blob: de52c3d6a5e84535cc36b177ab2a5d45e82779f7 [file] [log] [blame]
// Copyright 2014 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <limits.h>
#include <stddef.h>
#include <stdint.h>
#include <memory>
#include <utility>
#include "base/check.h"
#include "base/containers/contains.h"
#include "base/containers/flat_set.h"
#include "base/containers/span.h"
#include "base/values.h"
#include "components/webcrypto/algorithm_dispatch.h"
#include "components/webcrypto/algorithms/test_helpers.h"
#include "components/webcrypto/status.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/blink/public/platform/web_crypto_algorithm_params.h"
#include "third_party/blink/public/platform/web_crypto_key_algorithm.h"
namespace webcrypto {
namespace {
// Creates an HMAC algorithm whose parameters struct is compatible with key
// generation. It is an error to call this with a hash_id that is not a SHA*.
// The key_length_bits parameter is optional, with zero meaning unspecified.
blink::WebCryptoAlgorithm CreateHmacKeyGenAlgorithm(
blink::WebCryptoAlgorithmId hash_id,
unsigned int key_length_bits) {
DCHECK(blink::WebCryptoAlgorithm::IsHash(hash_id));
// key_length_bytes == 0 means unspecified
return blink::WebCryptoAlgorithm::AdoptParamsAndCreate(
blink::kWebCryptoAlgorithmIdHmac,
new blink::WebCryptoHmacKeyGenParams(
CreateAlgorithm(hash_id), (key_length_bits != 0), key_length_bits));
}
blink::WebCryptoAlgorithm CreateHmacImportAlgorithmWithLength(
blink::WebCryptoAlgorithmId hash_id,
unsigned int length_bits) {
DCHECK(blink::WebCryptoAlgorithm::IsHash(hash_id));
return blink::WebCryptoAlgorithm::AdoptParamsAndCreate(
blink::kWebCryptoAlgorithmIdHmac,
new blink::WebCryptoHmacImportParams(CreateAlgorithm(hash_id), true,
length_bits));
}
blink::WebCryptoKey GenerateHmacKey(blink::WebCryptoAlgorithmId hash,
size_t key_length_bits) {
blink::WebCryptoKey key;
auto status =
GenerateSecretKey(CreateHmacKeyGenAlgorithm(hash, key_length_bits), true,
blink::kWebCryptoKeyUsageSign, &key);
CHECK(status == Status::Success());
return key;
}
class WebCryptoHmacTest : public WebCryptoTestBase {};
struct HmacKnownAnswer {
blink::WebCryptoAlgorithmId hash;
const char* key;
const char* message;
const char* hmac;
};
const HmacKnownAnswer kHmacKnownAnswers[] = {
// A single byte key with an empty message, generated with:
// openssl dgst -sha{1,256} -hmac "" < /dev/null
{blink::kWebCryptoAlgorithmIdSha1, "00", "",
"fbdb1d1b18aa6c08324b7d64b71fb76370690e1d"},
{blink::kWebCryptoAlgorithmIdSha256, "00", "",
"b613679a0814d9ec772f95d778c35fc5ff1697c493715653c6c712144292c5ad"},
// NIST test vectors from:
// http://csrc.nist.gov/groups/STM/cavp/documents/mac/hmactestvectors.zip
// L = 20, set 45:
{blink::kWebCryptoAlgorithmIdSha1, "59785928d72516e31272",
"a3ce8899df1022e8d2d539b47bf0e309c66f84095e21438ec355bf119ce5fdcb4e73a619c"
"df36f25b369d8c38ff419997f0c59830108223606e31223483fd39edeaa4d3f0d21198862"
"d239c9fd26074130ff6c86493f5227ab895c8f244bd42c7afce5d147a20a590798c68e708"
"e964902d124dadecdbda9dbd0051ed710e9bf",
"3c8162589aafaee024fc9a5ca50dd2336fe3eb28"},
// L = 20, set 299:
{blink::kWebCryptoAlgorithmIdSha1,
"ceb9aedf8d6efcf0ae52bea0fa99a9e26ae81bacea0cff4d5eecf201e3bca3c3577480621"
"b818fd717ba99d6ff958ea3d59b2527b019c343bb199e648090225867d994607962f5866a"
"a62930d75b58f6",
"99958aa459604657c7bf6e4cdfcc8785f0abf06ffe636b5b64ecd931bd8a456305592421f"
"c28dbcccb8a82acea2be8e54161d7a78e0399a6067ebaca3f2510274dc9f92f2c8ae4265e"
"ec13d7d42e9f8612d7bc258f913ecb5a3a5c610339b49fb90e9037b02d684fc60da835657"
"cb24eab352750c8b463b1a8494660d36c3ab2",
"4ac41ab89f625c60125ed65ffa958c6b490ea670"},
// L = 32, set 30:
{blink::kWebCryptoAlgorithmIdSha256,
"9779d9120642797f1747025d5b22b7ac607cab08e1758f2f3a46c8be1e25c53b8c6a8f58f"
"fefa176",
"b1689c2591eaf3c9e66070f8a77954ffb81749f1b00346f9dfe0b2ee905dcc288baf4a92d"
"e3f4001dd9f44c468c3d07d6c6ee82faceafc97c2fc0fc0601719d2dcd0aa2aec92d1b0ae"
"933c65eb06a03c9c935c2bad0459810241347ab87e9f11adb30415424c6c7f5f22a003b8a"
"b8de54f6ded0e3ab9245fa79568451dfa258e",
"769f00d3e6a6cc1fb426a14a4f76c6462e6149726e0dee0ec0cf97a16605ac8b"},
// L = 32, set 224:
{blink::kWebCryptoAlgorithmIdSha256,
"4b7ab133efe99e02fc89a28409ee187d579e774f4cba6fc223e13504e3511bef8d4f638b9"
"aca55d4a43b8fbd64cf9d74dcc8c9e8d52034898c70264ea911a3fd70813fa73b08337128"
"9b",
"138efc832c64513d11b9873c6fd4d8a65dbf367092a826ddd587d141b401580b798c69025"
"ad510cff05fcfbceb6cf0bb03201aaa32e423d5200925bddfadd418d8e30e18050eb4f061"
"8eb9959d9f78c1157d4b3e02cd5961f138afd57459939917d9144c95d8e6a94c8f6d4eef3"
"418c17b1ef0b46c2a7188305d9811dccb3d99",
"4f1ee7cb36c58803a8721d4ac8c4cf8cae5d8832392eed2a96dc59694252801b"},
// L = 48, count 50:
{blink::kWebCryptoAlgorithmIdSha384,
"d137f3e6cc4af28554beb03ba7a97e60c9d3959cd3bb08068edbf68d402d0498c6ee0ae9e"
"3a20dc7d8586e5c352f605cee19",
"64a884670d1c1dff555483dcd3da305dfba54bdc4d817c33ccb8fe7eb2ebf623624103109"
"ec41644fa078491900c59a0f666f0356d9bc0b45bcc79e5fc9850f4543d96bc68009044ad"
"d0838ac1260e80592fbc557b2ddaf5ed1b86d3ed8f09e622e567f1d39a340857f6a850cce"
"ef6060c48dac3dd0071fe68eb4ed2ed9aca01",
"c550fa53514da34f15e7f98ea87226ab6896cdfae25d3ec2335839f755cdc9a4992092e70"
"b7e5bd422784380b6396cf5"},
// L = 64, count 65:
{blink::kWebCryptoAlgorithmIdSha512,
"c367aeb5c02b727883ffe2a4ceebf911b01454beb328fb5d57fc7f11bf744576aba421e2a"
"63426ea8109bd28ff21f53cd2bf1a11c6c989623d6ec27cdb0bbf458250857d819ff84408"
"b4f3dce08b98b1587ee59683af8852a0a5f55bda3ab5e132b4010e",
"1a7331c8ff1b748e3cee96952190fdbbe4ee2f79e5753bbb368255ee5b19c05a4ed9f1b2c"
"72ff1e9b9cb0348205087befa501e7793770faf0606e9c901836a9bc8afa00d7db94ee29e"
"b191d5cf3fc3e8da95a0f9f4a2a7964289c3129b512bd890de8700a9205420f28a8965b6c"
"67be28ba7fe278e5fcd16f0f22cf2b2eacbb9",
"4459066109cb11e6870fa9c6bfd251adfa304c0a2928ca915049704972edc560cc7c0bc38"
"249e9101aae2f7d4da62eaff83fb07134efc277de72b9e4ab360425"}};
blink::WebCryptoKey HmacKeyFromHexBytes(blink::WebCryptoAlgorithmId hash,
const char* key) {
return ImportSecretKeyFromRaw(
HexStringToBytes(key), CreateHmacImportAlgorithmNoLength(hash),
blink::kWebCryptoKeyUsageSign | blink::kWebCryptoKeyUsageVerify);
}
std::vector<uint8_t> BytesFromHmacKey(blink::WebCryptoKey key) {
std::vector<uint8_t> raw_key;
auto status = ExportKey(blink::kWebCryptoKeyFormatRaw, key, &raw_key);
CHECK(status == Status::Success());
return raw_key;
}
std::vector<uint8_t> HmacSign(blink::WebCryptoKey key,
const std::vector<uint8_t>& message) {
std::vector<uint8_t> output;
auto status = Sign(CreateAlgorithm(blink::kWebCryptoAlgorithmIdHmac), key,
message, &output);
CHECK(status == Status::Success());
return output;
}
bool HmacVerify(blink::WebCryptoKey key,
const std::vector<uint8_t>& message,
const std::vector<uint8_t>& hmac) {
bool match = false;
auto status = Verify(CreateAlgorithm(blink::kWebCryptoAlgorithmIdHmac), key,
hmac, message, &match);
CHECK(status == Status::Success());
return match;
}
TEST_F(WebCryptoHmacTest, KnownAnswers) {
for (const auto& test : kHmacKnownAnswers) {
SCOPED_TRACE(&test - &kHmacKnownAnswers[0]);
std::vector<uint8_t> key_bytes = HexStringToBytes(test.key);
std::vector<uint8_t> message = HexStringToBytes(test.message);
std::vector<uint8_t> expected_hmac = HexStringToBytes(test.hmac);
blink::WebCryptoKey key = HmacKeyFromHexBytes(test.hash, test.key);
EXPECT_EQ(test.hash, key.Algorithm().HmacParams()->GetHash().Id());
EXPECT_EQ(key_bytes.size() * 8, key.Algorithm().HmacParams()->LengthBits());
EXPECT_BYTES_EQ(key_bytes, BytesFromHmacKey(key));
std::vector<uint8_t> actual_hmac = HmacSign(key, message);
EXPECT_EQ(expected_hmac, actual_hmac);
std::vector<uint8_t> truncated_hmac(expected_hmac.begin(),
expected_hmac.end() - 1);
std::vector<uint8_t> empty_hmac;
std::vector<uint8_t> long_hmac(1024);
EXPECT_TRUE(HmacVerify(key, message, actual_hmac));
EXPECT_FALSE(HmacVerify(key, message, truncated_hmac));
EXPECT_FALSE(HmacVerify(key, message, empty_hmac));
EXPECT_FALSE(HmacVerify(key, message, long_hmac));
}
}
TEST_F(WebCryptoHmacTest, GeneratedKeysHaveExpectedProperties) {
auto key = GenerateHmacKey(blink::kWebCryptoAlgorithmIdSha1, 512);
EXPECT_FALSE(key.IsNull());
EXPECT_TRUE(key.Handle());
EXPECT_EQ(blink::kWebCryptoKeyTypeSecret, key.GetType());
EXPECT_EQ(blink::kWebCryptoAlgorithmIdHmac, key.Algorithm().Id());
EXPECT_EQ(blink::kWebCryptoAlgorithmIdSha1,
key.Algorithm().HmacParams()->GetHash().Id());
EXPECT_EQ(512u, key.Algorithm().HmacParams()->LengthBits());
}
TEST_F(WebCryptoHmacTest, GeneratedKeysAreRandomIsh) {
base::flat_set<std::vector<uint8_t>> seen_keys;
for (int i = 0; i < 16; ++i) {
std::vector<uint8_t> key_bytes = BytesFromHmacKey(
GenerateHmacKey(blink::kWebCryptoAlgorithmIdSha1, 512));
EXPECT_FALSE(base::Contains(seen_keys, key_bytes));
seen_keys.insert(key_bytes);
}
}
// If the key length is not provided, then the block size is used.
TEST_F(WebCryptoHmacTest, GeneratedKeysDefaultToBlockSize) {
auto sha1_key = GenerateHmacKey(blink::kWebCryptoAlgorithmIdSha1, 0);
auto sha512_key = GenerateHmacKey(blink::kWebCryptoAlgorithmIdSha512, 0);
EXPECT_EQ(64u, BytesFromHmacKey(sha1_key).size());
EXPECT_EQ(128u, BytesFromHmacKey(sha512_key).size());
}
TEST_F(WebCryptoHmacTest, Generating1BitKeyWorks) {
std::vector<uint8_t> key_bytes =
BytesFromHmacKey(GenerateHmacKey(blink::kWebCryptoAlgorithmIdSha1, 1));
ASSERT_EQ(1u, key_bytes.size());
EXPECT_EQ(key_bytes[0] & 0x7f, 0);
}
TEST_F(WebCryptoHmacTest, GenerateKeyEmptyUsage) {
blink::WebCryptoKey key;
blink::WebCryptoAlgorithm algorithm =
CreateHmacKeyGenAlgorithm(blink::kWebCryptoAlgorithmIdSha512, 0);
ASSERT_EQ(Status::ErrorCreateKeyEmptyUsages(),
GenerateSecretKey(algorithm, true, 0, &key));
}
TEST_F(WebCryptoHmacTest, ImportKeyEmptyUsage) {
blink::WebCryptoKey key;
std::string key_raw_hex_in = "025a8cf3f08b4f6c5f33bbc76a471939";
EXPECT_EQ(
Status::ErrorCreateKeyEmptyUsages(),
ImportKey(
blink::kWebCryptoKeyFormatRaw, HexStringToBytes(key_raw_hex_in),
CreateHmacImportAlgorithmNoLength(blink::kWebCryptoAlgorithmIdSha1),
true, 0, &key));
}
TEST_F(WebCryptoHmacTest, ImportKeyJwkKeyOpsSignVerify) {
blink::WebCryptoKey key;
base::Value::Dict dict;
dict.Set("kty", "oct");
dict.Set("k", "GADWrMRHwQfoNaXU5fZvTg");
dict.Set("key_ops", base::Value::List());
dict.FindList("key_ops")->Append("sign");
EXPECT_EQ(Status::Success(),
ImportKeyJwkFromDict(dict,
CreateHmacImportAlgorithmNoLength(
blink::kWebCryptoAlgorithmIdSha256),
false, blink::kWebCryptoKeyUsageSign, &key));
EXPECT_EQ(blink::kWebCryptoKeyUsageSign, key.Usages());
dict.FindList("key_ops")->Append("verify");
EXPECT_EQ(Status::Success(),
ImportKeyJwkFromDict(dict,
CreateHmacImportAlgorithmNoLength(
blink::kWebCryptoAlgorithmIdSha256),
false, blink::kWebCryptoKeyUsageVerify, &key));
EXPECT_EQ(blink::kWebCryptoKeyUsageVerify, key.Usages());
}
// Test 'use' inconsistent with 'key_ops'.
TEST_F(WebCryptoHmacTest, ImportKeyJwkUseInconsisteWithKeyOps) {
blink::WebCryptoKey key;
base::Value::Dict dict;
dict.Set("kty", "oct");
dict.Set("k", "GADWrMRHwQfoNaXU5fZvTg");
dict.Set("alg", "HS256");
dict.Set("use", "sig");
base::Value::List key_ops;
key_ops.Append("sign");
key_ops.Append("verify");
key_ops.Append("encrypt");
dict.Set("key_ops", std::move(key_ops));
EXPECT_EQ(
Status::ErrorJwkUseAndKeyopsInconsistent(),
ImportKeyJwkFromDict(
dict,
CreateHmacImportAlgorithmNoLength(blink::kWebCryptoAlgorithmIdSha256),
false,
blink::kWebCryptoKeyUsageSign | blink::kWebCryptoKeyUsageVerify,
&key));
}
// Test JWK composite 'sig' use
TEST_F(WebCryptoHmacTest, ImportKeyJwkUseSig) {
blink::WebCryptoKey key;
base::Value::Dict dict;
dict.Set("kty", "oct");
dict.Set("k", "GADWrMRHwQfoNaXU5fZvTg");
dict.Set("use", "sig");
EXPECT_EQ(
Status::Success(),
ImportKeyJwkFromDict(
dict,
CreateHmacImportAlgorithmNoLength(blink::kWebCryptoAlgorithmIdSha256),
false,
blink::kWebCryptoKeyUsageSign | blink::kWebCryptoKeyUsageVerify,
&key));
EXPECT_EQ(blink::kWebCryptoKeyUsageSign | blink::kWebCryptoKeyUsageVerify,
key.Usages());
}
TEST_F(WebCryptoHmacTest, ImportJwkInputConsistency) {
// The Web Crypto spec says that if a JWK value is present, but is
// inconsistent with the input value, the operation must fail.
// Consistency rules when JWK value is not present: Inputs should be used.
blink::WebCryptoKey key;
bool extractable = false;
blink::WebCryptoAlgorithm algorithm =
CreateHmacImportAlgorithmNoLength(blink::kWebCryptoAlgorithmIdSha256);
blink::WebCryptoKeyUsageMask usages = blink::kWebCryptoKeyUsageVerify;
base::Value::Dict dict;
dict.Set("kty", "oct");
dict.Set("k", "l3nZEgZCeX8XRwJdWyK3rGB8qwjhdY8vOkbIvh4lxTuMao9Y_--hdg");
std::vector<uint8_t> json_vec = MakeJsonVector(dict);
EXPECT_EQ(Status::Success(),
ImportKey(blink::kWebCryptoKeyFormatJwk, json_vec, algorithm,
extractable, usages, &key));
EXPECT_TRUE(key.Handle());
EXPECT_EQ(blink::kWebCryptoKeyTypeSecret, key.GetType());
EXPECT_EQ(extractable, key.Extractable());
EXPECT_EQ(blink::kWebCryptoAlgorithmIdHmac, key.Algorithm().Id());
EXPECT_EQ(blink::kWebCryptoAlgorithmIdSha256,
key.Algorithm().HmacParams()->GetHash().Id());
EXPECT_EQ(320u, key.Algorithm().HmacParams()->LengthBits());
EXPECT_EQ(blink::kWebCryptoKeyUsageVerify, key.Usages());
key = blink::WebCryptoKey::CreateNull();
// Consistency rules when JWK value exists: Fail if inconsistency is found.
// Pass: All input values are consistent with the JWK values.
dict.clear();
dict.Set("kty", "oct");
dict.Set("alg", "HS256");
dict.Set("use", "sig");
dict.Set("ext", false);
dict.Set("k", "l3nZEgZCeX8XRwJdWyK3rGB8qwjhdY8vOkbIvh4lxTuMao9Y_--hdg");
json_vec = MakeJsonVector(dict);
EXPECT_EQ(Status::Success(),
ImportKey(blink::kWebCryptoKeyFormatJwk, json_vec, algorithm,
extractable, usages, &key));
// Extractable cases:
// 1. input=T, JWK=F ==> fail (inconsistent)
// 4. input=F, JWK=F ==> pass, result extractable is F
// 2. input=T, JWK=T ==> pass, result extractable is T
// 3. input=F, JWK=T ==> pass, result extractable is F
EXPECT_EQ(Status::ErrorJwkExtInconsistent(),
ImportKey(blink::kWebCryptoKeyFormatJwk, json_vec, algorithm, true,
usages, &key));
EXPECT_EQ(Status::Success(),
ImportKey(blink::kWebCryptoKeyFormatJwk, json_vec, algorithm, false,
usages, &key));
EXPECT_FALSE(key.Extractable());
dict.Set("ext", true);
EXPECT_EQ(Status::Success(),
ImportKeyJwkFromDict(dict, algorithm, true, usages, &key));
EXPECT_TRUE(key.Extractable());
EXPECT_EQ(Status::Success(),
ImportKeyJwkFromDict(dict, algorithm, false, usages, &key));
EXPECT_FALSE(key.Extractable());
// Fail: Input algorithm (AES-CBC) is inconsistent with JWK value
// (HMAC SHA256).
dict.clear();
dict.Set("kty", "oct");
dict.Set("alg", "HS256");
dict.Set("k", "l3nZEgZCeX8XRwJdWyK3rGB8qwjhdY8vOkbIvh4lxTuMao9Y_--hdg");
EXPECT_EQ(Status::ErrorJwkAlgorithmInconsistent(),
ImportKeyJwkFromDict(
dict, CreateAlgorithm(blink::kWebCryptoAlgorithmIdAesCbc),
extractable, blink::kWebCryptoKeyUsageEncrypt, &key));
// Fail: Input usage (encrypt) is inconsistent with JWK value (use=sig).
EXPECT_EQ(Status::ErrorJwkUseInconsistent(),
ImportKey(blink::kWebCryptoKeyFormatJwk, json_vec,
CreateAlgorithm(blink::kWebCryptoAlgorithmIdAesCbc),
extractable, blink::kWebCryptoKeyUsageEncrypt, &key));
// Fail: Input algorithm (HMAC SHA1) is inconsistent with JWK value
// (HMAC SHA256).
EXPECT_EQ(Status::ErrorJwkAlgorithmInconsistent(),
ImportKey(blink::kWebCryptoKeyFormatJwk, json_vec,
CreateHmacImportAlgorithmNoLength(
blink::kWebCryptoAlgorithmIdSha1),
extractable, usages, &key));
// Pass: JWK alg missing but input algorithm specified: use input value
dict.Remove("alg");
EXPECT_EQ(Status::Success(),
ImportKeyJwkFromDict(dict,
CreateHmacImportAlgorithmNoLength(
blink::kWebCryptoAlgorithmIdSha256),
extractable, usages, &key));
EXPECT_EQ(blink::kWebCryptoAlgorithmIdHmac, algorithm.Id());
dict.Set("alg", "HS256");
// Fail: Input usages (encrypt) is not a subset of the JWK value
// (sign|verify). Moreover "encrypt" is not a valid usage for HMAC.
EXPECT_EQ(Status::ErrorCreateKeyBadUsages(),
ImportKey(blink::kWebCryptoKeyFormatJwk, json_vec, algorithm,
extractable, blink::kWebCryptoKeyUsageEncrypt, &key));
// Fail: Input usages (encrypt|sign|verify) is not a subset of the JWK
// value (sign|verify). Moreover "encrypt" is not a valid usage for HMAC.
usages = blink::kWebCryptoKeyUsageEncrypt | blink::kWebCryptoKeyUsageSign |
blink::kWebCryptoKeyUsageVerify;
EXPECT_EQ(Status::ErrorCreateKeyBadUsages(),
ImportKey(blink::kWebCryptoKeyFormatJwk, json_vec, algorithm,
extractable, usages, &key));
// TODO(padolph): kty vs alg consistency tests: Depending on the kty value,
// only certain alg values are permitted. For example, when kty = "RSA" alg
// must be of the RSA family, or when kty = "oct" alg must be symmetric
// algorithm.
// TODO(padolph): key_ops consistency tests
}
TEST_F(WebCryptoHmacTest, ImportJwkHappy) {
// This test verifies the happy path of JWK import, including the application
// of the imported key material.
blink::WebCryptoKey key;
bool extractable = false;
blink::WebCryptoAlgorithm algorithm =
CreateHmacImportAlgorithmNoLength(blink::kWebCryptoAlgorithmIdSha256);
blink::WebCryptoKeyUsageMask usages = blink::kWebCryptoKeyUsageSign;
// Import a symmetric key JWK and HMAC-SHA256 sign()
// Uses the first SHA256 test vector from the HMAC sample set above.
base::Value::Dict dict;
dict.Set("kty", "oct");
dict.Set("alg", "HS256");
dict.Set("use", "sig");
dict.Set("ext", false);
dict.Set("k", "l3nZEgZCeX8XRwJdWyK3rGB8qwjhdY8vOkbIvh4lxTuMao9Y_--hdg");
ASSERT_EQ(Status::Success(),
ImportKeyJwkFromDict(dict, algorithm, extractable, usages, &key));
EXPECT_EQ(blink::kWebCryptoAlgorithmIdSha256,
key.Algorithm().HmacParams()->GetHash().Id());
const std::vector<uint8_t> message_raw = HexStringToBytes(
"b1689c2591eaf3c9e66070f8a77954ffb81749f1b00346f9dfe0b2ee905dcc288baf4a"
"92de3f4001dd9f44c468c3d07d6c6ee82faceafc97c2fc0fc0601719d2dcd0aa2aec92"
"d1b0ae933c65eb06a03c9c935c2bad0459810241347ab87e9f11adb30415424c6c7f5f"
"22a003b8ab8de54f6ded0e3ab9245fa79568451dfa258e");
std::vector<uint8_t> output;
ASSERT_EQ(Status::Success(),
Sign(CreateAlgorithm(blink::kWebCryptoAlgorithmIdHmac), key,
message_raw, &output));
const std::string mac_raw =
"769f00d3e6a6cc1fb426a14a4f76c6462e6149726e0dee0ec0cf97a16605ac8b";
EXPECT_BYTES_EQ_HEX(mac_raw, output);
// TODO(padolph): Import an RSA public key JWK and use it
}
TEST_F(WebCryptoHmacTest, ImportExportJwk) {
// HMAC SHA-1
ImportExportJwkSymmetricKey(
256, CreateHmacImportAlgorithmNoLength(blink::kWebCryptoAlgorithmIdSha1),
blink::kWebCryptoKeyUsageSign | blink::kWebCryptoKeyUsageVerify, "HS1");
// HMAC SHA-384
ImportExportJwkSymmetricKey(
384,
CreateHmacImportAlgorithmNoLength(blink::kWebCryptoAlgorithmIdSha384),
blink::kWebCryptoKeyUsageSign, "HS384");
// HMAC SHA-512
ImportExportJwkSymmetricKey(
512,
CreateHmacImportAlgorithmNoLength(blink::kWebCryptoAlgorithmIdSha512),
blink::kWebCryptoKeyUsageVerify, "HS512");
}
TEST_F(WebCryptoHmacTest, ExportJwkEmptyKey) {
blink::WebCryptoKeyUsageMask usages = blink::kWebCryptoKeyUsageSign;
// Importing empty HMAC key is no longer allowed. However such a key can be
// created via de-serialization.
blink::WebCryptoKey key;
ASSERT_TRUE(DeserializeKeyForClone(blink::WebCryptoKeyAlgorithm::CreateHmac(
blink::kWebCryptoAlgorithmIdSha1, 0),
blink::kWebCryptoKeyTypeSecret, true,
usages, {}, &key));
// Export the key in JWK format and validate.
std::vector<uint8_t> json;
ASSERT_EQ(Status::Success(),
ExportKey(blink::kWebCryptoKeyFormatJwk, key, &json));
EXPECT_TRUE(VerifySecretJwk(json, "HS1", "", usages));
// Now try re-importing the JWK key.
key = blink::WebCryptoKey::CreateNull();
EXPECT_EQ(Status::ErrorHmacImportEmptyKey(),
ImportKey(blink::kWebCryptoKeyFormatJwk, json,
CreateHmacImportAlgorithmNoLength(
blink::kWebCryptoAlgorithmIdSha1),
true, usages, &key));
}
// Imports an HMAC key contaning no byte data.
TEST_F(WebCryptoHmacTest, ImportRawEmptyKey) {
const blink::WebCryptoAlgorithm import_algorithm =
CreateHmacImportAlgorithmNoLength(blink::kWebCryptoAlgorithmIdSha1);
blink::WebCryptoKeyUsageMask usages = blink::kWebCryptoKeyUsageSign;
blink::WebCryptoKey key;
ASSERT_EQ(Status::ErrorHmacImportEmptyKey(),
ImportKey(blink::kWebCryptoKeyFormatRaw, {}, import_algorithm, true,
usages, &key));
}
// Imports an HMAC key contaning 1 byte data, however the length was set to 0.
TEST_F(WebCryptoHmacTest, ImportRawKeyWithZeroLength) {
const blink::WebCryptoAlgorithm import_algorithm =
CreateHmacImportAlgorithm(blink::kWebCryptoAlgorithmIdSha1, 0);
blink::WebCryptoKeyUsageMask usages = blink::kWebCryptoKeyUsageSign;
blink::WebCryptoKey key;
std::vector<uint8_t> key_data(1);
ASSERT_EQ(Status::ErrorHmacImportBadLength(),
ImportKey(blink::kWebCryptoKeyFormatRaw, key_data, import_algorithm,
true, usages, &key));
}
// Import a huge hmac key (UINT_MAX bytes).
TEST_F(WebCryptoHmacTest, ImportRawKeyTooLarge) {
// Invalid data of big length. This span is invalid, but ImportKey should fail
// before actually reading the bytes, as the key is too large.
base::span<const uint8_t> big_data(static_cast<const uint8_t*>(nullptr),
UINT_MAX);
blink::WebCryptoKey key;
EXPECT_EQ(Status::ErrorDataTooLarge(),
ImportKey(blink::kWebCryptoKeyFormatRaw, big_data,
CreateHmacImportAlgorithmNoLength(
blink::kWebCryptoAlgorithmIdSha1),
true, blink::kWebCryptoKeyUsageSign, &key));
}
// Import an HMAC key with 120 bits of data, however request 128 bits worth.
TEST_F(WebCryptoHmacTest, ImportRawKeyLengthTooLarge) {
blink::WebCryptoKey key;
EXPECT_EQ(Status::ErrorHmacImportBadLength(),
ImportKey(blink::kWebCryptoKeyFormatRaw, std::vector<uint8_t>(15),
CreateHmacImportAlgorithmWithLength(
blink::kWebCryptoAlgorithmIdSha1, 128),
true, blink::kWebCryptoKeyUsageSign, &key));
}
// Import an HMAC key with 128 bits of data, however request 120 bits worth.
TEST_F(WebCryptoHmacTest, ImportRawKeyLengthTooSmall) {
blink::WebCryptoKey key;
EXPECT_EQ(Status::ErrorHmacImportBadLength(),
ImportKey(blink::kWebCryptoKeyFormatRaw, std::vector<uint8_t>(16),
CreateHmacImportAlgorithmWithLength(
blink::kWebCryptoAlgorithmIdSha1, 120),
true, blink::kWebCryptoKeyUsageSign, &key));
}
// Import an HMAC key with 16 bits of data and request a 12 bit key, using the
// "raw" format.
TEST_F(WebCryptoHmacTest, ImportRawKeyTruncation) {
const std::vector<uint8_t> data = HexStringToBytes("b1ff");
blink::WebCryptoKey key;
EXPECT_EQ(Status::Success(),
ImportKey(blink::kWebCryptoKeyFormatRaw, data,
CreateHmacImportAlgorithmWithLength(
blink::kWebCryptoAlgorithmIdSha1, 12),
true, blink::kWebCryptoKeyUsageSign, &key));
// On export the last 4 bits has been set to zero.
std::vector<uint8_t> raw_key;
EXPECT_EQ(Status::Success(),
ExportKey(blink::kWebCryptoKeyFormatRaw, key, &raw_key));
EXPECT_BYTES_EQ(HexStringToBytes("b1f0"), raw_key);
}
// The same test as above, but using the JWK format.
TEST_F(WebCryptoHmacTest, ImportJwkKeyTruncation) {
base::Value::Dict dict;
dict.Set("kty", "oct");
dict.Set("k", "sf8"); // 0xB1FF
blink::WebCryptoKey key;
EXPECT_EQ(Status::Success(),
ImportKeyJwkFromDict(dict,
CreateHmacImportAlgorithmWithLength(
blink::kWebCryptoAlgorithmIdSha1, 12),
true, blink::kWebCryptoKeyUsageSign, &key));
// On export the last 4 bits has been set to zero.
std::vector<uint8_t> raw_key;
EXPECT_EQ(Status::Success(),
ExportKey(blink::kWebCryptoKeyFormatRaw, key, &raw_key));
EXPECT_BYTES_EQ(HexStringToBytes("b1f0"), raw_key);
}
} // namespace
} // namespace webcrypto