blob: e42d129484f6f078700359bc71f1ee7b2218f9c0 [file] [log] [blame]
// Copyright 2014 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/socket/websocket_transport_client_socket_pool.h"
#include <algorithm>
#include <memory>
#include <optional>
#include <utility>
#include <vector>
#include "base/functional/bind.h"
#include "base/functional/callback.h"
#include "base/functional/callback_helpers.h"
#include "base/location.h"
#include "base/run_loop.h"
#include "base/strings/stringprintf.h"
#include "base/task/single_thread_task_runner.h"
#include "base/test/scoped_feature_list.h"
#include "base/time/time.h"
#include "net/base/features.h"
#include "net/base/ip_endpoint.h"
#include "net/base/load_timing_info.h"
#include "net/base/load_timing_info_test_util.h"
#include "net/base/net_errors.h"
#include "net/base/privacy_mode.h"
#include "net/base/proxy_chain.h"
#include "net/base/proxy_server.h"
#include "net/base/schemeful_site.h"
#include "net/base/test_completion_callback.h"
#include "net/dns/mock_host_resolver.h"
#include "net/dns/public/secure_dns_policy.h"
#include "net/log/net_log.h"
#include "net/socket/client_socket_handle.h"
#include "net/socket/connect_job.h"
#include "net/socket/connect_job_test_util.h"
#include "net/socket/socket_tag.h"
#include "net/socket/socket_test_util.h"
#include "net/socket/ssl_client_socket.h"
#include "net/socket/stream_socket.h"
#include "net/socket/transport_client_socket_pool_test_util.h"
#include "net/socket/transport_connect_job.h"
#include "net/socket/websocket_endpoint_lock_manager.h"
#include "net/test/gtest_util.h"
#include "net/test/test_with_task_environment.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "url/gurl.h"
#include "url/scheme_host_port.h"
#include "url/url_constants.h"
using net::test::IsError;
using net::test::IsOk;
namespace net {
namespace {
const int kMaxSockets = 32;
const int kMaxSocketsPerGroup = 6;
const RequestPriority kDefaultPriority = LOW;
IPAddress ParseIP(const std::string& ip) {
IPAddress address;
CHECK(address.AssignFromIPLiteral(ip));
return address;
}
// RunLoop doesn't support this natively but it is easy to emulate.
void RunLoopForTimePeriod(base::TimeDelta period) {
base::RunLoop run_loop;
base::OnceClosure quit_closure(run_loop.QuitClosure());
base::SingleThreadTaskRunner::GetCurrentDefault()->PostDelayedTask(
FROM_HERE, std::move(quit_closure), period);
run_loop.Run();
}
class WebSocketTransportClientSocketPoolTest : public TestWithTaskEnvironment {
protected:
WebSocketTransportClientSocketPoolTest()
: group_id_(url::SchemeHostPort(url::kHttpScheme, "www.google.com", 80),
PrivacyMode::PRIVACY_MODE_DISABLED,
NetworkAnonymizationKey(),
SecureDnsPolicy::kAllow,
/*disable_cert_network_fetches=*/false),
params_(ClientSocketPool::SocketParams::CreateForHttpForTesting()),
host_resolver_(std::make_unique<
MockHostResolver>(/*default_result=*/
MockHostResolverBase::RuleResolver::
GetLocalhostResult())),
client_socket_factory_(NetLog::Get()),
common_connect_job_params_(
&client_socket_factory_,
host_resolver_.get(),
/*http_auth_cache=*/nullptr,
/*http_auth_handler_factory=*/nullptr,
/*spdy_session_pool=*/nullptr,
/*quic_supported_versions=*/nullptr,
/*quic_session_pool=*/nullptr,
/*proxy_delegate=*/nullptr,
/*http_user_agent_settings=*/nullptr,
/*ssl_client_context=*/nullptr,
/*socket_performance_watcher_factory=*/nullptr,
/*network_quality_estimator=*/nullptr,
/*net_log=*/nullptr,
&websocket_endpoint_lock_manager_,
/*http_server_properties=*/nullptr,
/*alpn_protos=*/nullptr,
/*application_settings=*/nullptr,
/*ignore_certificate_errors=*/nullptr,
/*early_data_enabled=*/nullptr),
pool_(kMaxSockets,
kMaxSocketsPerGroup,
ProxyChain::Direct(),
&common_connect_job_params_) {
websocket_endpoint_lock_manager_.SetUnlockDelayForTesting(
base::TimeDelta());
}
WebSocketTransportClientSocketPoolTest(
const WebSocketTransportClientSocketPoolTest&) = delete;
WebSocketTransportClientSocketPoolTest& operator=(
const WebSocketTransportClientSocketPoolTest&) = delete;
~WebSocketTransportClientSocketPoolTest() override {
RunUntilIdle();
// ReleaseAllConnections() calls RunUntilIdle() after releasing each
// connection.
ReleaseAllConnections(ClientSocketPoolTest::NO_KEEP_ALIVE);
EXPECT_TRUE(websocket_endpoint_lock_manager_.IsEmpty());
}
static void RunUntilIdle() { base::RunLoop().RunUntilIdle(); }
int StartRequest(RequestPriority priority) {
return test_base_.StartRequestUsingPool(
&pool_, group_id_, priority, ClientSocketPool::RespectLimits::ENABLED,
params_);
}
int GetOrderOfRequest(size_t index) {
return test_base_.GetOrderOfRequest(index);
}
bool ReleaseOneConnection(ClientSocketPoolTest::KeepAlive keep_alive) {
return test_base_.ReleaseOneConnection(keep_alive);
}
void ReleaseAllConnections(ClientSocketPoolTest::KeepAlive keep_alive) {
test_base_.ReleaseAllConnections(keep_alive);
}
TestSocketRequest* request(int i) { return test_base_.request(i); }
std::vector<std::unique_ptr<TestSocketRequest>>* requests() {
return test_base_.requests();
}
size_t completion_count() const { return test_base_.completion_count(); }
// |group_id_| and |params_| correspond to the same socket parameters.
const ClientSocketPool::GroupId group_id_;
scoped_refptr<ClientSocketPool::SocketParams> params_;
std::unique_ptr<MockHostResolver> host_resolver_;
MockTransportClientSocketFactory client_socket_factory_;
WebSocketEndpointLockManager websocket_endpoint_lock_manager_;
const CommonConnectJobParams common_connect_job_params_;
WebSocketTransportClientSocketPool pool_;
ClientSocketPoolTest test_base_;
};
TEST_F(WebSocketTransportClientSocketPoolTest, Basic) {
TestCompletionCallback callback;
ClientSocketHandle handle;
int rv =
handle.Init(group_id_, params_, std::nullopt /* proxy_annotation_tag */,
LOW, SocketTag(), ClientSocketPool::RespectLimits::ENABLED,
callback.callback(), ClientSocketPool::ProxyAuthCallback(),
&pool_, NetLogWithSource());
EXPECT_THAT(rv, IsError(ERR_IO_PENDING));
EXPECT_FALSE(handle.is_initialized());
EXPECT_FALSE(handle.socket());
EXPECT_THAT(callback.WaitForResult(), IsOk());
EXPECT_TRUE(handle.is_initialized());
EXPECT_TRUE(handle.socket());
TestLoadTimingInfoConnectedNotReused(handle);
}
// Make sure that the ConnectJob passes on its priority to its HostResolver
// request on Init.
TEST_F(WebSocketTransportClientSocketPoolTest, SetResolvePriorityOnInit) {
for (int i = MINIMUM_PRIORITY; i <= MAXIMUM_PRIORITY; ++i) {
RequestPriority priority = static_cast<RequestPriority>(i);
TestCompletionCallback callback;
ClientSocketHandle handle;
EXPECT_EQ(
ERR_IO_PENDING,
handle.Init(group_id_, params_, std::nullopt /* proxy_annotation_tag */,
priority, SocketTag(),
ClientSocketPool::RespectLimits::ENABLED,
callback.callback(), ClientSocketPool::ProxyAuthCallback(),
&pool_, NetLogWithSource()));
EXPECT_EQ(priority, host_resolver_->last_request_priority());
}
}
TEST_F(WebSocketTransportClientSocketPoolTest, InitHostResolutionFailure) {
url::SchemeHostPort endpoint(url::kHttpScheme, "unresolvable.host.name", 80);
host_resolver_->rules()->AddSimulatedTimeoutFailure(endpoint.host());
TestCompletionCallback callback;
ClientSocketHandle handle;
EXPECT_EQ(
ERR_IO_PENDING,
handle.Init(ClientSocketPool::GroupId(
std::move(endpoint), PRIVACY_MODE_DISABLED,
NetworkAnonymizationKey(), SecureDnsPolicy::kAllow,
/*disable_cert_network_fetches=*/false),
ClientSocketPool::SocketParams::CreateForHttpForTesting(),
std::nullopt /* proxy_annotation_tag */, kDefaultPriority,
SocketTag(), ClientSocketPool::RespectLimits::ENABLED,
callback.callback(), ClientSocketPool::ProxyAuthCallback(),
&pool_, NetLogWithSource()));
EXPECT_THAT(callback.WaitForResult(), IsError(ERR_NAME_NOT_RESOLVED));
EXPECT_THAT(handle.resolve_error_info().error, IsError(ERR_DNS_TIMED_OUT));
EXPECT_THAT(handle.connection_attempts(),
testing::ElementsAre(
ConnectionAttempt(IPEndPoint(), ERR_NAME_NOT_RESOLVED)));
}
TEST_F(WebSocketTransportClientSocketPoolTest, InitConnectionFailure) {
client_socket_factory_.set_default_client_socket_type(
MockTransportClientSocketFactory::Type::kFailing);
TestCompletionCallback callback;
ClientSocketHandle handle;
EXPECT_EQ(
ERR_IO_PENDING,
handle.Init(group_id_, params_, std::nullopt /* proxy_annotation_tag */,
kDefaultPriority, SocketTag(),
ClientSocketPool::RespectLimits::ENABLED, callback.callback(),
ClientSocketPool::ProxyAuthCallback(), &pool_,
NetLogWithSource()));
EXPECT_THAT(callback.WaitForResult(), IsError(ERR_CONNECTION_FAILED));
EXPECT_THAT(
handle.connection_attempts(),
testing::ElementsAre(ConnectionAttempt(
IPEndPoint(IPAddress::IPv4Localhost(), 80), ERR_CONNECTION_FAILED)));
// Make the host resolutions complete synchronously this time.
host_resolver_->set_synchronous_mode(true);
EXPECT_EQ(
ERR_CONNECTION_FAILED,
handle.Init(group_id_, params_, std::nullopt /* proxy_annotation_tag */,
kDefaultPriority, SocketTag(),
ClientSocketPool::RespectLimits::ENABLED, callback.callback(),
ClientSocketPool::ProxyAuthCallback(), &pool_,
NetLogWithSource()));
EXPECT_THAT(
handle.connection_attempts(),
testing::ElementsAre(ConnectionAttempt(
IPEndPoint(IPAddress::IPv4Localhost(), 80), ERR_CONNECTION_FAILED)));
}
TEST_F(WebSocketTransportClientSocketPoolTest, PendingRequestsFinishFifo) {
// First request finishes asynchronously.
EXPECT_THAT(StartRequest(kDefaultPriority), IsError(ERR_IO_PENDING));
EXPECT_THAT(request(0)->WaitForResult(), IsOk());
// Make all subsequent host resolutions complete synchronously.
host_resolver_->set_synchronous_mode(true);
// Rest of them wait for the first socket to be released.
EXPECT_THAT(StartRequest(kDefaultPriority), IsError(ERR_IO_PENDING));
EXPECT_THAT(StartRequest(kDefaultPriority), IsError(ERR_IO_PENDING));
EXPECT_THAT(StartRequest(kDefaultPriority), IsError(ERR_IO_PENDING));
EXPECT_THAT(StartRequest(kDefaultPriority), IsError(ERR_IO_PENDING));
EXPECT_THAT(StartRequest(kDefaultPriority), IsError(ERR_IO_PENDING));
ReleaseAllConnections(ClientSocketPoolTest::KEEP_ALIVE);
EXPECT_EQ(6, client_socket_factory_.allocation_count());
// One initial asynchronous request and then 5 pending requests.
EXPECT_EQ(6U, completion_count());
// The requests finish in FIFO order.
EXPECT_EQ(1, GetOrderOfRequest(1));
EXPECT_EQ(2, GetOrderOfRequest(2));
EXPECT_EQ(3, GetOrderOfRequest(3));
EXPECT_EQ(4, GetOrderOfRequest(4));
EXPECT_EQ(5, GetOrderOfRequest(5));
EXPECT_EQ(6, GetOrderOfRequest(6));
// Make sure we test order of all requests made.
EXPECT_EQ(ClientSocketPoolTest::kIndexOutOfBounds, GetOrderOfRequest(7));
}
TEST_F(WebSocketTransportClientSocketPoolTest, PendingRequests_NoKeepAlive) {
// First request finishes asynchronously.
EXPECT_THAT(StartRequest(kDefaultPriority), IsError(ERR_IO_PENDING));
EXPECT_THAT(request(0)->WaitForResult(), IsOk());
// Make all subsequent host resolutions complete synchronously.
host_resolver_->set_synchronous_mode(true);
// Rest of them wait for the first socket to be released.
EXPECT_THAT(StartRequest(kDefaultPriority), IsError(ERR_IO_PENDING));
EXPECT_THAT(StartRequest(kDefaultPriority), IsError(ERR_IO_PENDING));
EXPECT_THAT(StartRequest(kDefaultPriority), IsError(ERR_IO_PENDING));
EXPECT_THAT(StartRequest(kDefaultPriority), IsError(ERR_IO_PENDING));
EXPECT_THAT(StartRequest(kDefaultPriority), IsError(ERR_IO_PENDING));
ReleaseAllConnections(ClientSocketPoolTest::NO_KEEP_ALIVE);
// The pending requests should finish successfully.
EXPECT_THAT(request(1)->WaitForResult(), IsOk());
EXPECT_THAT(request(2)->WaitForResult(), IsOk());
EXPECT_THAT(request(3)->WaitForResult(), IsOk());
EXPECT_THAT(request(4)->WaitForResult(), IsOk());
EXPECT_THAT(request(5)->WaitForResult(), IsOk());
EXPECT_EQ(static_cast<int>(requests()->size()),
client_socket_factory_.allocation_count());
// First asynchronous request, and then last 5 pending requests.
EXPECT_EQ(6U, completion_count());
}
// This test will start up a RequestSocket() and then immediately Cancel() it.
// The pending host resolution will eventually complete, and destroy the
// ClientSocketPool which will crash if the group was not cleared properly.
TEST_F(WebSocketTransportClientSocketPoolTest, CancelRequestClearGroup) {
TestCompletionCallback callback;
ClientSocketHandle handle;
EXPECT_EQ(
ERR_IO_PENDING,
handle.Init(group_id_, params_, std::nullopt /* proxy_annotation_tag */,
kDefaultPriority, SocketTag(),
ClientSocketPool::RespectLimits::ENABLED, callback.callback(),
ClientSocketPool::ProxyAuthCallback(), &pool_,
NetLogWithSource()));
handle.Reset();
}
TEST_F(WebSocketTransportClientSocketPoolTest, TwoRequestsCancelOne) {
ClientSocketHandle handle;
TestCompletionCallback callback;
ClientSocketHandle handle2;
TestCompletionCallback callback2;
EXPECT_EQ(
ERR_IO_PENDING,
handle.Init(group_id_, params_, std::nullopt /* proxy_annotation_tag */,
kDefaultPriority, SocketTag(),
ClientSocketPool::RespectLimits::ENABLED, callback.callback(),
ClientSocketPool::ProxyAuthCallback(), &pool_,
NetLogWithSource()));
EXPECT_EQ(
ERR_IO_PENDING,
handle2.Init(group_id_, params_, std::nullopt /* proxy_annotation_tag */,
kDefaultPriority, SocketTag(),
ClientSocketPool::RespectLimits::ENABLED,
callback2.callback(), ClientSocketPool::ProxyAuthCallback(),
&pool_, NetLogWithSource()));
handle.Reset();
EXPECT_THAT(callback2.WaitForResult(), IsOk());
handle2.Reset();
}
TEST_F(WebSocketTransportClientSocketPoolTest, ConnectCancelConnect) {
client_socket_factory_.set_default_client_socket_type(
MockTransportClientSocketFactory::Type::kPending);
ClientSocketHandle handle;
TestCompletionCallback callback;
EXPECT_EQ(
ERR_IO_PENDING,
handle.Init(group_id_, params_, std::nullopt /* proxy_annotation_tag */,
kDefaultPriority, SocketTag(),
ClientSocketPool::RespectLimits::ENABLED, callback.callback(),
ClientSocketPool::ProxyAuthCallback(), &pool_,
NetLogWithSource()));
handle.Reset();
TestCompletionCallback callback2;
EXPECT_EQ(
ERR_IO_PENDING,
handle.Init(group_id_, params_, std::nullopt /* proxy_annotation_tag */,
kDefaultPriority, SocketTag(),
ClientSocketPool::RespectLimits::ENABLED,
callback2.callback(), ClientSocketPool::ProxyAuthCallback(),
&pool_, NetLogWithSource()));
host_resolver_->set_synchronous_mode(true);
// At this point, handle has two ConnectingSockets out for it. Due to the
// setting the mock resolver into synchronous mode, the host resolution for
// both will return in the same loop of the MessageLoop. The client socket
// is a pending socket, so the Connect() will asynchronously complete on the
// next loop of the MessageLoop. That means that the first
// ConnectingSocket will enter OnIOComplete, and then the second one will.
// If the first one is not cancelled, it will advance the load state, and
// then the second one will crash.
EXPECT_THAT(callback2.WaitForResult(), IsOk());
EXPECT_FALSE(callback.have_result());
handle.Reset();
}
TEST_F(WebSocketTransportClientSocketPoolTest, CancelRequest) {
// First request finishes asynchronously.
EXPECT_THAT(StartRequest(kDefaultPriority), IsError(ERR_IO_PENDING));
EXPECT_THAT(request(0)->WaitForResult(), IsOk());
// Make all subsequent host resolutions complete synchronously.
host_resolver_->set_synchronous_mode(true);
EXPECT_THAT(StartRequest(kDefaultPriority), IsError(ERR_IO_PENDING));
EXPECT_THAT(StartRequest(kDefaultPriority), IsError(ERR_IO_PENDING));
EXPECT_THAT(StartRequest(kDefaultPriority), IsError(ERR_IO_PENDING));
EXPECT_THAT(StartRequest(kDefaultPriority), IsError(ERR_IO_PENDING));
EXPECT_THAT(StartRequest(kDefaultPriority), IsError(ERR_IO_PENDING));
// Cancel a request.
const size_t index_to_cancel = 2;
EXPECT_FALSE(request(index_to_cancel)->handle()->is_initialized());
request(index_to_cancel)->handle()->Reset();
ReleaseAllConnections(ClientSocketPoolTest::KEEP_ALIVE);
EXPECT_EQ(5, client_socket_factory_.allocation_count());
EXPECT_EQ(1, GetOrderOfRequest(1));
EXPECT_EQ(2, GetOrderOfRequest(2));
EXPECT_EQ(ClientSocketPoolTest::kRequestNotFound,
GetOrderOfRequest(3)); // Canceled request.
EXPECT_EQ(3, GetOrderOfRequest(4));
EXPECT_EQ(4, GetOrderOfRequest(5));
EXPECT_EQ(5, GetOrderOfRequest(6));
// Make sure we test order of all requests made.
EXPECT_EQ(ClientSocketPoolTest::kIndexOutOfBounds, GetOrderOfRequest(7));
}
// Function to be used as a callback on socket request completion. It first
// disconnects the successfully connected socket from the first request, and
// then reuses the ClientSocketHandle to request another socket. The second
// request is expected to succeed asynchronously.
//
// |nested_callback| is called with the result of the second socket request.
void RequestSocketOnComplete(const ClientSocketPool::GroupId& group_id,
ClientSocketHandle* handle,
WebSocketTransportClientSocketPool* pool,
TestCompletionCallback* nested_callback,
int first_request_result) {
EXPECT_THAT(first_request_result, IsOk());
// Don't allow reuse of the socket. Disconnect it and then release it.
handle->socket()->Disconnect();
handle->Reset();
int rv = handle->Init(
group_id, ClientSocketPool::SocketParams::CreateForHttpForTesting(),
std::nullopt /* proxy_annotation_tag */, LOWEST, SocketTag(),
ClientSocketPool::RespectLimits::ENABLED, nested_callback->callback(),
ClientSocketPool::ProxyAuthCallback(), pool, NetLogWithSource());
EXPECT_THAT(rv, IsError(ERR_IO_PENDING));
if (ERR_IO_PENDING != rv) {
nested_callback->callback().Run(rv);
}
}
// Tests the case where a second socket is requested in a completion callback,
// and the second socket connects asynchronously. Reuses the same
// ClientSocketHandle for the second socket, after disconnecting the first.
TEST_F(WebSocketTransportClientSocketPoolTest, RequestTwice) {
ClientSocketHandle handle;
TestCompletionCallback second_result_callback;
int rv = handle.Init(
group_id_, ClientSocketPool::SocketParams::CreateForHttpForTesting(),
std::nullopt /* proxy_annotation_tag */, LOWEST, SocketTag(),
ClientSocketPool::RespectLimits::ENABLED,
base::BindOnce(&RequestSocketOnComplete, group_id_, &handle, &pool_,
&second_result_callback),
ClientSocketPool::ProxyAuthCallback(), &pool_, NetLogWithSource());
ASSERT_THAT(rv, IsError(ERR_IO_PENDING));
EXPECT_THAT(second_result_callback.WaitForResult(), IsOk());
handle.Reset();
}
// Make sure that pending requests get serviced after active requests get
// cancelled.
TEST_F(WebSocketTransportClientSocketPoolTest,
CancelActiveRequestWithPendingRequests) {
client_socket_factory_.set_default_client_socket_type(
MockTransportClientSocketFactory::Type::kPending);
// Queue up all the requests
EXPECT_THAT(StartRequest(kDefaultPriority), IsError(ERR_IO_PENDING));
EXPECT_THAT(StartRequest(kDefaultPriority), IsError(ERR_IO_PENDING));
EXPECT_THAT(StartRequest(kDefaultPriority), IsError(ERR_IO_PENDING));
EXPECT_THAT(StartRequest(kDefaultPriority), IsError(ERR_IO_PENDING));
EXPECT_THAT(StartRequest(kDefaultPriority), IsError(ERR_IO_PENDING));
EXPECT_THAT(StartRequest(kDefaultPriority), IsError(ERR_IO_PENDING));
EXPECT_THAT(StartRequest(kDefaultPriority), IsError(ERR_IO_PENDING));
EXPECT_THAT(StartRequest(kDefaultPriority), IsError(ERR_IO_PENDING));
EXPECT_THAT(StartRequest(kDefaultPriority), IsError(ERR_IO_PENDING));
// Now, kMaxSocketsPerGroup requests should be active. Let's cancel them.
ASSERT_LE(kMaxSocketsPerGroup, static_cast<int>(requests()->size()));
for (int i = 0; i < kMaxSocketsPerGroup; i++) {
request(i)->handle()->Reset();
}
// Let's wait for the rest to complete now.
for (size_t i = kMaxSocketsPerGroup; i < requests()->size(); ++i) {
EXPECT_THAT(request(i)->WaitForResult(), IsOk());
request(i)->handle()->Reset();
}
EXPECT_EQ(requests()->size() - kMaxSocketsPerGroup, completion_count());
}
// Make sure that pending requests get serviced after active requests fail.
TEST_F(WebSocketTransportClientSocketPoolTest,
FailingActiveRequestWithPendingRequests) {
client_socket_factory_.set_default_client_socket_type(
MockTransportClientSocketFactory::Type::kPendingFailing);
const int kNumRequests = 2 * kMaxSocketsPerGroup + 1;
ASSERT_LE(kNumRequests, kMaxSockets); // Otherwise the test will hang.
// Queue up all the requests
for (int i = 0; i < kNumRequests; i++) {
EXPECT_THAT(StartRequest(kDefaultPriority), IsError(ERR_IO_PENDING));
}
for (int i = 0; i < kNumRequests; i++) {
EXPECT_THAT(request(i)->WaitForResult(), IsError(ERR_CONNECTION_FAILED));
}
}
// The lock on the endpoint is released when a ClientSocketHandle is reset.
TEST_F(WebSocketTransportClientSocketPoolTest, LockReleasedOnHandleReset) {
EXPECT_THAT(StartRequest(kDefaultPriority), IsError(ERR_IO_PENDING));
EXPECT_THAT(StartRequest(kDefaultPriority), IsError(ERR_IO_PENDING));
EXPECT_THAT(request(0)->WaitForResult(), IsOk());
EXPECT_FALSE(request(1)->handle()->is_initialized());
request(0)->handle()->Reset();
RunUntilIdle();
EXPECT_TRUE(request(1)->handle()->is_initialized());
}
// The lock on the endpoint is released when a ClientSocketHandle is deleted.
TEST_F(WebSocketTransportClientSocketPoolTest, LockReleasedOnHandleDelete) {
TestCompletionCallback callback;
auto handle = std::make_unique<ClientSocketHandle>();
int rv =
handle->Init(group_id_, params_, std::nullopt /* proxy_annotation_tag */,
LOW, SocketTag(), ClientSocketPool::RespectLimits::ENABLED,
callback.callback(), ClientSocketPool::ProxyAuthCallback(),
&pool_, NetLogWithSource());
EXPECT_THAT(rv, IsError(ERR_IO_PENDING));
EXPECT_THAT(StartRequest(kDefaultPriority), IsError(ERR_IO_PENDING));
EXPECT_THAT(callback.WaitForResult(), IsOk());
EXPECT_FALSE(request(0)->handle()->is_initialized());
handle.reset();
RunUntilIdle();
EXPECT_TRUE(request(0)->handle()->is_initialized());
}
// A new connection is performed when the lock on the previous connection is
// explicitly released.
TEST_F(WebSocketTransportClientSocketPoolTest,
ConnectionProceedsOnExplicitRelease) {
EXPECT_THAT(StartRequest(kDefaultPriority), IsError(ERR_IO_PENDING));
EXPECT_THAT(StartRequest(kDefaultPriority), IsError(ERR_IO_PENDING));
EXPECT_THAT(request(0)->WaitForResult(), IsOk());
EXPECT_FALSE(request(1)->handle()->is_initialized());
WebSocketTransportClientSocketPool::UnlockEndpoint(
request(0)->handle(), &websocket_endpoint_lock_manager_);
RunUntilIdle();
EXPECT_TRUE(request(1)->handle()->is_initialized());
}
// A connection which is cancelled before completion does not block subsequent
// connections.
TEST_F(WebSocketTransportClientSocketPoolTest,
CancelDuringConnectionReleasesLock) {
MockTransportClientSocketFactory::Rule rules[] = {
MockTransportClientSocketFactory::Rule(
MockTransportClientSocketFactory::Type::kStalled),
MockTransportClientSocketFactory::Rule(
MockTransportClientSocketFactory::Type::kPending)};
client_socket_factory_.SetRules(rules);
EXPECT_THAT(StartRequest(kDefaultPriority), IsError(ERR_IO_PENDING));
EXPECT_THAT(StartRequest(kDefaultPriority), IsError(ERR_IO_PENDING));
RunUntilIdle();
pool_.CancelRequest(group_id_, request(0)->handle(),
false /* cancel_connect_job */);
EXPECT_THAT(request(1)->WaitForResult(), IsOk());
}
// Test the case of the IPv6 address stalling, and falling back to the IPv4
// socket which finishes first.
TEST_F(WebSocketTransportClientSocketPoolTest,
IPv6FallbackSocketIPv4FinishesFirst) {
MockTransportClientSocketFactory::Rule rules[] = {
// This is the IPv6 socket.
MockTransportClientSocketFactory::Rule(
MockTransportClientSocketFactory::Type::kStalled),
// This is the IPv4 socket.
MockTransportClientSocketFactory::Rule(
MockTransportClientSocketFactory::Type::kPending)};
client_socket_factory_.SetRules(rules);
// Resolve an AddressList with an IPv6 address first and then an IPv4 address.
host_resolver_->rules()->AddIPLiteralRule("*", "2:abcd::3:4:ff,2.2.2.2",
std::string());
TestCompletionCallback callback;
ClientSocketHandle handle;
int rv =
handle.Init(group_id_, params_, std::nullopt /* proxy_annotation_tag */,
LOW, SocketTag(), ClientSocketPool::RespectLimits::ENABLED,
callback.callback(), ClientSocketPool::ProxyAuthCallback(),
&pool_, NetLogWithSource());
EXPECT_THAT(rv, IsError(ERR_IO_PENDING));
EXPECT_FALSE(handle.is_initialized());
EXPECT_FALSE(handle.socket());
EXPECT_THAT(callback.WaitForResult(), IsOk());
EXPECT_TRUE(handle.is_initialized());
EXPECT_TRUE(handle.socket());
IPEndPoint endpoint;
handle.socket()->GetLocalAddress(&endpoint);
EXPECT_TRUE(endpoint.address().IsIPv4());
EXPECT_EQ(2, client_socket_factory_.allocation_count());
}
// Test the case of the IPv6 address being slow, thus falling back to trying to
// connect to the IPv4 address, but having the connect to the IPv6 address
// finish first.
TEST_F(WebSocketTransportClientSocketPoolTest,
IPv6FallbackSocketIPv6FinishesFirst) {
MockTransportClientSocketFactory::Rule rules[] = {
// This is the IPv6 socket.
MockTransportClientSocketFactory::Rule(
MockTransportClientSocketFactory::Type::kDelayed),
// This is the IPv4 socket.
MockTransportClientSocketFactory::Rule(
MockTransportClientSocketFactory::Type::kStalled)};
client_socket_factory_.SetRules(rules);
client_socket_factory_.set_delay(TransportConnectJob::kIPv6FallbackTime +
base::Milliseconds(50));
// Resolve an AddressList with an IPv6 address first and then an IPv4 address.
host_resolver_->rules()->AddIPLiteralRule("*", "2:abcd::3:4:ff,2.2.2.2",
std::string());
TestCompletionCallback callback;
ClientSocketHandle handle;
int rv =
handle.Init(group_id_, params_, std::nullopt /* proxy_annotation_tag */,
LOW, SocketTag(), ClientSocketPool::RespectLimits::ENABLED,
callback.callback(), ClientSocketPool::ProxyAuthCallback(),
&pool_, NetLogWithSource());
EXPECT_THAT(rv, IsError(ERR_IO_PENDING));
EXPECT_FALSE(handle.is_initialized());
EXPECT_FALSE(handle.socket());
EXPECT_THAT(callback.WaitForResult(), IsOk());
EXPECT_TRUE(handle.is_initialized());
EXPECT_TRUE(handle.socket());
IPEndPoint endpoint;
handle.socket()->GetLocalAddress(&endpoint);
EXPECT_TRUE(endpoint.address().IsIPv6());
EXPECT_EQ(2, client_socket_factory_.allocation_count());
}
TEST_F(WebSocketTransportClientSocketPoolTest,
IPv6NoIPv4AddressesToFallbackTo) {
client_socket_factory_.set_default_client_socket_type(
MockTransportClientSocketFactory::Type::kDelayed);
// Resolve an AddressList with only IPv6 addresses.
host_resolver_->rules()->AddIPLiteralRule(
"*", "2:abcd::3:4:ff,3:abcd::3:4:ff", std::string());
TestCompletionCallback callback;
ClientSocketHandle handle;
int rv =
handle.Init(group_id_, params_, std::nullopt /* proxy_annotation_tag */,
LOW, SocketTag(), ClientSocketPool::RespectLimits::ENABLED,
callback.callback(), ClientSocketPool::ProxyAuthCallback(),
&pool_, NetLogWithSource());
EXPECT_THAT(rv, IsError(ERR_IO_PENDING));
EXPECT_FALSE(handle.is_initialized());
EXPECT_FALSE(handle.socket());
EXPECT_THAT(callback.WaitForResult(), IsOk());
EXPECT_TRUE(handle.is_initialized());
EXPECT_TRUE(handle.socket());
IPEndPoint endpoint;
handle.socket()->GetLocalAddress(&endpoint);
EXPECT_TRUE(endpoint.address().IsIPv6());
EXPECT_EQ(1, client_socket_factory_.allocation_count());
}
TEST_F(WebSocketTransportClientSocketPoolTest, IPv4HasNoFallback) {
client_socket_factory_.set_default_client_socket_type(
MockTransportClientSocketFactory::Type::kDelayed);
// Resolve an AddressList with only IPv4 addresses.
host_resolver_->rules()->AddIPLiteralRule("*", "1.1.1.1", std::string());
TestCompletionCallback callback;
ClientSocketHandle handle;
int rv =
handle.Init(group_id_, params_, std::nullopt /* proxy_annotation_tag */,
LOW, SocketTag(), ClientSocketPool::RespectLimits::ENABLED,
callback.callback(), ClientSocketPool::ProxyAuthCallback(),
&pool_, NetLogWithSource());
EXPECT_THAT(rv, IsError(ERR_IO_PENDING));
EXPECT_FALSE(handle.is_initialized());
EXPECT_FALSE(handle.socket());
EXPECT_THAT(callback.WaitForResult(), IsOk());
EXPECT_TRUE(handle.is_initialized());
EXPECT_TRUE(handle.socket());
IPEndPoint endpoint;
handle.socket()->GetLocalAddress(&endpoint);
EXPECT_TRUE(endpoint.address().IsIPv4());
EXPECT_EQ(1, client_socket_factory_.allocation_count());
}
// If all IPv6 addresses fail to connect synchronously, then IPv4 connections
// proceeed immediately.
TEST_F(WebSocketTransportClientSocketPoolTest, IPv6InstantFail) {
MockTransportClientSocketFactory::Rule rules[] = {
// First IPv6 socket.
MockTransportClientSocketFactory::Rule(
MockTransportClientSocketFactory::Type::kFailing),
// Second IPv6 socket.
MockTransportClientSocketFactory::Rule(
MockTransportClientSocketFactory::Type::kFailing),
// This is the IPv4 socket.
MockTransportClientSocketFactory::Rule(
MockTransportClientSocketFactory::Type::kSynchronous)};
client_socket_factory_.SetRules(rules);
// Resolve an AddressList with two IPv6 addresses and then an IPv4 address.
host_resolver_->rules()->AddIPLiteralRule(
"*", "2:abcd::3:4:ff,2:abcd::3:5:ff,2.2.2.2", std::string());
host_resolver_->set_synchronous_mode(true);
TestCompletionCallback callback;
ClientSocketHandle handle;
int rv =
handle.Init(group_id_, params_, std::nullopt /* proxy_annotation_tag */,
LOW, SocketTag(), ClientSocketPool::RespectLimits::ENABLED,
callback.callback(), ClientSocketPool::ProxyAuthCallback(),
&pool_, NetLogWithSource());
EXPECT_THAT(rv, IsOk());
ASSERT_TRUE(handle.socket());
IPEndPoint endpoint;
handle.socket()->GetPeerAddress(&endpoint);
EXPECT_EQ("2.2.2.2", endpoint.ToStringWithoutPort());
}
// If all IPv6 addresses fail before the IPv4 fallback timeout, then the IPv4
// connections proceed immediately.
TEST_F(WebSocketTransportClientSocketPoolTest, IPv6RapidFail) {
MockTransportClientSocketFactory::Rule rules[] = {
// First IPv6 socket.
MockTransportClientSocketFactory::Rule(
MockTransportClientSocketFactory::Type::kPendingFailing),
// Second IPv6 socket.
MockTransportClientSocketFactory::Rule(
MockTransportClientSocketFactory::Type::kPendingFailing),
// This is the IPv4 socket.
MockTransportClientSocketFactory::Rule(
MockTransportClientSocketFactory::Type::kSynchronous)};
client_socket_factory_.SetRules(rules);
// Resolve an AddressList with two IPv6 addresses and then an IPv4 address.
host_resolver_->rules()->AddIPLiteralRule(
"*", "2:abcd::3:4:ff,2:abcd::3:5:ff,2.2.2.2", std::string());
TestCompletionCallback callback;
ClientSocketHandle handle;
int rv =
handle.Init(group_id_, params_, std::nullopt /* proxy_annotation_tag */,
LOW, SocketTag(), ClientSocketPool::RespectLimits::ENABLED,
callback.callback(), ClientSocketPool::ProxyAuthCallback(),
&pool_, NetLogWithSource());
EXPECT_THAT(rv, IsError(ERR_IO_PENDING));
EXPECT_FALSE(handle.socket());
base::TimeTicks start(base::TimeTicks::Now());
EXPECT_THAT(callback.WaitForResult(), IsOk());
EXPECT_LT(base::TimeTicks::Now() - start,
TransportConnectJob::kIPv6FallbackTime);
ASSERT_TRUE(handle.socket());
IPEndPoint endpoint;
handle.socket()->GetPeerAddress(&endpoint);
EXPECT_EQ("2.2.2.2", endpoint.ToStringWithoutPort());
}
// If two sockets connect successfully, the one which connected first wins (this
// can only happen if the sockets are different types, since sockets of the same
// type do not race).
TEST_F(WebSocketTransportClientSocketPoolTest, FirstSuccessWins) {
client_socket_factory_.set_default_client_socket_type(
MockTransportClientSocketFactory::Type::kTriggerable);
// Resolve an AddressList with an IPv6 addresses and an IPv4 address.
host_resolver_->rules()->AddIPLiteralRule("*", "2:abcd::3:4:ff,2.2.2.2",
std::string());
TestCompletionCallback callback;
ClientSocketHandle handle;
int rv =
handle.Init(group_id_, params_, std::nullopt /* proxy_annotation_tag */,
LOW, SocketTag(), ClientSocketPool::RespectLimits::ENABLED,
callback.callback(), ClientSocketPool::ProxyAuthCallback(),
&pool_, NetLogWithSource());
EXPECT_THAT(rv, IsError(ERR_IO_PENDING));
ASSERT_FALSE(handle.socket());
base::OnceClosure ipv6_connect_trigger =
client_socket_factory_.WaitForTriggerableSocketCreation();
base::OnceClosure ipv4_connect_trigger =
client_socket_factory_.WaitForTriggerableSocketCreation();
std::move(ipv4_connect_trigger).Run();
std::move(ipv6_connect_trigger).Run();
EXPECT_THAT(callback.WaitForResult(), IsOk());
ASSERT_TRUE(handle.socket());
IPEndPoint endpoint;
handle.socket()->GetPeerAddress(&endpoint);
EXPECT_EQ("2.2.2.2", endpoint.ToStringWithoutPort());
}
// We should not report failure until all connections have failed.
TEST_F(WebSocketTransportClientSocketPoolTest, LastFailureWins) {
client_socket_factory_.set_default_client_socket_type(
MockTransportClientSocketFactory::Type::kDelayedFailing);
base::TimeDelta delay = TransportConnectJob::kIPv6FallbackTime / 3;
client_socket_factory_.set_delay(delay);
// Resolve an AddressList with 4 IPv6 addresses and 2 IPv4 addresses.
host_resolver_->rules()->AddIPLiteralRule("*",
"1:abcd::3:4:ff,2:abcd::3:4:ff,"
"3:abcd::3:4:ff,4:abcd::3:4:ff,"
"1.1.1.1,2.2.2.2",
std::string());
// Expected order of events:
// After 100ms: Connect to 1:abcd::3:4:ff times out
// After 200ms: Connect to 2:abcd::3:4:ff times out
// After 300ms: Connect to 3:abcd::3:4:ff times out, IPv4 fallback starts
// After 400ms: Connect to 4:abcd::3:4:ff and 1.1.1.1 time out
// After 500ms: Connect to 2.2.2.2 times out
TestCompletionCallback callback;
ClientSocketHandle handle;
base::TimeTicks start(base::TimeTicks::Now());
int rv =
handle.Init(group_id_, params_, std::nullopt /* proxy_annotation_tag */,
LOW, SocketTag(), ClientSocketPool::RespectLimits::ENABLED,
callback.callback(), ClientSocketPool::ProxyAuthCallback(),
&pool_, NetLogWithSource());
EXPECT_THAT(rv, IsError(ERR_IO_PENDING));
EXPECT_THAT(callback.WaitForResult(), IsError(ERR_CONNECTION_FAILED));
EXPECT_GE(base::TimeTicks::Now() - start, delay * 5);
// The order is slightly timing-dependent, so don't assert on the order.
EXPECT_THAT(handle.connection_attempts(),
testing::UnorderedElementsAre(
ConnectionAttempt(IPEndPoint(ParseIP("1:abcd::3:4:ff"), 80),
ERR_CONNECTION_FAILED),
ConnectionAttempt(IPEndPoint(ParseIP("2:abcd::3:4:ff"), 80),
ERR_CONNECTION_FAILED),
ConnectionAttempt(IPEndPoint(ParseIP("3:abcd::3:4:ff"), 80),
ERR_CONNECTION_FAILED),
ConnectionAttempt(IPEndPoint(ParseIP("4:abcd::3:4:ff"), 80),
ERR_CONNECTION_FAILED),
ConnectionAttempt(IPEndPoint(ParseIP("1.1.1.1"), 80),
ERR_CONNECTION_FAILED),
ConnectionAttempt(IPEndPoint(ParseIP("2.2.2.2"), 80),
ERR_CONNECTION_FAILED)));
}
// Test that, if an address fails due to `ERR_NETWORK_IO_SUSPENDED`, we do not
// try subsequent addresses.
TEST_F(WebSocketTransportClientSocketPoolTest, Suspend) {
// Resolve an AddressList with 4 IPv6 addresses and 2 IPv4 addresses.
host_resolver_->rules()->AddIPLiteralRule("*",
"1:abcd::3:4:ff,2:abcd::3:4:ff,"
"3:abcd::3:4:ff,4:abcd::3:4:ff,"
"1.1.1.1,2.2.2.2",
std::string());
// The first connection attempt will fail, after which no more will be
// attempted.
MockTransportClientSocketFactory::Rule rule(
MockTransportClientSocketFactory::Type::kFailing,
std::vector{IPEndPoint(ParseIP("1:abcd::3:4:ff"), 80)},
ERR_NETWORK_IO_SUSPENDED);
client_socket_factory_.SetRules(base::make_span(&rule, 1u));
TestCompletionCallback callback;
ClientSocketHandle handle;
int rv =
handle.Init(group_id_, params_, std::nullopt /* proxy_annotation_tag */,
LOW, SocketTag(), ClientSocketPool::RespectLimits::ENABLED,
callback.callback(), ClientSocketPool::ProxyAuthCallback(),
&pool_, NetLogWithSource());
EXPECT_THAT(callback.GetResult(rv), IsError(ERR_NETWORK_IO_SUSPENDED));
EXPECT_THAT(handle.connection_attempts(),
testing::ElementsAre(
ConnectionAttempt(IPEndPoint(ParseIP("1:abcd::3:4:ff"), 80),
ERR_NETWORK_IO_SUSPENDED)));
}
// Same as above, but with a asynchronous failure.
TEST_F(WebSocketTransportClientSocketPoolTest, SuspendAsync) {
// Resolve an AddressList with 4 IPv6 addresses and 2 IPv4 addresses.
host_resolver_->rules()->AddIPLiteralRule("*",
"1:abcd::3:4:ff,2:abcd::3:4:ff,"
"3:abcd::3:4:ff,4:abcd::3:4:ff,"
"1.1.1.1,2.2.2.2",
std::string());
// The first connection attempt will fail, after which no more will be
// attempted.
MockTransportClientSocketFactory::Rule rule(
MockTransportClientSocketFactory::Type::kPendingFailing,
std::vector{IPEndPoint(ParseIP("1:abcd::3:4:ff"), 80)},
ERR_NETWORK_IO_SUSPENDED);
client_socket_factory_.SetRules(base::make_span(&rule, 1u));
TestCompletionCallback callback;
ClientSocketHandle handle;
int rv =
handle.Init(group_id_, params_, std::nullopt /* proxy_annotation_tag */,
LOW, SocketTag(), ClientSocketPool::RespectLimits::ENABLED,
callback.callback(), ClientSocketPool::ProxyAuthCallback(),
&pool_, NetLogWithSource());
EXPECT_THAT(callback.GetResult(rv), IsError(ERR_NETWORK_IO_SUSPENDED));
EXPECT_THAT(handle.connection_attempts(),
testing::ElementsAre(
ConnectionAttempt(IPEndPoint(ParseIP("1:abcd::3:4:ff"), 80),
ERR_NETWORK_IO_SUSPENDED)));
}
// Global timeout for all connects applies. This test is disabled by default
// because it takes 4 minutes. Run with --gtest_also_run_disabled_tests if you
// want to run it.
TEST_F(WebSocketTransportClientSocketPoolTest, DISABLED_OverallTimeoutApplies) {
const base::TimeDelta connect_job_timeout =
TransportConnectJob::ConnectionTimeout();
client_socket_factory_.set_default_client_socket_type(
MockTransportClientSocketFactory::Type::kDelayedFailing);
client_socket_factory_.set_delay(base::Seconds(1) + connect_job_timeout / 6);
// Resolve an AddressList with 6 IPv6 addresses and 6 IPv4 addresses.
host_resolver_->rules()->AddIPLiteralRule("*",
"1:abcd::3:4:ff,2:abcd::3:4:ff,"
"3:abcd::3:4:ff,4:abcd::3:4:ff,"
"5:abcd::3:4:ff,6:abcd::3:4:ff,"
"1.1.1.1,2.2.2.2,3.3.3.3,"
"4.4.4.4,5.5.5.5,6.6.6.6",
std::string());
TestCompletionCallback callback;
ClientSocketHandle handle;
int rv =
handle.Init(group_id_, params_, std::nullopt /* proxy_annotation_tag */,
LOW, SocketTag(), ClientSocketPool::RespectLimits::ENABLED,
callback.callback(), ClientSocketPool::ProxyAuthCallback(),
&pool_, NetLogWithSource());
EXPECT_THAT(rv, IsError(ERR_IO_PENDING));
EXPECT_THAT(callback.WaitForResult(), IsError(ERR_TIMED_OUT));
}
TEST_F(WebSocketTransportClientSocketPoolTest, MaxSocketsEnforced) {
host_resolver_->set_synchronous_mode(true);
for (int i = 0; i < kMaxSockets; ++i) {
ASSERT_THAT(StartRequest(kDefaultPriority), IsOk());
WebSocketTransportClientSocketPool::UnlockEndpoint(
request(i)->handle(), &websocket_endpoint_lock_manager_);
RunUntilIdle();
}
EXPECT_THAT(StartRequest(kDefaultPriority), IsError(ERR_IO_PENDING));
}
TEST_F(WebSocketTransportClientSocketPoolTest, MaxSocketsEnforcedWhenPending) {
for (int i = 0; i < kMaxSockets + 1; ++i) {
EXPECT_THAT(StartRequest(kDefaultPriority), IsError(ERR_IO_PENDING));
}
// Now there are 32 sockets waiting to connect, and one stalled.
for (int i = 0; i < kMaxSockets; ++i) {
RunUntilIdle();
EXPECT_TRUE(request(i)->handle()->is_initialized());
EXPECT_TRUE(request(i)->handle()->socket());
WebSocketTransportClientSocketPool::UnlockEndpoint(
request(i)->handle(), &websocket_endpoint_lock_manager_);
}
// Now there are 32 sockets connected, and one stalled.
RunUntilIdle();
EXPECT_FALSE(request(kMaxSockets)->handle()->is_initialized());
EXPECT_FALSE(request(kMaxSockets)->handle()->socket());
}
TEST_F(WebSocketTransportClientSocketPoolTest, StalledSocketReleased) {
host_resolver_->set_synchronous_mode(true);
for (int i = 0; i < kMaxSockets; ++i) {
ASSERT_THAT(StartRequest(kDefaultPriority), IsOk());
WebSocketTransportClientSocketPool::UnlockEndpoint(
request(i)->handle(), &websocket_endpoint_lock_manager_);
RunUntilIdle();
}
EXPECT_THAT(StartRequest(kDefaultPriority), IsError(ERR_IO_PENDING));
ReleaseOneConnection(ClientSocketPoolTest::NO_KEEP_ALIVE);
EXPECT_TRUE(request(kMaxSockets)->handle()->is_initialized());
EXPECT_TRUE(request(kMaxSockets)->handle()->socket());
}
TEST_F(WebSocketTransportClientSocketPoolTest, IsStalledTrueWhenStalled) {
for (int i = 0; i < kMaxSockets + 1; ++i) {
EXPECT_THAT(StartRequest(kDefaultPriority), IsError(ERR_IO_PENDING));
}
EXPECT_THAT(request(0)->WaitForResult(), IsOk());
EXPECT_TRUE(pool_.IsStalled());
}
TEST_F(WebSocketTransportClientSocketPoolTest,
CancellingPendingSocketUnstallsStalledSocket) {
for (int i = 0; i < kMaxSockets + 1; ++i) {
EXPECT_THAT(StartRequest(kDefaultPriority), IsError(ERR_IO_PENDING));
}
EXPECT_THAT(request(0)->WaitForResult(), IsOk());
request(1)->handle()->Reset();
RunUntilIdle();
EXPECT_FALSE(pool_.IsStalled());
}
TEST_F(WebSocketTransportClientSocketPoolTest,
LoadStateOfStalledSocketIsWaitingForAvailableSocket) {
for (int i = 0; i < kMaxSockets + 1; ++i) {
EXPECT_THAT(StartRequest(kDefaultPriority), IsError(ERR_IO_PENDING));
}
EXPECT_EQ(LOAD_STATE_WAITING_FOR_AVAILABLE_SOCKET,
pool_.GetLoadState(group_id_, request(kMaxSockets)->handle()));
}
TEST_F(WebSocketTransportClientSocketPoolTest,
CancellingStalledSocketUnstallsPool) {
for (int i = 0; i < kMaxSockets + 1; ++i) {
EXPECT_THAT(StartRequest(kDefaultPriority), IsError(ERR_IO_PENDING));
}
request(kMaxSockets)->handle()->Reset();
RunUntilIdle();
EXPECT_FALSE(pool_.IsStalled());
}
TEST_F(WebSocketTransportClientSocketPoolTest,
FlushWithErrorFlushesPendingConnections) {
EXPECT_THAT(StartRequest(kDefaultPriority), IsError(ERR_IO_PENDING));
pool_.FlushWithError(ERR_FAILED, "Very good reason");
EXPECT_THAT(request(0)->WaitForResult(), IsError(ERR_FAILED));
}
TEST_F(WebSocketTransportClientSocketPoolTest,
FlushWithErrorFlushesStalledConnections) {
for (int i = 0; i < kMaxSockets + 1; ++i) {
EXPECT_THAT(StartRequest(kDefaultPriority), IsError(ERR_IO_PENDING));
}
pool_.FlushWithError(ERR_FAILED, "Very good reason");
EXPECT_THAT(request(kMaxSockets)->WaitForResult(), IsError(ERR_FAILED));
}
TEST_F(WebSocketTransportClientSocketPoolTest,
AfterFlushWithErrorCanMakeNewConnections) {
for (int i = 0; i < kMaxSockets + 1; ++i) {
EXPECT_THAT(StartRequest(kDefaultPriority), IsError(ERR_IO_PENDING));
}
pool_.FlushWithError(ERR_FAILED, "Very good reason");
host_resolver_->set_synchronous_mode(true);
EXPECT_THAT(StartRequest(kDefaultPriority), IsOk());
}
// Deleting pending connections can release the lock on the endpoint, which can
// in principle lead to other pending connections succeeding. However, when we
// call FlushWithError(), everything should fail.
TEST_F(WebSocketTransportClientSocketPoolTest,
FlushWithErrorDoesNotCauseSuccessfulConnections) {
host_resolver_->set_synchronous_mode(true);
MockTransportClientSocketFactory::Rule first_rule[] = {
// First socket
MockTransportClientSocketFactory::Rule(
MockTransportClientSocketFactory::Type::kPending),
};
client_socket_factory_.SetRules(first_rule);
// The rest of the sockets will connect synchronously.
client_socket_factory_.set_default_client_socket_type(
MockTransportClientSocketFactory::Type::kSynchronous);
for (int i = 0; i < kMaxSockets; ++i) {
EXPECT_THAT(StartRequest(kDefaultPriority), IsError(ERR_IO_PENDING));
}
// Now we have one socket in STATE_TRANSPORT_CONNECT and the rest in
// STATE_OBTAIN_LOCK. If any of the sockets in STATE_OBTAIN_LOCK is given the
// lock, they will synchronously connect.
pool_.FlushWithError(ERR_FAILED, "Very good reason");
for (int i = 0; i < kMaxSockets; ++i) {
EXPECT_THAT(request(i)->WaitForResult(), IsError(ERR_FAILED));
}
}
// This is a regression test for the first attempted fix for
// FlushWithErrorDoesNotCauseSuccessfulConnections. Because a ConnectJob can
// have both IPv4 and IPv6 subjobs, it can be both connecting and waiting for
// the lock at the same time.
TEST_F(WebSocketTransportClientSocketPoolTest,
FlushWithErrorDoesNotCauseSuccessfulConnectionsMultipleAddressTypes) {
host_resolver_->set_synchronous_mode(true);
// The first |kMaxSockets| sockets to connect will be IPv6. Then we will have
// one IPv4.
std::vector<MockTransportClientSocketFactory::Rule> rules(
kMaxSockets + 1, MockTransportClientSocketFactory::Rule(
MockTransportClientSocketFactory::Type::kStalled));
client_socket_factory_.SetRules(rules);
// The rest of the sockets will connect synchronously.
client_socket_factory_.set_default_client_socket_type(
MockTransportClientSocketFactory::Type::kSynchronous);
for (int i = 0; i < kMaxSockets; ++i) {
host_resolver_->rules()->ClearRules();
// Each connect job has a different IPv6 address but the same IPv4 address.
// So the IPv6 connections happen in parallel but the IPv4 ones are
// serialised.
host_resolver_->rules()->AddIPLiteralRule(
"*",
base::StringPrintf("%x:abcd::3:4:ff,"
"1.1.1.1",
i + 1),
std::string());
EXPECT_THAT(StartRequest(kDefaultPriority), IsError(ERR_IO_PENDING));
}
// Now we have |kMaxSockets| IPv6 sockets stalled in connect. No IPv4 sockets
// are started yet.
RunLoopForTimePeriod(TransportConnectJob::kIPv6FallbackTime);
// Now we have |kMaxSockets| IPv6 sockets and one IPv4 socket stalled in
// connect, and |kMaxSockets - 1| IPv4 sockets waiting for the endpoint lock.
pool_.FlushWithError(ERR_FAILED, "Very good reason");
for (int i = 0; i < kMaxSockets; ++i) {
EXPECT_THAT(request(i)->WaitForResult(), IsError(ERR_FAILED));
}
}
// Sockets that have had ownership transferred to a ClientSocketHandle should
// not be affected by FlushWithError.
TEST_F(WebSocketTransportClientSocketPoolTest,
FlushWithErrorDoesNotAffectHandedOutSockets) {
host_resolver_->set_synchronous_mode(true);
MockTransportClientSocketFactory::Rule rules[] = {
MockTransportClientSocketFactory::Rule(
MockTransportClientSocketFactory::Type::kSynchronous),
MockTransportClientSocketFactory::Rule(
MockTransportClientSocketFactory::Type::kStalled)};
client_socket_factory_.SetRules(rules);
EXPECT_THAT(StartRequest(kDefaultPriority), IsOk());
// Socket has been "handed out".
EXPECT_TRUE(request(0)->handle()->socket());
EXPECT_THAT(StartRequest(kDefaultPriority), IsError(ERR_IO_PENDING));
// Now we have one socket handed out, and one pending.
pool_.FlushWithError(ERR_FAILED, "Very good reason");
EXPECT_THAT(request(1)->WaitForResult(), IsError(ERR_FAILED));
// Socket owned by ClientSocketHandle is unaffected:
EXPECT_TRUE(request(0)->handle()->socket());
// Return it to the pool (which deletes it).
request(0)->handle()->Reset();
}
// Sockets should not be leaked if CancelRequest() is called in between
// SetSocket() being called on the ClientSocketHandle and InvokeUserCallback().
TEST_F(WebSocketTransportClientSocketPoolTest, CancelRequestReclaimsSockets) {
host_resolver_->set_synchronous_mode(true);
MockTransportClientSocketFactory::Rule rules[] = {
MockTransportClientSocketFactory::Rule(
MockTransportClientSocketFactory::Type::kTriggerable),
MockTransportClientSocketFactory::Rule(
MockTransportClientSocketFactory::Type::kSynchronous)};
client_socket_factory_.SetRules(rules);
EXPECT_THAT(StartRequest(kDefaultPriority), IsError(ERR_IO_PENDING));
base::OnceClosure connect_trigger =
client_socket_factory_.WaitForTriggerableSocketCreation();
std::move(connect_trigger).Run(); // Calls InvokeUserCallbackLater()
request(0)->handle()->Reset(); // calls CancelRequest()
RunUntilIdle();
// We should now be able to create a new connection without blocking on the
// endpoint lock.
EXPECT_THAT(StartRequest(kDefaultPriority), IsOk());
}
// A handshake completing and then the WebSocket closing should only release one
// Endpoint, not two.
TEST_F(WebSocketTransportClientSocketPoolTest, EndpointLockIsOnlyReleasedOnce) {
host_resolver_->set_synchronous_mode(true);
ASSERT_THAT(StartRequest(kDefaultPriority), IsOk());
EXPECT_THAT(StartRequest(kDefaultPriority), IsError(ERR_IO_PENDING));
EXPECT_THAT(StartRequest(kDefaultPriority), IsError(ERR_IO_PENDING));
// First socket completes handshake.
WebSocketTransportClientSocketPool::UnlockEndpoint(
request(0)->handle(), &websocket_endpoint_lock_manager_);
RunUntilIdle();
// First socket is closed.
request(0)->handle()->Reset();
// Second socket should have been released.
EXPECT_THAT(request(1)->WaitForResult(), IsOk());
// Third socket should still be waiting for endpoint.
ASSERT_FALSE(request(2)->handle()->is_initialized());
EXPECT_EQ(LOAD_STATE_WAITING_FOR_AVAILABLE_SOCKET,
request(2)->handle()->GetLoadState());
}
// Make sure that WebSocket requests use the correct NetworkAnonymizationKey.
TEST_F(WebSocketTransportClientSocketPoolTest, NetworkAnonymizationKey) {
const SchemefulSite kSite(GURL("https://foo.test/"));
const auto kNetworkAnonymizationKey =
NetworkAnonymizationKey::CreateSameSite(kSite);
base::test::ScopedFeatureList scoped_feature_list;
scoped_feature_list.InitAndEnableFeature(
features::kPartitionConnectionsByNetworkIsolationKey);
host_resolver_->set_ondemand_mode(true);
TestCompletionCallback callback;
ClientSocketHandle handle;
ClientSocketPool::GroupId group_id(
url::SchemeHostPort(url::kHttpScheme, "www.google.com", 80),
PrivacyMode::PRIVACY_MODE_DISABLED, kNetworkAnonymizationKey,
SecureDnsPolicy::kAllow, /*disable_cert_network_fetches=*/false);
EXPECT_THAT(
handle.Init(group_id, params_, std::nullopt /* proxy_annotation_tag */,
kDefaultPriority, SocketTag(),
ClientSocketPool::RespectLimits::ENABLED, callback.callback(),
ClientSocketPool::ProxyAuthCallback(), &pool_,
NetLogWithSource()),
IsError(ERR_IO_PENDING));
ASSERT_EQ(1u, host_resolver_->last_id());
EXPECT_EQ(kNetworkAnonymizationKey,
host_resolver_->request_network_anonymization_key(1));
}
TEST_F(WebSocketTransportClientSocketPoolTest,
TransportConnectJobWithDnsAliases) {
host_resolver_->set_synchronous_mode(true);
client_socket_factory_.set_default_client_socket_type(
MockTransportClientSocketFactory::Type::kSynchronous);
// Resolve an AddressList with DNS aliases.
std::string kHostName("host");
std::vector<std::string> aliases({"alias1", "alias2", kHostName});
host_resolver_->rules()->AddIPLiteralRuleWithDnsAliases(kHostName, "2.2.2.2",
std::move(aliases));
TestConnectJobDelegate test_delegate;
scoped_refptr<TransportSocketParams> params =
base::MakeRefCounted<TransportSocketParams>(
HostPortPair(kHostName, 80), NetworkAnonymizationKey(),
SecureDnsPolicy::kAllow, OnHostResolutionCallback(),
/*supported_alpns=*/base::flat_set<std::string>());
TransportConnectJob transport_connect_job(
DEFAULT_PRIORITY, SocketTag(), &common_connect_job_params_, params,
&test_delegate, nullptr /* net_log */);
test_delegate.StartJobExpectingResult(&transport_connect_job, OK,
true /* expect_sync_result */);
// Verify that the elements of the alias list are those from the
// parameter vector.
EXPECT_THAT(test_delegate.socket()->GetDnsAliases(),
testing::ElementsAre("alias1", "alias2", kHostName));
}
TEST_F(WebSocketTransportClientSocketPoolTest,
TransportConnectJobWithNoAdditionalDnsAliases) {
host_resolver_->set_synchronous_mode(true);
client_socket_factory_.set_default_client_socket_type(
MockTransportClientSocketFactory::Type::kSynchronous);
// Resolve an AddressList without additional DNS aliases. (The parameter
// is an empty vector.)
std::string kHostName("host");
std::vector<std::string> aliases;
host_resolver_->rules()->AddIPLiteralRuleWithDnsAliases(kHostName, "2.2.2.2",
std::move(aliases));
TestConnectJobDelegate test_delegate;
scoped_refptr<TransportSocketParams> params =
base::MakeRefCounted<TransportSocketParams>(
HostPortPair(kHostName, 80), NetworkAnonymizationKey(),
SecureDnsPolicy::kAllow, OnHostResolutionCallback(),
/*supported_alpns=*/base::flat_set<std::string>());
TransportConnectJob transport_connect_job(
DEFAULT_PRIORITY, SocketTag(), &common_connect_job_params_, params,
&test_delegate, nullptr /* net_log */);
test_delegate.StartJobExpectingResult(&transport_connect_job, OK,
true /* expect_sync_result */);
// Verify that the alias list only contains kHostName.
EXPECT_THAT(test_delegate.socket()->GetDnsAliases(),
testing::ElementsAre(kHostName));
}
TEST_F(WebSocketTransportClientSocketPoolTest, LoadState) {
host_resolver_->rules()->AddRule("v6-only.test", "1:abcd::3:4:ff");
host_resolver_->rules()->AddRule("v6-and-v4.test", "1:abcd::3:4:ff,2.2.2.2");
host_resolver_->set_ondemand_mode(true);
client_socket_factory_.set_default_client_socket_type(
MockTransportClientSocketFactory::Type::kDelayedFailing);
auto params_v6_only = base::MakeRefCounted<TransportSocketParams>(
HostPortPair("v6-only.test", 80), NetworkAnonymizationKey(),
SecureDnsPolicy::kAllow, OnHostResolutionCallback(),
/*supported_alpns=*/base::flat_set<std::string>());
auto params_v6_and_v4 = base::MakeRefCounted<TransportSocketParams>(
HostPortPair("v6-and-v4.test", 80), NetworkAnonymizationKey(),
SecureDnsPolicy::kAllow, OnHostResolutionCallback(),
/*supported_alpns=*/base::flat_set<std::string>());
// v6-only.test will first block on DNS.
TestConnectJobDelegate test_delegate_v6_only;
TransportConnectJob connect_job_v6_only(
DEFAULT_PRIORITY, SocketTag(), &common_connect_job_params_,
params_v6_only, &test_delegate_v6_only, /*net_log=*/nullptr);
EXPECT_THAT(connect_job_v6_only.Connect(), test::IsError(ERR_IO_PENDING));
EXPECT_THAT(connect_job_v6_only.GetLoadState(), LOAD_STATE_RESOLVING_HOST);
// When DNS is resolved, it should block on making a connection.
host_resolver_->ResolveOnlyRequestNow();
base::RunLoop().RunUntilIdle();
EXPECT_THAT(connect_job_v6_only.GetLoadState(), LOAD_STATE_CONNECTING);
// v6-and-v4.test will also first block on DNS.
TestConnectJobDelegate test_delegate_v6_and_v4;
TransportConnectJob connect_job_v6_and_v4(
DEFAULT_PRIORITY, SocketTag(), &common_connect_job_params_,
params_v6_and_v4, &test_delegate_v6_and_v4, /*net_log=*/nullptr);
EXPECT_THAT(connect_job_v6_and_v4.Connect(), test::IsError(ERR_IO_PENDING));
EXPECT_THAT(connect_job_v6_and_v4.GetLoadState(), LOAD_STATE_RESOLVING_HOST);
// When DNS is resolved, it should attempt to connect to the IPv6 address, but
// `connect_job_v6_only` holds the lock.
host_resolver_->ResolveOnlyRequestNow();
RunUntilIdle();
EXPECT_THAT(connect_job_v6_and_v4.GetLoadState(),
LOAD_STATE_WAITING_FOR_AVAILABLE_SOCKET);
// After the IPv6 fallback timeout, it should attempt to connect to the IPv4
// address. This lock is available, so `GetLoadState` should report it is now
// actively connecting.
RunLoopForTimePeriod(TransportConnectJob::kIPv6FallbackTime +
base::Milliseconds(50));
EXPECT_THAT(connect_job_v6_and_v4.GetLoadState(), LOAD_STATE_CONNECTING);
}
} // namespace
} // namespace net