blob: e4f2c801b42d73fe0bb037a6584ae198ec11e659 [file] [log] [blame]
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/gcm_driver/crypto/gcm_message_cryptographer.h"
#include <stddef.h>
#include "base/base64url.h"
#include "base/macros.h"
#include "base/memory/scoped_ptr.h"
#include "base/strings/string_util.h"
#include "components/gcm_driver/crypto/p256_key_util.h"
#include "crypto/random.h"
#include "crypto/symmetric_key.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace gcm {
namespace {
// The number of bits of the key in AEAD_AES_128_GCM.
const size_t kKeySizeBits = 128;
// Example plaintext data to use in the tests.
const char kExamplePlaintext[] = "Example plaintext";
// Fixed local and peer public keys must be used to get consistent results.
const char kLocalPublicKeyCommon[] =
"BIXzEKOFquzVlr_1tS1bhmobZU3IJq2bswDflMJsizixqd_HFSvCJaCAotNjBw6A-iKQk7FshA"
"jdAA-T9Rh1a7U";
const char kPeerPublicKeyCommon[] =
"BAuzSrdIyKZsHnuOhqklkIKi6fl65V9OdPy6nFwI2SywL5-6I5SkkDtfIL9y7NkoEE345jv2Eo"
"5n4NIbLJIBjTM";
const char kAuthSecretCommon[] = "MyAuthenticationSecret";
// A test vector contains the information necessary to either encrypt or decrypt
// a message. These vectors were created using a JavaScript implementation of
// the same RFCs that the GCMMessageCryptographer implements.
struct TestVector {
const char* const input;
const char* const key;
const char* const salt;
size_t record_size;
const char* const output;
};
const TestVector kEncryptionTestVectors[] = {
// Simple message.
{ "Hello, world!",
"AhA6n2oFYPWIh-cXwyv1m2C0JvmjHB4ZkXj8QylESXU",
"tsJYqAGvFDk6lDEv7daecw",
4096,
"x9jT8FN0cy3GX906plTF_K52znY5ZMo0lqMEN90c"
},
// Empty message.
{ "",
"lMyvTong4VR053jfCpWmMDGW5dEDAqiTZUIU-inhTjU",
"wH3uvZqcN6oey9whiGpn1A",
4096,
"KNXWPR0Sx1jc3NW4JDPQKlw"
},
// Message with an invalid salt size.
{ "Hello, world!",
"CcdxzkR6z1EY9vSrM7_IxYVxDxu46hV638EZQTPd7XI",
"aRr1fI1YSGVi5XU",
4096,
nullptr // expected to fail
}
};
const TestVector kDecryptionTestVectors[] = {
// Simple message.
{ "lqMcX_o8HrRu3v9F9w4Cwk_fCiYmmTRCcatQdpQk",
"47ZytAw9qHlm-Q8g-7rH81rUPzaCgGcoFvlS1qxQtQk",
"EuR7EVetcaWpndXd_dKeyA",
4096,
"Hello, world!"
},
// Simple message with 16 bytes of padding.
{ "2sdvDvwlda33AMQEjtTdPqfb0RINM710Pabe_zQ3H8DO4ca5P7iy6Xh_9ZOqXQ",
"MYSsNybwrTzRIzQYUq_yFPc6ugcTrJdEZJDM4NswvUg",
"8sEAMQYnufo2UkKl80cUGQ",
4096,
"Hello, world!"
},
// Empty message.
{ "Px1lQsFDdDrTomks7GYRvts",
"S3-Ki_-XtzR66gUp_zR75CC5JXO62pyr5fWfneTYwFE",
"4RM6s19jJHdmqiVEJDp9jg",
4096,
""
},
// Message with an invalid salt size.
{ "iGrOpmJC5XTTf7wtgdhZ_qT",
"wW3Iy5ma803lLd-ysPdHUe2NB3HqXbY0XhCCdG5Y1Gw",
"N7oMH_xohAhMhOY",
4096,
nullptr // expected to fail
},
// Message with an invalid record size.
{ "iGrOpmJC5XTTf7wtgdhZ_qT",
"kR5BMfqMKOD1yrLKE2giObXHI7merrMtnoO2oqneqXA",
"SQeJSPrqHvTdSfAMF8bBzQ",
8,
nullptr // expected to fail
},
// Message with multiple (2) records.
{ "RqQVHRXlfYjzW9xhzh3V_KijLKjZiKzGXosqN_IaMzi0zI0tXXhC1urtrk3iWRoqttNXpkD2r"
"UCgLy8A1FnTjw",
"W3W4gx7sqcfmBnvNNdO9d4MBCC1bvJkvsNjZOGD-CCg",
"xG0TPGi9aIcxjpXKmaYBBQ",
7,
nullptr // expected to fail
}
};
} // namespace
class GCMMessageCryptographerTest : public ::testing::Test {
public:
void SetUp() override {
scoped_ptr<crypto::SymmetricKey> random_key(
crypto::SymmetricKey::GenerateRandomKey(crypto::SymmetricKey::AES,
kKeySizeBits));
ASSERT_TRUE(random_key->GetRawKey(&key_));
std::string local_public_key, peer_public_key;
ASSERT_TRUE(base::Base64UrlDecode(
kLocalPublicKeyCommon, base::Base64UrlDecodePolicy::IGNORE_PADDING,
&local_public_key));
ASSERT_TRUE(base::Base64UrlDecode(
kPeerPublicKeyCommon, base::Base64UrlDecodePolicy::IGNORE_PADDING,
&peer_public_key));
cryptographer_.reset(
new GCMMessageCryptographer(GCMMessageCryptographer::Label::P256,
local_public_key, peer_public_key,
kAuthSecretCommon));
}
protected:
// Generates a cryptographically secure random salt of 16-octets in size, the
// required length as expected by the HKDF.
std::string GenerateRandomSalt() {
const size_t kSaltSize = 16;
std::string salt;
crypto::RandBytes(base::WriteInto(&salt, kSaltSize + 1), kSaltSize);
return salt;
}
GCMMessageCryptographer* cryptographer() { return cryptographer_.get(); }
base::StringPiece key() const { return key_; }
private:
scoped_ptr<GCMMessageCryptographer> cryptographer_;
std::string key_;
};
TEST_F(GCMMessageCryptographerTest, RoundTrip) {
const std::string salt = GenerateRandomSalt();
size_t record_size = 0;
std::string ciphertext, plaintext;
ASSERT_TRUE(cryptographer()->Encrypt(kExamplePlaintext, key(), salt,
&record_size, &ciphertext));
EXPECT_GT(record_size, ciphertext.size() - 16);
EXPECT_GT(ciphertext.size(), 0u);
ASSERT_TRUE(cryptographer()->Decrypt(ciphertext, key(), salt, record_size,
&plaintext));
EXPECT_EQ(kExamplePlaintext, plaintext);
}
TEST_F(GCMMessageCryptographerTest, RoundTripEmptyMessage) {
const std::string salt = GenerateRandomSalt();
const std::string message = "";
size_t record_size = 0;
std::string ciphertext, plaintext;
ASSERT_TRUE(cryptographer()->Encrypt(message, key(), salt, &record_size,
&ciphertext));
EXPECT_GT(record_size, ciphertext.size() - 16);
EXPECT_GT(ciphertext.size(), 0u);
ASSERT_TRUE(cryptographer()->Decrypt(ciphertext, key(), salt, record_size,
&plaintext));
EXPECT_EQ(message, plaintext);
}
TEST_F(GCMMessageCryptographerTest, InvalidRecordSize) {
const std::string salt = GenerateRandomSalt();
size_t record_size = 0;
std::string ciphertext, plaintext;
EXPECT_TRUE(cryptographer()->Encrypt(kExamplePlaintext, key(), salt,
&record_size, &ciphertext));
EXPECT_GT(record_size, ciphertext.size() - 16);
EXPECT_FALSE(cryptographer()->Decrypt(ciphertext, key(), salt,
0 /* record_size */, &plaintext));
EXPECT_FALSE(cryptographer()->Decrypt(ciphertext, key(), salt,
ciphertext.size() - 17, &plaintext));
EXPECT_TRUE(cryptographer()->Decrypt(ciphertext, key(), salt,
ciphertext.size() - 16, &plaintext));
}
TEST_F(GCMMessageCryptographerTest, InvalidRecordPadding) {
std::string message = std::string(1, '\0') + kExamplePlaintext;
const std::string salt = GenerateRandomSalt();
const std::string prk = cryptographer()->DerivePseudoRandomKey(key());
const std::string nonce = cryptographer()->DeriveNonce(prk, salt);
const std::string content_encryption_key =
cryptographer()->DeriveContentEncryptionKey(prk, salt);
ASSERT_GT(message.size(), 1u);
const size_t record_size = message.size() + 1;
std::string ciphertext, plaintext;
ASSERT_TRUE(cryptographer()->EncryptDecryptRecordInternal(
GCMMessageCryptographer::ENCRYPT, message, content_encryption_key, nonce,
&ciphertext));
ASSERT_TRUE(cryptographer()->Decrypt(ciphertext, key(), salt, record_size,
&plaintext));
// Note that GCMMessageCryptographer::Decrypt removes the padding.
EXPECT_EQ(kExamplePlaintext, plaintext);
// Now run the same steps again, but say that there are four padding octets.
// This should be rejected because the padding will not be all zeros.
message[0] = 4;
ASSERT_TRUE(cryptographer()->EncryptDecryptRecordInternal(
GCMMessageCryptographer::ENCRYPT, message, content_encryption_key, nonce,
&ciphertext));
ASSERT_FALSE(cryptographer()->Decrypt(ciphertext, key(), salt, record_size,
&plaintext));
// Run the same steps again, but say that there are more padding octets than
// the length of the message.
message[0] = 64;
EXPECT_GT(static_cast<size_t>(message[0]), message.size());
ASSERT_TRUE(cryptographer()->EncryptDecryptRecordInternal(
GCMMessageCryptographer::ENCRYPT, message, content_encryption_key, nonce,
&ciphertext));
ASSERT_FALSE(cryptographer()->Decrypt(ciphertext, key(), salt, record_size,
&plaintext));
}
TEST_F(GCMMessageCryptographerTest, EncryptionTestVectors) {
std::string key, salt, output, ciphertext;
size_t record_size = 0;
for (size_t i = 0; i < arraysize(kEncryptionTestVectors); ++i) {
SCOPED_TRACE(i);
ASSERT_TRUE(base::Base64UrlDecode(
kEncryptionTestVectors[i].key,
base::Base64UrlDecodePolicy::IGNORE_PADDING, &key));
ASSERT_TRUE(base::Base64UrlDecode(
kEncryptionTestVectors[i].salt,
base::Base64UrlDecodePolicy::IGNORE_PADDING, &salt));
const bool has_output = kEncryptionTestVectors[i].output;
const bool result = cryptographer()->Encrypt(
kEncryptionTestVectors[i].input, key, salt, &record_size, &ciphertext);
if (!has_output) {
EXPECT_FALSE(result);
continue;
}
EXPECT_TRUE(result);
ASSERT_TRUE(base::Base64UrlDecode(
kEncryptionTestVectors[i].output,
base::Base64UrlDecodePolicy::IGNORE_PADDING, &output));
EXPECT_EQ(kEncryptionTestVectors[i].record_size, record_size);
EXPECT_EQ(output, ciphertext);
}
}
TEST_F(GCMMessageCryptographerTest, DecryptionTestVectors) {
std::string input, key, salt, plaintext;
for (size_t i = 0; i < arraysize(kDecryptionTestVectors); ++i) {
SCOPED_TRACE(i);
ASSERT_TRUE(base::Base64UrlDecode(
kDecryptionTestVectors[i].input,
base::Base64UrlDecodePolicy::IGNORE_PADDING, &input));
ASSERT_TRUE(base::Base64UrlDecode(
kDecryptionTestVectors[i].key,
base::Base64UrlDecodePolicy::IGNORE_PADDING, &key));
ASSERT_TRUE(base::Base64UrlDecode(
kDecryptionTestVectors[i].salt,
base::Base64UrlDecodePolicy::IGNORE_PADDING, &salt));
const bool has_output = kDecryptionTestVectors[i].output;
const bool result = cryptographer()->Decrypt(
input, key, salt, kDecryptionTestVectors[i].record_size, &plaintext);
if (!has_output) {
EXPECT_FALSE(result);
continue;
}
EXPECT_TRUE(result);
EXPECT_EQ(kDecryptionTestVectors[i].output, plaintext);
}
}
TEST_F(GCMMessageCryptographerTest, AuthSecretAffectsIKM) {
std::string public_key;
ASSERT_TRUE(base::Base64UrlDecode(
kLocalPublicKeyCommon, base::Base64UrlDecodePolicy::IGNORE_PADDING,
&public_key));
// Fake IKM to use in the DerivePseudoRandomKey calls.
const char kFakeIKM[] = "HelloWorld";
GCMMessageCryptographer hello_cryptographer(
GCMMessageCryptographer::Label::P256, public_key, public_key, "Hello");
GCMMessageCryptographer world_cryptographer(
GCMMessageCryptographer::Label::P256, public_key, public_key, "World");
ASSERT_NE(hello_cryptographer.DerivePseudoRandomKey(kFakeIKM), kFakeIKM);
ASSERT_NE(world_cryptographer.DerivePseudoRandomKey(kFakeIKM), kFakeIKM);
ASSERT_NE(hello_cryptographer.DerivePseudoRandomKey(kFakeIKM),
world_cryptographer.DerivePseudoRandomKey(kFakeIKM));
std::string salt = GenerateRandomSalt();
// Verify that the IKM actually gets used by the transformations.
size_t hello_record_size, world_record_size;
std::string hello_ciphertext, world_ciphertext;
ASSERT_TRUE(hello_cryptographer.Encrypt(kExamplePlaintext, key(), salt,
&hello_record_size,
&hello_ciphertext));
ASSERT_TRUE(world_cryptographer.Encrypt(kExamplePlaintext, key(), salt,
&world_record_size,
&world_ciphertext));
// If the ciphertexts differ despite the same key and salt, it got used.
ASSERT_NE(hello_ciphertext, world_ciphertext);
// Verify that the different ciphertexts can also be translated back to the
// plaintext content. This will fail if the auth secret isn't considered.
std::string hello_plaintext, world_plaintext;
ASSERT_TRUE(hello_cryptographer.Decrypt(hello_ciphertext, key(), salt,
hello_record_size, &hello_plaintext));
ASSERT_TRUE(world_cryptographer.Decrypt(world_ciphertext, key(), salt,
world_record_size, &world_plaintext));
EXPECT_EQ(kExamplePlaintext, hello_plaintext);
EXPECT_EQ(kExamplePlaintext, world_plaintext);
}
// Reference test against the HTTP encryption coding IETF draft. Both the
// encrypting and decrypting routines of the GCMMessageCryptographer are
// covered by this test.
//
// https://tools.ietf.org/html/draft-thomson-http-encryption#section-5.5
TEST_F(GCMMessageCryptographerTest, ReferenceTest) {
// base64url-encoded representation of the 16 octet salt.
const char kSalt[] = "Qg61ZJRva_XBE9IEUelU3A";
// base64url-encoded representation of the ciphertext, and the plaintext as
// a normal character array.
const char kCiphertext[] = "G6j_sfKg0qebO62yXpTCayN2KV24QitNiTvLgcFiEj0";
const char kPlaintext[] = "I am the walrus";
// Private keys of the sender and receiver represented as ASN.1-encoded PKCS
// #8 EncryptedPrivateKeyInfo blocks, as required by the ECPrivateKey.
const char kReceiverPrivate[] =
"MIGxMBwGCiqGSIb3DQEMAQMwDgQIqMt4d7uJdt4CAggABIGQeikRHE3CqUeF-uUtJno9BL0g"
"mNRyDihZe8P3nF_g-NYVzvdQowsXfYeza6OQOdDuMXxnGgNToVy2jsiWVN6rxCaSMTY622y8"
"ajW5voSdqC2PakQ8ZNTPNHarLDMC9NpgGKrUh8hfRLhvb7vtbKIWmx-22rQB5yTYdqzN2m7A"
"GHMWRnVk0mMzMsMjZqYFaa2D";
const char kSenderPrivate[] =
"MIGxMBwGCiqGSIb3DQEMAQMwDgQIFfJ62c9VwXgCAggABIGQkRxDRPQjwuWp1C3-z1pYTDqF"
"_NZ1kbPsjmkC3JSv02oAYHtBAtKa2e3oAPqsPfCvoCJBJs6G4WY4EuEO1YFL6RKpNl3DpIUc"
"v9ShR27p_je_nyLpNBAxn2drnjlF_K6s4gcJmcvCxuNjAwOlLMPvQqGjOR2K_oMs1Hdq0EKJ"
"NwWt3WUVEpuQF_WhYjCVIeGO";
// Public keys of the sender and receiver represented as uncompressed points,
// and X.509 SubjectPublicKeyInfo blocks as required by NSS.
const char kReceiverPublicUncompressed[] =
"BCEkBjzL8Z3C-oi2Q7oE5t2Np-p7osjGLg93qUP0wvqRT21EEWyf0cQDQcakQMqz4hQKYOQ3"
"il2nNZct4HgAUQU";
const char kReceiverPublicX509[] =
"MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEISQGPMvxncL6iLZDugTm3Y2n6nuiyMYuD3ep"
"Q_TC-pFPbUQRbJ_RxANBxqRAyrPiFApg5DeKXac1ly3geABRBQ";
const char kSenderPublicUncompressed[] =
"BDgpRKok2GZZDmS4r63vbJSUtcQx4Fq1V58-6-3NbZzSTlZsQiCEDTQy3CZ0ZMsqeqsEb7qW"
"2blQHA4S48fynTk";
const char kSenderPublicX509[] =
"MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEOClEqiTYZlkOZLivre9slJS1xDHgWrVXnz7r"
"7c1tnNJOVmxCIIQNNDLcJnRkyyp6qwRvupbZuVAcDhLjx_KdOQ";
// Convert the salt and the ciphertext to binary representations.
std::string salt, reference_ciphertext;
ASSERT_TRUE(base::Base64UrlDecode(
kSalt, base::Base64UrlDecodePolicy::IGNORE_PADDING, &salt));
ASSERT_TRUE(base::Base64UrlDecode(
kCiphertext, base::Base64UrlDecodePolicy::IGNORE_PADDING,
&reference_ciphertext));
// Convert the public and private keys to binary representations.
std::string receiver_private, receiver_public, receiver_public_x509;
std::string sender_private, sender_public, sender_public_x509;
ASSERT_TRUE(base::Base64UrlDecode(
kReceiverPrivate, base::Base64UrlDecodePolicy::IGNORE_PADDING,
&receiver_private));
ASSERT_TRUE(base::Base64UrlDecode(
kReceiverPublicUncompressed, base::Base64UrlDecodePolicy::IGNORE_PADDING,
&receiver_public));
ASSERT_TRUE(base::Base64UrlDecode(
kReceiverPublicX509, base::Base64UrlDecodePolicy::IGNORE_PADDING,
&receiver_public_x509));
ASSERT_TRUE(base::Base64UrlDecode(
kSenderPrivate, base::Base64UrlDecodePolicy::IGNORE_PADDING,
&sender_private));
ASSERT_TRUE(base::Base64UrlDecode(
kSenderPublicUncompressed, base::Base64UrlDecodePolicy::IGNORE_PADDING,
&sender_public));
ASSERT_TRUE(base::Base64UrlDecode(
kSenderPublicX509, base::Base64UrlDecodePolicy::IGNORE_PADDING,
&sender_public_x509));
// Compute the shared secret between the sender and the receiver's keys.
std::string sender_shared_secret, receiver_shared_secret;
ASSERT_TRUE(ComputeSharedP256Secret(sender_private, sender_public_x509,
receiver_public, &sender_shared_secret));
ASSERT_TRUE(ComputeSharedP256Secret(receiver_private, receiver_public_x509,
sender_public, &receiver_shared_secret));
ASSERT_GT(sender_shared_secret.size(), 0u);
ASSERT_EQ(sender_shared_secret, receiver_shared_secret);
GCMMessageCryptographer cryptographer(
GCMMessageCryptographer::Label::P256, receiver_public, sender_public,
"" /* auth_secret */);
// The reference vectors do not use an authentication secret.
cryptographer.set_allow_empty_auth_secret_for_tests(true);
size_t record_size = 0;
std::string ciphertext;
ASSERT_TRUE(cryptographer.Encrypt(kPlaintext, sender_shared_secret, salt,
&record_size, &ciphertext));
EXPECT_GT(record_size, 1u);
EXPECT_EQ(16u + 1u + strlen(kPlaintext), ciphertext.size());
// Verify that the created ciphertext matches the reference ciphertext.
EXPECT_EQ(reference_ciphertext, ciphertext);
// Decrypt the ciphertext with the default record size to verify that the
// resulting plaintext matches the input text.
std::string plaintext;
ASSERT_TRUE(cryptographer.Decrypt(
reference_ciphertext, receiver_shared_secret, salt,
4096 /* record size */, &plaintext));
// Verify that the decrypted plaintext matches the reference plaintext.
EXPECT_EQ(kPlaintext, plaintext);
}
} // namespace gcm