|  | // Copyright (c) 2012 The Chromium Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style license that can be | 
|  | // found in the LICENSE file. | 
|  |  | 
|  | #include "crypto/encryptor.h" | 
|  |  | 
|  | #include <stddef.h> | 
|  |  | 
|  | #include <string> | 
|  |  | 
|  | #include "base/macros.h" | 
|  | #include "base/memory/scoped_ptr.h" | 
|  | #include "base/strings/string_number_conversions.h" | 
|  | #include "crypto/symmetric_key.h" | 
|  | #include "testing/gtest/include/gtest/gtest.h" | 
|  |  | 
|  | TEST(EncryptorTest, EncryptDecrypt) { | 
|  | scoped_ptr<crypto::SymmetricKey> key( | 
|  | crypto::SymmetricKey::DeriveKeyFromPassword( | 
|  | crypto::SymmetricKey::AES, "password", "saltiest", 1000, 256)); | 
|  | EXPECT_TRUE(key.get()); | 
|  |  | 
|  | crypto::Encryptor encryptor; | 
|  | // The IV must be exactly as long as the cipher block size. | 
|  | std::string iv("the iv: 16 bytes"); | 
|  | EXPECT_EQ(16U, iv.size()); | 
|  | EXPECT_TRUE(encryptor.Init(key.get(), crypto::Encryptor::CBC, iv)); | 
|  |  | 
|  | std::string plaintext("this is the plaintext"); | 
|  | std::string ciphertext; | 
|  | EXPECT_TRUE(encryptor.Encrypt(plaintext, &ciphertext)); | 
|  |  | 
|  | EXPECT_LT(0U, ciphertext.size()); | 
|  |  | 
|  | std::string decrypted; | 
|  | EXPECT_TRUE(encryptor.Decrypt(ciphertext, &decrypted)); | 
|  |  | 
|  | EXPECT_EQ(plaintext, decrypted); | 
|  | } | 
|  |  | 
|  | TEST(EncryptorTest, DecryptWrongKey) { | 
|  | scoped_ptr<crypto::SymmetricKey> key( | 
|  | crypto::SymmetricKey::DeriveKeyFromPassword( | 
|  | crypto::SymmetricKey::AES, "password", "saltiest", 1000, 256)); | 
|  | EXPECT_TRUE(key.get()); | 
|  |  | 
|  | // A wrong key that can be detected by implementations that validate every | 
|  | // byte in the padding. | 
|  | scoped_ptr<crypto::SymmetricKey> wrong_key( | 
|  | crypto::SymmetricKey::DeriveKeyFromPassword( | 
|  | crypto::SymmetricKey::AES, "wrongword", "sweetest", 1000, 256)); | 
|  | EXPECT_TRUE(wrong_key.get()); | 
|  |  | 
|  | // A wrong key that can't be detected by any implementation.  The password | 
|  | // "wrongword;" would also work. | 
|  | scoped_ptr<crypto::SymmetricKey> wrong_key2( | 
|  | crypto::SymmetricKey::DeriveKeyFromPassword( | 
|  | crypto::SymmetricKey::AES, "wrongword+", "sweetest", 1000, 256)); | 
|  | EXPECT_TRUE(wrong_key2.get()); | 
|  |  | 
|  | // A wrong key that can be detected by all implementations. | 
|  | scoped_ptr<crypto::SymmetricKey> wrong_key3( | 
|  | crypto::SymmetricKey::DeriveKeyFromPassword( | 
|  | crypto::SymmetricKey::AES, "wrongwordx", "sweetest", 1000, 256)); | 
|  | EXPECT_TRUE(wrong_key3.get()); | 
|  |  | 
|  | crypto::Encryptor encryptor; | 
|  | // The IV must be exactly as long as the cipher block size. | 
|  | std::string iv("the iv: 16 bytes"); | 
|  | EXPECT_EQ(16U, iv.size()); | 
|  | EXPECT_TRUE(encryptor.Init(key.get(), crypto::Encryptor::CBC, iv)); | 
|  |  | 
|  | std::string plaintext("this is the plaintext"); | 
|  | std::string ciphertext; | 
|  | EXPECT_TRUE(encryptor.Encrypt(plaintext, &ciphertext)); | 
|  |  | 
|  | static const unsigned char expected_ciphertext[] = { | 
|  | 0x7D, 0x67, 0x5B, 0x53, 0xE6, 0xD8, 0x0F, 0x27, | 
|  | 0x74, 0xB1, 0x90, 0xFE, 0x6E, 0x58, 0x4A, 0xA0, | 
|  | 0x0E, 0x35, 0xE3, 0x01, 0xC0, 0xFE, 0x9A, 0xD8, | 
|  | 0x48, 0x1D, 0x42, 0xB0, 0xBA, 0x21, 0xB2, 0x0C | 
|  | }; | 
|  |  | 
|  | ASSERT_EQ(arraysize(expected_ciphertext), ciphertext.size()); | 
|  | for (size_t i = 0; i < ciphertext.size(); ++i) { | 
|  | ASSERT_EQ(expected_ciphertext[i], | 
|  | static_cast<unsigned char>(ciphertext[i])); | 
|  | } | 
|  |  | 
|  | std::string decrypted; | 
|  |  | 
|  | // This wrong key causes the last padding byte to be 5, which is a valid | 
|  | // padding length, and the second to last padding byte to be 137, which is | 
|  | // invalid.  If an implementation simply uses the last padding byte to | 
|  | // determine the padding length without checking every padding byte, | 
|  | // Encryptor::Decrypt() will still return true.  This is the case for NSS | 
|  | // (crbug.com/124434). | 
|  | #if !defined(USE_NSS_CERTS) && !defined(OS_WIN) && !defined(OS_MACOSX) | 
|  | crypto::Encryptor decryptor; | 
|  | EXPECT_TRUE(decryptor.Init(wrong_key.get(), crypto::Encryptor::CBC, iv)); | 
|  | EXPECT_FALSE(decryptor.Decrypt(ciphertext, &decrypted)); | 
|  | #endif | 
|  |  | 
|  | // This demonstrates that not all wrong keys can be detected by padding | 
|  | // error. This wrong key causes the last padding byte to be 1, which is | 
|  | // a valid padding block of length 1. | 
|  | crypto::Encryptor decryptor2; | 
|  | EXPECT_TRUE(decryptor2.Init(wrong_key2.get(), crypto::Encryptor::CBC, iv)); | 
|  | EXPECT_TRUE(decryptor2.Decrypt(ciphertext, &decrypted)); | 
|  |  | 
|  | // This wrong key causes the last padding byte to be 253, which should be | 
|  | // rejected by all implementations. | 
|  | crypto::Encryptor decryptor3; | 
|  | EXPECT_TRUE(decryptor3.Init(wrong_key3.get(), crypto::Encryptor::CBC, iv)); | 
|  | EXPECT_FALSE(decryptor3.Decrypt(ciphertext, &decrypted)); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // From NIST SP 800-38a test cast: | 
|  | // - F.5.1 CTR-AES128.Encrypt | 
|  | // - F.5.6 CTR-AES256.Encrypt | 
|  | // http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf | 
|  | const unsigned char kAES128CTRKey[] = { | 
|  | 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, | 
|  | 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c | 
|  | }; | 
|  |  | 
|  | const unsigned char kAES256CTRKey[] = { | 
|  | 0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe, | 
|  | 0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81, | 
|  | 0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7, | 
|  | 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4 | 
|  | }; | 
|  |  | 
|  | const unsigned char kAESCTRInitCounter[] = { | 
|  | 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, | 
|  | 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff | 
|  | }; | 
|  |  | 
|  | const unsigned char kAESCTRPlaintext[] = { | 
|  | // Block #1 | 
|  | 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, | 
|  | 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a, | 
|  | // Block #2 | 
|  | 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c, | 
|  | 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51, | 
|  | // Block #3 | 
|  | 0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11, | 
|  | 0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef, | 
|  | // Block #4 | 
|  | 0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17, | 
|  | 0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10 | 
|  | }; | 
|  |  | 
|  | const unsigned char kAES128CTRCiphertext[] = { | 
|  | // Block #1 | 
|  | 0x87, 0x4d, 0x61, 0x91, 0xb6, 0x20, 0xe3, 0x26, | 
|  | 0x1b, 0xef, 0x68, 0x64, 0x99, 0x0d, 0xb6, 0xce, | 
|  | // Block #2 | 
|  | 0x98, 0x06, 0xf6, 0x6b, 0x79, 0x70, 0xfd, 0xff, | 
|  | 0x86, 0x17, 0x18, 0x7b, 0xb9, 0xff, 0xfd, 0xff, | 
|  | // Block #3 | 
|  | 0x5a, 0xe4, 0xdf, 0x3e, 0xdb, 0xd5, 0xd3, 0x5e, | 
|  | 0x5b, 0x4f, 0x09, 0x02, 0x0d, 0xb0, 0x3e, 0xab, | 
|  | // Block #4 | 
|  | 0x1e, 0x03, 0x1d, 0xda, 0x2f, 0xbe, 0x03, 0xd1, | 
|  | 0x79, 0x21, 0x70, 0xa0, 0xf3, 0x00, 0x9c, 0xee | 
|  | }; | 
|  |  | 
|  | const unsigned char kAES256CTRCiphertext[] = { | 
|  | // Block #1 | 
|  | 0x60, 0x1e, 0xc3, 0x13, 0x77, 0x57, 0x89, 0xa5, | 
|  | 0xb7, 0xa7, 0xf5, 0x04, 0xbb, 0xf3, 0xd2, 0x28, | 
|  | // Block #2 | 
|  | 0xf4, 0x43, 0xe3, 0xca, 0x4d, 0x62, 0xb5, 0x9a, | 
|  | 0xca, 0x84, 0xe9, 0x90, 0xca, 0xca, 0xf5, 0xc5, | 
|  | // Block #3 | 
|  | 0x2b, 0x09, 0x30, 0xda, 0xa2, 0x3d, 0xe9, 0x4c, | 
|  | 0xe8, 0x70, 0x17, 0xba, 0x2d, 0x84, 0x98, 0x8d, | 
|  | // Block #4 | 
|  | 0xdf, 0xc9, 0xc5, 0x8d, 0xb6, 0x7a, 0xad, 0xa6, | 
|  | 0x13, 0xc2, 0xdd, 0x08, 0x45, 0x79, 0x41, 0xa6 | 
|  | }; | 
|  |  | 
|  | void TestAESCTREncrypt( | 
|  | const unsigned char* key, size_t key_size, | 
|  | const unsigned char* init_counter, size_t init_counter_size, | 
|  | const unsigned char* plaintext, size_t plaintext_size, | 
|  | const unsigned char* ciphertext, size_t ciphertext_size) { | 
|  | std::string key_str(reinterpret_cast<const char*>(key), key_size); | 
|  | scoped_ptr<crypto::SymmetricKey> sym_key(crypto::SymmetricKey::Import( | 
|  | crypto::SymmetricKey::AES, key_str)); | 
|  | ASSERT_TRUE(sym_key.get()); | 
|  |  | 
|  | crypto::Encryptor encryptor; | 
|  | EXPECT_TRUE(encryptor.Init(sym_key.get(), crypto::Encryptor::CTR, "")); | 
|  |  | 
|  | base::StringPiece init_counter_str( | 
|  | reinterpret_cast<const char*>(init_counter), init_counter_size); | 
|  | base::StringPiece plaintext_str( | 
|  | reinterpret_cast<const char*>(plaintext), plaintext_size); | 
|  |  | 
|  | EXPECT_TRUE(encryptor.SetCounter(init_counter_str)); | 
|  | std::string encrypted; | 
|  | EXPECT_TRUE(encryptor.Encrypt(plaintext_str, &encrypted)); | 
|  |  | 
|  | EXPECT_EQ(ciphertext_size, encrypted.size()); | 
|  | EXPECT_EQ(0, memcmp(encrypted.data(), ciphertext, encrypted.size())); | 
|  |  | 
|  | std::string decrypted; | 
|  | EXPECT_TRUE(encryptor.SetCounter(init_counter_str)); | 
|  | EXPECT_TRUE(encryptor.Decrypt(encrypted, &decrypted)); | 
|  |  | 
|  | EXPECT_EQ(plaintext_str, decrypted); | 
|  | } | 
|  |  | 
|  | void TestAESCTRMultipleDecrypt( | 
|  | const unsigned char* key, size_t key_size, | 
|  | const unsigned char* init_counter, size_t init_counter_size, | 
|  | const unsigned char* plaintext, size_t plaintext_size, | 
|  | const unsigned char* ciphertext, size_t ciphertext_size) { | 
|  | std::string key_str(reinterpret_cast<const char*>(key), key_size); | 
|  | scoped_ptr<crypto::SymmetricKey> sym_key(crypto::SymmetricKey::Import( | 
|  | crypto::SymmetricKey::AES, key_str)); | 
|  | ASSERT_TRUE(sym_key.get()); | 
|  |  | 
|  | crypto::Encryptor encryptor; | 
|  | EXPECT_TRUE(encryptor.Init(sym_key.get(), crypto::Encryptor::CTR, "")); | 
|  |  | 
|  | // Counter is set only once. | 
|  | EXPECT_TRUE(encryptor.SetCounter(base::StringPiece( | 
|  | reinterpret_cast<const char*>(init_counter), init_counter_size))); | 
|  |  | 
|  | std::string ciphertext_str(reinterpret_cast<const char*>(ciphertext), | 
|  | ciphertext_size); | 
|  |  | 
|  | int kTestDecryptSizes[] = { 32, 16, 8 }; | 
|  |  | 
|  | int offset = 0; | 
|  | for (size_t i = 0; i < arraysize(kTestDecryptSizes); ++i) { | 
|  | std::string decrypted; | 
|  | size_t len = kTestDecryptSizes[i]; | 
|  | EXPECT_TRUE( | 
|  | encryptor.Decrypt(ciphertext_str.substr(offset, len), &decrypted)); | 
|  | EXPECT_EQ(len, decrypted.size()); | 
|  | EXPECT_EQ(0, memcmp(decrypted.data(), plaintext + offset, len)); | 
|  | offset += len; | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | TEST(EncryptorTest, EncryptAES128CTR) { | 
|  | TestAESCTREncrypt( | 
|  | kAES128CTRKey, arraysize(kAES128CTRKey), | 
|  | kAESCTRInitCounter, arraysize(kAESCTRInitCounter), | 
|  | kAESCTRPlaintext, arraysize(kAESCTRPlaintext), | 
|  | kAES128CTRCiphertext, arraysize(kAES128CTRCiphertext)); | 
|  | } | 
|  |  | 
|  | TEST(EncryptorTest, EncryptAES256CTR) { | 
|  | TestAESCTREncrypt( | 
|  | kAES256CTRKey, arraysize(kAES256CTRKey), | 
|  | kAESCTRInitCounter, arraysize(kAESCTRInitCounter), | 
|  | kAESCTRPlaintext, arraysize(kAESCTRPlaintext), | 
|  | kAES256CTRCiphertext, arraysize(kAES256CTRCiphertext)); | 
|  | } | 
|  |  | 
|  | TEST(EncryptorTest, EncryptAES128CTR_MultipleDecrypt) { | 
|  | TestAESCTRMultipleDecrypt( | 
|  | kAES128CTRKey, arraysize(kAES128CTRKey), | 
|  | kAESCTRInitCounter, arraysize(kAESCTRInitCounter), | 
|  | kAESCTRPlaintext, arraysize(kAESCTRPlaintext), | 
|  | kAES128CTRCiphertext, arraysize(kAES128CTRCiphertext)); | 
|  | } | 
|  |  | 
|  | TEST(EncryptorTest, EncryptAES256CTR_MultipleDecrypt) { | 
|  | TestAESCTRMultipleDecrypt( | 
|  | kAES256CTRKey, arraysize(kAES256CTRKey), | 
|  | kAESCTRInitCounter, arraysize(kAESCTRInitCounter), | 
|  | kAESCTRPlaintext, arraysize(kAESCTRPlaintext), | 
|  | kAES256CTRCiphertext, arraysize(kAES256CTRCiphertext)); | 
|  | } | 
|  |  | 
|  | TEST(EncryptorTest, EncryptDecryptCTR) { | 
|  | scoped_ptr<crypto::SymmetricKey> key( | 
|  | crypto::SymmetricKey::GenerateRandomKey(crypto::SymmetricKey::AES, 128)); | 
|  |  | 
|  | EXPECT_TRUE(key.get()); | 
|  | const std::string kInitialCounter = "0000000000000000"; | 
|  |  | 
|  | crypto::Encryptor encryptor; | 
|  | EXPECT_TRUE(encryptor.Init(key.get(), crypto::Encryptor::CTR, "")); | 
|  | EXPECT_TRUE(encryptor.SetCounter(kInitialCounter)); | 
|  |  | 
|  | std::string plaintext("normal plaintext of random length"); | 
|  | std::string ciphertext; | 
|  | EXPECT_TRUE(encryptor.Encrypt(plaintext, &ciphertext)); | 
|  | EXPECT_LT(0U, ciphertext.size()); | 
|  |  | 
|  | std::string decrypted; | 
|  | EXPECT_TRUE(encryptor.SetCounter(kInitialCounter)); | 
|  | EXPECT_TRUE(encryptor.Decrypt(ciphertext, &decrypted)); | 
|  | EXPECT_EQ(plaintext, decrypted); | 
|  |  | 
|  | plaintext = "0123456789012345"; | 
|  | EXPECT_TRUE(encryptor.SetCounter(kInitialCounter)); | 
|  | EXPECT_TRUE(encryptor.Encrypt(plaintext, &ciphertext)); | 
|  | EXPECT_LT(0U, ciphertext.size()); | 
|  |  | 
|  | EXPECT_TRUE(encryptor.SetCounter(kInitialCounter)); | 
|  | EXPECT_TRUE(encryptor.Decrypt(ciphertext, &decrypted)); | 
|  | EXPECT_EQ(plaintext, decrypted); | 
|  | } | 
|  |  | 
|  | TEST(EncryptorTest, CTRCounter) { | 
|  | const int kCounterSize = 16; | 
|  | const unsigned char kTest1[] = | 
|  | {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; | 
|  | unsigned char buf[16]; | 
|  |  | 
|  | // Increment 10 times. | 
|  | crypto::Encryptor::Counter counter1( | 
|  | std::string(reinterpret_cast<const char*>(kTest1), kCounterSize)); | 
|  | for (int i = 0; i < 10; ++i) | 
|  | counter1.Increment(); | 
|  | counter1.Write(buf); | 
|  | EXPECT_EQ(0, memcmp(buf, kTest1, 15)); | 
|  | EXPECT_TRUE(buf[15] == 10); | 
|  |  | 
|  | // Check corner cases. | 
|  | const unsigned char kTest2[] = { | 
|  | 0, 0, 0, 0, 0, 0, 0, 0, | 
|  | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff | 
|  | }; | 
|  | const unsigned char kExpect2[] = | 
|  | {0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0}; | 
|  | crypto::Encryptor::Counter counter2( | 
|  | std::string(reinterpret_cast<const char*>(kTest2), kCounterSize)); | 
|  | counter2.Increment(); | 
|  | counter2.Write(buf); | 
|  | EXPECT_EQ(0, memcmp(buf, kExpect2, kCounterSize)); | 
|  |  | 
|  | const unsigned char kTest3[] = { | 
|  | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | 
|  | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff | 
|  | }; | 
|  | const unsigned char kExpect3[] = | 
|  | {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; | 
|  | crypto::Encryptor::Counter counter3( | 
|  | std::string(reinterpret_cast<const char*>(kTest3), kCounterSize)); | 
|  | counter3.Increment(); | 
|  | counter3.Write(buf); | 
|  | EXPECT_EQ(0, memcmp(buf, kExpect3, kCounterSize)); | 
|  | } | 
|  |  | 
|  | // TODO(wtc): add more known-answer tests.  Test vectors are available from | 
|  | // http://www.ietf.org/rfc/rfc3602 | 
|  | // http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf | 
|  | // http://gladman.plushost.co.uk/oldsite/AES/index.php | 
|  | // http://csrc.nist.gov/groups/STM/cavp/documents/aes/KAT_AES.zip | 
|  |  | 
|  | // NIST SP 800-38A test vector F.2.5 CBC-AES256.Encrypt. | 
|  | TEST(EncryptorTest, EncryptAES256CBC) { | 
|  | // From NIST SP 800-38a test cast F.2.5 CBC-AES256.Encrypt. | 
|  | static const unsigned char kRawKey[] = { | 
|  | 0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe, | 
|  | 0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81, | 
|  | 0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7, | 
|  | 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4 | 
|  | }; | 
|  | static const unsigned char kRawIv[] = { | 
|  | 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, | 
|  | 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f | 
|  | }; | 
|  | static const unsigned char kRawPlaintext[] = { | 
|  | // Block #1 | 
|  | 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, | 
|  | 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a, | 
|  | // Block #2 | 
|  | 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c, | 
|  | 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51, | 
|  | // Block #3 | 
|  | 0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11, | 
|  | 0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef, | 
|  | // Block #4 | 
|  | 0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17, | 
|  | 0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10, | 
|  | }; | 
|  | static const unsigned char kRawCiphertext[] = { | 
|  | // Block #1 | 
|  | 0xf5, 0x8c, 0x4c, 0x04, 0xd6, 0xe5, 0xf1, 0xba, | 
|  | 0x77, 0x9e, 0xab, 0xfb, 0x5f, 0x7b, 0xfb, 0xd6, | 
|  | // Block #2 | 
|  | 0x9c, 0xfc, 0x4e, 0x96, 0x7e, 0xdb, 0x80, 0x8d, | 
|  | 0x67, 0x9f, 0x77, 0x7b, 0xc6, 0x70, 0x2c, 0x7d, | 
|  | // Block #3 | 
|  | 0x39, 0xf2, 0x33, 0x69, 0xa9, 0xd9, 0xba, 0xcf, | 
|  | 0xa5, 0x30, 0xe2, 0x63, 0x04, 0x23, 0x14, 0x61, | 
|  | // Block #4 | 
|  | 0xb2, 0xeb, 0x05, 0xe2, 0xc3, 0x9b, 0xe9, 0xfc, | 
|  | 0xda, 0x6c, 0x19, 0x07, 0x8c, 0x6a, 0x9d, 0x1b, | 
|  | // PKCS #5 padding, encrypted. | 
|  | 0x3f, 0x46, 0x17, 0x96, 0xd6, 0xb0, 0xd6, 0xb2, | 
|  | 0xe0, 0xc2, 0xa7, 0x2b, 0x4d, 0x80, 0xe6, 0x44 | 
|  | }; | 
|  |  | 
|  | std::string key(reinterpret_cast<const char*>(kRawKey), sizeof(kRawKey)); | 
|  | scoped_ptr<crypto::SymmetricKey> sym_key(crypto::SymmetricKey::Import( | 
|  | crypto::SymmetricKey::AES, key)); | 
|  | ASSERT_TRUE(sym_key.get()); | 
|  |  | 
|  | crypto::Encryptor encryptor; | 
|  | // The IV must be exactly as long a the cipher block size. | 
|  | std::string iv(reinterpret_cast<const char*>(kRawIv), sizeof(kRawIv)); | 
|  | EXPECT_EQ(16U, iv.size()); | 
|  | EXPECT_TRUE(encryptor.Init(sym_key.get(), crypto::Encryptor::CBC, iv)); | 
|  |  | 
|  | std::string plaintext(reinterpret_cast<const char*>(kRawPlaintext), | 
|  | sizeof(kRawPlaintext)); | 
|  | std::string ciphertext; | 
|  | EXPECT_TRUE(encryptor.Encrypt(plaintext, &ciphertext)); | 
|  |  | 
|  | EXPECT_EQ(sizeof(kRawCiphertext), ciphertext.size()); | 
|  | EXPECT_EQ(0, memcmp(ciphertext.data(), kRawCiphertext, ciphertext.size())); | 
|  |  | 
|  | std::string decrypted; | 
|  | EXPECT_TRUE(encryptor.Decrypt(ciphertext, &decrypted)); | 
|  |  | 
|  | EXPECT_EQ(plaintext, decrypted); | 
|  | } | 
|  |  | 
|  | // Expected output derived from the NSS implementation. | 
|  | TEST(EncryptorTest, EncryptAES128CBCRegression) { | 
|  | std::string key = "128=SixteenBytes"; | 
|  | std::string iv = "Sweet Sixteen IV"; | 
|  | std::string plaintext = "Plain text with a g-clef U+1D11E \360\235\204\236"; | 
|  | std::string expected_ciphertext_hex = | 
|  | "D4A67A0BA33C30F207344D81D1E944BBE65587C3D7D9939A" | 
|  | "C070C62B9C15A3EA312EA4AD1BC7929F4D3C16B03AD5ADA8"; | 
|  |  | 
|  | scoped_ptr<crypto::SymmetricKey> sym_key(crypto::SymmetricKey::Import( | 
|  | crypto::SymmetricKey::AES, key)); | 
|  | ASSERT_TRUE(sym_key.get()); | 
|  |  | 
|  | crypto::Encryptor encryptor; | 
|  | // The IV must be exactly as long a the cipher block size. | 
|  | EXPECT_EQ(16U, iv.size()); | 
|  | EXPECT_TRUE(encryptor.Init(sym_key.get(), crypto::Encryptor::CBC, iv)); | 
|  |  | 
|  | std::string ciphertext; | 
|  | EXPECT_TRUE(encryptor.Encrypt(plaintext, &ciphertext)); | 
|  | EXPECT_EQ(expected_ciphertext_hex, base::HexEncode(ciphertext.data(), | 
|  | ciphertext.size())); | 
|  |  | 
|  | std::string decrypted; | 
|  | EXPECT_TRUE(encryptor.Decrypt(ciphertext, &decrypted)); | 
|  | EXPECT_EQ(plaintext, decrypted); | 
|  | } | 
|  |  | 
|  | // Symmetric keys with an unsupported size should be rejected. Whether they are | 
|  | // rejected by SymmetricKey::Import or Encryptor::Init depends on the platform. | 
|  | TEST(EncryptorTest, UnsupportedKeySize) { | 
|  | std::string key = "7 = bad"; | 
|  | std::string iv = "Sweet Sixteen IV"; | 
|  | scoped_ptr<crypto::SymmetricKey> sym_key(crypto::SymmetricKey::Import( | 
|  | crypto::SymmetricKey::AES, key)); | 
|  | if (!sym_key.get()) | 
|  | return; | 
|  |  | 
|  | crypto::Encryptor encryptor; | 
|  | // The IV must be exactly as long as the cipher block size. | 
|  | EXPECT_EQ(16U, iv.size()); | 
|  | EXPECT_FALSE(encryptor.Init(sym_key.get(), crypto::Encryptor::CBC, iv)); | 
|  | } | 
|  |  | 
|  | TEST(EncryptorTest, UnsupportedIV) { | 
|  | std::string key = "128=SixteenBytes"; | 
|  | std::string iv = "OnlyForteen :("; | 
|  | scoped_ptr<crypto::SymmetricKey> sym_key(crypto::SymmetricKey::Import( | 
|  | crypto::SymmetricKey::AES, key)); | 
|  | ASSERT_TRUE(sym_key.get()); | 
|  |  | 
|  | crypto::Encryptor encryptor; | 
|  | EXPECT_FALSE(encryptor.Init(sym_key.get(), crypto::Encryptor::CBC, iv)); | 
|  | } | 
|  |  | 
|  | TEST(EncryptorTest, EmptyEncrypt) { | 
|  | std::string key = "128=SixteenBytes"; | 
|  | std::string iv = "Sweet Sixteen IV"; | 
|  | std::string plaintext; | 
|  | std::string expected_ciphertext_hex = "8518B8878D34E7185E300D0FCC426396"; | 
|  |  | 
|  | scoped_ptr<crypto::SymmetricKey> sym_key(crypto::SymmetricKey::Import( | 
|  | crypto::SymmetricKey::AES, key)); | 
|  | ASSERT_TRUE(sym_key.get()); | 
|  |  | 
|  | crypto::Encryptor encryptor; | 
|  | // The IV must be exactly as long a the cipher block size. | 
|  | EXPECT_EQ(16U, iv.size()); | 
|  | EXPECT_TRUE(encryptor.Init(sym_key.get(), crypto::Encryptor::CBC, iv)); | 
|  |  | 
|  | std::string ciphertext; | 
|  | EXPECT_TRUE(encryptor.Encrypt(plaintext, &ciphertext)); | 
|  | EXPECT_EQ(expected_ciphertext_hex, base::HexEncode(ciphertext.data(), | 
|  | ciphertext.size())); | 
|  | } | 
|  |  | 
|  | TEST(EncryptorTest, CipherTextNotMultipleOfBlockSize) { | 
|  | std::string key = "128=SixteenBytes"; | 
|  | std::string iv = "Sweet Sixteen IV"; | 
|  |  | 
|  | scoped_ptr<crypto::SymmetricKey> sym_key(crypto::SymmetricKey::Import( | 
|  | crypto::SymmetricKey::AES, key)); | 
|  | ASSERT_TRUE(sym_key.get()); | 
|  |  | 
|  | crypto::Encryptor encryptor; | 
|  | // The IV must be exactly as long a the cipher block size. | 
|  | EXPECT_EQ(16U, iv.size()); | 
|  | EXPECT_TRUE(encryptor.Init(sym_key.get(), crypto::Encryptor::CBC, iv)); | 
|  |  | 
|  | // Use a separately allocated array to improve the odds of the memory tools | 
|  | // catching invalid accesses. | 
|  | // | 
|  | // Otherwise when using std::string as the other tests do, accesses several | 
|  | // bytes off the end of the buffer may fall inside the reservation of | 
|  | // the string and not be detected. | 
|  | scoped_ptr<char[]> ciphertext(new char[1]); | 
|  |  | 
|  | std::string plaintext; | 
|  | EXPECT_FALSE( | 
|  | encryptor.Decrypt(base::StringPiece(ciphertext.get(), 1), &plaintext)); | 
|  | } |