blob: 73dda779e4e07abbe308c9749e6da82150fe775c [file] [log] [blame]
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/time/time.h"
#include <stdint.h>
#include <time.h>
#include <limits>
#include <optional>
#include <string>
#include "base/build_time.h"
#include "base/check_op.h"
#include "base/compiler_specific.h"
#include "base/environment.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/to_string.h"
#include "base/test/gtest_util.h"
#include "base/threading/platform_thread.h"
#include "base/time/time_override.h"
#include "build/build_config.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/icu/source/common/unicode/utypes.h"
#include "third_party/icu/source/i18n/unicode/timezone.h"
#if BUILDFLAG(IS_ANDROID)
#include "base/android/jni_android.h"
#elif BUILDFLAG(IS_FUCHSIA) || BUILDFLAG(IS_CHROMEOS)
#include "base/test/icu_test_util.h"
#elif BUILDFLAG(IS_WIN)
#include <windows.h>
#endif
namespace base {
namespace {
#if BUILDFLAG(IS_FUCHSIA)
// Hawaii does not observe daylight saving time, which is useful for having a
// constant offset when faking the time zone.
const char kHonoluluTimeZoneId[] = "Pacific/Honolulu";
const int kHonoluluOffsetHours = -10;
const int kHonoluluOffsetSeconds = kHonoluluOffsetHours * 60 * 60;
#endif
#if BUILDFLAG(IS_FUCHSIA) || BUILDFLAG(IS_CHROMEOS)
const char kThaiLocale[] = "th-TH";
const char kBangkokTimeZoneId[] = "Asia/Bangkok";
// Returns the total offset (including Daylight Saving Time) of the timezone
// with |timezone_id| at |time|, or std::nullopt in case of failure.
std::optional<base::TimeDelta> GetTimeZoneOffsetAtTime(const char* timezone_id,
Time time) {
std::unique_ptr<icu::TimeZone> tz(icu::TimeZone::createTimeZone(timezone_id));
if (*tz == icu::TimeZone::getUnknown()) {
return {};
}
int32_t raw_offset = 0;
int32_t dst_offset = 0;
UErrorCode ec = U_ZERO_ERROR;
tz->getOffset(time.InSecondsFSinceUnixEpoch(), false, raw_offset, dst_offset,
ec);
if (!U_SUCCESS(ec)) {
return {};
}
return base::Milliseconds(raw_offset + dst_offset);
}
TimeDelta TimePassedAfterMidnight(const Time::Exploded& time) {
return base::Hours(time.hour) + base::Minutes(time.minute) +
base::Seconds(time.second) + base::Milliseconds(time.millisecond);
}
// Timezone environment variable
class ScopedLibcTZ {
public:
explicit ScopedLibcTZ(const std::string& timezone) {
auto env = base::Environment::Create();
std::string old_timezone_value;
if (env->GetVar(kTZ, &old_timezone_value)) {
old_timezone_ = old_timezone_value;
}
if (!env->SetVar(kTZ, timezone)) {
success_ = false;
}
tzset();
}
~ScopedLibcTZ() {
auto env = base::Environment::Create();
if (old_timezone_.has_value()) {
CHECK(env->SetVar(kTZ, old_timezone_.value()));
} else {
CHECK(env->UnSetVar(kTZ));
}
}
ScopedLibcTZ(const ScopedLibcTZ& other) = delete;
ScopedLibcTZ& operator=(const ScopedLibcTZ& other) = delete;
bool is_success() const { return success_; }
private:
static constexpr char kTZ[] = "TZ";
bool success_ = true;
std::optional<std::string> old_timezone_;
};
constexpr char ScopedLibcTZ::kTZ[];
#endif // BUILDFLAG(IS_FUCHSIA) || BUILDFLAG(IS_CHROMEOS)
TEST(TimeTestOutOfBounds, FromExplodedOutOfBoundsTime) {
// FromUTCExploded must set time to Time(0) and failure, if the day is set to
// 31 on a 28-30 day month. Test |exploded| returns Time(0) on 31st of
// February and 31st of April. New implementation handles this.
const struct DateTestData {
Time::Exploded explode;
bool is_valid;
} kDateTestData[] = {
// 31st of February
{{2016, 2, 0, 31, 12, 30, 0, 0}, true},
// 31st of April
{{2016, 4, 0, 31, 8, 43, 0, 0}, true},
// Negative month
{{2016, -5, 0, 2, 4, 10, 0, 0}, false},
// Negative date of month
{{2016, 6, 0, -15, 2, 50, 0, 0}, false},
// Negative hours
{{2016, 7, 0, 10, -11, 29, 0, 0}, false},
// Negative minutes
{{2016, 3, 0, 14, 10, -29, 0, 0}, false},
// Negative seconds
{{2016, 10, 0, 25, 7, 47, -30, 0}, false},
// Negative milliseconds
{{2016, 10, 0, 25, 7, 47, 20, -500}, false},
// Hours are too large
{{2016, 7, 0, 10, 26, 29, 0, 0}, false},
// Minutes are too large
{{2016, 3, 0, 14, 10, 78, 0, 0}, false},
// Seconds are too large
{{2016, 10, 0, 25, 7, 47, 234, 0}, false},
// Milliseconds are too large
{{2016, 10, 0, 25, 6, 31, 23, 1643}, false},
// Test overflow. Time is valid, but overflow case
// results in Time(0).
{{9840633, 1, 0, 1, 1, 1, 0, 0}, true},
// Underflow will fail as well.
{{-9840633, 1, 0, 1, 1, 1, 0, 0}, true},
// Test integer overflow and underflow cases for the values themselves.
{{std::numeric_limits<int>::min(), 1, 0, 1, 1, 1, 0, 0}, true},
{{std::numeric_limits<int>::max(), 1, 0, 1, 1, 1, 0, 0}, true},
{{2016, std::numeric_limits<int>::min(), 0, 1, 1, 1, 0, 0}, false},
{{2016, std::numeric_limits<int>::max(), 0, 1, 1, 1, 0, 0}, false},
};
for (const auto& test : kDateTestData) {
EXPECT_EQ(test.explode.HasValidValues(), test.is_valid);
base::Time result;
EXPECT_FALSE(base::Time::FromUTCExploded(test.explode, &result));
EXPECT_TRUE(result.is_null());
EXPECT_FALSE(base::Time::FromLocalExploded(test.explode, &result));
EXPECT_TRUE(result.is_null());
}
}
// Specialized test fixture allowing time strings without timezones to be
// tested by comparing them to a known time in the local zone.
// See also pr_time_unittests.cc
class TimeTest : public testing::Test {
protected:
#if BUILDFLAG(IS_FUCHSIA)
// POSIX local time functions always use UTC on Fuchsia. As this is not very
// interesting for any "local" tests, set a different default ICU timezone for
// the test. This only affects code that uses ICU, such as Exploded time.
// Chicago is a non-Pacific time zone known to observe daylight saving time.
TimeTest() : chicago_time_("America/Chicago") {}
test::ScopedRestoreDefaultTimezone chicago_time_;
#endif
void SetUp() override {
// Use mktime to get a time_t, and turn it into a PRTime by converting
// seconds to microseconds. Use 15th Oct 2007 12:45:00 local. This
// must be a time guaranteed to be outside of a DST fallback hour in
// any timezone.
struct tm local_comparison_tm = {
0, // second
45, // minute
12, // hour
15, // day of month
10 - 1, // month
2007 - 1900, // year
0, // day of week (ignored, output only)
0, // day of year (ignored, output only)
-1 // DST in effect, -1 tells mktime to figure it out
};
time_t converted_time = mktime(&local_comparison_tm);
ASSERT_GT(converted_time, 0);
comparison_time_local_ = Time::FromTimeT(converted_time);
// time_t representation of 15th Oct 2007 12:45:00 PDT
comparison_time_pdt_ = Time::FromTimeT(1192477500);
}
Time comparison_time_local_;
Time comparison_time_pdt_;
};
// Test conversion to/from TimeDeltas elapsed since the Windows epoch.
// Conversions should be idempotent and non-lossy.
TEST_F(TimeTest, DeltaSinceWindowsEpoch) {
constexpr TimeDelta delta = Microseconds(123);
EXPECT_EQ(delta,
Time::FromDeltaSinceWindowsEpoch(delta).ToDeltaSinceWindowsEpoch());
const Time now = Time::Now();
const Time actual =
Time::FromDeltaSinceWindowsEpoch(now.ToDeltaSinceWindowsEpoch());
EXPECT_EQ(now, actual);
// Null times should remain null after a round-trip conversion. This is an
// important invariant for the common use case of serialization +
// deserialization.
const Time should_be_null =
Time::FromDeltaSinceWindowsEpoch(Time().ToDeltaSinceWindowsEpoch());
EXPECT_TRUE(should_be_null.is_null());
{
constexpr Time constexpr_time =
Time::FromDeltaSinceWindowsEpoch(Microseconds(123));
constexpr TimeDelta constexpr_delta =
constexpr_time.ToDeltaSinceWindowsEpoch();
static_assert(constexpr_delta == delta);
}
}
// Test conversion to/from time_t.
TEST_F(TimeTest, TimeT) {
EXPECT_EQ(10, Time().FromTimeT(10).ToTimeT());
EXPECT_EQ(10.0, Time().FromTimeT(10).InSecondsFSinceUnixEpoch());
// Conversions of 0 should stay 0.
EXPECT_EQ(0, Time().ToTimeT());
EXPECT_EQ(0, Time::FromTimeT(0).ToInternalValue());
}
// Test conversions to/from time_t and exploding/unexploding (utc time).
TEST_F(TimeTest, UTCTimeT) {
// C library time and exploded time.
time_t now_t_1 = time(nullptr);
struct tm tms;
#if BUILDFLAG(IS_WIN)
gmtime_s(&tms, &now_t_1);
#elif BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
gmtime_r(&now_t_1, &tms);
#endif
// Convert to ours.
Time our_time_1 = Time::FromTimeT(now_t_1);
Time::Exploded exploded;
our_time_1.UTCExplode(&exploded);
// This will test both our exploding and our time_t -> Time conversion.
EXPECT_EQ(tms.tm_year + 1900, exploded.year);
EXPECT_EQ(tms.tm_mon + 1, exploded.month);
EXPECT_EQ(tms.tm_mday, exploded.day_of_month);
EXPECT_EQ(tms.tm_hour, exploded.hour);
EXPECT_EQ(tms.tm_min, exploded.minute);
EXPECT_EQ(tms.tm_sec, exploded.second);
// Convert exploded back to the time struct.
Time our_time_2;
EXPECT_TRUE(Time::FromUTCExploded(exploded, &our_time_2));
EXPECT_TRUE(our_time_1 == our_time_2);
time_t now_t_2 = our_time_2.ToTimeT();
EXPECT_EQ(now_t_1, now_t_2);
}
// Test conversions to/from time_t and exploding/unexploding (local time).
TEST_F(TimeTest, LocalTimeT) {
// C library time and exploded time.
time_t now_t_1 = time(nullptr);
struct tm tms;
#if BUILDFLAG(IS_WIN)
localtime_s(&tms, &now_t_1);
#elif BUILDFLAG(IS_POSIX)
localtime_r(&now_t_1, &tms);
#elif BUILDFLAG(IS_FUCHSIA)
// POSIX local time functions always use UTC on Fuchsia, so set a known time
// zone and manually obtain the local |tms| values by using an adjusted input.
test::ScopedRestoreDefaultTimezone honolulu_time(kHonoluluTimeZoneId);
time_t adjusted_now_t_1 = now_t_1 + kHonoluluOffsetSeconds;
localtime_r(&adjusted_now_t_1, &tms);
#endif
// Convert to ours.
Time our_time_1 = Time::FromTimeT(now_t_1);
Time::Exploded exploded;
our_time_1.LocalExplode(&exploded);
// This will test both our exploding and our time_t -> Time conversion.
EXPECT_EQ(tms.tm_year + 1900, exploded.year);
EXPECT_EQ(tms.tm_mon + 1, exploded.month);
EXPECT_EQ(tms.tm_mday, exploded.day_of_month);
EXPECT_EQ(tms.tm_hour, exploded.hour);
EXPECT_EQ(tms.tm_min, exploded.minute);
EXPECT_EQ(tms.tm_sec, exploded.second);
// Convert exploded back to the time struct.
Time our_time_2;
EXPECT_TRUE(Time::FromLocalExploded(exploded, &our_time_2));
EXPECT_TRUE(our_time_1 == our_time_2);
time_t now_t_2 = our_time_2.ToTimeT();
EXPECT_EQ(now_t_1, now_t_2);
}
// Test conversions to/from javascript time.
TEST_F(TimeTest, JsTime) {
Time epoch = Time::FromMillisecondsSinceUnixEpoch(0.0);
EXPECT_EQ(epoch, Time::UnixEpoch());
Time t = Time::FromMillisecondsSinceUnixEpoch(700000.3);
EXPECT_EQ(700.0003, t.InSecondsFSinceUnixEpoch());
t = Time::FromSecondsSinceUnixEpoch(800.73);
EXPECT_EQ(800730.0, t.InMillisecondsFSinceUnixEpoch());
// 1601-01-01 isn't round-trip with InMillisecondsFSinceUnixEpoch().
const double kWindowsEpoch = -11644473600000.0;
Time time = Time::FromMillisecondsSinceUnixEpoch(kWindowsEpoch);
EXPECT_TRUE(time.is_null());
EXPECT_NE(kWindowsEpoch, time.InMillisecondsFSinceUnixEpoch());
EXPECT_EQ(kWindowsEpoch, time.InMillisecondsFSinceUnixEpochIgnoringNull());
}
#if BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
TEST_F(TimeTest, FromTimeVal) {
Time now = Time::Now();
Time also_now = Time::FromTimeVal(now.ToTimeVal());
EXPECT_EQ(now, also_now);
}
#endif // BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
TEST_F(TimeTest, FromExplodedWithMilliseconds) {
// Some platform implementations of FromExploded are liable to drop
// milliseconds if we aren't careful.
Time now = Time::NowFromSystemTime();
Time::Exploded exploded1 = {0};
now.UTCExplode(&exploded1);
exploded1.millisecond = 500;
Time time;
EXPECT_TRUE(Time::FromUTCExploded(exploded1, &time));
Time::Exploded exploded2 = {0};
time.UTCExplode(&exploded2);
EXPECT_EQ(exploded1.millisecond, exploded2.millisecond);
}
TEST_F(TimeTest, ZeroIsSymmetric) {
Time zero_time(Time::FromTimeT(0));
EXPECT_EQ(0, zero_time.ToTimeT());
EXPECT_EQ(0.0, zero_time.InSecondsFSinceUnixEpoch());
}
// Note that this test does not check whether the implementation correctly
// accounts for the local time zone.
TEST_F(TimeTest, LocalExplode) {
Time a = Time::Now();
Time::Exploded exploded;
a.LocalExplode(&exploded);
Time b;
EXPECT_TRUE(Time::FromLocalExploded(exploded, &b));
// The exploded structure doesn't have microseconds, and on Mac & Linux, the
// internal OS conversion uses seconds, which will cause truncation. So we
// can only make sure that the delta is within one second.
EXPECT_LT(a - b, Seconds(1));
}
TEST_F(TimeTest, UTCExplode) {
Time a = Time::Now();
Time::Exploded exploded;
a.UTCExplode(&exploded);
Time b;
EXPECT_TRUE(Time::FromUTCExploded(exploded, &b));
// The exploded structure doesn't have microseconds, and on Mac & Linux, the
// internal OS conversion uses seconds, which will cause truncation. So we
// can only make sure that the delta is within one second.
EXPECT_LT(a - b, Seconds(1));
}
TEST_F(TimeTest, UTCMidnight) {
Time::Exploded exploded;
Time::Now().UTCMidnight().UTCExplode(&exploded);
EXPECT_EQ(0, exploded.hour);
EXPECT_EQ(0, exploded.minute);
EXPECT_EQ(0, exploded.second);
EXPECT_EQ(0, exploded.millisecond);
}
// Note that this test does not check whether the implementation correctly
// accounts for the local time zone.
TEST_F(TimeTest, LocalMidnight) {
Time::Exploded exploded;
Time::Now().LocalMidnight().LocalExplode(&exploded);
EXPECT_EQ(0, exploded.hour);
EXPECT_EQ(0, exploded.minute);
EXPECT_EQ(0, exploded.second);
EXPECT_EQ(0, exploded.millisecond);
}
// These tests require the ability to fake the local time zone.
#if BUILDFLAG(IS_FUCHSIA)
TEST_F(TimeTest, LocalExplodeIsLocal) {
// Set the default time zone to a zone with an offset different from UTC.
test::ScopedRestoreDefaultTimezone honolulu_time(kHonoluluTimeZoneId);
// The member contains useful values for this test, which uses it as UTC.
Time comparison_time_utc(comparison_time_local_);
Time::Exploded utc_exploded;
comparison_time_utc.UTCExplode(&utc_exploded);
Time::Exploded local_exploded;
comparison_time_utc.LocalExplode(&local_exploded);
// The year, month, and day are the same because the (negative) offset is
// smaller than the hour in the test time. Similarly, there is no underflow
// for hour.
EXPECT_EQ(utc_exploded.year, local_exploded.year);
EXPECT_EQ(utc_exploded.month, local_exploded.month);
EXPECT_EQ(utc_exploded.day_of_week, local_exploded.day_of_week);
EXPECT_EQ(utc_exploded.day_of_month, local_exploded.day_of_month);
EXPECT_EQ(utc_exploded.hour + kHonoluluOffsetHours, local_exploded.hour);
EXPECT_EQ(utc_exploded.minute, local_exploded.minute);
EXPECT_EQ(utc_exploded.second, local_exploded.second);
EXPECT_EQ(utc_exploded.millisecond, local_exploded.millisecond);
Time time_from_local_exploded;
EXPECT_TRUE(
Time::FromLocalExploded(local_exploded, &time_from_local_exploded));
EXPECT_EQ(comparison_time_utc, time_from_local_exploded);
// Unexplode the local time using the non-local method.
// The resulting time should be offset hours earlier.
Time time_from_utc_exploded;
EXPECT_TRUE(Time::FromUTCExploded(local_exploded, &time_from_utc_exploded));
EXPECT_EQ(comparison_time_utc + Hours(kHonoluluOffsetHours),
time_from_utc_exploded);
}
TEST_F(TimeTest, LocalMidnightIsLocal) {
// Set the default time zone to a zone with an offset different from UTC.
test::ScopedRestoreDefaultTimezone honolulu_time(kHonoluluTimeZoneId);
// The member contains useful values for this test, which uses it as UTC.
Time comparison_time_utc(comparison_time_local_);
Time::Exploded utc_midnight_exploded;
comparison_time_utc.UTCMidnight().UTCExplode(&utc_midnight_exploded);
// Local midnight exploded in UTC will have an offset hour instead of 0.
Time::Exploded local_midnight_utc_exploded;
comparison_time_utc.LocalMidnight().UTCExplode(&local_midnight_utc_exploded);
// The year, month, and day are the same because the (negative) offset is
// smaller than the hour in the test time and thus both midnights round down
// on the same day.
EXPECT_EQ(utc_midnight_exploded.year, local_midnight_utc_exploded.year);
EXPECT_EQ(utc_midnight_exploded.month, local_midnight_utc_exploded.month);
EXPECT_EQ(utc_midnight_exploded.day_of_week,
local_midnight_utc_exploded.day_of_week);
EXPECT_EQ(utc_midnight_exploded.day_of_month,
local_midnight_utc_exploded.day_of_month);
EXPECT_EQ(0, utc_midnight_exploded.hour);
EXPECT_EQ(0 - kHonoluluOffsetHours, local_midnight_utc_exploded.hour);
EXPECT_EQ(0, local_midnight_utc_exploded.minute);
EXPECT_EQ(0, local_midnight_utc_exploded.second);
EXPECT_EQ(0, local_midnight_utc_exploded.millisecond);
// Local midnight exploded in local time will have no offset.
Time::Exploded local_midnight_exploded;
comparison_time_utc.LocalMidnight().LocalExplode(&local_midnight_exploded);
EXPECT_EQ(utc_midnight_exploded.year, local_midnight_exploded.year);
EXPECT_EQ(utc_midnight_exploded.month, local_midnight_exploded.month);
EXPECT_EQ(utc_midnight_exploded.day_of_week,
local_midnight_exploded.day_of_week);
EXPECT_EQ(utc_midnight_exploded.day_of_month,
local_midnight_exploded.day_of_month);
EXPECT_EQ(0, local_midnight_exploded.hour);
EXPECT_EQ(0, local_midnight_exploded.minute);
EXPECT_EQ(0, local_midnight_exploded.second);
EXPECT_EQ(0, local_midnight_exploded.millisecond);
}
#endif // BUILDFLAG(IS_FUCHSIA)
TEST_F(TimeTest, ParseTimeTest1) {
time_t current_time = 0;
time(&current_time);
struct tm local_time = {};
char time_buf[64] = {};
#if BUILDFLAG(IS_WIN)
localtime_s(&local_time, &current_time);
asctime_s(time_buf, std::size(time_buf), &local_time);
#elif BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
localtime_r(&current_time, &local_time);
asctime_r(&local_time, time_buf);
#endif
Time parsed_time;
EXPECT_TRUE(Time::FromString(time_buf, &parsed_time));
EXPECT_EQ(current_time, parsed_time.ToTimeT());
}
TEST_F(TimeTest, DayOfWeekSunday) {
Time time;
EXPECT_TRUE(Time::FromString("Sun, 06 May 2012 12:00:00 GMT", &time));
Time::Exploded exploded;
time.UTCExplode(&exploded);
EXPECT_EQ(0, exploded.day_of_week);
}
TEST_F(TimeTest, DayOfWeekWednesday) {
Time time;
EXPECT_TRUE(Time::FromString("Wed, 09 May 2012 12:00:00 GMT", &time));
Time::Exploded exploded;
time.UTCExplode(&exploded);
EXPECT_EQ(3, exploded.day_of_week);
}
TEST_F(TimeTest, DayOfWeekSaturday) {
Time time;
EXPECT_TRUE(Time::FromString("Sat, 12 May 2012 12:00:00 GMT", &time));
Time::Exploded exploded;
time.UTCExplode(&exploded);
EXPECT_EQ(6, exploded.day_of_week);
}
TEST_F(TimeTest, ParseTimeTest2) {
Time parsed_time;
EXPECT_TRUE(Time::FromString("Mon, 15 Oct 2007 19:45:00 GMT", &parsed_time));
EXPECT_EQ(comparison_time_pdt_, parsed_time);
}
TEST_F(TimeTest, ParseTimeTest3) {
Time parsed_time;
EXPECT_TRUE(Time::FromString("15 Oct 07 12:45:00", &parsed_time));
EXPECT_EQ(comparison_time_local_, parsed_time);
}
TEST_F(TimeTest, ParseTimeTest4) {
Time parsed_time;
EXPECT_TRUE(Time::FromString("15 Oct 07 19:45 GMT", &parsed_time));
EXPECT_EQ(comparison_time_pdt_, parsed_time);
}
TEST_F(TimeTest, ParseTimeTest5) {
Time parsed_time;
EXPECT_TRUE(Time::FromString("Mon Oct 15 12:45 PDT 2007", &parsed_time));
EXPECT_EQ(comparison_time_pdt_, parsed_time);
}
TEST_F(TimeTest, ParseTimeTest6) {
Time parsed_time;
EXPECT_TRUE(Time::FromString("Monday, Oct 15, 2007 12:45 PM", &parsed_time));
EXPECT_EQ(comparison_time_local_, parsed_time);
}
TEST_F(TimeTest, ParseTimeTest7) {
Time parsed_time;
EXPECT_TRUE(Time::FromString("10/15/07 12:45:00 PM", &parsed_time));
EXPECT_EQ(comparison_time_local_, parsed_time);
}
TEST_F(TimeTest, ParseTimeTest8) {
Time parsed_time;
EXPECT_TRUE(Time::FromString("15-OCT-2007 12:45pm", &parsed_time));
EXPECT_EQ(comparison_time_local_, parsed_time);
}
TEST_F(TimeTest, ParseTimeTest9) {
Time parsed_time;
EXPECT_TRUE(Time::FromString("16 Oct 2007 4:45-JST (Tuesday)", &parsed_time));
EXPECT_EQ(comparison_time_pdt_, parsed_time);
}
TEST_F(TimeTest, ParseTimeTest10) {
Time parsed_time;
EXPECT_TRUE(Time::FromString("15/10/07 12:45", &parsed_time));
EXPECT_EQ(parsed_time, comparison_time_local_);
}
TEST_F(TimeTest, ParseTimeTest11) {
Time parsed_time;
EXPECT_TRUE(Time::FromString("2007-10-15 12:45:00", &parsed_time));
EXPECT_EQ(parsed_time, comparison_time_local_);
}
// Test some of edge cases around epoch, etc.
TEST_F(TimeTest, ParseTimeTestEpoch0) {
Time parsed_time;
// time_t == epoch == 0
EXPECT_TRUE(Time::FromString("Thu Jan 01 01:00:00 +0100 1970",
&parsed_time));
EXPECT_EQ(0, parsed_time.ToTimeT());
EXPECT_TRUE(Time::FromString("Thu Jan 01 00:00:00 GMT 1970",
&parsed_time));
EXPECT_EQ(0, parsed_time.ToTimeT());
}
TEST_F(TimeTest, ParseTimeTestEpoch1) {
Time parsed_time;
// time_t == 1 second after epoch == 1
EXPECT_TRUE(Time::FromString("Thu Jan 01 01:00:01 +0100 1970",
&parsed_time));
EXPECT_EQ(1, parsed_time.ToTimeT());
EXPECT_TRUE(Time::FromString("Thu Jan 01 00:00:01 GMT 1970",
&parsed_time));
EXPECT_EQ(1, parsed_time.ToTimeT());
}
TEST_F(TimeTest, ParseTimeTestEpoch2) {
Time parsed_time;
// time_t == 2 seconds after epoch == 2
EXPECT_TRUE(Time::FromString("Thu Jan 01 01:00:02 +0100 1970",
&parsed_time));
EXPECT_EQ(2, parsed_time.ToTimeT());
EXPECT_TRUE(Time::FromString("Thu Jan 01 00:00:02 GMT 1970",
&parsed_time));
EXPECT_EQ(2, parsed_time.ToTimeT());
}
TEST_F(TimeTest, ParseTimeTestEpochNeg1) {
Time parsed_time;
// time_t == 1 second before epoch == -1
EXPECT_TRUE(Time::FromString("Thu Jan 01 00:59:59 +0100 1970",
&parsed_time));
EXPECT_EQ(-1, parsed_time.ToTimeT());
EXPECT_TRUE(Time::FromString("Wed Dec 31 23:59:59 GMT 1969",
&parsed_time));
EXPECT_EQ(-1, parsed_time.ToTimeT());
}
// If time_t is 32 bits, a date after year 2038 will overflow time_t and
// cause timegm() to return -1. The parsed time should not be 1 second
// before epoch.
TEST_F(TimeTest, ParseTimeTestEpochNotNeg1) {
Time parsed_time;
EXPECT_TRUE(Time::FromString("Wed Dec 31 23:59:59 GMT 2100",
&parsed_time));
EXPECT_NE(-1, parsed_time.ToTimeT());
}
TEST_F(TimeTest, ParseTimeTestEpochNeg2) {
Time parsed_time;
// time_t == 2 seconds before epoch == -2
EXPECT_TRUE(Time::FromString("Thu Jan 01 00:59:58 +0100 1970",
&parsed_time));
EXPECT_EQ(-2, parsed_time.ToTimeT());
EXPECT_TRUE(Time::FromString("Wed Dec 31 23:59:58 GMT 1969",
&parsed_time));
EXPECT_EQ(-2, parsed_time.ToTimeT());
}
TEST_F(TimeTest, ParseTimeTestEpoch1960) {
Time parsed_time;
// time_t before Epoch, in 1960
EXPECT_TRUE(Time::FromString("Wed Jun 29 19:40:01 +0100 1960",
&parsed_time));
EXPECT_EQ(-299999999, parsed_time.ToTimeT());
EXPECT_TRUE(Time::FromString("Wed Jun 29 18:40:01 GMT 1960",
&parsed_time));
EXPECT_EQ(-299999999, parsed_time.ToTimeT());
EXPECT_TRUE(Time::FromString("Wed Jun 29 17:40:01 GMT 1960",
&parsed_time));
EXPECT_EQ(-300003599, parsed_time.ToTimeT());
}
TEST_F(TimeTest, ParseTimeTestEmpty) {
Time parsed_time;
EXPECT_FALSE(Time::FromString("", &parsed_time));
}
TEST_F(TimeTest, ParseTimeTestInvalidString) {
Time parsed_time;
EXPECT_FALSE(Time::FromString("Monday morning 2000", &parsed_time));
}
TEST_F(TimeTest, ExplodeBeforeUnixEpoch) {
static const int kUnixEpochYear = 1970; // In case this changes (ha!).
Time t;
Time::Exploded exploded;
t = Time::UnixEpoch() - Microseconds(1);
t.UTCExplode(&exploded);
EXPECT_TRUE(exploded.HasValidValues());
// Should be 1969-12-31 23:59:59 999 milliseconds (and 999 microseconds).
EXPECT_EQ(kUnixEpochYear - 1, exploded.year);
EXPECT_EQ(12, exploded.month);
EXPECT_EQ(31, exploded.day_of_month);
EXPECT_EQ(23, exploded.hour);
EXPECT_EQ(59, exploded.minute);
EXPECT_EQ(59, exploded.second);
EXPECT_EQ(999, exploded.millisecond);
t = Time::UnixEpoch() - Microseconds(999);
t.UTCExplode(&exploded);
EXPECT_TRUE(exploded.HasValidValues());
// Should be 1969-12-31 23:59:59 999 milliseconds (and 1 microsecond).
EXPECT_EQ(kUnixEpochYear - 1, exploded.year);
EXPECT_EQ(12, exploded.month);
EXPECT_EQ(31, exploded.day_of_month);
EXPECT_EQ(23, exploded.hour);
EXPECT_EQ(59, exploded.minute);
EXPECT_EQ(59, exploded.second);
EXPECT_EQ(999, exploded.millisecond);
t = Time::UnixEpoch() - Microseconds(1000);
t.UTCExplode(&exploded);
EXPECT_TRUE(exploded.HasValidValues());
// Should be 1969-12-31 23:59:59 999 milliseconds.
EXPECT_EQ(kUnixEpochYear - 1, exploded.year);
EXPECT_EQ(12, exploded.month);
EXPECT_EQ(31, exploded.day_of_month);
EXPECT_EQ(23, exploded.hour);
EXPECT_EQ(59, exploded.minute);
EXPECT_EQ(59, exploded.second);
EXPECT_EQ(999, exploded.millisecond);
t = Time::UnixEpoch() - Microseconds(1001);
t.UTCExplode(&exploded);
EXPECT_TRUE(exploded.HasValidValues());
// Should be 1969-12-31 23:59:59 998 milliseconds (and 999 microseconds).
EXPECT_EQ(kUnixEpochYear - 1, exploded.year);
EXPECT_EQ(12, exploded.month);
EXPECT_EQ(31, exploded.day_of_month);
EXPECT_EQ(23, exploded.hour);
EXPECT_EQ(59, exploded.minute);
EXPECT_EQ(59, exploded.second);
EXPECT_EQ(998, exploded.millisecond);
t = Time::UnixEpoch() - Milliseconds(1000);
t.UTCExplode(&exploded);
EXPECT_TRUE(exploded.HasValidValues());
// Should be 1969-12-31 23:59:59.
EXPECT_EQ(kUnixEpochYear - 1, exploded.year);
EXPECT_EQ(12, exploded.month);
EXPECT_EQ(31, exploded.day_of_month);
EXPECT_EQ(23, exploded.hour);
EXPECT_EQ(59, exploded.minute);
EXPECT_EQ(59, exploded.second);
EXPECT_EQ(0, exploded.millisecond);
t = Time::UnixEpoch() - Milliseconds(1001);
t.UTCExplode(&exploded);
EXPECT_TRUE(exploded.HasValidValues());
// Should be 1969-12-31 23:59:58 999 milliseconds.
EXPECT_EQ(kUnixEpochYear - 1, exploded.year);
EXPECT_EQ(12, exploded.month);
EXPECT_EQ(31, exploded.day_of_month);
EXPECT_EQ(23, exploded.hour);
EXPECT_EQ(59, exploded.minute);
EXPECT_EQ(58, exploded.second);
EXPECT_EQ(999, exploded.millisecond);
// Make sure we still handle at/after Unix epoch correctly.
t = Time::UnixEpoch();
t.UTCExplode(&exploded);
EXPECT_TRUE(exploded.HasValidValues());
// Should be 1970-12-31 00:00:00 0 milliseconds.
EXPECT_EQ(kUnixEpochYear, exploded.year);
EXPECT_EQ(1, exploded.month);
EXPECT_EQ(1, exploded.day_of_month);
EXPECT_EQ(0, exploded.hour);
EXPECT_EQ(0, exploded.minute);
EXPECT_EQ(0, exploded.second);
EXPECT_EQ(0, exploded.millisecond);
t = Time::UnixEpoch() + Microseconds(1);
t.UTCExplode(&exploded);
EXPECT_TRUE(exploded.HasValidValues());
// Should be 1970-01-01 00:00:00 0 milliseconds (and 1 microsecond).
EXPECT_EQ(kUnixEpochYear, exploded.year);
EXPECT_EQ(1, exploded.month);
EXPECT_EQ(1, exploded.day_of_month);
EXPECT_EQ(0, exploded.hour);
EXPECT_EQ(0, exploded.minute);
EXPECT_EQ(0, exploded.second);
EXPECT_EQ(0, exploded.millisecond);
t = Time::UnixEpoch() + Microseconds(999);
t.UTCExplode(&exploded);
EXPECT_TRUE(exploded.HasValidValues());
// Should be 1970-01-01 00:00:00 0 milliseconds (and 999 microseconds).
EXPECT_EQ(kUnixEpochYear, exploded.year);
EXPECT_EQ(1, exploded.month);
EXPECT_EQ(1, exploded.day_of_month);
EXPECT_EQ(0, exploded.hour);
EXPECT_EQ(0, exploded.minute);
EXPECT_EQ(0, exploded.second);
EXPECT_EQ(0, exploded.millisecond);
t = Time::UnixEpoch() + Microseconds(1000);
t.UTCExplode(&exploded);
EXPECT_TRUE(exploded.HasValidValues());
// Should be 1970-01-01 00:00:00 1 millisecond.
EXPECT_EQ(kUnixEpochYear, exploded.year);
EXPECT_EQ(1, exploded.month);
EXPECT_EQ(1, exploded.day_of_month);
EXPECT_EQ(0, exploded.hour);
EXPECT_EQ(0, exploded.minute);
EXPECT_EQ(0, exploded.second);
EXPECT_EQ(1, exploded.millisecond);
t = Time::UnixEpoch() + Milliseconds(1000);
t.UTCExplode(&exploded);
EXPECT_TRUE(exploded.HasValidValues());
// Should be 1970-01-01 00:00:01.
EXPECT_EQ(kUnixEpochYear, exploded.year);
EXPECT_EQ(1, exploded.month);
EXPECT_EQ(1, exploded.day_of_month);
EXPECT_EQ(0, exploded.hour);
EXPECT_EQ(0, exploded.minute);
EXPECT_EQ(1, exploded.second);
EXPECT_EQ(0, exploded.millisecond);
t = Time::UnixEpoch() + Milliseconds(1001);
t.UTCExplode(&exploded);
EXPECT_TRUE(exploded.HasValidValues());
// Should be 1970-01-01 00:00:01 1 millisecond.
EXPECT_EQ(kUnixEpochYear, exploded.year);
EXPECT_EQ(1, exploded.month);
EXPECT_EQ(1, exploded.day_of_month);
EXPECT_EQ(0, exploded.hour);
EXPECT_EQ(0, exploded.minute);
EXPECT_EQ(1, exploded.second);
EXPECT_EQ(1, exploded.millisecond);
}
TEST_F(TimeTest, Max) {
constexpr Time kMax = Time::Max();
static_assert(kMax.is_max());
static_assert(kMax == Time::Max());
EXPECT_GT(kMax, Time::Now());
static_assert(kMax > Time());
EXPECT_TRUE((Time::Now() - kMax).is_negative());
EXPECT_TRUE((kMax - Time::Now()).is_positive());
}
TEST_F(TimeTest, MaxConversions) {
constexpr Time kMax = Time::Max();
static_assert(std::numeric_limits<int64_t>::max() == kMax.ToInternalValue(),
"");
Time t =
Time::FromSecondsSinceUnixEpoch(std::numeric_limits<double>::infinity());
EXPECT_TRUE(t.is_max());
EXPECT_EQ(std::numeric_limits<double>::infinity(),
t.InSecondsFSinceUnixEpoch());
t = Time::FromMillisecondsSinceUnixEpoch(
std::numeric_limits<double>::infinity());
EXPECT_TRUE(t.is_max());
EXPECT_EQ(std::numeric_limits<double>::infinity(),
t.InMillisecondsFSinceUnixEpoch());
t = Time::FromTimeT(std::numeric_limits<time_t>::max());
EXPECT_TRUE(t.is_max());
EXPECT_EQ(std::numeric_limits<time_t>::max(), t.ToTimeT());
#if BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
struct timeval tval;
tval.tv_sec = std::numeric_limits<time_t>::max();
tval.tv_usec = static_cast<suseconds_t>(Time::kMicrosecondsPerSecond) - 1;
t = Time::FromTimeVal(tval);
EXPECT_TRUE(t.is_max());
tval = t.ToTimeVal();
EXPECT_EQ(std::numeric_limits<time_t>::max(), tval.tv_sec);
EXPECT_EQ(static_cast<suseconds_t>(Time::kMicrosecondsPerSecond) - 1,
tval.tv_usec);
#endif
#if BUILDFLAG(IS_APPLE)
t = Time::FromCFAbsoluteTime(std::numeric_limits<CFAbsoluteTime>::infinity());
EXPECT_TRUE(t.is_max());
EXPECT_EQ(std::numeric_limits<CFAbsoluteTime>::infinity(),
t.ToCFAbsoluteTime());
#endif
#if BUILDFLAG(IS_WIN)
FILETIME ftime;
ftime.dwHighDateTime = std::numeric_limits<DWORD>::max();
ftime.dwLowDateTime = std::numeric_limits<DWORD>::max();
t = Time::FromFileTime(ftime);
EXPECT_TRUE(t.is_max());
ftime = t.ToFileTime();
EXPECT_EQ(std::numeric_limits<DWORD>::max(), ftime.dwHighDateTime);
EXPECT_EQ(std::numeric_limits<DWORD>::max(), ftime.dwLowDateTime);
#endif
}
TEST_F(TimeTest, Min) {
constexpr Time kMin = Time::Min();
static_assert(kMin.is_min());
static_assert(kMin == Time::Min());
EXPECT_LT(kMin, Time::Now());
static_assert(kMin < Time());
EXPECT_TRUE((Time::Now() - kMin).is_positive());
EXPECT_TRUE((kMin - Time::Now()).is_negative());
}
TEST_F(TimeTest, TimeTOverflow) {
// We always expect Max and Min Time values to map to the extreme of the range
// of time_t because we have things that make this assumption - Even if such a
// time were representable in time_t.
EXPECT_EQ(std::numeric_limits<time_t>::max(), Time::Max().ToTimeT());
EXPECT_EQ(std::numeric_limits<time_t>::min(), Time::Min().ToTimeT());
// In the bad old days time_t was 32 bit. Occasionally it still is.
// Usually it is 64 bit. It must be one or the other.
constexpr bool time_t_is_32_bit = sizeof(time_t) == sizeof(int32_t);
static_assert(time_t_is_32_bit || sizeof(time_t) == sizeof(int64_t));
// base::Time internally represents time as microseconds since the Windows
// epoch as an int64_t. When time_t is a int64_t of seconds since the Unix
// epoch, time_t can represent the maxiumum value of base::Time. A 32 bit
// time_t can not represent it.
// If we have a 32 bit time_t, check that a non-infinite value of one
// microsecond less than the max value of a base::Time still maps to the max
// value of time_t.
if (time_t_is_32_bit) {
constexpr Time kMaxMinusOne =
Time() + base::Microseconds(std::numeric_limits<int64_t>::max() - 1);
static_assert(!kMaxMinusOne.is_max());
EXPECT_EQ(std::numeric_limits<time_t>::max(), kMaxMinusOne.ToTimeT());
}
// Converting a base::Time to a time_t subtracts the value of the UnixEpoch in
// microseconds since the Windows epoch from the current time value. As such
// we expect a value of the minimum time plus one, subtracted by the UnixEpoch
// value to be clamped by the TimeDelta math, meaning that we will see a
// minimum value in the time_t, 32 bit or 64 bit
constexpr Time kMinPlusOne =
Time() + base::Microseconds(std::numeric_limits<int64_t>::min() + 1);
static_assert(!kMinPlusOne.is_min());
EXPECT_EQ(std::numeric_limits<time_t>::min(), kMinPlusOne.ToTimeT());
// We also expect the same behaviour for Min plus the Unix Epoch.
constexpr Time kMinPlusUnix =
Time() + base::Microseconds(std::numeric_limits<int64_t>::min() +
Time::kTimeTToMicrosecondsOffset);
static_assert(!kMinPlusUnix.is_min());
EXPECT_EQ(std::numeric_limits<time_t>::min(), kMinPlusUnix.ToTimeT());
// We expect Min plus the UnixEpoch plus 1 in microseconds to convert back to
// one more than Min - a negative number of microseconds far before the
// Windows epoch of 1601-01-01. It will representable in seconds as a 64 bit
// time_t, but not on a 32 bit time_t, which can only represent values
// starting from 1901-12-13
constexpr Time kMinPlusUnixPlusOne =
Time() + base::Microseconds(std::numeric_limits<int64_t>::min() +
Time::kTimeTToMicrosecondsOffset + 1);
static_assert(!kMinPlusUnixPlusOne.is_min());
if (time_t_is_32_bit) {
EXPECT_EQ(std::numeric_limits<time_t>::min(),
kMinPlusUnixPlusOne.ToTimeT());
} else {
EXPECT_NE(std::numeric_limits<time_t>::min(),
kMinPlusUnixPlusOne.ToTimeT());
}
}
#if BUILDFLAG(IS_ANDROID)
TEST_F(TimeTest, FromLocalExplodedCrashOnAndroid) {
// This crashed inside Time:: FromLocalExploded() on Android 4.1.2.
// See http://crbug.com/287821
Time::Exploded midnight = {2013, // year
10, // month
0, // day_of_week
13, // day_of_month
0, // hour
0, // minute
0, // second
};
// The string passed to putenv() must be a char* and the documentation states
// that it 'becomes part of the environment', so use a static buffer.
static char buffer[] = "TZ=America/Santiago";
putenv(buffer);
tzset();
Time t;
EXPECT_TRUE(Time::FromLocalExploded(midnight, &t));
EXPECT_EQ(1381633200, t.ToTimeT());
}
#endif // BUILDFLAG(IS_ANDROID)
// Regression test for https://crbug.com/1104442
TEST_F(TimeTest, Explode_Y10KCompliance) {
constexpr int kDaysPerYear = 365;
constexpr int64_t kHalfYearInMicros = Days(kDaysPerYear / 2).InMicroseconds();
// The Y2038 issue occurs when a 32-bit signed integer overflows.
constexpr int64_t kYear2038MicrosOffset =
Time::kTimeTToMicrosecondsOffset +
(std::numeric_limits<int32_t>::max() * Time::kMicrosecondsPerSecond);
// 1 March 10000 at noon.
constexpr int64_t kYear10000YearsOffset = 10000 - 1970;
constexpr int kExtraLeapDaysOverThoseYears = 1947;
constexpr int kDaysFromJanToMar10000 = 31 + 29;
constexpr int64_t kMarch10000MicrosOffset =
Time::kTimeTToMicrosecondsOffset +
Days(kYear10000YearsOffset * kDaysPerYear + kExtraLeapDaysOverThoseYears +
kDaysFromJanToMar10000)
.InMicroseconds() +
Hours(12).InMicroseconds();
// Windows uses a 64-bit signed integer type that reperesents the number of
// 1/10 microsecond ticks.
constexpr int64_t kWindowsMaxMicrosOffset =
std::numeric_limits<int64_t>::max() / 10;
// ICU's Calendar API uses double values. Thus, the maximum supported value is
// the maximum integer that can be represented by a double.
static_assert(std::numeric_limits<double>::radix == 2);
constexpr int64_t kMaxIntegerAsDoubleMillis =
int64_t{1} << std::numeric_limits<double>::digits;
constexpr int64_t kIcuMaxMicrosOffset =
Time::kTimeTToMicrosecondsOffset +
(kMaxIntegerAsDoubleMillis * Time::kMicrosecondsPerMillisecond + 999);
const auto make_time = [](int64_t micros) {
return Time::FromDeltaSinceWindowsEpoch(Microseconds(micros));
};
const struct TestCase {
Time time;
Time::Exploded expected;
} kTestCases[] = {
// A very long time ago.
{Time::Min(), Time::Exploded{-290677, 12, 4, 23, 19, 59, 5, 224}},
// Before/On/After 1 Jan 1601.
{make_time(-kHalfYearInMicros),
Time::Exploded{1600, 7, 1, 3, 0, 0, 0, 0}},
{make_time(0), Time::Exploded{1601, 1, 1, 1, 0, 0, 0, 0}},
{make_time(kHalfYearInMicros), Time::Exploded{1601, 7, 1, 2, 0, 0, 0, 0}},
// Before/On/After 1 Jan 1970.
{make_time(Time::kTimeTToMicrosecondsOffset - kHalfYearInMicros),
Time::Exploded{1969, 7, 4, 3, 0, 0, 0, 0}},
{make_time(Time::kTimeTToMicrosecondsOffset),
Time::Exploded{1970, 1, 4, 1, 0, 0, 0, 0}},
{make_time(Time::kTimeTToMicrosecondsOffset + kHalfYearInMicros),
Time::Exploded{1970, 7, 4, 2, 0, 0, 0, 0}},
// Before/On/After 19 January 2038.
{make_time(kYear2038MicrosOffset - kHalfYearInMicros),
Time::Exploded{2037, 7, 2, 21, 3, 14, 7, 0}},
{make_time(kYear2038MicrosOffset),
Time::Exploded{2038, 1, 2, 19, 3, 14, 7, 0}},
{make_time(kYear2038MicrosOffset + kHalfYearInMicros),
Time::Exploded{2038, 7, 2, 20, 3, 14, 7, 0}},
// Before/On/After 1 March 10000 at noon.
{make_time(kMarch10000MicrosOffset - kHalfYearInMicros),
Time::Exploded{9999, 9, 3, 1, 12, 0, 0, 0}},
{make_time(kMarch10000MicrosOffset),
Time::Exploded{10000, 3, 3, 1, 12, 0, 0, 0}},
{make_time(kMarch10000MicrosOffset + kHalfYearInMicros),
Time::Exploded{10000, 8, 3, 30, 12, 0, 0, 0}},
// Before/On/After Windows Max (14 September 30828).
{make_time(kWindowsMaxMicrosOffset - kHalfYearInMicros),
Time::Exploded{30828, 3, 4, 16, 2, 48, 5, 477}},
{make_time(kWindowsMaxMicrosOffset),
Time::Exploded{30828, 9, 4, 14, 2, 48, 5, 477}},
{make_time(kWindowsMaxMicrosOffset + kHalfYearInMicros),
Time::Exploded{30829, 3, 4, 15, 2, 48, 5, 477}},
// Before/On/After ICU Max.
{make_time(kIcuMaxMicrosOffset - kHalfYearInMicros),
Time::Exploded{287396, 4, 3, 13, 8, 59, 0, 992}},
{make_time(kIcuMaxMicrosOffset),
Time::Exploded{287396, 10, 3, 12, 8, 59, 0, 992}},
{make_time(kIcuMaxMicrosOffset + kHalfYearInMicros),
Time::Exploded{287397, 4, 3, 12, 8, 59, 0, 992}},
// A very long time from now.
{Time::Max(), Time::Exploded{293878, 1, 4, 10, 4, 0, 54, 775}},
};
for (const TestCase& test_case : kTestCases) {
SCOPED_TRACE(testing::Message() << "Time: " << test_case.time);
Time::Exploded exploded = {};
test_case.time.UTCExplode(&exploded);
// Confirm the implementation provides a correct conversion for all inputs
// within the guaranteed range (as discussed in the header comments). If an
// implementation provides a result for inputs outside the guaranteed range,
// the result must still be correct.
if (exploded.HasValidValues()) {
EXPECT_EQ(test_case.expected.year, exploded.year);
EXPECT_EQ(test_case.expected.month, exploded.month);
EXPECT_EQ(test_case.expected.day_of_week, exploded.day_of_week);
EXPECT_EQ(test_case.expected.day_of_month, exploded.day_of_month);
EXPECT_EQ(test_case.expected.hour, exploded.hour);
EXPECT_EQ(test_case.expected.minute, exploded.minute);
EXPECT_EQ(test_case.expected.second, exploded.second);
EXPECT_EQ(test_case.expected.millisecond, exploded.millisecond);
} else {
// The implementation could not provide a conversion. That is only allowed
// for inputs outside the guaranteed range.
const bool is_in_range =
test_case.time >= make_time(0) &&
test_case.time <= make_time(kWindowsMaxMicrosOffset);
EXPECT_FALSE(is_in_range);
}
}
}
#if BUILDFLAG(IS_FUCHSIA) || BUILDFLAG(IS_CHROMEOS)
// Regression tests for https://crbug.com/1198313: base::Time::UTCExplode and
// base::Time::LocalExplode should not be locale-dependent.
TEST_F(TimeTest, UTCExplodedIsLocaleIndependent) {
// Time-to-Exploded could be using libc or ICU functions.
// Set the ICU locale and timezone and the libc timezone.
// We're not setting the libc locale because the libc time functions are
// locale-independent and the th_TH.utf8 locale was not available on all
// trybots at the time this test was added.
// th-TH maps to a non-gregorian calendar.
test::ScopedRestoreICUDefaultLocale scoped_icu_locale(kThaiLocale);
test::ScopedRestoreDefaultTimezone scoped_timezone(kBangkokTimeZoneId);
ScopedLibcTZ scoped_libc_tz(kBangkokTimeZoneId);
ASSERT_TRUE(scoped_libc_tz.is_success());
Time::Exploded utc_exploded_orig;
utc_exploded_orig.year = 2020;
utc_exploded_orig.month = 7;
utc_exploded_orig.day_of_week = 5; // Friday
utc_exploded_orig.day_of_month = 3;
utc_exploded_orig.hour = 12;
utc_exploded_orig.minute = 0;
utc_exploded_orig.second = 0;
utc_exploded_orig.millisecond = 0;
Time time;
ASSERT_TRUE(base::Time::FromUTCExploded(utc_exploded_orig, &time));
// Round trip to UTC Exploded should produce the exact same result.
Time::Exploded utc_exploded;
time.UTCExplode(&utc_exploded);
EXPECT_EQ(utc_exploded_orig.year, utc_exploded.year);
EXPECT_EQ(utc_exploded_orig.month, utc_exploded.month);
EXPECT_EQ(utc_exploded_orig.day_of_week, utc_exploded.day_of_week);
EXPECT_EQ(utc_exploded_orig.day_of_month, utc_exploded.day_of_month);
EXPECT_EQ(utc_exploded_orig.hour, utc_exploded.hour);
EXPECT_EQ(utc_exploded_orig.minute, utc_exploded.minute);
EXPECT_EQ(utc_exploded_orig.second, utc_exploded.second);
EXPECT_EQ(utc_exploded_orig.millisecond, utc_exploded.millisecond);
}
TEST_F(TimeTest, LocalExplodedIsLocaleIndependent) {
// Time-to-Exploded could be using libc or ICU functions.
// Set the ICU locale and timezone and the libc timezone.
// We're not setting the libc locale because the libc time functions are
// locale-independent and the th_TH.utf8 locale was not available on all
// trybots at the time this test was added.
// th-TH maps to a non-gregorian calendar.
test::ScopedRestoreICUDefaultLocale scoped_icu_locale(kThaiLocale);
test::ScopedRestoreDefaultTimezone scoped_timezone(kBangkokTimeZoneId);
ScopedLibcTZ scoped_libc_tz(kBangkokTimeZoneId);
ASSERT_TRUE(scoped_libc_tz.is_success());
Time::Exploded utc_exploded_orig;
utc_exploded_orig.year = 2020;
utc_exploded_orig.month = 7;
utc_exploded_orig.day_of_week = 5; // Friday
utc_exploded_orig.day_of_month = 3;
utc_exploded_orig.hour = 12;
utc_exploded_orig.minute = 0;
utc_exploded_orig.second = 0;
utc_exploded_orig.millisecond = 0;
Time time;
ASSERT_TRUE(base::Time::FromUTCExploded(utc_exploded_orig, &time));
std::optional<TimeDelta> expected_delta =
GetTimeZoneOffsetAtTime(kBangkokTimeZoneId, time);
ASSERT_TRUE(expected_delta.has_value());
// This is to be sure that the day has not changed
ASSERT_LT(*expected_delta, base::Hours(12));
Time::Exploded local_exploded;
time.LocalExplode(&local_exploded);
TimeDelta actual_delta = TimePassedAfterMidnight(local_exploded) -
TimePassedAfterMidnight(utc_exploded_orig);
EXPECT_EQ(utc_exploded_orig.year, local_exploded.year);
EXPECT_EQ(utc_exploded_orig.month, local_exploded.month);
EXPECT_EQ(utc_exploded_orig.day_of_week, local_exploded.day_of_week);
EXPECT_EQ(utc_exploded_orig.day_of_month, local_exploded.day_of_month);
EXPECT_EQ(actual_delta, *expected_delta);
}
#endif // BUILDFLAG(IS_FUCHSIA) || BUILDFLAG(IS_CHROMEOS)
TEST_F(TimeTest, FromExploded_MinMax) {
Time::Exploded exploded = {0};
exploded.month = 1;
exploded.day_of_month = 1;
Time parsed_time;
if (Time::kExplodedMinYear != std::numeric_limits<int>::min()) {
exploded.year = Time::kExplodedMinYear;
EXPECT_TRUE(Time::FromUTCExploded(exploded, &parsed_time));
#if BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
// On Windows, January 1, 1601 00:00:00 is actually the null time.
EXPECT_FALSE(parsed_time.is_null());
#endif
#if !BUILDFLAG(IS_ANDROID) && !BUILDFLAG(IS_APPLE)
// The dates earlier than |kExplodedMinYear| that don't work are OS version
// dependent on Android and Mac (for example, macOS 10.13 seems to support
// dates before 1902).
exploded.year--;
EXPECT_FALSE(Time::FromUTCExploded(exploded, &parsed_time));
EXPECT_TRUE(parsed_time.is_null());
#endif
}
if (Time::kExplodedMaxYear != std::numeric_limits<int>::max()) {
exploded.year = Time::kExplodedMaxYear;
exploded.month = 12;
exploded.day_of_month = 31;
exploded.hour = 23;
exploded.minute = 59;
exploded.second = 59;
exploded.millisecond = 999;
EXPECT_TRUE(Time::FromUTCExploded(exploded, &parsed_time));
EXPECT_FALSE(parsed_time.is_null());
exploded.year++;
EXPECT_FALSE(Time::FromUTCExploded(exploded, &parsed_time));
EXPECT_TRUE(parsed_time.is_null());
}
}
class TimeOverride {
public:
static Time Now() {
now_time_ += Seconds(1);
return now_time_;
}
static Time now_time_;
};
// static
Time TimeOverride::now_time_;
// Disabled on Android due to flakes; see https://crbug.com/1474884.
#if BUILDFLAG(IS_ANDROID)
#define MAYBE_NowOverride DISABLED_NowOverride
#else
#define MAYBE_NowOverride NowOverride
#endif
TEST_F(TimeTest, MAYBE_NowOverride) {
TimeOverride::now_time_ = Time::UnixEpoch();
// Choose a reference time that we know to be in the past but close to now.
Time build_time = GetBuildTime();
// Override is not active. All Now() methods should return a time greater than
// the build time.
EXPECT_LT(build_time, Time::Now());
EXPECT_GT(Time::Max(), Time::Now());
EXPECT_LT(build_time, subtle::TimeNowIgnoringOverride());
EXPECT_GT(Time::Max(), subtle::TimeNowIgnoringOverride());
EXPECT_LT(build_time, Time::NowFromSystemTime());
EXPECT_GT(Time::Max(), Time::NowFromSystemTime());
EXPECT_LT(build_time, subtle::TimeNowFromSystemTimeIgnoringOverride());
EXPECT_GT(Time::Max(), subtle::TimeNowFromSystemTimeIgnoringOverride());
{
// Set override.
subtle::ScopedTimeClockOverrides overrides(&TimeOverride::Now, nullptr,
nullptr);
// Overridden value is returned and incremented when Now() or
// NowFromSystemTime() is called.
EXPECT_EQ(Time::UnixEpoch() + Seconds(1), Time::Now());
EXPECT_EQ(Time::UnixEpoch() + Seconds(2), Time::Now());
EXPECT_EQ(Time::UnixEpoch() + Seconds(3), Time::NowFromSystemTime());
EXPECT_EQ(Time::UnixEpoch() + Seconds(4), Time::NowFromSystemTime());
// IgnoringOverride methods still return real time.
EXPECT_LT(build_time, subtle::TimeNowIgnoringOverride());
EXPECT_GT(Time::Max(), subtle::TimeNowIgnoringOverride());
EXPECT_LT(build_time, subtle::TimeNowFromSystemTimeIgnoringOverride());
EXPECT_GT(Time::Max(), subtle::TimeNowFromSystemTimeIgnoringOverride());
// IgnoringOverride methods didn't call NowOverrideClock::Now().
EXPECT_EQ(Time::UnixEpoch() + Seconds(5), Time::Now());
EXPECT_EQ(Time::UnixEpoch() + Seconds(6), Time::NowFromSystemTime());
}
// All methods return real time again.
EXPECT_LT(build_time, Time::Now());
EXPECT_GT(Time::Max(), Time::Now());
EXPECT_LT(build_time, subtle::TimeNowIgnoringOverride());
EXPECT_GT(Time::Max(), subtle::TimeNowIgnoringOverride());
EXPECT_LT(build_time, Time::NowFromSystemTime());
EXPECT_GT(Time::Max(), Time::NowFromSystemTime());
EXPECT_LT(build_time, subtle::TimeNowFromSystemTimeIgnoringOverride());
EXPECT_GT(Time::Max(), subtle::TimeNowFromSystemTimeIgnoringOverride());
}
#undef MAYBE_NowOverride
#if BUILDFLAG(IS_FUCHSIA)
TEST(ZxTimeTest, ToFromConversions) {
Time unix_epoch = Time::UnixEpoch();
EXPECT_EQ(unix_epoch.ToZxTime(), 0);
EXPECT_EQ(Time::FromZxTime(6000000000), unix_epoch + Seconds(6));
TimeTicks ticks_now = TimeTicks::Now();
EXPECT_GE(ticks_now.ToZxTime(), 0);
TimeTicks ticks_later = ticks_now + Seconds(2);
EXPECT_EQ((ticks_later.ToZxTime() - ticks_now.ToZxTime()), 2000000000);
EXPECT_EQ(TimeTicks::FromZxTime(3000000000), TimeTicks() + Seconds(3));
EXPECT_EQ(TimeDelta().ToZxDuration(), 0);
EXPECT_EQ(TimeDelta::FromZxDuration(0), TimeDelta());
EXPECT_EQ(Seconds(2).ToZxDuration(), 2000000000);
EXPECT_EQ(TimeDelta::FromZxDuration(4000000000), Seconds(4));
}
#endif // BUILDFLAG(IS_FUCHSIA)
TEST(TimeTicks, Deltas) {
for (int index = 0; index < 50; index++) {
TimeTicks ticks_start = TimeTicks::Now();
base::PlatformThread::Sleep(base::Milliseconds(10));
TimeTicks ticks_stop = TimeTicks::Now();
TimeDelta delta = ticks_stop - ticks_start;
// Note: Although we asked for a 10ms sleep, if the
// time clock has a finer granularity than the Sleep()
// clock, it is quite possible to wakeup early. Here
// is how that works:
// Time(ms timer) Time(us timer)
// 5 5010
// 6 6010
// 7 7010
// 8 8010
// 9 9000
// Elapsed 4ms 3990us
//
// Unfortunately, our InMilliseconds() function truncates
// rather than rounds. We should consider fixing this
// so that our averages come out better.
EXPECT_GE(delta.InMilliseconds(), 9);
EXPECT_GE(delta.InMicroseconds(), 9000);
EXPECT_EQ(delta.InSeconds(), 0);
}
}
static void HighResClockTest(TimeTicks (*GetTicks)()) {
// IsHighResolution() is false on some systems. Since the product still works
// even if it's false, it makes this entire test questionable.
if (!TimeTicks::IsHighResolution())
return;
// Why do we loop here?
// We're trying to measure that intervals increment in a VERY small amount
// of time -- less than 15ms. Unfortunately, if we happen to have a
// context switch in the middle of our test, the context switch could easily
// exceed our limit. So, we iterate on this several times. As long as we're
// able to detect the fine-granularity timers at least once, then the test
// has succeeded.
const int kTargetGranularityUs = 15000; // 15ms
bool success = false;
int retries = 100; // Arbitrary.
TimeDelta delta;
while (!success && retries--) {
TimeTicks ticks_start = GetTicks();
// Loop until we can detect that the clock has changed. Non-HighRes timers
// will increment in chunks, e.g. 15ms. By spinning until we see a clock
// change, we detect the minimum time between measurements.
do {
delta = GetTicks() - ticks_start;
} while (delta.InMilliseconds() == 0);
if (delta.InMicroseconds() <= kTargetGranularityUs)
success = true;
}
// In high resolution mode, we expect to see the clock increment
// in intervals less than 15ms.
EXPECT_TRUE(success);
}
TEST(TimeTicks, HighRes) {
HighResClockTest(&TimeTicks::Now);
}
class TimeTicksOverride {
public:
static TimeTicks Now() {
now_ticks_ += Seconds(1);
return now_ticks_;
}
static TimeTicks now_ticks_;
};
// static
TimeTicks TimeTicksOverride::now_ticks_;
TEST(TimeTicks, NowOverride) {
TimeTicksOverride::now_ticks_ = TimeTicks::Min();
// Override is not active. All Now() methods should return a sensible value.
EXPECT_LT(TimeTicks::Min(), TimeTicks::UnixEpoch());
EXPECT_LT(TimeTicks::UnixEpoch(), TimeTicks::Now());
EXPECT_GT(TimeTicks::Max(), TimeTicks::Now());
EXPECT_LT(TimeTicks::UnixEpoch(), subtle::TimeTicksNowIgnoringOverride());
EXPECT_GT(TimeTicks::Max(), subtle::TimeTicksNowIgnoringOverride());
{
// Set override.
subtle::ScopedTimeClockOverrides overrides(nullptr, &TimeTicksOverride::Now,
nullptr);
// Overridden value is returned and incremented when Now() is called.
EXPECT_EQ(TimeTicks::Min() + Seconds(1), TimeTicks::Now());
EXPECT_EQ(TimeTicks::Min() + Seconds(2), TimeTicks::Now());
// NowIgnoringOverride() still returns real ticks.
EXPECT_LT(TimeTicks::UnixEpoch(), subtle::TimeTicksNowIgnoringOverride());
EXPECT_GT(TimeTicks::Max(), subtle::TimeTicksNowIgnoringOverride());
// IgnoringOverride methods didn't call NowOverrideTickClock::NowTicks().
EXPECT_EQ(TimeTicks::Min() + Seconds(3), TimeTicks::Now());
}
// All methods return real ticks again.
EXPECT_LT(TimeTicks::UnixEpoch(), TimeTicks::Now());
EXPECT_GT(TimeTicks::Max(), TimeTicks::Now());
EXPECT_LT(TimeTicks::UnixEpoch(), subtle::TimeTicksNowIgnoringOverride());
EXPECT_GT(TimeTicks::Max(), subtle::TimeTicksNowIgnoringOverride());
}
class ThreadTicksOverride {
public:
static ThreadTicks Now() {
now_ticks_ += Seconds(1);
return now_ticks_;
}
static ThreadTicks now_ticks_;
};
// static
ThreadTicks ThreadTicksOverride::now_ticks_;
// IOS doesn't support ThreadTicks::Now().
#if BUILDFLAG(IS_IOS)
#define MAYBE_NowOverride DISABLED_NowOverride
#else
#define MAYBE_NowOverride NowOverride
#endif
TEST(ThreadTicks, MAYBE_NowOverride) {
ThreadTicksOverride::now_ticks_ = ThreadTicks::Min();
// Override is not active. All Now() methods should return a sensible value.
ThreadTicks initial_thread_ticks = ThreadTicks::Now();
EXPECT_LE(initial_thread_ticks, ThreadTicks::Now());
EXPECT_GT(ThreadTicks::Max(), ThreadTicks::Now());
EXPECT_LE(initial_thread_ticks, subtle::ThreadTicksNowIgnoringOverride());
EXPECT_GT(ThreadTicks::Max(), subtle::ThreadTicksNowIgnoringOverride());
{
// Set override.
subtle::ScopedTimeClockOverrides overrides(nullptr, nullptr,
&ThreadTicksOverride::Now);
// Overridden value is returned and incremented when Now() is called.
EXPECT_EQ(ThreadTicks::Min() + Seconds(1), ThreadTicks::Now());
EXPECT_EQ(ThreadTicks::Min() + Seconds(2), ThreadTicks::Now());
// NowIgnoringOverride() still returns real ticks.
EXPECT_LE(initial_thread_ticks, subtle::ThreadTicksNowIgnoringOverride());
EXPECT_GT(ThreadTicks::Max(), subtle::ThreadTicksNowIgnoringOverride());
// IgnoringOverride methods didn't call NowOverrideTickClock::NowTicks().
EXPECT_EQ(ThreadTicks::Min() + Seconds(3), ThreadTicks::Now());
}
// All methods return real ticks again.
EXPECT_LE(initial_thread_ticks, ThreadTicks::Now());
EXPECT_GT(ThreadTicks::Max(), ThreadTicks::Now());
EXPECT_LE(initial_thread_ticks, subtle::ThreadTicksNowIgnoringOverride());
EXPECT_GT(ThreadTicks::Max(), subtle::ThreadTicksNowIgnoringOverride());
}
TEST(ThreadTicks, ThreadNow) {
if (ThreadTicks::IsSupported()) {
ThreadTicks::WaitUntilInitialized();
TimeTicks begin = TimeTicks::Now();
ThreadTicks begin_thread = ThreadTicks::Now();
// Make sure that ThreadNow value is non-zero.
EXPECT_GT(begin_thread, ThreadTicks());
// Sleep for 10 milliseconds to get the thread de-scheduled.
base::PlatformThread::Sleep(base::Milliseconds(10));
ThreadTicks end_thread = ThreadTicks::Now();
TimeTicks end = TimeTicks::Now();
TimeDelta delta = end - begin;
TimeDelta delta_thread = end_thread - begin_thread;
// Make sure that some thread time have elapsed.
EXPECT_GE(delta_thread.InMicroseconds(), 0);
// But the thread time is at least 9ms less than clock time.
TimeDelta difference = delta - delta_thread;
EXPECT_GE(difference.InMicroseconds(), 9000);
}
}
TEST(TimeTicks, SnappedToNextTickBasic) {
base::TimeTicks phase = base::TimeTicks::FromInternalValue(4000);
base::TimeDelta interval = base::Microseconds(1000);
base::TimeTicks timestamp;
// Timestamp in previous interval.
timestamp = base::TimeTicks::FromInternalValue(3500);
EXPECT_EQ(4000,
timestamp.SnappedToNextTick(phase, interval).ToInternalValue());
// Timestamp in next interval.
timestamp = base::TimeTicks::FromInternalValue(4500);
EXPECT_EQ(5000,
timestamp.SnappedToNextTick(phase, interval).ToInternalValue());
// Timestamp multiple intervals before.
timestamp = base::TimeTicks::FromInternalValue(2500);
EXPECT_EQ(3000,
timestamp.SnappedToNextTick(phase, interval).ToInternalValue());
// Timestamp multiple intervals after.
timestamp = base::TimeTicks::FromInternalValue(6500);
EXPECT_EQ(7000,
timestamp.SnappedToNextTick(phase, interval).ToInternalValue());
// Timestamp on previous interval.
timestamp = base::TimeTicks::FromInternalValue(3000);
EXPECT_EQ(3000,
timestamp.SnappedToNextTick(phase, interval).ToInternalValue());
// Timestamp on next interval.
timestamp = base::TimeTicks::FromInternalValue(5000);
EXPECT_EQ(5000,
timestamp.SnappedToNextTick(phase, interval).ToInternalValue());
// Timestamp equal to phase.
timestamp = base::TimeTicks::FromInternalValue(4000);
EXPECT_EQ(4000,
timestamp.SnappedToNextTick(phase, interval).ToInternalValue());
}
TEST(TimeTicks, SnappedToNextTickOverflow) {
// int(big_timestamp / interval) < 0, so this causes a crash if the number of
// intervals elapsed is attempted to be stored in an int.
base::TimeTicks phase = base::TimeTicks::FromInternalValue(0);
base::TimeDelta interval = base::Microseconds(4000);
base::TimeTicks big_timestamp =
base::TimeTicks::FromInternalValue(8635916564000);
EXPECT_EQ(8635916564000,
big_timestamp.SnappedToNextTick(phase, interval).ToInternalValue());
EXPECT_EQ(8635916564000,
big_timestamp.SnappedToNextTick(big_timestamp, interval)
.ToInternalValue());
}
#if BUILDFLAG(IS_ANDROID)
TEST(TimeTicks, Android_FromUptimeMillis_ClocksMatch) {
JNIEnv* const env = android::AttachCurrentThread();
android::ScopedJavaLocalRef<jclass> clazz(
android::GetClass(env, "android/os/SystemClock"));
ASSERT_TRUE(clazz.obj());
const jmethodID method_id =
android::MethodID::Get<android::MethodID::TYPE_STATIC>(
env, clazz.obj(), "uptimeMillis", "()J");
ASSERT_FALSE(!method_id);
// Subtract 1ms from the expected lower bound to allow millisecond-level
// truncation performed in uptimeMillis().
const TimeTicks lower_bound_ticks = TimeTicks::Now() - Milliseconds(1);
const TimeTicks converted_ticks = TimeTicks::FromUptimeMillis(
env->CallStaticLongMethod(clazz.obj(), method_id));
const TimeTicks upper_bound_ticks = TimeTicks::Now();
EXPECT_LE(lower_bound_ticks, converted_ticks);
EXPECT_GE(upper_bound_ticks, converted_ticks);
}
TEST(TimeTicks, Android_FromJavaNanoTime_ClocksMatch) {
JNIEnv* const env = android::AttachCurrentThread();
android::ScopedJavaLocalRef<jclass> clazz(
android::GetClass(env, "java/lang/System"));
ASSERT_TRUE(clazz.obj());
const jmethodID method_id =
android::MethodID::Get<android::MethodID::TYPE_STATIC>(env, clazz.obj(),
"nanoTime", "()J");
ASSERT_FALSE(!method_id);
const TimeTicks lower_bound_ticks = TimeTicks::Now();
const TimeTicks converted_ticks = TimeTicks::FromJavaNanoTime(
env->CallStaticLongMethod(clazz.obj(), method_id));
// Add 1us to the expected upper bound to allow microsecond-level
// truncation performed in TimeTicks::Now().
const TimeTicks upper_bound_ticks = TimeTicks::Now() + Microseconds(1);
EXPECT_LE(lower_bound_ticks, converted_ticks);
EXPECT_GE(upper_bound_ticks, converted_ticks);
}
#endif // BUILDFLAG(IS_ANDROID)
class LiveTicksOverride {
public:
static LiveTicks Now() {
now_ticks_ += Seconds(1);
return now_ticks_;
}
static LiveTicks now_ticks_;
};
// static
LiveTicks LiveTicksOverride::now_ticks_;
TEST(LiveTicks, NowOverride) {
LiveTicksOverride::now_ticks_ = LiveTicks::Min();
// Override is not active. All Now() methods should return a sensible value.
LiveTicks initial_live_ticks = LiveTicks::Now();
EXPECT_LE(initial_live_ticks, LiveTicks::Now());
EXPECT_LT(LiveTicks::Now(), LiveTicks::Max());
EXPECT_LE(initial_live_ticks, subtle::LiveTicksNowIgnoringOverride());
EXPECT_LT(subtle::LiveTicksNowIgnoringOverride(), LiveTicks::Max());
{
// Set override.
subtle::ScopedTimeClockOverrides overrides(nullptr, nullptr, nullptr,
&LiveTicksOverride::Now);
// Overridden value is returned and incremented when Now() is called.
EXPECT_EQ(LiveTicks::Min() + Seconds(1), LiveTicks::Now());
EXPECT_EQ(LiveTicks::Min() + Seconds(2), LiveTicks::Now());
// NowIgnoringOverride() still returns real ticks.
EXPECT_LE(initial_live_ticks, subtle::LiveTicksNowIgnoringOverride());
EXPECT_LT(subtle::LiveTicksNowIgnoringOverride(), LiveTicks::Max());
// IgnoringOverride methods didn't call NowOverrideTickClock::NowTicks().
EXPECT_EQ(LiveTicks::Min() + Seconds(3), LiveTicks::Now());
}
// All methods return real ticks again.
EXPECT_LE(initial_live_ticks, LiveTicks::Now());
EXPECT_LT(LiveTicks::Now(), LiveTicks::Max());
EXPECT_LE(initial_live_ticks, subtle::LiveTicksNowIgnoringOverride());
EXPECT_LT(subtle::LiveTicksNowIgnoringOverride(), LiveTicks::Max());
}
TEST(TimeDelta, FromAndIn) {
// static_assert also checks that the contained expression is a constant
// expression, meaning all its components are suitable for initializing global
// variables.
static_assert(Days(2) == Hours(48));
static_assert(Hours(3) == Minutes(180));
static_assert(Minutes(2) == Seconds(120));
static_assert(Seconds(2) == Milliseconds(2000));
static_assert(Milliseconds(2) == Microseconds(2000));
static_assert(Seconds(2.3) == Milliseconds(2300));
static_assert(Milliseconds(2.5) == Microseconds(2500));
static_assert(Days(13).InDays() == 13);
static_assert(Hours(13).InHours() == 13);
static_assert(Minutes(13).InMinutes() == 13);
static_assert(Seconds(13).InSeconds() == 13);
static_assert(Seconds(13).InSecondsF() == 13.0);
static_assert(Milliseconds(13).InMilliseconds() == 13);
static_assert(Milliseconds(13).InMillisecondsF() == 13.0);
static_assert(Seconds(13.1).InSeconds() == 13);
static_assert(Seconds(13.1).InSecondsF() == 13.1);
static_assert(Milliseconds(13.3).InMilliseconds() == 13);
static_assert(Milliseconds(13.3).InMillisecondsF() == 13.3);
static_assert(Microseconds(13).InMicroseconds() == 13);
static_assert(Microseconds(13.3).InMicroseconds() == 13);
static_assert(Milliseconds(3.45678).InMillisecondsF() == 3.456);
static_assert(Nanoseconds(12345).InNanoseconds() == 12000);
static_assert(Nanoseconds(12345.678).InNanoseconds() == 12000);
}
TEST(TimeDelta, InRoundsTowardsZero) {
static_assert(Hours(23).InDays() == 0);
static_assert(Hours(-23).InDays() == 0);
static_assert(Minutes(59).InHours() == 0);
static_assert(Minutes(-59).InHours() == 0);
static_assert(Seconds(59).InMinutes() == 0);
static_assert(Seconds(-59).InMinutes() == 0);
static_assert(Milliseconds(999).InSeconds() == 0);
static_assert(Milliseconds(-999).InSeconds() == 0);
static_assert(Microseconds(999).InMilliseconds() == 0);
static_assert(Microseconds(-999).InMilliseconds() == 0);
}
TEST(TimeDelta, InDaysFloored) {
static_assert(Hours(-25).InDaysFloored() == -2);
static_assert(Hours(-24).InDaysFloored() == -1);
static_assert(Hours(-23).InDaysFloored() == -1);
static_assert(Hours(-1).InDaysFloored() == -1);
static_assert(Hours(0).InDaysFloored() == 0);
static_assert(Hours(1).InDaysFloored() == 0);
static_assert(Hours(23).InDaysFloored() == 0);
static_assert(Hours(24).InDaysFloored() == 1);
static_assert(Hours(25).InDaysFloored() == 1);
}
TEST(TimeDelta, InSecondsFloored) {
static_assert(Seconds(13.1).InSecondsFloored() == 13);
static_assert(Seconds(13.9).InSecondsFloored() == 13);
static_assert(Seconds(13).InSecondsFloored() == 13);
static_assert(Milliseconds(1001).InSecondsFloored() == 1);
static_assert(Milliseconds(1000).InSecondsFloored() == 1);
static_assert(Milliseconds(999).InSecondsFloored() == 0);
static_assert(Milliseconds(1).InSecondsFloored() == 0);
static_assert(Milliseconds(0).InSecondsFloored() == 0);
static_assert(Milliseconds(-1).InSecondsFloored() == -1);
static_assert(Milliseconds(-1000).InSecondsFloored() == -1);
static_assert(Milliseconds(-1001).InSecondsFloored() == -2);
}
TEST(TimeDelta, InMillisecondsRoundedUp) {
static_assert(Microseconds(-1001).InMillisecondsRoundedUp() == -1);
static_assert(Microseconds(-1000).InMillisecondsRoundedUp() == -1);
static_assert(Microseconds(-999).InMillisecondsRoundedUp() == 0);
static_assert(Microseconds(-1).InMillisecondsRoundedUp() == 0);
static_assert(Microseconds(0).InMillisecondsRoundedUp() == 0);
static_assert(Microseconds(1).InMillisecondsRoundedUp() == 1);
static_assert(Microseconds(999).InMillisecondsRoundedUp() == 1);
static_assert(Microseconds(1000).InMillisecondsRoundedUp() == 1);
static_assert(Microseconds(1001).InMillisecondsRoundedUp() == 2);
}
// Check that near-min/max values saturate rather than overflow when converted
// lossily with InXXX() functions. Only integral hour, minute, and nanosecond
// conversions are checked, since those are the only cases where the return type
// is small enough for saturation or overflow to occur.
TEST(TimeDelta, InXXXOverflow) {
constexpr TimeDelta kLargeDelta =
Microseconds(std::numeric_limits<int64_t>::max() - 1);
static_assert(!kLargeDelta.is_max());
static_assert(std::numeric_limits<int>::max() == kLargeDelta.InHours());
static_assert(std::numeric_limits<int>::max() == kLargeDelta.InMinutes());
static_assert(
std::numeric_limits<int64_t>::max() == kLargeDelta.InNanoseconds(), "");
constexpr TimeDelta kLargeNegative =
Microseconds(std::numeric_limits<int64_t>::min() + 1);
static_assert(!kLargeNegative.is_min());
static_assert(std::numeric_limits<int>::min() == kLargeNegative.InHours(),
"");
static_assert(std::numeric_limits<int>::min() == kLargeNegative.InMinutes(),
"");
static_assert(
std::numeric_limits<int64_t>::min() == kLargeNegative.InNanoseconds(),
"");
}
#if BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
TEST(TimeDelta, TimeSpecConversion) {
TimeDelta delta = Seconds(0);
struct timespec result = delta.ToTimeSpec();
EXPECT_EQ(result.tv_sec, 0);
EXPECT_EQ(result.tv_nsec, 0);
EXPECT_EQ(delta, TimeDelta::FromTimeSpec(result));
delta = Seconds(1);
result = delta.ToTimeSpec();
EXPECT_EQ(result.tv_sec, 1);
EXPECT_EQ(result.tv_nsec, 0);
EXPECT_EQ(delta, TimeDelta::FromTimeSpec(result));
delta = Microseconds(1);
result = delta.ToTimeSpec();
EXPECT_EQ(result.tv_sec, 0);
EXPECT_EQ(result.tv_nsec, 1000);
EXPECT_EQ(delta, TimeDelta::FromTimeSpec(result));
delta = Microseconds(Time::kMicrosecondsPerSecond + 1);
result = delta.ToTimeSpec();
EXPECT_EQ(result.tv_sec, 1);
EXPECT_EQ(result.tv_nsec, 1000);
EXPECT_EQ(delta, TimeDelta::FromTimeSpec(result));
}
#endif // BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
// Our internal time format is serialized in things like databases, so it's
// important that it's consistent across all our platforms. We use the 1601
// Windows epoch as the internal format across all platforms.
TEST(TimeDelta, WindowsEpoch) {
Time::Exploded exploded;
exploded.year = 1970;
exploded.month = 1;
exploded.day_of_week = 0; // Should be unusued.
exploded.day_of_month = 1;
exploded.hour = 0;
exploded.minute = 0;
exploded.second = 0;
exploded.millisecond = 0;
Time t;
EXPECT_TRUE(Time::FromUTCExploded(exploded, &t));
// Unix 1970 epoch.
EXPECT_EQ(INT64_C(11644473600000000), t.ToInternalValue());
// We can't test 1601 epoch, since the system time functions on Linux
// only compute years starting from 1900.
}
TEST(TimeDelta, Hz) {
static_assert(Hertz(1) == Seconds(1));
EXPECT_EQ(Hertz(0), TimeDelta::Max());
static_assert(Hertz(-1) == Seconds(-1));
static_assert(Hertz(1000) == Milliseconds(1));
static_assert(Hertz(0.5) == Seconds(2));
static_assert(Hertz(std::numeric_limits<double>::infinity()) == TimeDelta(),
"");
static_assert(Seconds(1).ToHz() == 1);
static_assert(TimeDelta::Max().ToHz() == 0);
static_assert(Seconds(-1).ToHz() == -1);
static_assert(Milliseconds(1).ToHz() == 1000);
static_assert(Seconds(2).ToHz() == 0.5);
EXPECT_EQ(TimeDelta().ToHz(), std::numeric_limits<double>::infinity());
// 60 Hz can't be represented exactly.
static_assert(Hertz(60) * 60 != Seconds(1));
static_assert(Hertz(60).ToHz() != 60);
EXPECT_EQ(base::ClampRound(Hertz(60).ToHz()), 60);
}
TEST(TimeDelta, Magnitude) {
constexpr int64_t zero = 0;
static_assert(Microseconds(zero) == Microseconds(zero).magnitude());
constexpr int64_t one = 1;
constexpr int64_t negative_one = -1;
static_assert(Microseconds(one) == Microseconds(one).magnitude());
static_assert(Microseconds(one) == Microseconds(negative_one).magnitude(),
"");
constexpr int64_t max_int64_minus_one =
std::numeric_limits<int64_t>::max() - 1;
constexpr int64_t min_int64_plus_two =
std::numeric_limits<int64_t>::min() + 2;
static_assert(Microseconds(max_int64_minus_one) ==
Microseconds(max_int64_minus_one).magnitude(),
"");
static_assert(Microseconds(max_int64_minus_one) ==
Microseconds(min_int64_plus_two).magnitude(),
"");
static_assert(TimeDelta::Max() == TimeDelta::Min().magnitude());
}
TEST(TimeDelta, ZeroMinMax) {
constexpr TimeDelta kZero;
static_assert(kZero.is_zero());
constexpr TimeDelta kMax = TimeDelta::Max();
static_assert(kMax.is_max());
static_assert(kMax == TimeDelta::Max());
static_assert(kMax > Days(100 * 365));
static_assert(kMax > kZero);
constexpr TimeDelta kMin = TimeDelta::Min();
static_assert(kMin.is_min());
static_assert(kMin == TimeDelta::Min());
static_assert(kMin < Days(-100 * 365));
static_assert(kMin < kZero);
}
TEST(TimeDelta, MaxConversions) {
// static_assert also confirms constexpr works as intended.
constexpr TimeDelta kMax = TimeDelta::Max();
static_assert(kMax.ToInternalValue() == std::numeric_limits<int64_t>::max(),
"");
static_assert(kMax.InDays() == std::numeric_limits<int>::max());
static_assert(kMax.InHours() == std::numeric_limits<int>::max());
static_assert(kMax.InMinutes() == std::numeric_limits<int>::max());
static_assert(kMax.InSecondsF() == std::numeric_limits<double>::infinity(),
"");
static_assert(kMax.InSeconds() == std::numeric_limits<int64_t>::max());
static_assert(kMax.InMillisecondsF() ==
std::numeric_limits<double>::infinity());
static_assert(kMax.InMilliseconds() == std::numeric_limits<int64_t>::max());
static_assert(kMax.InMillisecondsRoundedUp() ==
std::numeric_limits<int64_t>::max());
static_assert(Days(std::numeric_limits<int64_t>::max()).is_max());
static_assert(Hours(std::numeric_limits<int64_t>::max()).is_max());
static_assert(Minutes(std::numeric_limits<int64_t>::max()).is_max());
constexpr int64_t max_int = std::numeric_limits<int64_t>::max();
constexpr int64_t min_int = std::numeric_limits<int64_t>::min();
static_assert(Seconds(max_int / Time::kMicrosecondsPerSecond + 1).is_max(),
"");
static_assert(
Milliseconds(max_int / Time::kMillisecondsPerSecond + 1).is_max(), "");
static_assert(Microseconds(max_int).is_max());
static_assert(Seconds(min_int / Time::kMicrosecondsPerSecond - 1).is_min(),
"");
static_assert(
Milliseconds(min_int / Time::kMillisecondsPerSecond - 1).is_min(), "");
static_assert(Microseconds(min_int).is_min());
static_assert(Microseconds(std::numeric_limits<int64_t>::min()).is_min());
static_assert(Seconds(std::numeric_limits<double>::infinity()).is_max());
// Note that max_int/min_int will be rounded when converted to doubles - they
// can't be exactly represented.
constexpr double max_d = static_cast<double>(max_int);
constexpr double min_d = static_cast<double>(min_int);
static_assert(Seconds(max_d / Time::kMicrosecondsPerSecond + 1).is_max());
static_assert(
Microseconds(max_d).is_max(),
"Make sure that 2^63 correctly gets clamped to `max` (crbug.com/612601)");
static_assert(Milliseconds(std::numeric_limits<double>::infinity()).is_max(),
"");
static_assert(Milliseconds(max_d / Time::kMillisecondsPerSecond * 2).is_max(),
"");
static_assert(Seconds(min_d / Time::kMicrosecondsPerSecond - 1).is_min());
static_assert(Milliseconds(min_d / Time::kMillisecondsPerSecond * 2).is_min(),
"");
}
TEST(TimeDelta, MinConversions) {
constexpr TimeDelta kMin = TimeDelta::Min();
static_assert(kMin.InDays() == std::numeric_limits<int>::min());
static_assert(kMin.InHours() == std::numeric_limits<int>::min());
static_assert(kMin.InMinutes() == std::numeric_limits<int>::min());
static_assert(kMin.InSecondsF() == -std::numeric_limits<double>::infinity(),
"");
static_assert(kMin.InSeconds() == std::numeric_limits<int64_t>::min());
static_assert(kMin.InMillisecondsF() ==
-std::numeric_limits<double>::infinity());
static_assert(kMin.InMilliseconds() == std::numeric_limits<int64_t>::min());
static_assert(kMin.InMillisecondsRoundedUp() ==
std::numeric_limits<int64_t>::min());
}
TEST(TimeDelta, FiniteMaxMin) {
constexpr TimeDelta kFiniteMax = TimeDelta::FiniteMax();
constexpr TimeDelta kUnit = Microseconds(1);
static_assert(kFiniteMax + kUnit == TimeDelta::Max());
static_assert(kFiniteMax - kUnit < kFiniteMax);
constexpr TimeDelta kFiniteMin = TimeDelta::FiniteMin();
static_assert(kFiniteMin - kUnit == TimeDelta::Min());
static_assert(kFiniteMin + kUnit > kFiniteMin);
}
TEST(TimeDelta, NumericOperators) {
constexpr double d = 0.5;
static_assert(Milliseconds(500) == Milliseconds(1000) * d);
static_assert(Milliseconds(2000) == (Milliseconds(1000) / d));
static_assert(Milliseconds(500) == (Milliseconds(1000) *= d));
static_assert(Milliseconds(2000) == (Milliseconds(1000) /= d));
static_assert(Milliseconds(500) == d * Milliseconds(1000));
constexpr float f = 0.5;
static_assert(Milliseconds(500) == Milliseconds(1000) * f);
static_assert(Milliseconds(2000) == (Milliseconds(1000) / f));
static_assert(Milliseconds(500) == (Milliseconds(1000) *= f));
static_assert(Milliseconds(2000) == (Milliseconds(1000) /= f));
static_assert(Milliseconds(500) == f * Milliseconds(1000));
constexpr int i = 2;
static_assert(Milliseconds(2000) == Milliseconds(1000) * i);
static_assert(Milliseconds(500) == (Milliseconds(1000) / i));
static_assert(Milliseconds(2000) == (Milliseconds(1000) *= i));
static_assert(Milliseconds(500) == (Milliseconds(1000) /= i));
static_assert(Milliseconds(2000) == i * Milliseconds(1000));
constexpr int64_t i64 = 2;
static_assert(Milliseconds(2000) == Milliseconds(1000) * i64);
static_assert(Milliseconds(500) == (Milliseconds(1000) / i64));
static_assert(Milliseconds(2000) == (Milliseconds(1000) *= i64));
static_assert(Milliseconds(500) == (Milliseconds(1000) /= i64));
static_assert(Milliseconds(2000) == i64 * Milliseconds(1000));
static_assert(Milliseconds(500) == Milliseconds(1000) * 0.5);
static_assert(Milliseconds(2000) == (Milliseconds(1000) / 0.5));
static_assert(Milliseconds(500) == (Milliseconds(1000) *= 0.5));
static_assert(Milliseconds(2000) == (Milliseconds(1000) /= 0.5));
static_assert(Milliseconds(500) == 0.5 * Milliseconds(1000));
static_assert(Milliseconds(2000) == Milliseconds(1000) * 2);
static_assert(Milliseconds(500) == (Milliseconds(1000) / 2));
static_assert(Milliseconds(2000) == (Milliseconds(1000) *= 2));
static_assert(Milliseconds(500) == (Milliseconds(1000) /= 2));
static_assert(Milliseconds(2000) == 2 * Milliseconds(1000));
}
// Basic test of operators between TimeDeltas (without overflow -- next test
// handles overflow).
TEST(TimeDelta, TimeDeltaOperators) {
constexpr TimeDelta kElevenSeconds = Seconds(11);
constexpr TimeDelta kThreeSeconds = Seconds(3);
static_assert(Seconds(14) == kElevenSeconds + kThreeSeconds);
static_assert(Seconds(14) == kThreeSeconds + kElevenSeconds);
static_assert(Seconds(8) == kElevenSeconds - kThreeSeconds);
static_assert(Seconds(-8) == kThreeSeconds - kElevenSeconds);
static_assert(11.0 / 3.0 == kElevenSeconds / kThreeSeconds);
static_assert(3.0 / 11.0 == kThreeSeconds / kElevenSeconds);
static_assert(3 == kElevenSeconds.IntDiv(kThreeSeconds));
static_assert(0 == kThreeSeconds.IntDiv(kElevenSeconds));
static_assert(Seconds(2) == kElevenSeconds % kThreeSeconds);
}
TEST(TimeDelta, Overflows) {
// Some sanity checks. static_asserts used where possible to verify constexpr
// evaluation at the same time.
static_assert(TimeDelta::Max().is_max());
static_assert(TimeDelta::Max().is_positive());
static_assert((-TimeDelta::Max()).is_negative());
static_assert(-TimeDelta::Max() == TimeDelta::Min());
static_assert(TimeDelta() > -TimeDelta::Max());
static_assert(TimeDelta::Min().is_min());
static_assert(TimeDelta::Min().is_negative());
static_assert((-TimeDelta::Min()).is_positive());
static_assert(-TimeDelta::Min() == TimeDelta::Max());
static_assert(TimeDelta() < -TimeDelta::Min());
constexpr TimeDelta kLargeDelta = TimeDelta::Max() - Milliseconds(1);
constexpr TimeDelta kLargeNegative = -kLargeDelta;
static_assert(TimeDelta() > kLargeNegative);
static_assert(!kLargeDelta.is_max());
static_assert(!(-kLargeNegative).is_min());
// Test +, -, * and / operators.
constexpr TimeDelta kOneSecond = Seconds(1);
static_assert((kLargeDelta + kOneSecond).is_max());
static_assert((kLargeNegative + (-kOneSecond)).is_min());
static_assert((kLargeNegative - kOneSecond).is_min());
static_assert((kLargeDelta - (-kOneSecond)).is_max());
static_assert((kLargeDelta * 2).is_max());
static_assert((kLargeDelta * -2).is_min());
static_assert((kLargeDelta / 0.5).is_max());
static_assert((kLargeDelta / -0.5).is_min());
// Test math operators on Max() and Min() values
// Calculations that would overflow are saturated.
static_assert(TimeDelta::Max() + kOneSecond == TimeDelta::Max());
static_assert(TimeDelta::Max() * 7 == TimeDelta::Max());
static_assert(TimeDelta::FiniteMax() + kOneSecond == TimeDelta::Max());
static_assert(TimeDelta::Min() - kOneSecond == TimeDelta::Min());
static_assert(TimeDelta::Min() * 7 == TimeDelta::Min());
static_assert(TimeDelta::FiniteMin() - kOneSecond == TimeDelta::Min());
// Division is done by converting to double with Max()/Min() converted to
// +/- infinities.
static_assert(
TimeDelta::Max() / kOneSecond == std::numeric_limits<double>::infinity(),
"");
static_assert(TimeDelta::Max() / -kOneSecond ==
-std::numeric_limits<double>::infinity(),
"");
static_assert(
TimeDelta::Min() / kOneSecond == -std::numeric_limits<double>::infinity(),
"");
static_assert(
TimeDelta::Min() / -kOneSecond == std::numeric_limits<double>::infinity(),
"");
static_assert(TimeDelta::Max().IntDiv(kOneSecond) ==
std::numeric_limits<int64_t>::max(),
"");
static_assert(TimeDelta::Max().IntDiv(-kOneSecond) ==
std::numeric_limits<int64_t>::min(),
"");
static_assert(TimeDelta::Min().IntDiv(kOneSecond) ==
std::numeric_limits<int64_t>::min(),
"");
static_assert(TimeDelta::Min().IntDiv(-kOneSecond) ==
std::numeric_limits<int64_t>::max(),
"");
static_assert(TimeDelta::Max() % kOneSecond == TimeDelta::Max());
static_assert(TimeDelta::Max() % -kOneSecond == TimeDelta::Max());
static_assert(TimeDelta::Min() % kOneSecond == TimeDelta::Min());
static_assert(TimeDelta::Min() % -kOneSecond == TimeDelta::Min());
// Division by zero.
static_assert((kOneSecond / 0).is_max());
static_assert((-kOneSecond / 0).is_min());
static_assert((TimeDelta::Max() / 0).is_max());
static_assert((TimeDelta::Min() / 0).is_min());
EXPECT_EQ(std::numeric_limits<double>::infinity(), kOneSecond / TimeDelta());
EXPECT_EQ(-std::numeric_limits<double>::infinity(),
-kOneSecond / TimeDelta());
EXPECT_EQ(std::numeric_limits<double>::infinity(),
TimeDelta::Max() / TimeDelta());
EXPECT_EQ(-std::numeric_limits<double>::infinity(),
TimeDelta::Min() / TimeDelta());
static_assert(
kOneSecond.IntDiv(TimeDelta()) == std::numeric_limits<int64_t>::max(),
"");
static_assert(
(-kOneSecond).IntDiv(TimeDelta()) == std::numeric_limits<int64_t>::min(),
"");
static_assert(TimeDelta::Max().IntDiv(TimeDelta()) ==
std::numeric_limits<int64_t>::max(),
"");
static_assert(TimeDelta::Min().IntDiv(TimeDelta()) ==
std::numeric_limits<int64_t>::min(),
"");
static_assert(kOneSecond % TimeDelta() == kOneSecond);
static_assert(-kOneSecond % TimeDelta() == -kOneSecond);
static_assert(TimeDelta::Max() % TimeDelta() == TimeDelta::Max());
static_assert(TimeDelta::Min() % TimeDelta() == TimeDelta::Min());
// Division by infinity.
static_assert(kLargeDelta / TimeDelta::Min() == 0);
static_assert(kLargeDelta / TimeDelta::Max() == 0);
static_assert(kLargeNegative / TimeDelta::Min() == 0);
static_assert(kLargeNegative / TimeDelta::Max() == 0);
static_assert(kLargeDelta.IntDiv(TimeDelta::Min()) == 0);
static_assert(kLargeDelta.IntDiv(TimeDelta::Max()) == 0);
static_assert(kLargeNegative.IntDiv(TimeDelta::Min()) == 0);
static_assert(kLargeNegative.IntDiv(TimeDelta::Max()) == 0);
static_assert(kOneSecond % TimeDelta::Min() == kOneSecond);
static_assert(kOneSecond % TimeDelta::Max() == kOneSecond);
// Test that double conversions overflow to infinity.
static_assert((kLargeDelta + kOneSecond).InSecondsF() ==
std::numeric_limits<double>::infinity(),
"");
static_assert((kLargeDelta + kOneSecond).InMillisecondsF() ==
std::numeric_limits<double>::infinity());
static_assert((kLargeDelta + kOneSecond).InMicrosecondsF() ==
std::numeric_limits<double>::infinity());
// Test op=.
static_assert((TimeDelta::FiniteMax() += kOneSecond).is_max());
static_assert((TimeDelta::FiniteMin() += -kOneSecond).is_min());
static_assert((TimeDelta::FiniteMin() -= kOneSecond).is_min());
static_assert((TimeDelta::FiniteMax() -= -kOneSecond).is_max());
static_assert((TimeDelta::FiniteMax() *= 2).is_max());
static_assert((TimeDelta::FiniteMin() *= 1.5).is_min());
static_assert((TimeDelta::FiniteMax() /= 0.5).is_max());
static_assert((TimeDelta::FiniteMin() /= 0.5).is_min());
static_assert((Seconds(1) %= TimeDelta::Max()) == Seconds(1));
static_assert((Seconds(1) %= TimeDelta()) == Seconds(1));
// Test operations with Time and TimeTicks.
EXPECT_TRUE((kLargeDelta + Time::Now()).is_max());
EXPECT_TRUE((kLargeDelta + TimeTicks::Now()).is_max());
EXPECT_TRUE((Time::Now() + kLargeDelta).is_max());
EXPECT_TRUE((TimeTicks::Now() + kLargeDelta).is_max());
Time time_now = Time::Now();
EXPECT_EQ(kOneSecond, (time_now + kOneSecond) - time_now);
EXPECT_EQ(-kOneSecond, (time_now - kOneSecond) - time_now);
TimeTicks ticks_now = TimeTicks::Now();
EXPECT_EQ(-kOneSecond, (ticks_now - kOneSecond) - ticks_now);
EXPECT_EQ(kOneSecond, (ticks_now + kOneSecond) - ticks_now);
}
TEST(TimeDelta, CeilToMultiple) {
for (const auto interval : {Seconds(10), Seconds(-10)}) {
SCOPED_TRACE(interval);
EXPECT_EQ(TimeDelta().CeilToMultiple(interval), TimeDelta());
EXPECT_EQ(Seconds(1).CeilToMultiple(interval), Seconds(10));
EXPECT_EQ(Seconds(9).CeilToMultiple(interval), Seconds(10));
EXPECT_EQ(Seconds(10).CeilToMultiple(interval), Seconds(10));
EXPECT_EQ(Seconds(15).CeilToMultiple(interval), Seconds(20));
EXPECT_EQ(Seconds(20).CeilToMultiple(interval), Seconds(20));
EXPECT_EQ(TimeDelta::Max().CeilToMultiple(interval), TimeDelta::Max());
EXPECT_EQ(Seconds(-1).CeilToMultiple(interval), TimeDelta());
EXPECT_EQ(Seconds(-9).CeilToMultiple(interval), TimeDelta());
EXPECT_EQ(Seconds(-10).CeilToMultiple(interval), Seconds(-10));
EXPECT_EQ(Seconds(-15).CeilToMultiple(interval), Seconds(-10));
EXPECT_EQ(Seconds(-20).CeilToMultiple(interval), Seconds(-20));
EXPECT_EQ(TimeDelta::Min().CeilToMultiple(interval), TimeDelta::Min());
}
for (const auto interval : {TimeDelta::Max(), TimeDelta::Min()}) {
SCOPED_TRACE(interval);
EXPECT_EQ(TimeDelta().CeilToMultiple(interval), TimeDelta());
EXPECT_EQ(Seconds(1).CeilToMultiple(interval), TimeDelta::Max());
EXPECT_EQ(Seconds(9).CeilToMultiple(interval), TimeDelta::Max());
EXPECT_EQ(Seconds(10).CeilToMultiple(interval), TimeDelta::Max());
EXPECT_EQ(Seconds(15).CeilToMultiple(interval), TimeDelta::Max());
EXPECT_EQ(Seconds(20).CeilToMultiple(interval), TimeDelta::Max());
EXPECT_EQ(TimeDelta::Max().CeilToMultiple(interval), TimeDelta::Max());
EXPECT_EQ(Seconds(-1).CeilToMultiple(interval), TimeDelta());
EXPECT_EQ(Seconds(-9).CeilToMultiple(interval), TimeDelta());
EXPECT_EQ(Seconds(-10).CeilToMultiple(interval), TimeDelta());
EXPECT_EQ(Seconds(-15).CeilToMultiple(interval), TimeDelta());
EXPECT_EQ(Seconds(-20).CeilToMultiple(interval), TimeDelta());
EXPECT_EQ(TimeDelta::Min().CeilToMultiple(interval), TimeDelta::Min());
}
}
TEST(TimeDelta, FloorToMultiple) {
for (const auto interval : {Seconds(10), Seconds(-10)}) {
SCOPED_TRACE(interval);
EXPECT_EQ(TimeDelta().FloorToMultiple(interval), TimeDelta());
EXPECT_EQ(Seconds(1).FloorToMultiple(interval), TimeDelta());
EXPECT_EQ(Seconds(9).FloorToMultiple(interval), TimeDelta());
EXPECT_EQ(Seconds(10).FloorToMultiple(interval), Seconds(10));
EXPECT_EQ(Seconds(15).FloorToMultiple(interval), Seconds(10));
EXPECT_EQ(Seconds(20).FloorToMultiple(interval), Seconds(20));
EXPECT_EQ(TimeDelta::Max().FloorToMultiple(interval), TimeDelta::Max());
EXPECT_EQ(Seconds(-1).FloorToMultiple(interval), Seconds(-10));
EXPECT_EQ(Seconds(-9).FloorToMultiple(interval), Seconds(-10));
EXPECT_EQ(Seconds(-10).FloorToMultiple(interval), Seconds(-10));
EXPECT_EQ(Seconds(-15).FloorToMultiple(interval), Seconds(-20));
EXPECT_EQ(Seconds(-20).FloorToMultiple(interval), Seconds(-20));
EXPECT_EQ(TimeDelta::Min().FloorToMultiple(interval), TimeDelta::Min());
}
for (const auto interval : {TimeDelta::Max(), TimeDelta::Min()}) {
SCOPED_TRACE(interval);
EXPECT_EQ(TimeDelta().FloorToMultiple(interval), TimeDelta());
EXPECT_EQ(Seconds(1).FloorToMultiple(interval), TimeDelta());
EXPECT_EQ(Seconds(9).FloorToMultiple(interval), TimeDelta());
EXPECT_EQ(Seconds(10).FloorToMultiple(interval), TimeDelta());
EXPECT_EQ(Seconds(15).FloorToMultiple(interval), TimeDelta());
EXPECT_EQ(Seconds(20).FloorToMultiple(interval), TimeDelta());
EXPECT_EQ(TimeDelta::Max().FloorToMultiple(interval), TimeDelta::Max());
EXPECT_EQ(Seconds(-1).FloorToMultiple(interval), TimeDelta::Min());
EXPECT_EQ(Seconds(-9).FloorToMultiple(interval), TimeDelta::Min());
EXPECT_EQ(Seconds(-10).FloorToMultiple(interval), TimeDelta::Min());
EXPECT_EQ(Seconds(-15).FloorToMultiple(interval), TimeDelta::Min());
EXPECT_EQ(Seconds(-20).FloorToMultiple(interval), TimeDelta::Min());
EXPECT_EQ(TimeDelta::Min().FloorToMultiple(interval), TimeDelta::Min());
}
}
TEST(TimeDelta, RoundToMultiple) {
for (const auto interval : {Seconds(10), Seconds(-10)}) {
SCOPED_TRACE(interval);
EXPECT_EQ(TimeDelta().RoundToMultiple(interval), TimeDelta());
EXPECT_EQ(Seconds(1).RoundToMultiple(interval), TimeDelta());
EXPECT_EQ(Seconds(9).RoundToMultiple(interval), Seconds(10));
EXPECT_EQ(Seconds(10).RoundToMultiple(interval), Seconds(10));
EXPECT_EQ(Seconds(15).RoundToMultiple(interval), Seconds(20));
EXPECT_EQ(Seconds(20).RoundToMultiple(interval), Seconds(20));
EXPECT_EQ(TimeDelta::Max().RoundToMultiple(interval), TimeDelta::Max());
EXPECT_EQ(Seconds(-1).RoundToMultiple(interval), TimeDelta());
EXPECT_EQ(Seconds(-9).RoundToMultiple(interval), Seconds(-10));
EXPECT_EQ(Seconds(-10).RoundToMultiple(interval), Seconds(-10));
EXPECT_EQ(Seconds(-15).RoundToMultiple(interval), Seconds(-20));
EXPECT_EQ(Seconds(-20).RoundToMultiple(interval), Seconds(-20));
EXPECT_EQ(TimeDelta::Min().RoundToMultiple(interval), TimeDelta::Min());
}
for (const auto interval : {TimeDelta::Max(), TimeDelta::Min()}) {
SCOPED_TRACE(interval);
EXPECT_EQ(TimeDelta().RoundToMultiple(interval), TimeDelta());
EXPECT_EQ(Seconds(1).RoundToMultiple(interval), TimeDelta());
EXPECT_EQ(Seconds(9).RoundToMultiple(interval), TimeDelta());
EXPECT_EQ(Seconds(10).RoundToMultiple(interval), TimeDelta());
EXPECT_EQ(Seconds(15).RoundToMultiple(interval), TimeDelta());
EXPECT_EQ(Seconds(20).RoundToMultiple(interval), TimeDelta());
EXPECT_EQ(TimeDelta::Max().RoundToMultiple(interval), TimeDelta::Max());
EXPECT_EQ(Seconds(-1).RoundToMultiple(interval), TimeDelta());
EXPECT_EQ(Seconds(-9).RoundToMultiple(interval), TimeDelta());
EXPECT_EQ(Seconds(-10).RoundToMultiple(interval), TimeDelta());
EXPECT_EQ(Seconds(-15).RoundToMultiple(interval), TimeDelta());
EXPECT_EQ(Seconds(-20).RoundToMultiple(interval), TimeDelta());
EXPECT_EQ(TimeDelta::Min().RoundToMultiple(interval), TimeDelta::Min());
}
}
TEST(TimeBase, AddSubDeltaSaturates) {
constexpr TimeTicks kLargeTimeTicks =
TimeTicks::FromInternalValue(std::numeric_limits<int64_t>::max() - 1);
constexpr TimeTicks kLargeNegativeTimeTicks =
TimeTicks::FromInternalValue(std::numeric_limits<int64_t>::min() + 1);
static_assert((kLargeTimeTicks + TimeDelta::Max()).is_max());
static_assert((kLargeNegativeTimeTicks + TimeDelta::Max()).is_max());
static_assert((kLargeTimeTicks - TimeDelta::Max()).is_min());
static_assert((kLargeNegativeTimeTicks - TimeDelta::Max()).is_min());
static_assert((TimeTicks() + TimeDelta::Max()).is_max());
static_assert((TimeTicks() - TimeDelta::Max()).is_min());
EXPECT_TRUE((TimeTicks::Now() + TimeDelta::Max()).is_max())
<< (TimeTicks::Now() + TimeDelta::Max());
EXPECT_TRUE((TimeTicks::Now() - TimeDelta::Max()).is_min())
<< (TimeTicks::Now() - TimeDelta::Max());
static_assert((kLargeTimeTicks + TimeDelta::Min()).is_min());
static_assert((kLargeNegativeTimeTicks + TimeDelta::Min()).is_min());
static_assert((kLargeTimeTicks - TimeDelta::Min()).is_max());
static_assert((kLargeNegativeTimeTicks - TimeDelta::Min()).is_max());
static_assert((TimeTicks() + TimeDelta::Min()).is_min());
static_assert((TimeTicks() - TimeDelta::Min()).is_max());
EXPECT_TRUE((TimeTicks::Now() + TimeDelta::Min()).is_min())
<< (TimeTicks::Now() + TimeDelta::Min());
EXPECT_TRUE((TimeTicks::Now() - TimeDelta::Min()).is_max())
<< (TimeTicks::Now() - TimeDelta::Min());
}
TEST(TimeBase, AddSubInfinities) {
// CHECK when adding opposite signs or subtracting same sign.
EXPECT_CHECK_DEATH({ TimeTicks::Min() + TimeDelta::Max(); });
EXPECT_CHECK_DEATH({ TimeTicks::Max() + TimeDelta::Min(); });
EXPECT_CHECK_DEATH({ TimeTicks::Min() - TimeDelta::Min(); });
EXPECT_CHECK_DEATH({ TimeTicks::Max() - TimeDelta::Max(); });
// Saturates when adding same sign or subtracting opposite signs.
static_assert((TimeTicks::Max() + TimeDelta::Max()).is_max());
static_assert((TimeTicks::Min() + TimeDelta::Min()).is_min());
static_assert((TimeTicks::Max() - TimeDelta::Min()).is_max());
static_assert((TimeTicks::Min() - TimeDelta::Max()).is_min());
}
constexpr TimeTicks TestTimeTicksConstexprCopyAssignment() {
TimeTicks a = TimeTicks::FromInternalValue(12345);
TimeTicks b;
b = a;
return b;
}
TEST(TimeTicks, ConstexprAndTriviallyCopiable) {
// "Trivially copyable" is necessary for use in std::atomic<TimeTicks>.
static_assert(std::is_trivially_copyable<TimeTicks>());
// Copy ctor.
constexpr TimeTicks a = TimeTicks::FromInternalValue(12345);
constexpr TimeTicks b{a};
static_assert(a.ToInternalValue() == b.ToInternalValue());
// Copy assignment.
static_assert(a.ToInternalValue() ==
TestTimeTicksConstexprCopyAssignment().ToInternalValue(),
"");
}
constexpr ThreadTicks TestThreadTicksConstexprCopyAssignment() {
ThreadTicks a = ThreadTicks::FromInternalValue(12345);
ThreadTicks b;
b = a;
return b;
}
TEST(ThreadTicks, ConstexprAndTriviallyCopiable) {
// "Trivially copyable" is necessary for use in std::atomic<ThreadTicks>.
static_assert(std::is_trivially_copyable<ThreadTicks>());
// Copy ctor.
constexpr ThreadTicks a = ThreadTicks::FromInternalValue(12345);
constexpr ThreadTicks b{a};
static_assert(a.ToInternalValue() == b.ToInternalValue());
// Copy assignment.
static_assert(a.ToInternalValue() ==
TestThreadTicksConstexprCopyAssignment().ToInternalValue(),
"");
}
constexpr TimeDelta TestTimeDeltaConstexprCopyAssignment() {
TimeDelta a = Seconds(1);
TimeDelta b;
b = a;
return b;
}
TEST(TimeDelta, ConstexprAndTriviallyCopiable) {
// "Trivially copyable" is necessary for use in std::atomic<TimeDelta>.
static_assert(std::is_trivially_copyable<TimeDelta>());
// Copy ctor.
constexpr TimeDelta a = Seconds(1);
constexpr TimeDelta b{a};
static_assert(a == b);
// Copy assignment.
static_assert(a == TestTimeDeltaConstexprCopyAssignment());
}
TEST(TimeDeltaLogging, DCheckEqCompiles) {
DCHECK_EQ(TimeDelta(), TimeDelta());
}
TEST(TimeDeltaLogging, EmptyIsZero) {
constexpr TimeDelta kZero;
EXPECT_EQ("0 s", ToString(kZero));
}
TEST(TimeDeltaLogging, FiveHundredMs) {
constexpr TimeDelta kFiveHundredMs = Milliseconds(500);
EXPECT_EQ("0.5 s", ToString(kFiveHundredMs));
}
TEST(TimeDeltaLogging, MinusTenSeconds) {
constexpr TimeDelta kMinusTenSeconds = Seconds(-10);
EXPECT_EQ("-10 s", ToString(kMinusTenSeconds));
}
TEST(TimeDeltaLogging, DoesNotMessUpFormattingFlags) {
std::ostringstream oss;
std::ios_base::fmtflags flags_before = oss.flags();
oss << TimeDelta();
EXPECT_EQ(flags_before, oss.flags());
}
TEST(TimeDeltaLogging, DoesNotMakeStreamBad) {
std::ostringstream oss;
oss << TimeDelta();
EXPECT_TRUE(oss.good());
}
TEST(TimeLogging, DCheckEqCompiles) {
DCHECK_EQ(Time(), Time());
}
TEST(TimeLogging, ChromeBirthdate) {
Time birthdate;
ASSERT_TRUE(Time::FromString("Tue, 02 Sep 2008 09:42:18 GMT", &birthdate));
EXPECT_EQ("2008-09-02 09:42:18.000000 UTC", ToString(birthdate));
}
TEST(TimeLogging, Microseconds) {
// Some Time with a non-zero number of microseconds.
Time now = Time::Now();
if (now.ToDeltaSinceWindowsEpoch().InMicroseconds() %
Time::kMicrosecondsPerMillisecond ==
0) {
now += Microseconds(1);
}
// Crudely parse the microseconds portion out of the stringified Time. Use
// find() and ASSERTs to try to give an accurate test result, without
// crashing, even if the logging format changes in the future (e.g. someone
// removes microseconds, adds nanoseconds, changes the timezone format, etc.).
const std::string now_str = ToString(now);
ASSERT_GT(now_str.length(), 6u);
const size_t period = now_str.find('.');
ASSERT_LT(period, now_str.length() - 6);
int microseconds = 0;
EXPECT_TRUE(StringToInt(now_str.substr(period + 4, 3), &microseconds));
// The stringified microseconds should also be nonzero.
EXPECT_NE(0, microseconds);
}
TEST(TimeLogging, DoesNotMessUpFormattingFlags) {
std::ostringstream oss;
std::ios_base::fmtflags flags_before = oss.flags();
oss << Time();
EXPECT_EQ(flags_before, oss.flags());
}
TEST(TimeLogging, DoesNotMakeStreamBad) {
std::ostringstream oss;
oss << Time();
EXPECT_TRUE(oss.good());
}
TEST(TimeTicksLogging, DCheckEqCompiles) {
DCHECK_EQ(TimeTicks(), TimeTicks());
}
TEST(TimeTicksLogging, ZeroTime) {
TimeTicks zero;
EXPECT_EQ("0 bogo-microseconds", ToString(zero));
}
TEST(TimeTicksLogging, FortyYearsLater) {
TimeTicks forty_years_later = TimeTicks() + Days(365.25 * 40);
EXPECT_EQ("1262304000000000 bogo-microseconds", ToString(forty_years_later));
}
TEST(TimeTicksLogging, DoesNotMessUpFormattingFlags) {
std::ostringstream oss;
std::ios_base::fmtflags flags_before = oss.flags();
oss << TimeTicks();
EXPECT_EQ(flags_before, oss.flags());
}
TEST(TimeTicksLogging, DoesNotMakeStreamBad) {
std::ostringstream oss;
oss << TimeTicks();
EXPECT_TRUE(oss.good());
}
} // namespace
} // namespace base