtract(Decimal(8), 5) | 
|  | Decimal('3') | 
|  | >>> ExtendedContext.subtract(8, Decimal(5)) | 
|  | Decimal('3') | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | r = a.__sub__(b, context=self) | 
|  | if r is NotImplemented: | 
|  | raise TypeError("Unable to convert %s to Decimal" % b) | 
|  | else: | 
|  | return r | 
|  |  | 
|  | def to_eng_string(self, a): | 
|  | """Convert to a string, using engineering notation if an exponent is needed. | 
|  |  | 
|  | Engineering notation has an exponent which is a multiple of 3.  This | 
|  | can leave up to 3 digits to the left of the decimal place and may | 
|  | require the addition of either one or two trailing zeros. | 
|  |  | 
|  | The operation is not affected by the context. | 
|  |  | 
|  | >>> ExtendedContext.to_eng_string(Decimal('123E+1')) | 
|  | '1.23E+3' | 
|  | >>> ExtendedContext.to_eng_string(Decimal('123E+3')) | 
|  | '123E+3' | 
|  | >>> ExtendedContext.to_eng_string(Decimal('123E-10')) | 
|  | '12.3E-9' | 
|  | >>> ExtendedContext.to_eng_string(Decimal('-123E-12')) | 
|  | '-123E-12' | 
|  | >>> ExtendedContext.to_eng_string(Decimal('7E-7')) | 
|  | '700E-9' | 
|  | >>> ExtendedContext.to_eng_string(Decimal('7E+1')) | 
|  | '70' | 
|  | >>> ExtendedContext.to_eng_string(Decimal('0E+1')) | 
|  | '0.00E+3' | 
|  |  | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | return a.to_eng_string(context=self) | 
|  |  | 
|  | def to_sci_string(self, a): | 
|  | """Converts a number to a string, using scientific notation. | 
|  |  | 
|  | The operation is not affected by the context. | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | return a.__str__(context=self) | 
|  |  | 
|  | def to_integral_exact(self, a): | 
|  | """Rounds to an integer. | 
|  |  | 
|  | When the operand has a negative exponent, the result is the same | 
|  | as using the quantize() operation using the given operand as the | 
|  | left-hand-operand, 1E+0 as the right-hand-operand, and the precision | 
|  | of the operand as the precision setting; Inexact and Rounded flags | 
|  | are allowed in this operation.  The rounding mode is taken from the | 
|  | context. | 
|  |  | 
|  | >>> ExtendedContext.to_integral_exact(Decimal('2.1')) | 
|  | Decimal('2') | 
|  | >>> ExtendedContext.to_integral_exact(Decimal('100')) | 
|  | Decimal('100') | 
|  | >>> ExtendedContext.to_integral_exact(Decimal('100.0')) | 
|  | Decimal('100') | 
|  | >>> ExtendedContext.to_integral_exact(Decimal('101.5')) | 
|  | Decimal('102') | 
|  | >>> ExtendedContext.to_integral_exact(Decimal('-101.5')) | 
|  | Decimal('-102') | 
|  | >>> ExtendedContext.to_integral_exact(Decimal('10E+5')) | 
|  | Decimal('1.0E+6') | 
|  | >>> ExtendedContext.to_integral_exact(Decimal('7.89E+77')) | 
|  | Decimal('7.89E+77') | 
|  | >>> ExtendedContext.to_integral_exact(Decimal('-Inf')) | 
|  | Decimal('-Infinity') | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | return a.to_integral_exact(context=self) | 
|  |  | 
|  | def to_integral_value(self, a): | 
|  | """Rounds to an integer. | 
|  |  | 
|  | When the operand has a negative exponent, the result is the same | 
|  | as using the quantize() operation using the given operand as the | 
|  | left-hand-operand, 1E+0 as the right-hand-operand, and the precision | 
|  | of the operand as the precision setting, except that no flags will | 
|  | be set.  The rounding mode is taken from the context. | 
|  |  | 
|  | >>> ExtendedContext.to_integral_value(Decimal('2.1')) | 
|  | Decimal('2') | 
|  | >>> ExtendedContext.to_integral_value(Decimal('100')) | 
|  | Decimal('100') | 
|  | >>> ExtendedContext.to_integral_value(Decimal('100.0')) | 
|  | Decimal('100') | 
|  | >>> ExtendedContext.to_integral_value(Decimal('101.5')) | 
|  | Decimal('102') | 
|  | >>> ExtendedContext.to_integral_value(Decimal('-101.5')) | 
|  | Decimal('-102') | 
|  | >>> ExtendedContext.to_integral_value(Decimal('10E+5')) | 
|  | Decimal('1.0E+6') | 
|  | >>> ExtendedContext.to_integral_value(Decimal('7.89E+77')) | 
|  | Decimal('7.89E+77') | 
|  | >>> ExtendedContext.to_integral_value(Decimal('-Inf')) | 
|  | Decimal('-Infinity') | 
|  | """ | 
|  | a = _convert_other(a, raiseit=True) | 
|  | return a.to_integral_value(context=self) | 
|  |  | 
|  | # the method name changed, but we provide also the old one, for compatibility | 
|  | to_integral = to_integral_value | 
|  |  | 
|  | class _WorkRep(object): | 
|  | __slots__ = ('sign','int','exp') | 
|  | # sign: 0 or 1 | 
|  | # int:  int | 
|  | # exp:  None, int, or string | 
|  |  | 
|  | def __init__(self, value=None): | 
|  | if value is None: | 
|  | self.sign = None | 
|  | self.int = 0 | 
|  | self.exp = None | 
|  | elif isinstance(value, Decimal): | 
|  | self.sign = value._sign | 
|  | self.int = int(value._int) | 
|  | self.exp = value._exp | 
|  | else: | 
|  | # assert isinstance(value, tuple) | 
|  | self.sign = value[0] | 
|  | self.int = value[1] | 
|  | self.exp = value[2] | 
|  |  | 
|  | def __repr__(self): | 
|  | return "(%r, %r, %r)" % (self.sign, self.int, self.exp) | 
|  |  | 
|  | __str__ = __repr__ | 
|  |  | 
|  |  | 
|  |  | 
|  | def _normalize(op1, op2, prec = 0): | 
|  | """Normalizes op1, op2 to have the same exp and length of coefficient. | 
|  |  | 
|  | Done during addition. | 
|  | """ | 
|  | if op1.exp < op2.exp: | 
|  | tmp = op2 | 
|  | other = op1 | 
|  | else: | 
|  | tmp = op1 | 
|  | other = op2 | 
|  |  | 
|  | # Let exp = min(tmp.exp - 1, tmp.adjusted() - precision - 1). | 
|  | # Then adding 10**exp to tmp has the same effect (after rounding) | 
|  | # as adding any positive quantity smaller than 10**exp; similarly | 
|  | # for subtraction.  So if other is smaller than 10**exp we replace | 
|  | # it with 10**exp.  This avoids tmp.exp - other.exp getting too large. | 
|  | tmp_len = len(str(tmp.int)) | 
|  | other_len = len(str(other.int)) | 
|  | exp = tmp.exp + min(-1, tmp_len - prec - 2) | 
|  | if other_len + other.exp - 1 < exp: | 
|  | other.int = 1 | 
|  | other.exp = exp | 
|  |  | 
|  | tmp.int *= 10 ** (tmp.exp - other.exp) | 
|  | tmp.exp = other.exp | 
|  | return op1, op2 | 
|  |  | 
|  | ##### Integer arithmetic functions used by ln, log10, exp and __pow__ ##### | 
|  |  | 
|  | _nbits = int.bit_length | 
|  |  | 
|  | def _decimal_lshift_exact(n, e): | 
|  | """ Given integers n and e, return n * 10**e if it's an integer, else None. | 
|  |  | 
|  | The computation is designed to avoid computing large powers of 10 | 
|  | unnecessarily. | 
|  |  | 
|  | >>> _decimal_lshift_exact(3, 4) | 
|  | 30000 | 
|  | >>> _decimal_lshift_exact(300, -999999999)  # returns None | 
|  |  | 
|  | """ | 
|  | if n == 0: | 
|  | return 0 | 
|  | elif e >= 0: | 
|  | return n * 10**e | 
|  | else: | 
|  | # val_n = largest power of 10 dividing n. | 
|  | str_n = str(abs(n)) | 
|  | val_n = len(str_n) - len(str_n.rstrip('0')) | 
|  | return None if val_n < -e else n // 10**-e | 
|  |  | 
|  | def _sqrt_nearest(n, a): | 
|  | """Closest integer to the square root of the positive integer n.  a is | 
|  | an initial approximation to the square root.  Any positive integer | 
|  | will do for a, but the closer a is to the square root of n the | 
|  | faster convergence will be. | 
|  |  | 
|  | """ | 
|  | if n <= 0 or a <= 0: | 
|  | raise ValueError("Both arguments to _sqrt_nearest should be positive.") | 
|  |  | 
|  | b=0 | 
|  | while a != b: | 
|  | b, a = a, a--n//a>>1 | 
|  | return a | 
|  |  | 
|  | def _rshift_nearest(x, shift): | 
|  | """Given an integer x and a nonnegative integer shift, return closest | 
|  | integer to x / 2**shift; use round-to-even in case of a tie. | 
|  |  | 
|  | """ | 
|  | b, q = 1 << shift, x >> shift | 
|  | return q + (2*(x & (b-1)) + (q&1) > b) | 
|  |  | 
|  | def _div_nearest(a, b): | 
|  | """Closest integer to a/b, a and b positive integers; rounds to even | 
|  | in the case of a tie. | 
|  |  | 
|  | """ | 
|  | q, r = divmod(a, b) | 
|  | return q + (2*r + (q&1) > b) | 
|  |  | 
|  | def _ilog(x, M, L = 8): | 
|  | """Integer approximation to M*log(x/M), with absolute error boundable | 
|  | in terms only of x/M. | 
|  |  | 
|  | Given positive integers x and M, return an integer approximation to | 
|  | M * log(x/M).  For L = 8 and 0.1 <= x/M <= 10 the difference | 
|  | between the approximation and the exact result is at most 22.  For | 
|  | L = 8 and 1.0 <= x/M <= 10.0 the difference is at most 15.  In | 
|  | both cases these are upper bounds on the error; it will usually be | 
|  | much smaller.""" | 
|  |  | 
|  | # The basic algorithm is the following: let log1p be the function | 
|  | # log1p(x) = log(1+x).  Then log(x/M) = log1p((x-M)/M).  We use | 
|  | # the reduction | 
|  | # | 
|  | #    log1p(y) = 2*log1p(y/(1+sqrt(1+y))) | 
|  | # | 
|  | # repeatedly until the argument to log1p is small (< 2**-L in | 
|  | # absolute value).  For small y we can use the Taylor series | 
|  | # expansion | 
|  | # | 
|  | #    log1p(y) ~ y - y**2/2 + y**3/3 - ... - (-y)**T/T | 
|  | # | 
|  | # truncating at T such that y**T is small enough.  The whole | 
|  | # computation is carried out in a form of fixed-point arithmetic, | 
|  | # with a real number z being represented by an integer | 
|  | # approximation to z*M.  To avoid loss of precision, the y below | 
|  | # is actually an integer approximation to 2**R*y*M, where R is the | 
|  | # number of reductions performed so far. | 
|  |  | 
|  | y = x-M | 
|  | # argument reduction; R = number of reductions performed | 
|  | R = 0 | 
|  | while (R <= L and abs(y) << L-R >= M or | 
|  | R > L and abs(y) >> R-L >= M): | 
|  | y = _div_nearest((M*y) << 1, | 
|  | M + _sqrt_nearest(M*(M+_rshift_nearest(y, R)), M)) | 
|  | R += 1 | 
|  |  | 
|  | # Taylor series with T terms | 
|  | T = -int(-10*len(str(M))//(3*L)) | 
|  | yshift = _rshift_nearest(y, R) | 
|  | w = _div_nearest(M, T) | 
|  | for k in range(T-1, 0, -1): | 
|  | w = _div_nearest(M, k) - _div_nearest(yshift*w, M) | 
|  |  | 
|  | return _div_nearest(w*y, M) | 
|  |  | 
|  | def _dlog10(c, e, p): | 
|  | """Given integers c, e and p with c > 0, p >= 0, compute an integer | 
|  | approximation to 10**p * log10(c*10**e), with an absolute error of | 
|  | at most 1.  Assumes that c*10**e is not exactly 1.""" | 
|  |  | 
|  | # increase precision by 2; compensate for this by dividing | 
|  | # final result by 100 | 
|  | p += 2 | 
|  |  | 
|  | # write c*10**e as d*10**f with either: | 
|  | #   f >= 0 and 1 <= d <= 10, or | 
|  | #   f <= 0 and 0.1 <= d <= 1. | 
|  | # Thus for c*10**e close to 1, f = 0 | 
|  | l = len(str(c)) | 
|  | f = e+l - (e+l >= 1) | 
|  |  | 
|  | if p > 0: | 
|  | M = 10**p | 
|  | k = e+p-f | 
|  | if k >= 0: | 
|  | c *= 10**k | 
|  | else: | 
|  | c = _div_nearest(c, 10**-k) | 
|  |  | 
|  | log_d = _ilog(c, M) # error < 5 + 22 = 27 | 
|  | log_10 = _log10_digits(p) # error < 1 | 
|  | log_d = _div_nearest(log_d*M, log_10) | 
|  | log_tenpower = f*M # exact | 
|  | else: | 
|  | log_d = 0  # error < 2.31 | 
|  | log_tenpower = _div_nearest(f, 10**-p) # error < 0.5 | 
|  |  | 
|  | return _div_nearest(log_tenpower+log_d, 100) | 
|  |  | 
|  | def _dlog(c, e, p): | 
|  | """Given integers c, e and p with c > 0, compute an integer | 
|  | approximation to 10**p * log(c*10**e), with an absolute error of | 
|  | at most 1.  Assumes that c*10**e is not exactly 1.""" | 
|  |  | 
|  | # Increase precision by 2. The precision increase is compensated | 
|  | # for at the end with a division by 100. | 
|  | p += 2 | 
|  |  | 
|  | # rewrite c*10**e as d*10**f with either f >= 0 and 1 <= d <= 10, | 
|  | # or f <= 0 and 0.1 <= d <= 1.  Then we can compute 10**p * log(c*10**e) | 
|  | # as 10**p * log(d) + 10**p*f * log(10). | 
|  | l = len(str(c)) | 
|  | f = e+l - (e+l >= 1) | 
|  |  | 
|  | # compute approximation to 10**p*log(d), with error < 27 | 
|  | if p > 0: | 
|  | k = e+p-f | 
|  | if k >= 0: | 
|  | c *= 10**k | 
|  | else: | 
|  | c = _div_nearest(c, 10**-k)  # error of <= 0.5 in c | 
|  |  | 
|  | # _ilog magnifies existing error in c by a factor of at most 10 | 
|  | log_d = _ilog(c, 10**p) # error < 5 + 22 = 27 | 
|  | else: | 
|  | # p <= 0: just approximate the whole thing by 0; error < 2.31 | 
|  | log_d = 0 | 
|  |  | 
|  | # compute approximation to f*10**p*log(10), with error < 11. | 
|  | if f: | 
|  | extra = len(str(abs(f)))-1 | 
|  | if p + extra >= 0: | 
|  | # error in f * _log10_digits(p+extra) < |f| * 1 = |f| | 
|  | # after division, error < |f|/10**extra + 0.5 < 10 + 0.5 < 11 | 
|  | f_log_ten = _div_nearest(f*_log10_digits(p+extra), 10**extra) | 
|  | else: | 
|  | f_log_ten = 0 | 
|  | else: | 
|  | f_log_ten = 0 | 
|  |  | 
|  | # error in sum < 11+27 = 38; error after division < 0.38 + 0.5 < 1 | 
|  | return _div_nearest(f_log_ten + log_d, 100) | 
|  |  | 
|  | class _Log10Memoize(object): | 
|  | """Class to compute, store, and allow retrieval of, digits of the | 
|  | constant log(10) = 2.302585....  This constant is needed by | 
|  | Decimal.ln, Decimal.log10, Decimal.exp and Decimal.__pow__.""" | 
|  | def __init__(self): | 
|  | self.digits = "23025850929940456840179914546843642076011014886" | 
|  |  | 
|  | def getdigits(self, p): | 
|  | """Given an integer p >= 0, return floor(10**p)*log(10). | 
|  |  | 
|  | For example, self.getdigits(3) returns 2302. | 
|  | """ | 
|  | # digits are stored as a string, for quick conversion to | 
|  | # integer in the case that we've already computed enough | 
|  | # digits; the stored digits should always be correct | 
|  | # (truncated, not rounded to nearest). | 
|  | if p < 0: | 
|  | raise ValueError("p should be nonnegative") | 
|  |  | 
|  | if p >= len(self.digits): | 
|  | # compute p+3, p+6, p+9, ... digits; continue until at | 
|  | # least one of the extra digits is nonzero | 
|  | extra = 3 | 
|  | while True: | 
|  | # compute p+extra digits, correct to within 1ulp | 
|  | M = 10**(p+extra+2) | 
|  | digits = str(_div_nearest(_ilog(10*M, M), 100)) | 
|  | if digits[-extra:] != '0'*extra: | 
|  | break | 
|  | extra += 3 | 
|  | # keep all reliable digits so far; remove trailing zeros | 
|  | # and next nonzero digit | 
|  | self.digits = digits.rstrip('0')[:-1] | 
|  | return int(self.digits[:p+1]) | 
|  |  | 
|  | _log10_digits = _Log10Memoize().getdigits | 
|  |  | 
|  | def _iexp(x, M, L=8): | 
|  | """Given integers x and M, M > 0, such that x/M is small in absolute | 
|  | value, compute an integer approximation to M*exp(x/M).  For 0 <= | 
|  | x/M <= 2.4, the absolute error in the result is bounded by 60 (and | 
|  | is usually much smaller).""" | 
|  |  | 
|  | # Algorithm: to compute exp(z) for a real number z, first divide z | 
|  | # by a suitable power R of 2 so that |z/2**R| < 2**-L.  Then | 
|  | # compute expm1(z/2**R) = exp(z/2**R) - 1 using the usual Taylor | 
|  | # series | 
|  | # | 
|  | #     expm1(x) = x + x**2/2! + x**3/3! + ... | 
|  | # | 
|  | # Now use the identity | 
|  | # | 
|  | #     expm1(2x) = expm1(x)*(expm1(x)+2) | 
|  | # | 
|  | # R times to compute the sequence expm1(z/2**R), | 
|  | # expm1(z/2**(R-1)), ... , exp(z/2), exp(z). | 
|  |  | 
|  | # Find R such that x/2**R/M <= 2**-L | 
|  | R = _nbits((x<<L)//M) | 
|  |  | 
|  | # Taylor series.  (2**L)**T > M | 
|  | T = -int(-10*len(str(M))//(3*L)) | 
|  | y = _div_nearest(x, T) | 
|  | Mshift = M<<R | 
|  | for i in range(T-1, 0, -1): | 
|  | y = _div_nearest(x*(Mshift + y), Mshift * i) | 
|  |  | 
|  | # Expansion | 
|  | for k in range(R-1, -1, -1): | 
|  | Mshift = M<<(k+2) | 
|  | y = _div_nearest(y*(y+Mshift), Mshift) | 
|  |  | 
|  | return M+y | 
|  |  | 
|  | def _dexp(c, e, p): | 
|  | """Compute an approximation to exp(c*10**e), with p decimal places of | 
|  | precision. | 
|  |  | 
|  | Returns integers d, f such that: | 
|  |  | 
|  | 10**(p-1) <= d <= 10**p, and | 
|  | (d-1)*10**f < exp(c*10**e) < (d+1)*10**f | 
|  |  | 
|  | In other words, d*10**f is an approximation to exp(c*10**e) with p | 
|  | digits of precision, and with an error in d of at most 1.  This is | 
|  | almost, but not quite, the same as the error being < 1ulp: when d | 
|  | = 10**(p-1) the error could be up to 10 ulp.""" | 
|  |  | 
|  | # we'll call iexp with M = 10**(p+2), giving p+3 digits of precision | 
|  | p += 2 | 
|  |  | 
|  | # compute log(10) with extra precision = adjusted exponent of c*10**e | 
|  | extra = max(0, e + len(str(c)) - 1) | 
|  | q = p + extra | 
|  |  | 
|  | # compute quotient c*10**e/(log(10)) = c*10**(e+q)/(log(10)*10**q), | 
|  | # rounding down | 
|  | shift = e+q | 
|  | if shift >= 0: | 
|  | cshift = c*10**shift | 
|  | else: | 
|  | cshift = c//10**-shift | 
|  | quot, rem = divmod(cshift, _log10_digits(q)) | 
|  |  | 
|  | # reduce remainder back to original precision | 
|  | rem = _div_nearest(rem, 10**extra) | 
|  |  | 
|  | # error in result of _iexp < 120;  error after division < 0.62 | 
|  | return _div_nearest(_iexp(rem, 10**p), 1000), quot - p + 3 | 
|  |  | 
|  | def _dpower(xc, xe, yc, ye, p): | 
|  | """Given integers xc, xe, yc and ye representing Decimals x = xc*10**xe and | 
|  | y = yc*10**ye, compute x**y.  Returns a pair of integers (c, e) such that: | 
|  |  | 
|  | 10**(p-1) <= c <= 10**p, and | 
|  | (c-1)*10**e < x**y < (c+1)*10**e | 
|  |  | 
|  | in other words, c*10**e is an approximation to x**y with p digits | 
|  | of precision, and with an error in c of at most 1.  (This is | 
|  | almost, but not quite, the same as the error being < 1ulp: when c | 
|  | == 10**(p-1) we can only guarantee error < 10ulp.) | 
|  |  | 
|  | We assume that: x is positive and not equal to 1, and y is nonzero. | 
|  | """ | 
|  |  | 
|  | # Find b such that 10**(b-1) <= |y| <= 10**b | 
|  | b = len(str(abs(yc))) + ye | 
|  |  | 
|  | # log(x) = lxc*10**(-p-b-1), to p+b+1 places after the decimal point | 
|  | lxc = _dlog(xc, xe, p+b+1) | 
|  |  | 
|  | # compute product y*log(x) = yc*lxc*10**(-p-b-1+ye) = pc*10**(-p-1) | 
|  | shift = ye-b | 
|  | if shift >= 0: | 
|  | pc = lxc*yc*10**shift | 
|  | else: | 
|  | pc = _div_nearest(lxc*yc, 10**-shift) | 
|  |  | 
|  | if pc == 0: | 
|  | # we prefer a result that isn't exactly 1; this makes it | 
|  | # easier to compute a correctly rounded result in __pow__ | 
|  | if ((len(str(xc)) + xe >= 1) == (yc > 0)): # if x**y > 1: | 
|  | coeff, exp = 10**(p-1)+1, 1-p | 
|  | else: | 
|  | coeff, exp = 10**p-1, -p | 
|  | else: | 
|  | coeff, exp = _dexp(pc, -(p+1), p+1) | 
|  | coeff = _div_nearest(coeff, 10) | 
|  | exp += 1 | 
|  |  | 
|  | return coeff, exp | 
|  |  | 
|  | def _log10_lb(c, correction = { | 
|  | '1': 100, '2': 70, '3': 53, '4': 40, '5': 31, | 
|  | '6': 23, '7': 16, '8': 10, '9': 5}): | 
|  | """Compute a lower bound for 100*log10(c) for a positive integer c.""" | 
|  | if c <= 0: | 
|  | raise ValueError("The argument to _log10_lb should be nonnegative.") | 
|  | str_c = str(c) | 
|  | return 100*len(str_c) - correction[str_c[0]] | 
|  |  | 
|  | ##### Helper Functions #################################################### | 
|  |  | 
|  | def _convert_other(other, raiseit=False, allow_float=False): | 
|  | """Convert other to Decimal. | 
|  |  | 
|  | Verifies that it's ok to use in an implicit construction. | 
|  | If allow_float is true, allow conversion from float;  this | 
|  | is used in the comparison methods (__eq__ and friends). | 
|  |  | 
|  | """ | 
|  | if isinstance(other, Decimal): | 
|  | return other | 
|  | if isinstance(other, int): | 
|  | return Decimal(other) | 
|  | if allow_float and isinstance(other, float): | 
|  | return Decimal.from_float(other) | 
|  |  | 
|  | if raiseit: | 
|  | raise TypeError("Unable to convert %s to Decimal" % other) | 
|  | return NotImplemented | 
|  |  | 
|  | def _convert_for_comparison(self, other, equality_op=False): | 
|  | """Given a Decimal instance self and a Python object other, return | 
|  | a pair (s, o) of Decimal instances such that "s op o" is | 
|  | equivalent to "self op other" for any of the 6 comparison | 
|  | operators "op". | 
|  |  | 
|  | """ | 
|  | if isinstance(other, Decimal): | 
|  | return self, other | 
|  |  | 
|  | # Comparison with a Rational instance (also includes integers): | 
|  | # self op n/d <=> self*d op n (for n and d integers, d positive). | 
|  | # A NaN or infinity can be left unchanged without affecting the | 
|  | # comparison result. | 
|  | if isinstance(other, _numbers.Rational): | 
|  | if not self._is_special: | 
|  | self = _dec_from_triple(self._sign, | 
|  | str(int(self._int) * other.denominator), | 
|  | self._exp) | 
|  | return self, Decimal(other.numerator) | 
|  |  | 
|  | # Comparisons with float and complex types.  == and != comparisons | 
|  | # with complex numbers should succeed, returning either True or False | 
|  | # as appropriate.  Other comparisons return NotImplemented. | 
|  | if equality_op and isinstance(other, _numbers.Complex) and other.imag == 0: | 
|  | other = other.real | 
|  | if isinstance(other, float): | 
|  | context = getcontext() | 
|  | if equality_op: | 
|  | context.flags[FloatOperation] = 1 | 
|  | else: | 
|  | context._raise_error(FloatOperation, | 
|  | "strict semantics for mixing floats and Decimals are enabled") | 
|  | return self, Decimal.from_float(other) | 
|  | return NotImplemented, NotImplemented | 
|  |  | 
|  |  | 
|  | ##### Setup Specific Contexts ############################################ | 
|  |  | 
|  | # The default context prototype used by Context() | 
|  | # Is mutable, so that new contexts can have different default values | 
|  |  | 
|  | DefaultContext = Context( | 
|  | prec=28, rounding=ROUND_HALF_EVEN, | 
|  | traps=[DivisionByZero, Overflow, InvalidOperation], | 
|  | flags=[], | 
|  | Emax=999999, | 
|  | Emin=-999999, | 
|  | capitals=1, | 
|  | clamp=0 | 
|  | ) | 
|  |  | 
|  | # Pre-made alternate contexts offered by the specification | 
|  | # Don't change these; the user should be able to select these | 
|  | # contexts and be able to reproduce results from other implementations | 
|  | # of the spec. | 
|  |  | 
|  | BasicContext = Context( | 
|  | prec=9, rounding=ROUND_HALF_UP, | 
|  | traps=[DivisionByZero, Overflow, InvalidOperation, Clamped, Underflow], | 
|  | flags=[], | 
|  | ) | 
|  |  | 
|  | ExtendedContext = Context( | 
|  | prec=9, rounding=ROUND_HALF_EVEN, | 
|  | traps=[], | 
|  | flags=[], | 
|  | ) | 
|  |  | 
|  |  | 
|  | ##### crud for parsing strings ############################################# | 
|  | # | 
|  | # Regular expression used for parsing numeric strings.  Additional | 
|  | # comments: | 
|  | # | 
|  | # 1. Uncomment the two '\s*' lines to allow leading and/or trailing | 
|  | # whitespace.  But note that the specification disallows whitespace in | 
|  | # a numeric string. | 
|  | # | 
|  | # 2. For finite numbers (not infinities and NaNs) the body of the | 
|  | # number between the optional sign and the optional exponent must have | 
|  | # at least one decimal digit, possibly after the decimal point.  The | 
|  | # lookahead expression '(?=\d|\.\d)' checks this. | 
|  |  | 
|  | import re | 
|  | _parser = re.compile(r"""        # A numeric string consists of: | 
|  | #    \s* | 
|  | (?P<sign>[-+])?              # an optional sign, followed by either... | 
|  | ( | 
|  | (?=\d|\.\d)              # ...a number (with at least one digit) | 
|  | (?P<int>\d*)             # having a (possibly empty) integer part | 
|  | (\.(?P<frac>\d*))?       # followed by an optional fractional part | 
|  | (E(?P<exp>[-+]?\d+))?    # followed by an optional exponent, or... | 
|  | | | 
|  | Inf(inity)?              # ...an infinity, or... | 
|  | | | 
|  | (?P<signal>s)?           # ...an (optionally signaling) | 
|  | NaN                      # NaN | 
|  | (?P<diag>\d*)            # with (possibly empty) diagnostic info. | 
|  | ) | 
|  | #    \s* | 
|  | \Z | 
|  | """, re.VERBOSE | re.IGNORECASE).match | 
|  |  | 
|  | _all_zeros = re.compile('0*$').match | 
|  | _exact_half = re.compile('50*$').match | 
|  |  | 
|  | ##### PEP3101 support functions ############################################## | 
|  | # The functions in this section have little to do with the Decimal | 
|  | # class, and could potentially be reused or adapted for other pure | 
|  | # Python numeric classes that want to implement __format__ | 
|  | # | 
|  | # A format specifier for Decimal looks like: | 
|  | # | 
|  | #   [[fill]align][sign][#][0][minimumwidth][,][.precision][type] | 
|  |  | 
|  | _parse_format_specifier_regex = re.compile(r"""\A | 
|  | (?: | 
|  | (?P<fill>.)? | 
|  | (?P<align>[<>=^]) | 
|  | )? | 
|  | (?P<sign>[-+ ])? | 
|  | (?P<alt>\#)? | 
|  | (?P<zeropad>0)? | 
|  | (?P<minimumwidth>(?!0)\d+)? | 
|  | (?P<thousands_sep>,)? | 
|  | (?:\.(?P<precision>0|(?!0)\d+))? | 
|  | (?P<type>[eEfFgGn%])? | 
|  | \Z | 
|  | """, re.VERBOSE|re.DOTALL) | 
|  |  | 
|  | del re | 
|  |  | 
|  | # The locale module is only needed for the 'n' format specifier.  The | 
|  | # rest of the PEP 3101 code functions quite happily without it, so we | 
|  | # don't care too much if locale isn't present. | 
|  | try: | 
|  | import locale as _locale | 
|  | except ImportError: | 
|  | pass | 
|  |  | 
|  | def _parse_format_specifier(format_spec, _localeconv=None): | 
|  | """Parse and validate a format specifier. | 
|  |  | 
|  | Turns a standard numeric format specifier into a dict, with the | 
|  | following entries: | 
|  |  | 
|  | fill: fill character to pad field to minimum width | 
|  | align: alignment type, either '<', '>', '=' or '^' | 
|  | sign: either '+', '-' or ' ' | 
|  | minimumwidth: nonnegative integer giving minimum width | 
|  | zeropad: boolean, indicating whether to pad with zeros | 
|  | thousands_sep: string to use as thousands separator, or '' | 
|  | grouping: grouping for thousands separators, in format | 
|  | used by localeconv | 
|  | decimal_point: string to use for decimal point | 
|  | precision: nonnegative integer giving precision, or None | 
|  | type: one of the characters 'eEfFgG%', or None | 
|  |  | 
|  | """ | 
|  | m = _parse_format_specifier_regex.match(format_spec) | 
|  | if m is None: | 
|  | raise ValueError("Invalid format specifier: " + format_spec) | 
|  |  | 
|  | # get the dictionary | 
|  | format_dict = m.groupdict() | 
|  |  | 
|  | # zeropad; defaults for fill and alignment.  If zero padding | 
|  | # is requested, the fill and align fields should be absent. | 
|  | fill = format_dict['fill'] | 
|  | align = format_dict['align'] | 
|  | format_dict['zeropad'] = (format_dict['zeropad'] is not None) | 
|  | if format_dict['zeropad']: | 
|  | if fill is not None: | 
|  | raise ValueError("Fill character conflicts with '0'" | 
|  | " in format specifier: " + format_spec) | 
|  | if align is not None: | 
|  | raise ValueError("Alignment conflicts with '0' in " | 
|  | "format specifier: " + format_spec) | 
|  | format_dict['fill'] = fill or ' ' | 
|  | # PEP 3101 originally specified that the default alignment should | 
|  | # be left;  it was later agreed that right-aligned makes more sense | 
|  | # for numeric types.  See http://bugs.python.org/issue6857. | 
|  | format_dict['align'] = align or '>' | 
|  |  | 
|  | # default sign handling: '-' for negative, '' for positive | 
|  | if format_dict['sign'] is None: | 
|  | format_dict['sign'] = '-' | 
|  |  | 
|  | # minimumwidth defaults to 0; precision remains None if not given | 
|  | format_dict['minimumwidth'] = int(format_dict['minimumwidth'] or '0') | 
|  | if format_dict['precision'] is not None: | 
|  | format_dict['precision'] = int(format_dict['precision']) | 
|  |  | 
|  | # if format type is 'g' or 'G' then a precision of 0 makes little | 
|  | # sense; convert it to 1.  Same if format type is unspecified. | 
|  | if format_dict['precision'] == 0: | 
|  | if format_dict['type'] is None or format_dict['type'] in 'gGn': | 
|  | format_dict['precision'] = 1 | 
|  |  | 
|  | # determine thousands separator, grouping, and decimal separator, and | 
|  | # add appropriate entries to format_dict | 
|  | if format_dict['type'] == 'n': | 
|  | # apart from separators, 'n' behaves just like 'g' | 
|  | format_dict['type'] = 'g' | 
|  | if _localeconv is None: | 
|  | _localeconv = _locale.localeconv() | 
|  | if format_dict['thousands_sep'] is not None: | 
|  | raise ValueError("Explicit thousands separator conflicts with " | 
|  | "'n' type in format specifier: " + format_spec) | 
|  | format_dict['thousands_sep'] = _localeconv['thousands_sep'] | 
|  | format_dict['grouping'] = _localeconv['grouping'] | 
|  | format_dict['decimal_point'] = _localeconv['decimal_point'] | 
|  | else: | 
|  | if format_dict['thousands_sep'] is None: | 
|  | format_dict['thousands_sep'] = '' | 
|  | format_dict['grouping'] = [3, 0] | 
|  | format_dict['decimal_point'] = '.' | 
|  |  | 
|  | return format_dict | 
|  |  | 
|  | def _format_align(sign, body, spec): | 
|  | """Given an unpadded, non-aligned numeric string 'body' and sign | 
|  | string 'sign', add padding and alignment conforming to the given | 
|  | format specifier dictionary 'spec' (as produced by | 
|  | parse_format_specifier). | 
|  |  | 
|  | """ | 
|  | # how much extra space do we have to play with? | 
|  | minimumwidth = spec['minimumwidth'] | 
|  | fill = spec['fill'] | 
|  | padding = fill*(minimumwidth - len(sign) - len(body)) | 
|  |  | 
|  | align = spec['align'] | 
|  | if align == '<': | 
|  | result = sign + body + padding | 
|  | elif align == '>': | 
|  | result = padding + sign + body | 
|  | elif align == '=': | 
|  | result = sign + padding + body | 
|  | elif align == '^': | 
|  | half = len(padding)//2 | 
|  | result = padding[:half] + sign + body + padding[half:] | 
|  | else: | 
|  | raise ValueError('Unrecognised alignment field') | 
|  |  | 
|  | return result | 
|  |  | 
|  | def _group_lengths(grouping): | 
|  | """Convert a localeconv-style grouping into a (possibly infinite) | 
|  | iterable of integers representing group lengths. | 
|  |  | 
|  | """ | 
|  | # The result from localeconv()['grouping'], and the input to this | 
|  | # function, should be a list of integers in one of the | 
|  | # following three forms: | 
|  | # | 
|  | #   (1) an empty list, or | 
|  | #   (2) nonempty list of positive integers + [0] | 
|  | #   (3) list of positive integers + [locale.CHAR_MAX], or | 
|  |  | 
|  | from itertools import chain, repeat | 
|  | if not grouping: | 
|  | return [] | 
|  | elif grouping[-1] == 0 and len(grouping) >= 2: | 
|  | return chain(grouping[:-1], repeat(grouping[-2])) | 
|  | elif grouping[-1] == _locale.CHAR_MAX: | 
|  | return grouping[:-1] | 
|  | else: | 
|  | raise ValueError('unrecognised format for grouping') | 
|  |  | 
|  | def _insert_thousands_sep(digits, spec, min_width=1): | 
|  | """Insert thousands separators into a digit string. | 
|  |  | 
|  | spec is a dictionary whose keys should include 'thousands_sep' and | 
|  | 'grouping'; typically it's the result of parsing the format | 
|  | specifier using _parse_format_specifier. | 
|  |  | 
|  | The min_width keyword argument gives the minimum length of the | 
|  | result, which will be padded on the left with zeros if necessary. | 
|  |  | 
|  | If necessary, the zero padding adds an extra '0' on the left to | 
|  | avoid a leading thousands separator.  For example, inserting | 
|  | commas every three digits in '123456', with min_width=8, gives | 
|  | '0,123,456', even though that has length 9. | 
|  |  | 
|  | """ | 
|  |  | 
|  | sep = spec['thousands_sep'] | 
|  | grouping = spec['grouping'] | 
|  |  | 
|  | groups = [] | 
|  | for l in _group_lengths(grouping): | 
|  | if l <= 0: | 
|  | raise ValueError("group length should be positive") | 
|  | # max(..., 1) forces at least 1 digit to the left of a separator | 
|  | l = min(max(len(digits), min_width, 1), l) | 
|  | groups.append('0'*(l - len(digits)) + digits[-l:]) | 
|  | digits = digits[:-l] | 
|  | min_width -= l | 
|  | if not digits and min_width <= 0: | 
|  | break | 
|  | min_width -= len(sep) | 
|  | else: | 
|  | l = max(len(digits), min_width, 1) | 
|  | groups.append('0'*(l - len(digits)) + digits[-l:]) | 
|  | return sep.join(reversed(groups)) | 
|  |  | 
|  | def _format_sign(is_negative, spec): | 
|  | """Determine sign character.""" | 
|  |  | 
|  | if is_negative: | 
|  | return '-' | 
|  | elif spec['sign'] in ' +': | 
|  | return spec['sign'] | 
|  | else: | 
|  | return '' | 
|  |  | 
|  | def _format_number(is_negative, intpart, fracpart, exp, spec): | 
|  | """Format a number, given the following data: | 
|  |  | 
|  | is_negative: true if the number is negative, else false | 
|  | intpart: string of digits that must appear before the decimal point | 
|  | fracpart: string of digits that must come after the point | 
|  | exp: exponent, as an integer | 
|  | spec: dictionary resulting from parsing the format specifier | 
|  |  | 
|  | This function uses the information in spec to: | 
|  | insert separators (decimal separator and thousands separators) | 
|  | format the sign | 
|  | format the exponent | 
|  | add trailing '%' for the '%' type | 
|  | zero-pad if necessary | 
|  | fill and align if necessary | 
|  | """ | 
|  |  | 
|  | sign = _format_sign(is_negative, spec) | 
|  |  | 
|  | if fracpart or spec['alt']: | 
|  | fracpart = spec['decimal_point'] + fracpart | 
|  |  | 
|  | if exp != 0 or spec['type'] in 'eE': | 
|  | echar = {'E': 'E', 'e': 'e', 'G': 'E', 'g': 'e'}[spec['type']] | 
|  | fracpart += "{0}{1:+}".format(echar, exp) | 
|  | if spec['type'] == '%': | 
|  | fracpart += '%' | 
|  |  | 
|  | if spec['zeropad']: | 
|  | min_width = spec['minimumwidth'] - len(fracpart) - len(sign) | 
|  | else: | 
|  | min_width = 0 | 
|  | intpart = _insert_thousands_sep(intpart, spec, min_width) | 
|  |  | 
|  | return _format_align(sign, intpart+fracpart, spec) | 
|  |  | 
|  |  | 
|  | ##### Useful Constants (internal use only) ################################ | 
|  |  | 
|  | # Reusable defaults | 
|  | _Infinity = Decimal('Inf') | 
|  | _NegativeInfinity = Decimal('-Inf') | 
|  | _NaN = Decimal('NaN') | 
|  | _Zero = Decimal(0) | 
|  | _One = Decimal(1) | 
|  | _NegativeOne = Decimal(-1) | 
|  |  | 
|  | # _SignedInfinity[sign] is infinity w/ that sign | 
|  | _SignedInfinity = (_Infinity, _NegativeInfinity) | 
|  |  | 
|  | # Constants related to the hash implementation;  hash(x) is based | 
|  | # on the reduction of x modulo _PyHASH_MODULUS | 
|  | _PyHASH_MODULUS = sys.hash_info.modulus | 
|  | # hash values to use for positive and negative infinities, and nans | 
|  | _PyHASH_INF = sys.hash_info.inf | 
|  | _PyHASH_NAN = sys.hash_info.nan | 
|  |  | 
|  | # _PyHASH_10INV is the inverse of 10 modulo the prime _PyHASH_MODULUS | 
|  | _PyHASH_10INV = pow(10, _PyHASH_MODULUS - 2, _PyHASH_MODULUS) | 
|  | del sys |