|  | // Copyright (c) 2012 The Chromium Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style license that can be | 
|  | // found in the LICENSE file. | 
|  |  | 
|  | #include <limits.h> | 
|  | #include <malloc.h> | 
|  | #include <new.h> | 
|  | #include <windows.h> | 
|  | #include <stddef.h> | 
|  |  | 
|  | // This shim make it possible to perform additional checks on allocations | 
|  | // before passing them to the Heap functions. | 
|  |  | 
|  | // Heap functions are stripped from libcmt.lib using the prep_libc.py | 
|  | // for each object file stripped, we re-implement them here to allow us to | 
|  | // perform additional checks: | 
|  | // 1. Enforcing the maximum size that can be allocated to 2Gb. | 
|  | // 2. Calling new_handler if malloc fails. | 
|  |  | 
|  | extern "C" { | 
|  | // We set this to 1 because part of the CRT uses a check of _crtheap != 0 | 
|  | // to test whether the CRT has been initialized.  Once we've ripped out | 
|  | // the allocators from libcmt, we need to provide this definition so that | 
|  | // the rest of the CRT is still usable. | 
|  | // heapinit.c | 
|  | void* _crtheap = reinterpret_cast<void*>(1); | 
|  | } | 
|  |  | 
|  | namespace base { | 
|  | namespace allocator { | 
|  | bool g_is_win_shim_layer_initialized = false; | 
|  | }  // namespace allocator | 
|  | }  // namespace base | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | const size_t kWindowsPageSize = 4096; | 
|  | const size_t kMaxWindowsAllocation = INT_MAX - kWindowsPageSize; | 
|  | int new_mode = 0; | 
|  |  | 
|  | // VS2013 crt uses the process heap as its heap, so we do the same here. | 
|  | // See heapinit.c in VS CRT sources. | 
|  | bool win_heap_init() { | 
|  | // Set the _crtheap global here.  THis allows us to offload most of the | 
|  | // memory management to the CRT, except the functions we need to shim. | 
|  | _crtheap = GetProcessHeap(); | 
|  | if (_crtheap == NULL) | 
|  | return false; | 
|  |  | 
|  | ULONG enable_lfh = 2; | 
|  | // NOTE: Setting LFH may fail.  Vista already has it enabled. | 
|  | //       And under the debugger, it won't use LFH.  So we | 
|  | //       ignore any errors. | 
|  | HeapSetInformation(_crtheap, HeapCompatibilityInformation, &enable_lfh, | 
|  | sizeof(enable_lfh)); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void* win_heap_malloc(size_t size) { | 
|  | if (size < kMaxWindowsAllocation) | 
|  | return HeapAlloc(_crtheap, 0, size); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | void win_heap_free(void* size) { | 
|  | HeapFree(_crtheap, 0, size); | 
|  | } | 
|  |  | 
|  | void* win_heap_realloc(void* ptr, size_t size) { | 
|  | if (!ptr) | 
|  | return win_heap_malloc(size); | 
|  | if (!size) { | 
|  | win_heap_free(ptr); | 
|  | return NULL; | 
|  | } | 
|  | if (size < kMaxWindowsAllocation) | 
|  | return HeapReAlloc(_crtheap, 0, ptr, size); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | void win_heap_term() { | 
|  | _crtheap = NULL; | 
|  | } | 
|  |  | 
|  | // Call the new handler, if one has been set. | 
|  | // Returns true on successfully calling the handler, false otherwise. | 
|  | inline bool call_new_handler(bool nothrow, size_t size) { | 
|  | // Get the current new handler. | 
|  | _PNH nh = _query_new_handler(); | 
|  | #if defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS | 
|  | if (!nh) | 
|  | return false; | 
|  | // Since exceptions are disabled, we don't really know if new_handler | 
|  | // failed.  Assume it will abort if it fails. | 
|  | return nh(size); | 
|  | #else | 
|  | #error "Exceptions in allocator shim are not supported!" | 
|  | #endif  // defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Implement a C++ style allocation, which always calls the new_handler | 
|  | // on failure. | 
|  | inline void* generic_cpp_alloc(size_t size, bool nothrow) { | 
|  | void* ptr; | 
|  | for (;;) { | 
|  | ptr = malloc(size); | 
|  | if (ptr) | 
|  | return ptr; | 
|  | if (!call_new_handler(nothrow, size)) | 
|  | break; | 
|  | } | 
|  | return ptr; | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | // new.cpp | 
|  | void* operator new(size_t size) { | 
|  | return generic_cpp_alloc(size, false); | 
|  | } | 
|  |  | 
|  | // delete.cpp | 
|  | void operator delete(void* p) throw() { | 
|  | free(p); | 
|  | } | 
|  |  | 
|  | // new2.cpp | 
|  | void* operator new[](size_t size) { | 
|  | return generic_cpp_alloc(size, false); | 
|  | } | 
|  |  | 
|  | // delete2.cpp | 
|  | void operator delete[](void* p) throw() { | 
|  | free(p); | 
|  | } | 
|  |  | 
|  | // newopnt.cpp | 
|  | void* operator new(size_t size, const std::nothrow_t& nt) { | 
|  | return generic_cpp_alloc(size, true); | 
|  | } | 
|  |  | 
|  | // newaopnt.cpp | 
|  | void* operator new[](size_t size, const std::nothrow_t& nt) { | 
|  | return generic_cpp_alloc(size, true); | 
|  | } | 
|  |  | 
|  | // This function behaves similarly to MSVC's _set_new_mode. | 
|  | // If flag is 0 (default), calls to malloc will behave normally. | 
|  | // If flag is 1, calls to malloc will behave like calls to new, | 
|  | // and the std_new_handler will be invoked on failure. | 
|  | // Returns the previous mode. | 
|  | // new_mode.cpp | 
|  | int _set_new_mode(int flag) throw() { | 
|  | int old_mode = new_mode; | 
|  | new_mode = flag; | 
|  | return old_mode; | 
|  | } | 
|  |  | 
|  | // new_mode.cpp | 
|  | int _query_new_mode() { | 
|  | return new_mode; | 
|  | } | 
|  |  | 
|  | extern "C" { | 
|  | // malloc.c | 
|  | void* malloc(size_t size) { | 
|  | void* ptr; | 
|  | for (;;) { | 
|  | ptr = win_heap_malloc(size); | 
|  | if (ptr) | 
|  | return ptr; | 
|  |  | 
|  | if (!new_mode || !call_new_handler(true, size)) | 
|  | break; | 
|  | } | 
|  | return ptr; | 
|  | } | 
|  |  | 
|  | // Symbol to allow weak linkage to win_heap_malloc from memory_win.cc. | 
|  | void* (*malloc_unchecked)(size_t) = &win_heap_malloc; | 
|  |  | 
|  | // free.c | 
|  | void free(void* p) { | 
|  | win_heap_free(p); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // realloc.c | 
|  | void* realloc(void* ptr, size_t size) { | 
|  | // Webkit is brittle for allocators that return NULL for malloc(0).  The | 
|  | // realloc(0, 0) code path does not guarantee a non-NULL return, so be sure | 
|  | // to call malloc for this case. | 
|  | if (!ptr) | 
|  | return malloc(size); | 
|  |  | 
|  | void* new_ptr; | 
|  | for (;;) { | 
|  | new_ptr = win_heap_realloc(ptr, size); | 
|  |  | 
|  | // Subtle warning:  NULL return does not alwas indicate out-of-memory.  If | 
|  | // the requested new size is zero, realloc should free the ptr and return | 
|  | // NULL. | 
|  | if (new_ptr || !size) | 
|  | return new_ptr; | 
|  | if (!new_mode || !call_new_handler(true, size)) | 
|  | break; | 
|  | } | 
|  | return new_ptr; | 
|  | } | 
|  |  | 
|  | // heapinit.c | 
|  | intptr_t _get_heap_handle() { | 
|  | return reinterpret_cast<intptr_t>(_crtheap); | 
|  | } | 
|  |  | 
|  | // heapinit.c | 
|  | int _heap_init() { | 
|  | base::allocator::g_is_win_shim_layer_initialized = true; | 
|  | return win_heap_init() ? 1 : 0; | 
|  | } | 
|  |  | 
|  | // heapinit.c | 
|  | void _heap_term() { | 
|  | win_heap_term(); | 
|  | } | 
|  |  | 
|  | // calloc.c | 
|  | void* calloc(size_t n, size_t elem_size) { | 
|  | // Overflow check. | 
|  | const size_t size = n * elem_size; | 
|  | if (elem_size != 0 && size / elem_size != n) | 
|  | return NULL; | 
|  |  | 
|  | void* result = malloc(size); | 
|  | if (result != NULL) { | 
|  | memset(result, 0, size); | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | // recalloc.c | 
|  | void* _recalloc(void* p, size_t n, size_t elem_size) { | 
|  | if (!p) | 
|  | return calloc(n, elem_size); | 
|  |  | 
|  | // This API is a bit odd. | 
|  | // Note: recalloc only guarantees zeroed memory when p is NULL. | 
|  | //   Generally, calls to malloc() have padding.  So a request | 
|  | //   to malloc N bytes actually malloc's N+x bytes.  Later, if | 
|  | //   that buffer is passed to recalloc, we don't know what N | 
|  | //   was anymore.  We only know what N+x is.  As such, there is | 
|  | //   no way to know what to zero out. | 
|  | const size_t size = n * elem_size; | 
|  | if (elem_size != 0 && size / elem_size != n) | 
|  | return NULL; | 
|  | return realloc(p, size); | 
|  | } | 
|  |  | 
|  | // calloc_impl.c | 
|  | void* _calloc_impl(size_t n, size_t size) { | 
|  | return calloc(n, size); | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | #undef malloc | 
|  | #undef free | 
|  | #undef calloc | 
|  |  | 
|  | static int error_handler(int reportType) { | 
|  | switch (reportType) { | 
|  | case 0:  // _CRT_WARN | 
|  | __debugbreak(); | 
|  | return 0; | 
|  |  | 
|  | case 1:  // _CRT_ERROR | 
|  | __debugbreak(); | 
|  | return 0; | 
|  |  | 
|  | case 2:  // _CRT_ASSERT | 
|  | __debugbreak(); | 
|  | return 0; | 
|  | } | 
|  | char* p = NULL; | 
|  | *p = '\0'; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int _CrtDbgReport(int reportType, | 
|  | const char*, | 
|  | int, | 
|  | const char*, | 
|  | const char*, | 
|  | ...) { | 
|  | return error_handler(reportType); | 
|  | } | 
|  |  | 
|  | int _CrtDbgReportW(int reportType, | 
|  | const wchar_t*, | 
|  | int, | 
|  | const wchar_t*, | 
|  | const wchar_t*, | 
|  | ...) { | 
|  | return error_handler(reportType); | 
|  | } | 
|  |  | 
|  | int _CrtSetReportMode(int, int) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void* _malloc_dbg(size_t size, int, const char*, int) { | 
|  | return malloc(size); | 
|  | } | 
|  |  | 
|  | void* _realloc_dbg(void* ptr, size_t size, int, const char*, int) { | 
|  | return realloc(ptr, size); | 
|  | } | 
|  |  | 
|  | void _free_dbg(void* ptr, int) { | 
|  | free(ptr); | 
|  | } | 
|  |  | 
|  | void* _calloc_dbg(size_t n, size_t size, int, const char*, int) { | 
|  | return calloc(n, size); | 
|  | } | 
|  | #endif  // NDEBUG | 
|  |  | 
|  | }  // extern C |