blob: 8aec51dc16a5e5efd962115ffcfa7aceac4809f0 [file] [log] [blame]
/*
* Copyright (C) 2006, 2007, 2008, 2009, 2010 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef THIRD_PARTY_BLINK_RENDERER_PLATFORM_WTF_MATH_EXTRAS_H_
#define THIRD_PARTY_BLINK_RENDERER_PLATFORM_WTF_MATH_EXTRAS_H_
#include <cmath>
#include <cstddef>
#include <limits>
#include "base/check_op.h"
#include "build/build_config.h"
#include "third_party/blink/renderer/platform/wtf/allocator/allocator.h"
#if defined(COMPILER_MSVC)
// Make math.h behave like other platforms.
#define _USE_MATH_DEFINES
// Even if math.h was already included, including math.h again with
// _USE_MATH_DEFINES adds the extra defines.
#include <math.h>
#include <stdint.h>
#endif
#if BUILDFLAG(IS_OPENBSD)
#include <machine/ieee.h>
#include <sys/types.h>
#endif
constexpr double kPiDouble = M_PI;
constexpr float kPiFloat = static_cast<float>(M_PI);
constexpr double kPiOverTwoDouble = M_PI_2;
constexpr float kPiOverTwoFloat = static_cast<float>(M_PI_2);
constexpr double kPiOverFourDouble = M_PI_4;
constexpr float kPiOverFourFloat = static_cast<float>(M_PI_4);
constexpr double kTwoPiDouble = kPiDouble * 2.0;
constexpr float kTwoPiFloat = kPiFloat * 2.0f;
constexpr double Deg2rad(double d) {
return d * (kPiDouble / 180.0);
}
constexpr double Rad2deg(double r) {
return r * (180.0 / kPiDouble);
}
constexpr double Deg2grad(double d) {
return d * (400.0 / 360.0);
}
constexpr double Grad2deg(double g) {
return g * (360.0 / 400.0);
}
constexpr double Turn2deg(double t) {
return t * 360.0;
}
constexpr double Deg2turn(double d) {
return d * (1.0 / 360.0);
}
constexpr double Rad2grad(double r) {
return r * (200.0 / kPiDouble);
}
constexpr double Grad2rad(double g) {
return g * (kPiDouble / 200.0);
}
constexpr double Turn2grad(double t) {
return t * 400;
}
constexpr double Grad2turn(double g) {
return g * (1.0 / 400.0);
}
constexpr double Rad2turn(double r) {
return r * (1.0 / kTwoPiDouble);
}
constexpr double Turn2rad(double t) {
return t * kTwoPiDouble;
}
constexpr float Deg2rad(float d) {
return d * (kPiFloat / 180.0f);
}
constexpr float Rad2deg(float r) {
return r * (180.0f / kPiFloat);
}
constexpr float Deg2grad(float d) {
return d * (400.0f / 360.0f);
}
constexpr float Grad2deg(float g) {
return g * (360.0f / 400.0f);
}
constexpr float Turn2deg(float t) {
return t * 360.0f;
}
constexpr float Deg2turn(float d) {
return d * (1.0f / 360.0f);
}
constexpr float Rad2grad(float r) {
return r * (200.0f / kPiFloat);
}
constexpr float Grad2rad(float g) {
return g * (kPiFloat / 200.0f);
}
constexpr float Turn2grad(float t) {
return t * 400;
}
constexpr float Grad2turn(float g) {
return g * (1.0f / 400.0f);
}
constexpr double RoundHalfTowardsPositiveInfinity(double value) {
return std::floor(value + 0.5);
}
constexpr float RoundHalfTowardsPositiveInfinity(float value) {
return std::floor(value + 0.5f);
}
// ClampTo() is implemented by templated helper classes (to allow for partial
// template specialization) as well as several helper functions.
// This helper function can be called when we know that:
// (1) The type signednesses match so the compiler will not produce signed vs.
// unsigned warnings
// (2) The default type promotions/conversions are sufficient to handle things
// correctly
template <typename LimitType, typename ValueType>
inline constexpr LimitType ClampToDirectComparison(ValueType value,
LimitType min,
LimitType max) {
if (value >= max)
return max;
return (value <= min) ? min : static_cast<LimitType>(value);
}
// For any floating-point limits, or integral limits smaller than int64_t, we
// can cast the limits to double without losing precision; then the only cases
// where |value| can't be represented accurately as a double are the ones where
// it's outside the limit range anyway. So doing all comparisons as doubles
// will give correct results.
//
// In some cases, we can get better performance by using
// ClampToDirectComparison(). We use a templated class to switch between these
// two cases (instead of simply using a conditional within one function) in
// order to only compile the ClampToDirectComparison() code for cases where it
// will actually be used; this prevents the compiler from emitting warnings
// about unsafe code (even though we wouldn't actually be executing that code).
template <bool can_use_direct_comparison,
typename LimitType,
typename ValueType>
class ClampToNonLongLongHelper;
template <typename LimitType, typename ValueType>
class ClampToNonLongLongHelper<true, LimitType, ValueType> {
STATIC_ONLY(ClampToNonLongLongHelper);
public:
static inline constexpr LimitType ClampTo(ValueType value,
LimitType min,
LimitType max) {
return ClampToDirectComparison(value, min, max);
}
};
template <typename LimitType, typename ValueType>
class ClampToNonLongLongHelper<false, LimitType, ValueType> {
STATIC_ONLY(ClampToNonLongLongHelper);
public:
static inline constexpr LimitType ClampTo(ValueType value,
LimitType min,
LimitType max) {
const double double_value = static_cast<double>(value);
if (double_value >= static_cast<double>(max))
return max;
if (double_value <= static_cast<double>(min))
return min;
// If the limit type is integer, we might get better performance by
// casting |value| (as opposed to |double_value|) to the limit type.
return std::numeric_limits<LimitType>::is_integer
? static_cast<LimitType>(value)
: static_cast<LimitType>(double_value);
}
};
// The unspecialized version of this templated class handles clamping to
// anything other than [u]int64_t limits. It simply uses the class above
// to toggle between the "fast" and "safe" clamp implementations.
template <typename LimitType, typename ValueType>
class ClampToHelper {
public:
static inline constexpr LimitType ClampTo(ValueType value,
LimitType min,
LimitType max) {
// We only use ClampToDirectComparison() when the integerness and
// signedness of the two types matches.
//
// If the integerness of the types doesn't match, then at best
// ClampToDirectComparison() won't be much more efficient than the
// cast-everything-to-double method, since we'll need to convert to
// floating point anyway; at worst, we risk incorrect results when
// clamping a float to a 32-bit integral type due to potential precision
// loss.
//
// If the signedness doesn't match, ClampToDirectComparison() will
// produce warnings about comparing signed vs. unsigned, which are apt
// since negative signed values will be converted to large unsigned ones
// and we'll get incorrect results.
return ClampToNonLongLongHelper <
std::numeric_limits<LimitType>::is_integer ==
std::numeric_limits<ValueType>::is_integer &&
std::numeric_limits<LimitType>::is_signed ==
std::numeric_limits<ValueType>::is_signed,
LimitType, ValueType > ::ClampTo(value, min, max);
}
};
// Clamping to [u]int64_t limits requires more care. These may not be
// accurately representable as doubles, so instead we cast |value| to the
// limit type. But that cast is undefined if |value| is floating point and
// outside the representable range of the limit type, so we also have to check
// for that case explicitly.
template <typename ValueType>
class ClampToHelper<int64_t, ValueType> {
STATIC_ONLY(ClampToHelper);
public:
static inline int64_t ClampTo(ValueType value, int64_t min, int64_t max) {
if (!std::numeric_limits<ValueType>::is_integer) {
if (value > 0) {
if (static_cast<double>(value) >=
static_cast<double>(std::numeric_limits<int64_t>::max()))
return max;
} else if (static_cast<double>(value) <=
static_cast<double>(std::numeric_limits<int64_t>::min())) {
return min;
}
}
// Note: If |value| were uint64_t it could be larger than the largest
// int64_t, and this code would be wrong; we handle this case with
// a separate full specialization below.
return ClampToDirectComparison(static_cast<int64_t>(value), min, max);
}
};
// This specialization handles the case where the above partial specialization
// would be potentially incorrect.
template <>
class ClampToHelper<int64_t, uint64_t> {
STATIC_ONLY(ClampToHelper);
public:
static inline int64_t ClampTo(uint64_t value, int64_t min, int64_t max) {
if (max <= 0 || value >= static_cast<uint64_t>(max))
return max;
const int64_t long_long_value = static_cast<int64_t>(value);
return (long_long_value <= min) ? min : long_long_value;
}
};
// This is similar to the partial specialization that clamps to int64_t, but
// because the lower-bound check is done for integer value types as well, we
// don't need a <uint64_t, int64_t> full specialization.
template <typename ValueType>
class ClampToHelper<uint64_t, ValueType> {
STATIC_ONLY(ClampToHelper);
public:
static inline uint64_t ClampTo(ValueType value, uint64_t min, uint64_t max) {
if (value <= 0)
return min;
if (!std::numeric_limits<ValueType>::is_integer) {
if (static_cast<double>(value) >=
static_cast<double>(std::numeric_limits<uint64_t>::max()))
return max;
}
return ClampToDirectComparison(static_cast<uint64_t>(value), min, max);
}
};
template <typename T>
constexpr T DefaultMaximumForClamp() {
return std::numeric_limits<T>::max();
}
template <typename T>
constexpr T DefaultMinimumForClamp() {
return std::numeric_limits<T>::lowest();
}
// And, finally, the actual function for people to call.
template <typename LimitType, typename ValueType>
constexpr LimitType ClampTo(
ValueType value,
LimitType min = DefaultMinimumForClamp<LimitType>(),
LimitType max = DefaultMaximumForClamp<LimitType>()) {
// We use __builtin_isnan instead of std::isnan here because std::isnan
// is not constexpr prior to C++23.
DCHECK(!__builtin_isnan(static_cast<double>(value)));
DCHECK_LE(min, max); // This also ensures |min| and |max| aren't NaN.
return ClampToHelper<LimitType, ValueType>::ClampTo(value, min, max);
}
template <typename LimitType, typename ValueType>
constexpr LimitType ClampToWithNaNTo0(
ValueType value,
LimitType min = DefaultMinimumForClamp<LimitType>(),
LimitType max = DefaultMaximumForClamp<LimitType>()) {
static_assert(std::numeric_limits<ValueType>::has_quiet_NaN);
if (UNLIKELY(std::isnan(value)))
return 0;
return ClampTo<LimitType, ValueType>(value);
}
constexpr bool IsWithinIntRange(float x) {
return x > static_cast<float>(std::numeric_limits<int>::min()) &&
x < static_cast<float>(std::numeric_limits<int>::max());
}
static constexpr size_t GreatestCommonDivisor(size_t a, size_t b) {
return b ? GreatestCommonDivisor(b, a % b) : a;
}
constexpr size_t LowestCommonMultiple(size_t a, size_t b) {
return a && b ? a / GreatestCommonDivisor(a, b) * b : 0;
}
#endif // THIRD_PARTY_BLINK_RENDERER_PLATFORM_WTF_MATH_EXTRAS_H_