blob: f2de96ce4993a2e532a0cf12c0637098386522ac [file] [log] [blame]
// Copyright 2025 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#![feature(portable_simd)]
// Modules public for testing, don't expect stable API.
mod cxx;
pub mod dither;
pub mod quant;
pub mod selectors;
use std::simd::prelude::*;
use std::simd::Simd;
use bytemuck::cast_slice;
use crate::dither::dither;
use crate::quant::{quantize_averages, QuantResult};
use crate::selectors::search_table_and_selectors;
// We primarily compute with 16-bit integers and a width of 8 fills a 128-bit
// wide lane (SSE, NEON). TODO(b/393494744): When we introduce multiversioning
// and support for AVX2 etc. this should be converted to a template parameter
// that varies based on the target architecture.
const SIMD_WIDTH: usize = 8;
const HALF_WIDTH: usize = SIMD_WIDTH / 2;
const QUARTER_WIDTH: usize = SIMD_WIDTH / 4;
type Reg = Simd<i16, SIMD_WIDTH>;
type Reg32 = Simd<i32, SIMD_WIDTH>;
type UReg = Simd<u16, SIMD_WIDTH>;
/// Define a helper to interleave elements from two vectors, reinterpret
/// it as a type twice as large, and return the resulting vector.
/// Each argument / return value is an array of vectors; conceptually, this
/// represents a vector that is <width> * <len> large; however, since std::simd
/// types have upper limits on their width we represent them using arrays to be
/// portable.
macro_rules! define_interleave {
($fn_name:ident, $src_ty:ty, $dst_ty:ty, $src_width:expr, $dst_width:expr, $src_len:literal) => {
fn $fn_name(
a: [Simd<$src_ty, $src_width>; $src_len],
b: [Simd<$src_ty, $src_width>; $src_len],
) -> [Simd<$dst_ty, $dst_width>; $src_len * 2] {
let mut iter = (0..$src_len).flat_map(|i| {
let (a, b) = a[i].interleave(b[i]);
[a, b].map(|x| bytemuck::cast(x))
});
let res = std::array::from_fn(|_| iter.next().unwrap());
assert!(iter.next().is_none());
res
}
};
}
/// Convert individual codewords laid out as [15..0, 31..16, 47..32, 63..48]
/// into interleaved u64 arrays, while flipping the endianness (our internal
/// representation is little endian while ETC1 requires big endian).
#[inline]
pub fn interleave_etc1(regs: [UReg; 4]) -> [Simd<u64, QUARTER_WIDTH>; 4] {
// The interleaving assumes little endian.
#[cfg(target_endian = "big")]
compile_error!("Big endian is not supported");
define_interleave!(conv_16_to_32, u16, u32, SIMD_WIDTH, HALF_WIDTH, 1);
define_interleave!(conv_32_to_64, u32, u64, HALF_WIDTH, QUARTER_WIDTH, 2);
// Step 1: make each u16 codeword big-endian
let regs = regs.map(|r| r.swap_bytes());
// Step 2: [aaaa, bbbb] to [baba, baba]
let regs = [conv_16_to_32([regs[1]], [regs[0]]), conv_16_to_32([regs[3]], [regs[2]])];
// Step 3: [baba, baba], [dcdc, dcdc] to [dcba, dcba], [dcba, dcba]
let regs = conv_32_to_64(regs[1], regs[0]);
regs
}
/// Load `SIMD_WIDTH` blocks from a region `4*SIMD_WIDTH` wide and `4` tall,
/// starting at `base_x` and `base_y`.
///
/// Out of bounds pixels are padded with mirroring. For example, `abcdxy`
/// becomes `abcdxyyx`.
///
/// Returns a 3D array of SIMD vectors. Each block is mapped to a SIMD lane
/// (from left to right), and each pixel in the block is accessed as
/// `[y][x][channel]`.
#[inline]
pub fn load_input_block(
src: &[u32],
width: u32,
height: u32,
row_width: u32,
base_x: u32,
base_y: u32,
) -> [[[Reg; 3]; 4]; 4] {
let mut data = [[[Reg::default(); 3]; 4]; 4];
// For now, input load and output store are not vectorized. The main reason is
// that efficient loading requires shuffling and is poorly supported
// by std::simd and the wide crate (which we plan to use for
// supporting stable toolchain). Input load currently accounts for
// ~20% of the runtime. If shuffle support improves this would be a
// good candidate for optimization.
for i in 0..4 {
for j in 0..4 {
let mut buf = [0u32; SIMD_WIDTH];
for block in 0..SIMD_WIDTH as u32 {
let x = base_x + block * 4 + j as u32;
let y = base_y + i as u32;
buf[block as usize] = if x < width && y < height {
// Fast path: load in-bound pixel
src[(y * row_width + x) as usize]
} else {
// Slow path: mirror out-of-bound pixels
// If width or height is 1, mirroring can overflow, so make it saturate.
let xm = if x >= width { (width - 1).saturating_sub(x - width) } else { x };
let ym = if y >= height { (height - 1).saturating_sub(y - height) } else { y };
src[(ym * row_width + xm) as usize]
};
}
let rgbx = Simd::from_array(buf);
let extract_channel = |x: Simd<u32, SIMD_WIDTH>, shift: u32| {
(x >> shift).cast::<i16>() & Simd::splat(0xFF)
};
data[i][j][0] = extract_channel(rgbx, 0);
data[i][j][1] = extract_channel(rgbx, 8);
data[i][j][2] = extract_channel(rgbx, 16);
}
}
data
}
/// Compress RGB pixels to ETC1.
///
/// `src` should be in RGBA.
/// `dst` will be filled with compressed ETC1 blocks.
/// `width` and `height` does not need to be multiple of 4. The boundary pixels
/// will be padded with unspecified values.
/// `src_row_width` and `dst_row_width` specifies the stride, in units of pixels
/// and blocks, respectively.
///
/// Note that `src` assumes aligned 32-bit buffer while `dst` does not. This is
/// due to two reasons: 32-bit alignment is practical to get even on 32-bit
/// platforms, whereas 64-bit alignment does not hold on 32-bit ARM.
/// Additionally, we require extensive shuffling when loading inputs, but
/// stores to the output straight in the order of pixels. Dealing with
/// unaligned buffers in the latter case is significantly easier.
pub fn compress_etc1(
src: &[u32],
dst: &mut [u8],
width: u32,
height: u32,
src_row_width: u32,
dst_row_width: u32,
) {
let dst_height = height.div_ceil(4);
let dst_width = width.div_ceil(4);
// Aligned staging buffer. Data is copied into the potentially unaligned
// destination buffer at the end of the each row.
let mut staging_row = vec![[Simd::splat(0); 4]; (dst_width as usize).div_ceil(SIMD_WIDTH)];
let copy_len = dst_width as usize * 8;
// Note on vectorization scheme:
//
// We process one 4x4 block per SIMD lane, instead of the more common practice
// of processing pixels within the same block in parallel using multiple
// lanes. The one-block-per-lane scheme, more akin to SPMD programming,
// allows most of our code to be shuffle-free, and works much better with
// portable SIMD than schemes that heavily shuffles.
for dst_y in 0..dst_height {
for dst_x0 in (0..dst_width).step_by(SIMD_WIDTH) {
let data = load_input_block(src, width, height, src_row_width, dst_x0 * 4, dst_y * 4);
let data = dither(&data);
let QuantResult { lo: hdr0, hi: hdr1, scaled0: ep0, scaled1: ep1 } =
quantize_averages(&data);
let best_fit = search_table_and_selectors(hdr0, hdr1, &data, [ep0, ep1]);
let codewords = interleave_etc1(best_fit);
staging_row[dst_x0 as usize / SIMD_WIDTH] = codewords;
}
let dst_row = &mut dst[(dst_y * dst_row_width * 8) as usize..];
let staging_row_bytes = cast_slice(&*staging_row);
dst_row[..copy_len].copy_from_slice(&staging_row_bytes[..copy_len]);
}
}