blob: 922ff1f8dea7213e398c0ba26f28b79aa6992f80 [file] [log] [blame]
//===--- Stmt.cpp - Statement AST Node Implementation ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Stmt class and statement subclasses.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTDiagnostic.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/ExprOpenMP.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/StmtCXX.h"
#include "clang/AST/StmtObjC.h"
#include "clang/AST/StmtOpenMP.h"
#include "clang/AST/Type.h"
#include "clang/Basic/CharInfo.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Lex/Token.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/raw_ostream.h"
using namespace clang;
static struct StmtClassNameTable {
const char *Name;
unsigned Counter;
unsigned Size;
} StmtClassInfo[Stmt::lastStmtConstant+1];
static StmtClassNameTable &getStmtInfoTableEntry(Stmt::StmtClass E) {
static bool Initialized = false;
if (Initialized)
return StmtClassInfo[E];
// Intialize the table on the first use.
Initialized = true;
#define ABSTRACT_STMT(STMT)
#define STMT(CLASS, PARENT) \
StmtClassInfo[(unsigned)Stmt::CLASS##Class].Name = #CLASS; \
StmtClassInfo[(unsigned)Stmt::CLASS##Class].Size = sizeof(CLASS);
#include "clang/AST/StmtNodes.inc"
return StmtClassInfo[E];
}
void *Stmt::operator new(size_t bytes, const ASTContext& C,
unsigned alignment) {
return ::operator new(bytes, C, alignment);
}
const char *Stmt::getStmtClassName() const {
return getStmtInfoTableEntry((StmtClass) StmtBits.sClass).Name;
}
void Stmt::PrintStats() {
// Ensure the table is primed.
getStmtInfoTableEntry(Stmt::NullStmtClass);
unsigned sum = 0;
llvm::errs() << "\n*** Stmt/Expr Stats:\n";
for (int i = 0; i != Stmt::lastStmtConstant+1; i++) {
if (StmtClassInfo[i].Name == nullptr) continue;
sum += StmtClassInfo[i].Counter;
}
llvm::errs() << " " << sum << " stmts/exprs total.\n";
sum = 0;
for (int i = 0; i != Stmt::lastStmtConstant+1; i++) {
if (StmtClassInfo[i].Name == nullptr) continue;
if (StmtClassInfo[i].Counter == 0) continue;
llvm::errs() << " " << StmtClassInfo[i].Counter << " "
<< StmtClassInfo[i].Name << ", " << StmtClassInfo[i].Size
<< " each (" << StmtClassInfo[i].Counter*StmtClassInfo[i].Size
<< " bytes)\n";
sum += StmtClassInfo[i].Counter*StmtClassInfo[i].Size;
}
llvm::errs() << "Total bytes = " << sum << "\n";
}
void Stmt::addStmtClass(StmtClass s) {
++getStmtInfoTableEntry(s).Counter;
}
bool Stmt::StatisticsEnabled = false;
void Stmt::EnableStatistics() {
StatisticsEnabled = true;
}
Stmt *Stmt::IgnoreImplicit() {
Stmt *s = this;
if (auto *ewc = dyn_cast<ExprWithCleanups>(s))
s = ewc->getSubExpr();
if (auto *mte = dyn_cast<MaterializeTemporaryExpr>(s))
s = mte->GetTemporaryExpr();
if (auto *bte = dyn_cast<CXXBindTemporaryExpr>(s))
s = bte->getSubExpr();
while (auto *ice = dyn_cast<ImplicitCastExpr>(s))
s = ice->getSubExpr();
return s;
}
/// \brief Skip no-op (attributed, compound) container stmts and skip captured
/// stmt at the top, if \a IgnoreCaptured is true.
Stmt *Stmt::IgnoreContainers(bool IgnoreCaptured) {
Stmt *S = this;
if (IgnoreCaptured)
if (auto CapS = dyn_cast_or_null<CapturedStmt>(S))
S = CapS->getCapturedStmt();
while (true) {
if (auto AS = dyn_cast_or_null<AttributedStmt>(S))
S = AS->getSubStmt();
else if (auto CS = dyn_cast_or_null<CompoundStmt>(S)) {
if (CS->size() != 1)
break;
S = CS->body_back();
} else
break;
}
return S;
}
/// \brief Strip off all label-like statements.
///
/// This will strip off label statements, case statements, attributed
/// statements and default statements recursively.
const Stmt *Stmt::stripLabelLikeStatements() const {
const Stmt *S = this;
while (true) {
if (const LabelStmt *LS = dyn_cast<LabelStmt>(S))
S = LS->getSubStmt();
else if (const SwitchCase *SC = dyn_cast<SwitchCase>(S))
S = SC->getSubStmt();
else if (const AttributedStmt *AS = dyn_cast<AttributedStmt>(S))
S = AS->getSubStmt();
else
return S;
}
}
namespace {
struct good {};
struct bad {};
// These silly little functions have to be static inline to suppress
// unused warnings, and they have to be defined to suppress other
// warnings.
static inline good is_good(good) { return good(); }
typedef Stmt::child_range children_t();
template <class T> good implements_children(children_t T::*) {
return good();
}
LLVM_ATTRIBUTE_UNUSED
static inline bad implements_children(children_t Stmt::*) {
return bad();
}
typedef SourceLocation getLocStart_t() const;
template <class T> good implements_getLocStart(getLocStart_t T::*) {
return good();
}
LLVM_ATTRIBUTE_UNUSED
static inline bad implements_getLocStart(getLocStart_t Stmt::*) {
return bad();
}
typedef SourceLocation getLocEnd_t() const;
template <class T> good implements_getLocEnd(getLocEnd_t T::*) {
return good();
}
LLVM_ATTRIBUTE_UNUSED
static inline bad implements_getLocEnd(getLocEnd_t Stmt::*) {
return bad();
}
#define ASSERT_IMPLEMENTS_children(type) \
(void) is_good(implements_children(&type::children))
#define ASSERT_IMPLEMENTS_getLocStart(type) \
(void) is_good(implements_getLocStart(&type::getLocStart))
#define ASSERT_IMPLEMENTS_getLocEnd(type) \
(void) is_good(implements_getLocEnd(&type::getLocEnd))
}
/// Check whether the various Stmt classes implement their member
/// functions.
LLVM_ATTRIBUTE_UNUSED
static inline void check_implementations() {
#define ABSTRACT_STMT(type)
#define STMT(type, base) \
ASSERT_IMPLEMENTS_children(type); \
ASSERT_IMPLEMENTS_getLocStart(type); \
ASSERT_IMPLEMENTS_getLocEnd(type);
#include "clang/AST/StmtNodes.inc"
}
Stmt::child_range Stmt::children() {
switch (getStmtClass()) {
case Stmt::NoStmtClass: llvm_unreachable("statement without class");
#define ABSTRACT_STMT(type)
#define STMT(type, base) \
case Stmt::type##Class: \
return static_cast<type*>(this)->children();
#include "clang/AST/StmtNodes.inc"
}
llvm_unreachable("unknown statement kind!");
}
// Amusing macro metaprogramming hack: check whether a class provides
// a more specific implementation of getSourceRange.
//
// See also Expr.cpp:getExprLoc().
namespace {
/// This implementation is used when a class provides a custom
/// implementation of getSourceRange.
template <class S, class T>
SourceRange getSourceRangeImpl(const Stmt *stmt,
SourceRange (T::*v)() const) {
return static_cast<const S*>(stmt)->getSourceRange();
}
/// This implementation is used when a class doesn't provide a custom
/// implementation of getSourceRange. Overload resolution should pick it over
/// the implementation above because it's more specialized according to
/// function template partial ordering.
template <class S>
SourceRange getSourceRangeImpl(const Stmt *stmt,
SourceRange (Stmt::*v)() const) {
return SourceRange(static_cast<const S*>(stmt)->getLocStart(),
static_cast<const S*>(stmt)->getLocEnd());
}
}
SourceRange Stmt::getSourceRange() const {
switch (getStmtClass()) {
case Stmt::NoStmtClass: llvm_unreachable("statement without class");
#define ABSTRACT_STMT(type)
#define STMT(type, base) \
case Stmt::type##Class: \
return getSourceRangeImpl<type>(this, &type::getSourceRange);
#include "clang/AST/StmtNodes.inc"
}
llvm_unreachable("unknown statement kind!");
}
SourceLocation Stmt::getLocStart() const {
// llvm::errs() << "getLocStart() for " << getStmtClassName() << "\n";
switch (getStmtClass()) {
case Stmt::NoStmtClass: llvm_unreachable("statement without class");
#define ABSTRACT_STMT(type)
#define STMT(type, base) \
case Stmt::type##Class: \
return static_cast<const type*>(this)->getLocStart();
#include "clang/AST/StmtNodes.inc"
}
llvm_unreachable("unknown statement kind");
}
SourceLocation Stmt::getLocEnd() const {
switch (getStmtClass()) {
case Stmt::NoStmtClass: llvm_unreachable("statement without class");
#define ABSTRACT_STMT(type)
#define STMT(type, base) \
case Stmt::type##Class: \
return static_cast<const type*>(this)->getLocEnd();
#include "clang/AST/StmtNodes.inc"
}
llvm_unreachable("unknown statement kind");
}
CompoundStmt::CompoundStmt(const ASTContext &C, ArrayRef<Stmt*> Stmts,
SourceLocation LB, SourceLocation RB)
: Stmt(CompoundStmtClass), LBraceLoc(LB), RBraceLoc(RB) {
CompoundStmtBits.NumStmts = Stmts.size();
assert(CompoundStmtBits.NumStmts == Stmts.size() &&
"NumStmts doesn't fit in bits of CompoundStmtBits.NumStmts!");
if (Stmts.size() == 0) {
Body = nullptr;
return;
}
Body = new (C) Stmt*[Stmts.size()];
std::copy(Stmts.begin(), Stmts.end(), Body);
}
void CompoundStmt::setStmts(const ASTContext &C, ArrayRef<Stmt *> Stmts) {
if (Body)
C.Deallocate(Body);
CompoundStmtBits.NumStmts = Stmts.size();
assert(CompoundStmtBits.NumStmts == Stmts.size() &&
"NumStmts doesn't fit in bits of CompoundStmtBits.NumStmts!");
Body = new (C) Stmt*[Stmts.size()];
std::copy(Stmts.begin(), Stmts.end(), Body);
}
const char *LabelStmt::getName() const {
return getDecl()->getIdentifier()->getNameStart();
}
AttributedStmt *AttributedStmt::Create(const ASTContext &C, SourceLocation Loc,
ArrayRef<const Attr*> Attrs,
Stmt *SubStmt) {
assert(!Attrs.empty() && "Attrs should not be empty");
void *Mem = C.Allocate(sizeof(AttributedStmt) + sizeof(Attr *) * Attrs.size(),
alignof(AttributedStmt));
return new (Mem) AttributedStmt(Loc, Attrs, SubStmt);
}
AttributedStmt *AttributedStmt::CreateEmpty(const ASTContext &C,
unsigned NumAttrs) {
assert(NumAttrs > 0 && "NumAttrs should be greater than zero");
void *Mem = C.Allocate(sizeof(AttributedStmt) + sizeof(Attr *) * NumAttrs,
alignof(AttributedStmt));
return new (Mem) AttributedStmt(EmptyShell(), NumAttrs);
}
std::string AsmStmt::generateAsmString(const ASTContext &C) const {
if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(this))
return gccAsmStmt->generateAsmString(C);
if (const MSAsmStmt *msAsmStmt = dyn_cast<MSAsmStmt>(this))
return msAsmStmt->generateAsmString(C);
llvm_unreachable("unknown asm statement kind!");
}
StringRef AsmStmt::getOutputConstraint(unsigned i) const {
if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(this))
return gccAsmStmt->getOutputConstraint(i);
if (const MSAsmStmt *msAsmStmt = dyn_cast<MSAsmStmt>(this))
return msAsmStmt->getOutputConstraint(i);
llvm_unreachable("unknown asm statement kind!");
}
const Expr *AsmStmt::getOutputExpr(unsigned i) const {
if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(this))
return gccAsmStmt->getOutputExpr(i);
if (const MSAsmStmt *msAsmStmt = dyn_cast<MSAsmStmt>(this))
return msAsmStmt->getOutputExpr(i);
llvm_unreachable("unknown asm statement kind!");
}
StringRef AsmStmt::getInputConstraint(unsigned i) const {
if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(this))
return gccAsmStmt->getInputConstraint(i);
if (const MSAsmStmt *msAsmStmt = dyn_cast<MSAsmStmt>(this))
return msAsmStmt->getInputConstraint(i);
llvm_unreachable("unknown asm statement kind!");
}
const Expr *AsmStmt::getInputExpr(unsigned i) const {
if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(this))
return gccAsmStmt->getInputExpr(i);
if (const MSAsmStmt *msAsmStmt = dyn_cast<MSAsmStmt>(this))
return msAsmStmt->getInputExpr(i);
llvm_unreachable("unknown asm statement kind!");
}
StringRef AsmStmt::getClobber(unsigned i) const {
if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(this))
return gccAsmStmt->getClobber(i);
if (const MSAsmStmt *msAsmStmt = dyn_cast<MSAsmStmt>(this))
return msAsmStmt->getClobber(i);
llvm_unreachable("unknown asm statement kind!");
}
/// getNumPlusOperands - Return the number of output operands that have a "+"
/// constraint.
unsigned AsmStmt::getNumPlusOperands() const {
unsigned Res = 0;
for (unsigned i = 0, e = getNumOutputs(); i != e; ++i)
if (isOutputPlusConstraint(i))
++Res;
return Res;
}
char GCCAsmStmt::AsmStringPiece::getModifier() const {
assert(isOperand() && "Only Operands can have modifiers.");
return isLetter(Str[0]) ? Str[0] : '\0';
}
StringRef GCCAsmStmt::getClobber(unsigned i) const {
return getClobberStringLiteral(i)->getString();
}
Expr *GCCAsmStmt::getOutputExpr(unsigned i) {
return cast<Expr>(Exprs[i]);
}
/// getOutputConstraint - Return the constraint string for the specified
/// output operand. All output constraints are known to be non-empty (either
/// '=' or '+').
StringRef GCCAsmStmt::getOutputConstraint(unsigned i) const {
return getOutputConstraintLiteral(i)->getString();
}
Expr *GCCAsmStmt::getInputExpr(unsigned i) {
return cast<Expr>(Exprs[i + NumOutputs]);
}
void GCCAsmStmt::setInputExpr(unsigned i, Expr *E) {
Exprs[i + NumOutputs] = E;
}
/// getInputConstraint - Return the specified input constraint. Unlike output
/// constraints, these can be empty.
StringRef GCCAsmStmt::getInputConstraint(unsigned i) const {
return getInputConstraintLiteral(i)->getString();
}
void GCCAsmStmt::setOutputsAndInputsAndClobbers(const ASTContext &C,
IdentifierInfo **Names,
StringLiteral **Constraints,
Stmt **Exprs,
unsigned NumOutputs,
unsigned NumInputs,
StringLiteral **Clobbers,
unsigned NumClobbers) {
this->NumOutputs = NumOutputs;
this->NumInputs = NumInputs;
this->NumClobbers = NumClobbers;
unsigned NumExprs = NumOutputs + NumInputs;
C.Deallocate(this->Names);
this->Names = new (C) IdentifierInfo*[NumExprs];
std::copy(Names, Names + NumExprs, this->Names);
C.Deallocate(this->Exprs);
this->Exprs = new (C) Stmt*[NumExprs];
std::copy(Exprs, Exprs + NumExprs, this->Exprs);
C.Deallocate(this->Constraints);
this->Constraints = new (C) StringLiteral*[NumExprs];
std::copy(Constraints, Constraints + NumExprs, this->Constraints);
C.Deallocate(this->Clobbers);
this->Clobbers = new (C) StringLiteral*[NumClobbers];
std::copy(Clobbers, Clobbers + NumClobbers, this->Clobbers);
}
/// getNamedOperand - Given a symbolic operand reference like %[foo],
/// translate this into a numeric value needed to reference the same operand.
/// This returns -1 if the operand name is invalid.
int GCCAsmStmt::getNamedOperand(StringRef SymbolicName) const {
unsigned NumPlusOperands = 0;
// Check if this is an output operand.
for (unsigned i = 0, e = getNumOutputs(); i != e; ++i) {
if (getOutputName(i) == SymbolicName)
return i;
}
for (unsigned i = 0, e = getNumInputs(); i != e; ++i)
if (getInputName(i) == SymbolicName)
return getNumOutputs() + NumPlusOperands + i;
// Not found.
return -1;
}
/// AnalyzeAsmString - Analyze the asm string of the current asm, decomposing
/// it into pieces. If the asm string is erroneous, emit errors and return
/// true, otherwise return false.
unsigned GCCAsmStmt::AnalyzeAsmString(SmallVectorImpl<AsmStringPiece>&Pieces,
const ASTContext &C, unsigned &DiagOffs) const {
StringRef Str = getAsmString()->getString();
const char *StrStart = Str.begin();
const char *StrEnd = Str.end();
const char *CurPtr = StrStart;
// "Simple" inline asms have no constraints or operands, just convert the asm
// string to escape $'s.
if (isSimple()) {
std::string Result;
for (; CurPtr != StrEnd; ++CurPtr) {
switch (*CurPtr) {
case '$':
Result += "$$";
break;
default:
Result += *CurPtr;
break;
}
}
Pieces.push_back(AsmStringPiece(Result));
return 0;
}
// CurStringPiece - The current string that we are building up as we scan the
// asm string.
std::string CurStringPiece;
bool HasVariants = !C.getTargetInfo().hasNoAsmVariants();
unsigned LastAsmStringToken = 0;
unsigned LastAsmStringOffset = 0;
while (1) {
// Done with the string?
if (CurPtr == StrEnd) {
if (!CurStringPiece.empty())
Pieces.push_back(AsmStringPiece(CurStringPiece));
return 0;
}
char CurChar = *CurPtr++;
switch (CurChar) {
case '$': CurStringPiece += "$$"; continue;
case '{': CurStringPiece += (HasVariants ? "$(" : "{"); continue;
case '|': CurStringPiece += (HasVariants ? "$|" : "|"); continue;
case '}': CurStringPiece += (HasVariants ? "$)" : "}"); continue;
case '%':
break;
default:
CurStringPiece += CurChar;
continue;
}
// Escaped "%" character in asm string.
if (CurPtr == StrEnd) {
// % at end of string is invalid (no escape).
DiagOffs = CurPtr-StrStart-1;
return diag::err_asm_invalid_escape;
}
// Handle escaped char and continue looping over the asm string.
char EscapedChar = *CurPtr++;
switch (EscapedChar) {
default:
break;
case '%': // %% -> %
case '{': // %{ -> {
case '}': // %} -> }
CurStringPiece += EscapedChar;
continue;
case '=': // %= -> Generate a unique ID.
CurStringPiece += "${:uid}";
continue;
}
// Otherwise, we have an operand. If we have accumulated a string so far,
// add it to the Pieces list.
if (!CurStringPiece.empty()) {
Pieces.push_back(AsmStringPiece(CurStringPiece));
CurStringPiece.clear();
}
// Handle operands that have asmSymbolicName (e.g., %x[foo]) and those that
// don't (e.g., %x4). 'x' following the '%' is the constraint modifier.
const char *Begin = CurPtr - 1; // Points to the character following '%'.
const char *Percent = Begin - 1; // Points to '%'.
if (isLetter(EscapedChar)) {
if (CurPtr == StrEnd) { // Premature end.
DiagOffs = CurPtr-StrStart-1;
return diag::err_asm_invalid_escape;
}
EscapedChar = *CurPtr++;
}
const TargetInfo &TI = C.getTargetInfo();
const SourceManager &SM = C.getSourceManager();
const LangOptions &LO = C.getLangOpts();
// Handle operands that don't have asmSymbolicName (e.g., %x4).
if (isDigit(EscapedChar)) {
// %n - Assembler operand n
unsigned N = 0;
--CurPtr;
while (CurPtr != StrEnd && isDigit(*CurPtr))
N = N*10 + ((*CurPtr++)-'0');
unsigned NumOperands =
getNumOutputs() + getNumPlusOperands() + getNumInputs();
if (N >= NumOperands) {
DiagOffs = CurPtr-StrStart-1;
return diag::err_asm_invalid_operand_number;
}
// Str contains "x4" (Operand without the leading %).
std::string Str(Begin, CurPtr - Begin);
// (BeginLoc, EndLoc) represents the range of the operand we are currently
// processing. Unlike Str, the range includes the leading '%'.
SourceLocation BeginLoc = getAsmString()->getLocationOfByte(
Percent - StrStart, SM, LO, TI, &LastAsmStringToken,
&LastAsmStringOffset);
SourceLocation EndLoc = getAsmString()->getLocationOfByte(
CurPtr - StrStart, SM, LO, TI, &LastAsmStringToken,
&LastAsmStringOffset);
Pieces.emplace_back(N, std::move(Str), BeginLoc, EndLoc);
continue;
}
// Handle operands that have asmSymbolicName (e.g., %x[foo]).
if (EscapedChar == '[') {
DiagOffs = CurPtr-StrStart-1;
// Find the ']'.
const char *NameEnd = (const char*)memchr(CurPtr, ']', StrEnd-CurPtr);
if (NameEnd == nullptr)
return diag::err_asm_unterminated_symbolic_operand_name;
if (NameEnd == CurPtr)
return diag::err_asm_empty_symbolic_operand_name;
StringRef SymbolicName(CurPtr, NameEnd - CurPtr);
int N = getNamedOperand(SymbolicName);
if (N == -1) {
// Verify that an operand with that name exists.
DiagOffs = CurPtr-StrStart;
return diag::err_asm_unknown_symbolic_operand_name;
}
// Str contains "x[foo]" (Operand without the leading %).
std::string Str(Begin, NameEnd + 1 - Begin);
// (BeginLoc, EndLoc) represents the range of the operand we are currently
// processing. Unlike Str, the range includes the leading '%'.
SourceLocation BeginLoc = getAsmString()->getLocationOfByte(
Percent - StrStart, SM, LO, TI, &LastAsmStringToken,
&LastAsmStringOffset);
SourceLocation EndLoc = getAsmString()->getLocationOfByte(
NameEnd + 1 - StrStart, SM, LO, TI, &LastAsmStringToken,
&LastAsmStringOffset);
Pieces.emplace_back(N, std::move(Str), BeginLoc, EndLoc);
CurPtr = NameEnd+1;
continue;
}
DiagOffs = CurPtr-StrStart-1;
return diag::err_asm_invalid_escape;
}
}
/// Assemble final IR asm string (GCC-style).
std::string GCCAsmStmt::generateAsmString(const ASTContext &C) const {
// Analyze the asm string to decompose it into its pieces. We know that Sema
// has already done this, so it is guaranteed to be successful.
SmallVector<GCCAsmStmt::AsmStringPiece, 4> Pieces;
unsigned DiagOffs;
AnalyzeAsmString(Pieces, C, DiagOffs);
std::string AsmString;
for (unsigned i = 0, e = Pieces.size(); i != e; ++i) {
if (Pieces[i].isString())
AsmString += Pieces[i].getString();
else if (Pieces[i].getModifier() == '\0')
AsmString += '$' + llvm::utostr(Pieces[i].getOperandNo());
else
AsmString += "${" + llvm::utostr(Pieces[i].getOperandNo()) + ':' +
Pieces[i].getModifier() + '}';
}
return AsmString;
}
/// Assemble final IR asm string (MS-style).
std::string MSAsmStmt::generateAsmString(const ASTContext &C) const {
// FIXME: This needs to be translated into the IR string representation.
return AsmStr;
}
Expr *MSAsmStmt::getOutputExpr(unsigned i) {
return cast<Expr>(Exprs[i]);
}
Expr *MSAsmStmt::getInputExpr(unsigned i) {
return cast<Expr>(Exprs[i + NumOutputs]);
}
void MSAsmStmt::setInputExpr(unsigned i, Expr *E) {
Exprs[i + NumOutputs] = E;
}
//===----------------------------------------------------------------------===//
// Constructors
//===----------------------------------------------------------------------===//
GCCAsmStmt::GCCAsmStmt(const ASTContext &C, SourceLocation asmloc,
bool issimple, bool isvolatile, unsigned numoutputs,
unsigned numinputs, IdentifierInfo **names,
StringLiteral **constraints, Expr **exprs,
StringLiteral *asmstr, unsigned numclobbers,
StringLiteral **clobbers, SourceLocation rparenloc)
: AsmStmt(GCCAsmStmtClass, asmloc, issimple, isvolatile, numoutputs,
numinputs, numclobbers), RParenLoc(rparenloc), AsmStr(asmstr) {
unsigned NumExprs = NumOutputs + NumInputs;
Names = new (C) IdentifierInfo*[NumExprs];
std::copy(names, names + NumExprs, Names);
Exprs = new (C) Stmt*[NumExprs];
std::copy(exprs, exprs + NumExprs, Exprs);
Constraints = new (C) StringLiteral*[NumExprs];
std::copy(constraints, constraints + NumExprs, Constraints);
Clobbers = new (C) StringLiteral*[NumClobbers];
std::copy(clobbers, clobbers + NumClobbers, Clobbers);
}
MSAsmStmt::MSAsmStmt(const ASTContext &C, SourceLocation asmloc,
SourceLocation lbraceloc, bool issimple, bool isvolatile,
ArrayRef<Token> asmtoks, unsigned numoutputs,
unsigned numinputs,
ArrayRef<StringRef> constraints, ArrayRef<Expr*> exprs,
StringRef asmstr, ArrayRef<StringRef> clobbers,
SourceLocation endloc)
: AsmStmt(MSAsmStmtClass, asmloc, issimple, isvolatile, numoutputs,
numinputs, clobbers.size()), LBraceLoc(lbraceloc),
EndLoc(endloc), NumAsmToks(asmtoks.size()) {
initialize(C, asmstr, asmtoks, constraints, exprs, clobbers);
}
static StringRef copyIntoContext(const ASTContext &C, StringRef str) {
return str.copy(C);
}
void MSAsmStmt::initialize(const ASTContext &C, StringRef asmstr,
ArrayRef<Token> asmtoks,
ArrayRef<StringRef> constraints,
ArrayRef<Expr*> exprs,
ArrayRef<StringRef> clobbers) {
assert(NumAsmToks == asmtoks.size());
assert(NumClobbers == clobbers.size());
assert(exprs.size() == NumOutputs + NumInputs);
assert(exprs.size() == constraints.size());
AsmStr = copyIntoContext(C, asmstr);
Exprs = new (C) Stmt*[exprs.size()];
std::copy(exprs.begin(), exprs.end(), Exprs);
AsmToks = new (C) Token[asmtoks.size()];
std::copy(asmtoks.begin(), asmtoks.end(), AsmToks);
Constraints = new (C) StringRef[exprs.size()];
std::transform(constraints.begin(), constraints.end(), Constraints,
[&](StringRef Constraint) {
return copyIntoContext(C, Constraint);
});
Clobbers = new (C) StringRef[NumClobbers];
// FIXME: Avoid the allocation/copy if at all possible.
std::transform(clobbers.begin(), clobbers.end(), Clobbers,
[&](StringRef Clobber) {
return copyIntoContext(C, Clobber);
});
}
IfStmt::IfStmt(const ASTContext &C, SourceLocation IL, bool IsConstexpr,
Stmt *init, VarDecl *var, Expr *cond, Stmt *then,
SourceLocation EL, Stmt *elsev)
: Stmt(IfStmtClass), IfLoc(IL), ElseLoc(EL) {
setConstexpr(IsConstexpr);
setConditionVariable(C, var);
SubExprs[INIT] = init;
SubExprs[COND] = cond;
SubExprs[THEN] = then;
SubExprs[ELSE] = elsev;
}
VarDecl *IfStmt::getConditionVariable() const {
if (!SubExprs[VAR])
return nullptr;
DeclStmt *DS = cast<DeclStmt>(SubExprs[VAR]);
return cast<VarDecl>(DS->getSingleDecl());
}
void IfStmt::setConditionVariable(const ASTContext &C, VarDecl *V) {
if (!V) {
SubExprs[VAR] = nullptr;
return;
}
SourceRange VarRange = V->getSourceRange();
SubExprs[VAR] = new (C) DeclStmt(DeclGroupRef(V), VarRange.getBegin(),
VarRange.getEnd());
}
bool IfStmt::isObjCAvailabilityCheck() const {
return isa<ObjCAvailabilityCheckExpr>(SubExprs[COND]);
}
ForStmt::ForStmt(const ASTContext &C, Stmt *Init, Expr *Cond, VarDecl *condVar,
Expr *Inc, Stmt *Body, SourceLocation FL, SourceLocation LP,
SourceLocation RP)
: Stmt(ForStmtClass), ForLoc(FL), LParenLoc(LP), RParenLoc(RP)
{
SubExprs[INIT] = Init;
setConditionVariable(C, condVar);
SubExprs[COND] = Cond;
SubExprs[INC] = Inc;
SubExprs[BODY] = Body;
}
VarDecl *ForStmt::getConditionVariable() const {
if (!SubExprs[CONDVAR])
return nullptr;
DeclStmt *DS = cast<DeclStmt>(SubExprs[CONDVAR]);
return cast<VarDecl>(DS->getSingleDecl());
}
void ForStmt::setConditionVariable(const ASTContext &C, VarDecl *V) {
if (!V) {
SubExprs[CONDVAR] = nullptr;
return;
}
SourceRange VarRange = V->getSourceRange();
SubExprs[CONDVAR] = new (C) DeclStmt(DeclGroupRef(V), VarRange.getBegin(),
VarRange.getEnd());
}
SwitchStmt::SwitchStmt(const ASTContext &C, Stmt *init, VarDecl *Var,
Expr *cond)
: Stmt(SwitchStmtClass), FirstCase(nullptr, false) {
setConditionVariable(C, Var);
SubExprs[INIT] = init;
SubExprs[COND] = cond;
SubExprs[BODY] = nullptr;
}
VarDecl *SwitchStmt::getConditionVariable() const {
if (!SubExprs[VAR])
return nullptr;
DeclStmt *DS = cast<DeclStmt>(SubExprs[VAR]);
return cast<VarDecl>(DS->getSingleDecl());
}
void SwitchStmt::setConditionVariable(const ASTContext &C, VarDecl *V) {
if (!V) {
SubExprs[VAR] = nullptr;
return;
}
SourceRange VarRange = V->getSourceRange();
SubExprs[VAR] = new (C) DeclStmt(DeclGroupRef(V), VarRange.getBegin(),
VarRange.getEnd());
}
Stmt *SwitchCase::getSubStmt() {
if (isa<CaseStmt>(this))
return cast<CaseStmt>(this)->getSubStmt();
return cast<DefaultStmt>(this)->getSubStmt();
}
WhileStmt::WhileStmt(const ASTContext &C, VarDecl *Var, Expr *cond, Stmt *body,
SourceLocation WL)
: Stmt(WhileStmtClass) {
setConditionVariable(C, Var);
SubExprs[COND] = cond;
SubExprs[BODY] = body;
WhileLoc = WL;
}
VarDecl *WhileStmt::getConditionVariable() const {
if (!SubExprs[VAR])
return nullptr;
DeclStmt *DS = cast<DeclStmt>(SubExprs[VAR]);
return cast<VarDecl>(DS->getSingleDecl());
}
void WhileStmt::setConditionVariable(const ASTContext &C, VarDecl *V) {
if (!V) {
SubExprs[VAR] = nullptr;
return;
}
SourceRange VarRange = V->getSourceRange();
SubExprs[VAR] = new (C) DeclStmt(DeclGroupRef(V), VarRange.getBegin(),
VarRange.getEnd());
}
// IndirectGotoStmt
LabelDecl *IndirectGotoStmt::getConstantTarget() {
if (AddrLabelExpr *E =
dyn_cast<AddrLabelExpr>(getTarget()->IgnoreParenImpCasts()))
return E->getLabel();
return nullptr;
}
// ReturnStmt
const Expr* ReturnStmt::getRetValue() const {
return cast_or_null<Expr>(RetExpr);
}
Expr* ReturnStmt::getRetValue() {
return cast_or_null<Expr>(RetExpr);
}
SEHTryStmt::SEHTryStmt(bool IsCXXTry,
SourceLocation TryLoc,
Stmt *TryBlock,
Stmt *Handler)
: Stmt(SEHTryStmtClass),
IsCXXTry(IsCXXTry),
TryLoc(TryLoc)
{
Children[TRY] = TryBlock;
Children[HANDLER] = Handler;
}
SEHTryStmt* SEHTryStmt::Create(const ASTContext &C, bool IsCXXTry,
SourceLocation TryLoc, Stmt *TryBlock,
Stmt *Handler) {
return new(C) SEHTryStmt(IsCXXTry,TryLoc,TryBlock,Handler);
}
SEHExceptStmt* SEHTryStmt::getExceptHandler() const {
return dyn_cast<SEHExceptStmt>(getHandler());
}
SEHFinallyStmt* SEHTryStmt::getFinallyHandler() const {
return dyn_cast<SEHFinallyStmt>(getHandler());
}
SEHExceptStmt::SEHExceptStmt(SourceLocation Loc,
Expr *FilterExpr,
Stmt *Block)
: Stmt(SEHExceptStmtClass),
Loc(Loc)
{
Children[FILTER_EXPR] = FilterExpr;
Children[BLOCK] = Block;
}
SEHExceptStmt* SEHExceptStmt::Create(const ASTContext &C, SourceLocation Loc,
Expr *FilterExpr, Stmt *Block) {
return new(C) SEHExceptStmt(Loc,FilterExpr,Block);
}
SEHFinallyStmt::SEHFinallyStmt(SourceLocation Loc,
Stmt *Block)
: Stmt(SEHFinallyStmtClass),
Loc(Loc),
Block(Block)
{}
SEHFinallyStmt* SEHFinallyStmt::Create(const ASTContext &C, SourceLocation Loc,
Stmt *Block) {
return new(C)SEHFinallyStmt(Loc,Block);
}
CapturedStmt::Capture::Capture(SourceLocation Loc, VariableCaptureKind Kind,
VarDecl *Var)
: VarAndKind(Var, Kind), Loc(Loc) {
switch (Kind) {
case VCK_This:
assert(!Var && "'this' capture cannot have a variable!");
break;
case VCK_ByRef:
assert(Var && "capturing by reference must have a variable!");
break;
case VCK_ByCopy:
assert(Var && "capturing by copy must have a variable!");
assert(
(Var->getType()->isScalarType() || (Var->getType()->isReferenceType() &&
Var->getType()
->castAs<ReferenceType>()
->getPointeeType()
->isScalarType())) &&
"captures by copy are expected to have a scalar type!");
break;
case VCK_VLAType:
assert(!Var &&
"Variable-length array type capture cannot have a variable!");
break;
}
}
CapturedStmt::VariableCaptureKind
CapturedStmt::Capture::getCaptureKind() const {
return VarAndKind.getInt();
}
VarDecl *CapturedStmt::Capture::getCapturedVar() const {
assert((capturesVariable() || capturesVariableByCopy()) &&
"No variable available for 'this' or VAT capture");
return VarAndKind.getPointer();
}
CapturedStmt::Capture *CapturedStmt::getStoredCaptures() const {
unsigned Size = sizeof(CapturedStmt) + sizeof(Stmt *) * (NumCaptures + 1);
// Offset of the first Capture object.
unsigned FirstCaptureOffset = llvm::alignTo(Size, alignof(Capture));
return reinterpret_cast<Capture *>(
reinterpret_cast<char *>(const_cast<CapturedStmt *>(this))
+ FirstCaptureOffset);
}
CapturedStmt::CapturedStmt(Stmt *S, CapturedRegionKind Kind,
ArrayRef<Capture> Captures,
ArrayRef<Expr *> CaptureInits,
CapturedDecl *CD,
RecordDecl *RD)
: Stmt(CapturedStmtClass), NumCaptures(Captures.size()),
CapDeclAndKind(CD, Kind), TheRecordDecl(RD) {
assert( S && "null captured statement");
assert(CD && "null captured declaration for captured statement");
assert(RD && "null record declaration for captured statement");
// Copy initialization expressions.
Stmt **Stored = getStoredStmts();
for (unsigned I = 0, N = NumCaptures; I != N; ++I)
*Stored++ = CaptureInits[I];
// Copy the statement being captured.
*Stored = S;
// Copy all Capture objects.
Capture *Buffer = getStoredCaptures();
std::copy(Captures.begin(), Captures.end(), Buffer);
}
CapturedStmt::CapturedStmt(EmptyShell Empty, unsigned NumCaptures)
: Stmt(CapturedStmtClass, Empty), NumCaptures(NumCaptures),
CapDeclAndKind(nullptr, CR_Default), TheRecordDecl(nullptr) {
getStoredStmts()[NumCaptures] = nullptr;
}
CapturedStmt *CapturedStmt::Create(const ASTContext &Context, Stmt *S,
CapturedRegionKind Kind,
ArrayRef<Capture> Captures,
ArrayRef<Expr *> CaptureInits,
CapturedDecl *CD,
RecordDecl *RD) {
// The layout is
//
// -----------------------------------------------------------
// | CapturedStmt, Init, ..., Init, S, Capture, ..., Capture |
// ----------------^-------------------^----------------------
// getStoredStmts() getStoredCaptures()
//
// where S is the statement being captured.
//
assert(CaptureInits.size() == Captures.size() && "wrong number of arguments");
unsigned Size = sizeof(CapturedStmt) + sizeof(Stmt *) * (Captures.size() + 1);
if (!Captures.empty()) {
// Realign for the following Capture array.
Size = llvm::alignTo(Size, alignof(Capture));
Size += sizeof(Capture) * Captures.size();
}
void *Mem = Context.Allocate(Size);
return new (Mem) CapturedStmt(S, Kind, Captures, CaptureInits, CD, RD);
}
CapturedStmt *CapturedStmt::CreateDeserialized(const ASTContext &Context,
unsigned NumCaptures) {
unsigned Size = sizeof(CapturedStmt) + sizeof(Stmt *) * (NumCaptures + 1);
if (NumCaptures > 0) {
// Realign for the following Capture array.
Size = llvm::alignTo(Size, alignof(Capture));
Size += sizeof(Capture) * NumCaptures;
}
void *Mem = Context.Allocate(Size);
return new (Mem) CapturedStmt(EmptyShell(), NumCaptures);
}
Stmt::child_range CapturedStmt::children() {
// Children are captured field initializers.
return child_range(getStoredStmts(), getStoredStmts() + NumCaptures);
}
CapturedDecl *CapturedStmt::getCapturedDecl() {
return CapDeclAndKind.getPointer();
}
const CapturedDecl *CapturedStmt::getCapturedDecl() const {
return CapDeclAndKind.getPointer();
}
/// \brief Set the outlined function declaration.
void CapturedStmt::setCapturedDecl(CapturedDecl *D) {
assert(D && "null CapturedDecl");
CapDeclAndKind.setPointer(D);
}
/// \brief Retrieve the captured region kind.
CapturedRegionKind CapturedStmt::getCapturedRegionKind() const {
return CapDeclAndKind.getInt();
}
/// \brief Set the captured region kind.
void CapturedStmt::setCapturedRegionKind(CapturedRegionKind Kind) {
CapDeclAndKind.setInt(Kind);
}
bool CapturedStmt::capturesVariable(const VarDecl *Var) const {
for (const auto &I : captures()) {
if (!I.capturesVariable() && !I.capturesVariableByCopy())
continue;
if (I.getCapturedVar()->getCanonicalDecl() == Var->getCanonicalDecl())
return true;
}
return false;
}