blob: 92cfc95104d5b989e66947dc8ae20cc6501f8d64 [file] [log] [blame]
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/containers/enum_set.h"
#include <stddef.h>
#include <optional>
#include "base/containers/to_vector.h"
#include "base/test/gtest_util.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest-death-test.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace base {
namespace {
enum class TestEnum {
kTestBelowMinNegative = -1,
kTestBelowMin = 0,
kTest1 = 1,
kTestMin = kTest1,
kTest2,
kTest3,
kTest4,
kTest5,
kTestMax = kTest5,
kTest6OutOfBounds,
kTest7OutOfBounds
};
using TestEnumSet = EnumSet<TestEnum, TestEnum::kTestMin, TestEnum::kTestMax>;
enum class TestEnumExtreme {
kTest0 = 0,
kTestMin = kTest0,
kTest63 = 63,
kTestMax = kTest63,
kTest64OutOfBounds,
};
using TestEnumExtremeSet = EnumSet<TestEnumExtreme,
TestEnumExtreme::kTestMin,
TestEnumExtreme::kTestMax>;
class EnumSetTest : public ::testing::Test {};
class EnumSetDeathTest : public ::testing::Test {};
TEST_F(EnumSetTest, ClassConstants) {
EXPECT_EQ(TestEnum::kTestMin, TestEnumSet::kMinValue);
EXPECT_EQ(TestEnum::kTestMax, TestEnumSet::kMaxValue);
EXPECT_EQ(5u, TestEnumSet::kValueCount);
}
// Use static_assert to check that functions we expect to be compile time
// evaluatable are really that way.
TEST_F(EnumSetTest, ConstexprsAreValid) {
static_assert(TestEnumSet::All().Has(TestEnum::kTest2),
"Expected All() to be integral constant expression");
static_assert(TestEnumSet::FromRange(TestEnum::kTest2, TestEnum::kTest4)
.Has(TestEnum::kTest2),
"Expected FromRange() to be integral constant expression");
static_assert(TestEnumSet{TestEnum::kTest2}.Has(TestEnum::kTest2),
"Expected TestEnumSet() to be integral constant expression");
static_assert(
TestEnumSet::FromEnumBitmask(1 << static_cast<uint64_t>(TestEnum::kTest2))
.Has(TestEnum::kTest2),
"Expected TestEnumSet() to be integral constant expression");
}
TEST_F(EnumSetTest, DefaultConstructor) {
const TestEnumSet enums;
EXPECT_TRUE(enums.empty());
EXPECT_EQ(0u, enums.size());
EXPECT_FALSE(enums.Has(TestEnum::kTest1));
EXPECT_FALSE(enums.Has(TestEnum::kTest2));
EXPECT_FALSE(enums.Has(TestEnum::kTest3));
EXPECT_FALSE(enums.Has(TestEnum::kTest4));
EXPECT_FALSE(enums.Has(TestEnum::kTest5));
}
TEST_F(EnumSetTest, OneArgConstructor) {
const TestEnumSet enums = {TestEnum::kTest4};
EXPECT_FALSE(enums.empty());
EXPECT_EQ(1u, enums.size());
EXPECT_FALSE(enums.Has(TestEnum::kTest1));
EXPECT_FALSE(enums.Has(TestEnum::kTest2));
EXPECT_FALSE(enums.Has(TestEnum::kTest3));
EXPECT_TRUE(enums.Has(TestEnum::kTest4));
EXPECT_FALSE(enums.Has(TestEnum::kTest5));
}
TEST_F(EnumSetTest, OneArgConstructorSize) {
TestEnumExtremeSet enums = {TestEnumExtreme::kTest0};
EXPECT_TRUE(enums.Has(TestEnumExtreme::kTest0));
}
TEST_F(EnumSetTest, TwoArgConstructor) {
const TestEnumSet enums = {TestEnum::kTest4, TestEnum::kTest2};
EXPECT_FALSE(enums.empty());
EXPECT_EQ(2u, enums.size());
EXPECT_FALSE(enums.Has(TestEnum::kTest1));
EXPECT_TRUE(enums.Has(TestEnum::kTest2));
EXPECT_FALSE(enums.Has(TestEnum::kTest3));
EXPECT_TRUE(enums.Has(TestEnum::kTest4));
EXPECT_FALSE(enums.Has(TestEnum::kTest5));
}
TEST_F(EnumSetTest, ThreeArgConstructor) {
const TestEnumSet enums = {TestEnum::kTest4, TestEnum::kTest2,
TestEnum::kTest1};
EXPECT_FALSE(enums.empty());
EXPECT_EQ(3u, enums.size());
EXPECT_TRUE(enums.Has(TestEnum::kTest1));
EXPECT_TRUE(enums.Has(TestEnum::kTest2));
EXPECT_FALSE(enums.Has(TestEnum::kTest3));
EXPECT_TRUE(enums.Has(TestEnum::kTest4));
EXPECT_FALSE(enums.Has(TestEnum::kTest5));
}
TEST_F(EnumSetTest, DuplicatesInConstructor) {
EXPECT_EQ(
TestEnumSet({TestEnum::kTest4, TestEnum::kTest2, TestEnum::kTest1,
TestEnum::kTest4, TestEnum::kTest2, TestEnum::kTest4}),
TestEnumSet({TestEnum::kTest1, TestEnum::kTest2, TestEnum::kTest4}));
}
TEST_F(EnumSetTest, All) {
const TestEnumSet enums(TestEnumSet::All());
EXPECT_FALSE(enums.empty());
EXPECT_EQ(5u, enums.size());
EXPECT_TRUE(enums.Has(TestEnum::kTest1));
EXPECT_TRUE(enums.Has(TestEnum::kTest2));
EXPECT_TRUE(enums.Has(TestEnum::kTest3));
EXPECT_TRUE(enums.Has(TestEnum::kTest4));
EXPECT_TRUE(enums.Has(TestEnum::kTest5));
}
TEST_F(EnumSetTest, AllExtreme) {
const TestEnumExtremeSet enums(TestEnumExtremeSet::All());
EXPECT_FALSE(enums.empty());
EXPECT_EQ(64u, enums.size());
EXPECT_TRUE(enums.Has(TestEnumExtreme::kTest0));
EXPECT_TRUE(enums.Has(TestEnumExtreme::kTest63));
EXPECT_FALSE(enums.Has(TestEnumExtreme::kTest64OutOfBounds));
}
TEST_F(EnumSetTest, FromRange) {
EXPECT_EQ(TestEnumSet({TestEnum::kTest2, TestEnum::kTest3, TestEnum::kTest4}),
TestEnumSet::FromRange(TestEnum::kTest2, TestEnum::kTest4));
EXPECT_EQ(TestEnumSet::All(),
TestEnumSet::FromRange(TestEnum::kTest1, TestEnum::kTest5));
EXPECT_EQ(TestEnumSet({TestEnum::kTest2}),
TestEnumSet::FromRange(TestEnum::kTest2, TestEnum::kTest2));
using RestrictedRangeSet =
EnumSet<TestEnum, TestEnum::kTest2, TestEnum::kTestMax>;
EXPECT_EQ(RestrictedRangeSet(
{TestEnum::kTest2, TestEnum::kTest3, TestEnum::kTest4}),
RestrictedRangeSet::FromRange(TestEnum::kTest2, TestEnum::kTest4));
EXPECT_EQ(RestrictedRangeSet::All(),
RestrictedRangeSet::FromRange(TestEnum::kTest2, TestEnum::kTest5));
}
TEST_F(EnumSetTest, Put) {
TestEnumSet enums = {TestEnum::kTest4};
enums.Put(TestEnum::kTest3);
EXPECT_EQ(TestEnumSet({TestEnum::kTest3, TestEnum::kTest4}), enums);
enums.Put(TestEnum::kTest5);
EXPECT_EQ(TestEnumSet({TestEnum::kTest3, TestEnum::kTest4, TestEnum::kTest5}),
enums);
}
TEST_F(EnumSetTest, PutAll) {
TestEnumSet enums = {TestEnum::kTest4, TestEnum::kTest5};
enums.PutAll({TestEnum::kTest3, TestEnum::kTest4});
EXPECT_EQ(TestEnumSet({TestEnum::kTest3, TestEnum::kTest4, TestEnum::kTest5}),
enums);
}
TEST_F(EnumSetTest, PutRange) {
TestEnumSet enums;
enums.PutRange(TestEnum::kTest2, TestEnum::kTest4);
EXPECT_EQ(TestEnumSet({TestEnum::kTest2, TestEnum::kTest3, TestEnum::kTest4}),
enums);
}
TEST_F(EnumSetTest, RetainAll) {
TestEnumSet enums = {TestEnum::kTest4, TestEnum::kTest5};
enums.RetainAll(TestEnumSet({TestEnum::kTest3, TestEnum::kTest4}));
EXPECT_EQ(TestEnumSet({TestEnum::kTest4}), enums);
}
TEST_F(EnumSetTest, Remove) {
TestEnumSet enums = {TestEnum::kTest4, TestEnum::kTest5};
enums.Remove(TestEnum::kTest1);
enums.Remove(TestEnum::kTest3);
EXPECT_EQ(TestEnumSet({TestEnum::kTest4, TestEnum::kTest5}), enums);
enums.Remove(TestEnum::kTest4);
EXPECT_EQ(TestEnumSet({TestEnum::kTest5}), enums);
enums.Remove(TestEnum::kTest5);
enums.Remove(TestEnum::kTest6OutOfBounds);
EXPECT_TRUE(enums.empty());
}
TEST_F(EnumSetTest, RemoveAll) {
TestEnumSet enums = {TestEnum::kTest4, TestEnum::kTest5};
enums.RemoveAll(TestEnumSet({TestEnum::kTest3, TestEnum::kTest4}));
EXPECT_EQ(TestEnumSet({TestEnum::kTest5}), enums);
}
TEST_F(EnumSetTest, Clear) {
TestEnumSet enums = {TestEnum::kTest4, TestEnum::kTest5};
enums.Clear();
EXPECT_TRUE(enums.empty());
}
TEST_F(EnumSetTest, Set) {
TestEnumSet enums;
EXPECT_TRUE(enums.empty());
enums.PutOrRemove(TestEnum::kTest3, false);
EXPECT_TRUE(enums.empty());
enums.PutOrRemove(TestEnum::kTest4, true);
EXPECT_EQ(enums, TestEnumSet({TestEnum::kTest4}));
enums.PutOrRemove(TestEnum::kTest5, true);
EXPECT_EQ(enums, TestEnumSet({TestEnum::kTest4, TestEnum::kTest5}));
enums.PutOrRemove(TestEnum::kTest5, true);
EXPECT_EQ(enums, TestEnumSet({TestEnum::kTest4, TestEnum::kTest5}));
enums.PutOrRemove(TestEnum::kTest4, false);
EXPECT_EQ(enums, TestEnumSet({TestEnum::kTest5}));
}
TEST_F(EnumSetTest, Has) {
const TestEnumSet enums = {TestEnum::kTest4, TestEnum::kTest5};
EXPECT_FALSE(enums.Has(TestEnum::kTest1));
EXPECT_FALSE(enums.Has(TestEnum::kTest2));
EXPECT_FALSE(enums.Has(TestEnum::kTest3));
EXPECT_TRUE(enums.Has(TestEnum::kTest4));
EXPECT_TRUE(enums.Has(TestEnum::kTest5));
EXPECT_FALSE(enums.Has(TestEnum::kTest6OutOfBounds));
}
TEST_F(EnumSetTest, HasAll) {
const TestEnumSet enums1 = {TestEnum::kTest4, TestEnum::kTest5};
const TestEnumSet enums2 = {TestEnum::kTest3, TestEnum::kTest4};
const TestEnumSet enums3 = Union(enums1, enums2);
EXPECT_TRUE(enums1.HasAll(enums1));
EXPECT_FALSE(enums1.HasAll(enums2));
EXPECT_FALSE(enums1.HasAll(enums3));
EXPECT_FALSE(enums2.HasAll(enums1));
EXPECT_TRUE(enums2.HasAll(enums2));
EXPECT_FALSE(enums2.HasAll(enums3));
EXPECT_TRUE(enums3.HasAll(enums1));
EXPECT_TRUE(enums3.HasAll(enums2));
EXPECT_TRUE(enums3.HasAll(enums3));
}
TEST_F(EnumSetTest, HasAny) {
const TestEnumSet enums1 = {TestEnum::kTest4, TestEnum::kTest5};
const TestEnumSet enums2 = {TestEnum::kTest3, TestEnum::kTest4};
const TestEnumSet enums3 = {TestEnum::kTest1, TestEnum::kTest2};
EXPECT_TRUE(enums1.HasAny(enums1));
EXPECT_TRUE(enums1.HasAny(enums2));
EXPECT_FALSE(enums1.HasAny(enums3));
EXPECT_TRUE(enums2.HasAny(enums1));
EXPECT_TRUE(enums2.HasAny(enums2));
EXPECT_FALSE(enums2.HasAny(enums3));
EXPECT_FALSE(enums3.HasAny(enums1));
EXPECT_FALSE(enums3.HasAny(enums2));
EXPECT_TRUE(enums3.HasAny(enums3));
}
TEST_F(EnumSetTest, Iterators) {
const TestEnumSet enums1 = {TestEnum::kTest4, TestEnum::kTest5};
TestEnumSet enums2;
for (TestEnum e : enums1) {
enums2.Put(e);
}
EXPECT_EQ(enums2, enums1);
}
TEST_F(EnumSetTest, RangeBasedForLoop) {
const TestEnumSet enums1 = {TestEnum::kTest2, TestEnum::kTest5};
TestEnumSet enums2;
for (TestEnum e : enums1) {
enums2.Put(e);
}
EXPECT_EQ(enums2, enums1);
}
TEST_F(EnumSetTest, IteratorComparisonOperators) {
const TestEnumSet enums = {TestEnum::kTest2, TestEnum::kTest4};
const auto first_it = enums.begin();
const auto second_it = ++enums.begin();
// Copy for equality testing.
const auto first_it_copy = first_it;
// Sanity check, as the rest of the test relies on |first_it| and
// |first_it_copy| pointing to the same element and |first_it| and |second_it|
// pointing to different elements.
ASSERT_EQ(*first_it, *first_it_copy);
ASSERT_NE(*first_it, *second_it);
EXPECT_TRUE(first_it == first_it_copy);
EXPECT_FALSE(first_it != first_it_copy);
EXPECT_TRUE(first_it != second_it);
EXPECT_FALSE(first_it == second_it);
}
TEST_F(EnumSetTest, IteratorIncrementOperators) {
const TestEnumSet enums = {TestEnum::kTest2, TestEnum::kTest4};
const auto begin = enums.begin();
auto post_inc_it = begin;
auto pre_inc_it = begin;
auto post_inc_return_it = post_inc_it++;
auto pre_inc_return_it = ++pre_inc_it;
// |pre_inc_it| and |post_inc_it| should point to the same element.
EXPECT_EQ(pre_inc_it, post_inc_it);
EXPECT_EQ(*pre_inc_it, *post_inc_it);
// |pre_inc_it| should NOT point to the first element.
EXPECT_NE(begin, pre_inc_it);
EXPECT_NE(*begin, *pre_inc_it);
// |post_inc_it| should NOT point to the first element.
EXPECT_NE(begin, post_inc_it);
EXPECT_NE(*begin, *post_inc_it);
// Prefix increment should return new iterator.
EXPECT_EQ(pre_inc_return_it, post_inc_it);
EXPECT_EQ(*pre_inc_return_it, *post_inc_it);
// Postfix increment should return original iterator.
EXPECT_EQ(post_inc_return_it, begin);
EXPECT_EQ(*post_inc_return_it, *begin);
}
TEST_F(EnumSetTest, Union) {
const TestEnumSet enums1 = {TestEnum::kTest4, TestEnum::kTest5};
const TestEnumSet enums2 = {TestEnum::kTest3, TestEnum::kTest4};
const TestEnumSet enums3 = Union(enums1, enums2);
EXPECT_EQ(TestEnumSet({TestEnum::kTest3, TestEnum::kTest4, TestEnum::kTest5}),
enums3);
}
TEST_F(EnumSetTest, Intersection) {
const TestEnumSet enums1 = {TestEnum::kTest4, TestEnum::kTest5};
const TestEnumSet enums2 = {TestEnum::kTest3, TestEnum::kTest4};
const TestEnumSet enums3 = Intersection(enums1, enums2);
EXPECT_EQ(TestEnumSet({TestEnum::kTest4}), enums3);
}
TEST_F(EnumSetTest, Difference) {
const TestEnumSet enums1 = {TestEnum::kTest4, TestEnum::kTest5};
const TestEnumSet enums2 = {TestEnum::kTest3, TestEnum::kTest4};
const TestEnumSet enums3 = Difference(enums1, enums2);
EXPECT_EQ(TestEnumSet({TestEnum::kTest5}), enums3);
}
TEST_F(EnumSetTest, ToFromEnumBitmask) {
const TestEnumSet empty;
EXPECT_EQ(empty.ToEnumBitmask(), 0ULL);
EXPECT_EQ(TestEnumSet::FromEnumBitmask(0), empty);
const TestEnumSet enums1 = {TestEnum::kTest2};
const uint64_t val1 = 1ULL << static_cast<uint64_t>(TestEnum::kTest2);
EXPECT_EQ(enums1.ToEnumBitmask(), val1);
EXPECT_EQ(TestEnumSet::FromEnumBitmask(val1), enums1);
const TestEnumSet enums2 = {TestEnum::kTest3, TestEnum::kTest4};
const uint64_t val2 = 1ULL << static_cast<uint64_t>(TestEnum::kTest3) |
1ULL << static_cast<uint64_t>(TestEnum::kTest4);
EXPECT_EQ(enums2.ToEnumBitmask(), val2);
EXPECT_EQ(TestEnumSet::FromEnumBitmask(val2), enums2);
}
TEST_F(EnumSetTest, ToFromEnumBitmaskExtreme) {
const TestEnumExtremeSet empty;
EXPECT_EQ(empty.ToEnumBitmask(), 0ULL);
EXPECT_EQ(TestEnumExtremeSet::FromEnumBitmask(0ULL), empty);
const TestEnumExtremeSet enums1 = {TestEnumExtreme::kTest63};
const uint64_t val1 = 1ULL << static_cast<uint64_t>(TestEnumExtreme::kTest63);
EXPECT_EQ(enums1.ToEnumBitmask(), val1);
EXPECT_EQ(TestEnumExtremeSet::FromEnumBitmask(val1), enums1);
}
TEST_F(EnumSetTest, FromEnumBitmaskIgnoresExtraBits) {
const TestEnumSet kSets[] = {
{},
{TestEnum::kTestMin},
{TestEnum::kTestMax},
{TestEnum::kTestMin, TestEnum::kTestMax},
{TestEnum::kTestMin, TestEnum::kTestMax},
{TestEnum::kTest2, TestEnum::kTest4},
};
size_t i = 0;
for (const TestEnumSet& set : kSets) {
SCOPED_TRACE(i++);
const uint64_t val = set.ToEnumBitmask();
// Produce a bitstring for a single enum value. When `e` is in range
// relative to TestEnumSet, this function behaves identically to
// `single_val_bitstring`. When `e` is not in range, this function attempts
// to compute a value, while `single_val_bitstring` intentionally crashes.
auto single_val_bitstring = [](TestEnum e) -> uint64_t {
uint64_t shift_amount = static_cast<uint64_t>(e);
// Shifting left more than the number of bits in the lhs would be UB.
CHECK_LT(shift_amount, sizeof(uint64_t) * 8);
return 1ULL << shift_amount;
};
const uint64_t kJunkVals[] = {
// Add junk bits above kTestMax.
val | single_val_bitstring(TestEnum::kTest6OutOfBounds),
val | single_val_bitstring(TestEnum::kTest7OutOfBounds),
val | single_val_bitstring(TestEnum::kTest6OutOfBounds) |
single_val_bitstring(TestEnum::kTest7OutOfBounds),
// Add junk bits below kTestMin.
val | single_val_bitstring(TestEnum::kTestBelowMin),
};
for (uint64_t junk_val : kJunkVals) {
SCOPED_TRACE(junk_val);
ASSERT_NE(val, junk_val);
const TestEnumSet set_from_junk = TestEnumSet::FromEnumBitmask(junk_val);
EXPECT_EQ(set_from_junk, set);
EXPECT_EQ(set_from_junk.ToEnumBitmask(), set.ToEnumBitmask());
// Iterating both sets should produce the same sequence.
auto it1 = set.begin();
auto it2 = set_from_junk.begin();
while (it1 != set.end() && it2 != set_from_junk.end()) {
EXPECT_EQ(*it1, *it2);
++it1;
++it2;
}
EXPECT_TRUE(it1 == set.end());
EXPECT_TRUE(it2 == set_from_junk.end());
}
}
}
TEST_F(EnumSetTest, OneEnumValue) {
enum class TestEnumOne {
kTest1 = 1,
kTestMin = kTest1,
kTestMax = kTest1,
};
using TestEnumOneSet =
EnumSet<TestEnumOne, TestEnumOne::kTestMin, TestEnumOne::kTestMax>;
EXPECT_EQ(TestEnumOne::kTestMin, TestEnumOneSet::kMinValue);
EXPECT_EQ(TestEnumOne::kTestMax, TestEnumOneSet::kMaxValue);
EXPECT_EQ(1u, TestEnumOneSet::kValueCount);
}
TEST_F(EnumSetTest, SparseEnum) {
enum class TestEnumSparse {
kTest1 = 1,
kTestMin = 1,
kTest50 = 50,
kTest100 = 100,
kTestMax = kTest100,
};
using TestEnumSparseSet = EnumSet<TestEnumSparse, TestEnumSparse::kTestMin,
TestEnumSparse::kTestMax>;
TestEnumSparseSet sparse;
sparse.Put(TestEnumSparse::kTestMin);
sparse.Put(TestEnumSparse::kTestMax);
EXPECT_EQ(sparse.size(), 2u);
EXPECT_EQ(TestEnumSparseSet::All().size(), 100u);
}
TEST_F(EnumSetTest, GetNth64bitWordBitmaskFromEnum) {
enum class TestEnumEdgeCase {
kTest1 = 1,
kTestMin = kTest1,
kTest63 = 63,
kTest64 = 64,
kTest100 = 100,
kTestMax = kTest100,
};
using TestEnumEdgeCaseSet =
EnumSet<TestEnumEdgeCase, TestEnumEdgeCase::kTestMin,
TestEnumEdgeCase::kTestMax>;
TestEnumEdgeCaseSet sparse;
sparse.Put(TestEnumEdgeCase::kTest1);
sparse.Put(TestEnumEdgeCase::kTest63);
sparse.Put(TestEnumEdgeCase::kTest64);
sparse.Put(TestEnumEdgeCase::kTest100);
std::optional<uint64_t> bit_mask_0 = sparse.GetNth64bitWordBitmask(0);
ASSERT_TRUE(bit_mask_0.has_value());
ASSERT_EQ(bit_mask_0.value(),
1ull << static_cast<uint32_t>(TestEnumEdgeCase::kTest1) |
1ull << static_cast<uint32_t>(TestEnumEdgeCase::kTest63));
std::optional<uint64_t> bit_mask_1 = sparse.GetNth64bitWordBitmask(1);
ASSERT_TRUE(bit_mask_1.has_value());
ASSERT_EQ(
bit_mask_1.value(),
1ull << (static_cast<uint32_t>(TestEnumEdgeCase::kTest64) - 64u) |
1ull << (static_cast<uint32_t>(TestEnumEdgeCase::kTest100) - 64u));
std::optional<uint64_t> bit_mask_2 = sparse.GetNth64bitWordBitmask(2);
ASSERT_FALSE(bit_mask_2.has_value());
}
TEST_F(EnumSetTest, SparseEnumSmall) {
enum class TestEnumSparse {
kTest1 = 1,
kTestMin = 1,
kTest50 = 50,
kTest60 = 60,
kTestMax = kTest60,
};
using TestEnumSparseSet = EnumSet<TestEnumSparse, TestEnumSparse::kTestMin,
TestEnumSparse::kTestMax>;
TestEnumSparseSet sparse;
sparse.Put(TestEnumSparse::kTestMin);
sparse.Put(TestEnumSparse::kTestMax);
EXPECT_EQ(sparse.size(), 2u);
// This may seem a little surprising! There are only 3 distinct values in
// TestEnumSparse, so why does TestEnumSparseSet think it has 60 of them? This
// is an artifact of EnumSet's design, as it has no way of knowing which
// values between the min and max are actually named in the enum's definition.
EXPECT_EQ(TestEnumSparseSet::All().size(), 60u);
}
TEST_F(EnumSetDeathTest, CrashesOnOutOfRange) {
EXPECT_CHECK_DEATH(TestEnumSet({TestEnum::kTestBelowMin}));
EXPECT_CHECK_DEATH(TestEnumSet({TestEnum::kTest6OutOfBounds}));
EXPECT_CHECK_DEATH(TestEnumSet({TestEnum::kTest7OutOfBounds}));
}
TEST_F(EnumSetDeathTest, EnumWithNegatives) {
enum class TestEnumNeg {
kTestBelowMin = -3,
kTestA = -2,
kTestMin = kTestA,
kTestB = -1,
kTestC = 0,
kTestD = 1,
kTestE = 2,
kTestMax = kTestE,
kTestF = 3,
};
// This EnumSet starts negative and ends positive.
using TestEnumWithNegSet =
EnumSet<TestEnumNeg, TestEnumNeg::kTestMin, TestEnumNeg::kTestMax>;
// Should crash because kTestBelowMin is not in range.
EXPECT_CHECK_DEATH(TestEnumWithNegSet({TestEnumNeg::kTestBelowMin}));
// kTestD is in range, but note that kTestMin is negative. This should work.
EXPECT_TRUE(
TestEnumWithNegSet({TestEnumNeg::kTestD}).Has(TestEnumNeg::kTestD));
// Even though kTestA is negative, it is in range, so this should work.
EXPECT_TRUE(
TestEnumWithNegSet({TestEnumNeg::kTestA}).Has(TestEnumNeg::kTestA));
}
TEST_F(EnumSetDeathTest, EnumWithOnlyNegatives) {
enum class TestEnumNeg {
kTestBelowMin = -10,
kTestA = -9,
kTestMin = kTestA,
kTestB = -8,
kTestC = -7,
kTestD = -6,
kTestMax = kTestD,
kTestF = -5,
};
// This EnumSet starts negative and ends negative.
using TestEnumWithNegSet =
EnumSet<TestEnumNeg, TestEnumNeg::kTestMin, TestEnumNeg::kTestMax>;
// Should crash because kTestBelowMin is not in range.
EXPECT_CHECK_DEATH(TestEnumWithNegSet({TestEnumNeg::kTestBelowMin}));
// kTestA, kTestD are in range, but note that kTestMin and values are
// negative. This should work.
EXPECT_TRUE(
TestEnumWithNegSet({TestEnumNeg::kTestA}).Has(TestEnumNeg::kTestA));
EXPECT_TRUE(
TestEnumWithNegSet({TestEnumNeg::kTestD}).Has(TestEnumNeg::kTestD));
}
TEST_F(EnumSetDeathTest, VariadicConstructorCrashesOnOutOfRange) {
// Constructor should crash given out-of-range values.
EXPECT_CHECK_DEATH(TestEnumSet({TestEnum::kTestBelowMin}).empty());
EXPECT_CHECK_DEATH(TestEnumSet({TestEnum::kTestBelowMinNegative}).empty());
EXPECT_CHECK_DEATH(TestEnumSet({TestEnum::kTest6OutOfBounds}).empty());
}
TEST_F(EnumSetDeathTest, FromRangeCrashesOnBadInputs) {
// FromRange crashes when the bounds are in range, but out of order.
EXPECT_CHECK_DEATH(
TestEnumSet().FromRange(TestEnum::kTest3, TestEnum::kTest1));
// FromRange crashes when the start value is out of range.
EXPECT_CHECK_DEATH(
TestEnumSet().FromRange(TestEnum::kTestBelowMin, TestEnum::kTest1));
EXPECT_CHECK_DEATH(TestEnumSet().FromRange(TestEnum::kTestBelowMinNegative,
TestEnum::kTest1));
EXPECT_CHECK_DEATH(
TestEnumSet().FromRange(TestEnum::kTest6OutOfBounds, TestEnum::kTest1));
// FromRange crashes when the end value is out of range.
EXPECT_CHECK_DEATH(
TestEnumSet().FromRange(TestEnum::kTest3, TestEnum::kTestBelowMin));
EXPECT_CHECK_DEATH(TestEnumSet().FromRange(TestEnum::kTest3,
TestEnum::kTestBelowMinNegative));
EXPECT_CHECK_DEATH(
TestEnumSet().FromRange(TestEnum::kTest3, TestEnum::kTest6OutOfBounds));
// Crashes when start and end are both out of range.
EXPECT_CHECK_DEATH(TestEnumSet().FromRange(TestEnum::kTest6OutOfBounds,
TestEnum::kTest7OutOfBounds));
EXPECT_CHECK_DEATH(TestEnumSet().FromRange(TestEnum::kTest6OutOfBounds,
TestEnum::kTest7OutOfBounds));
}
TEST_F(EnumSetDeathTest, PutCrashesOnOutOfRange) {
EXPECT_CHECK_DEATH(TestEnumSet().Put(TestEnum::kTestBelowMin));
EXPECT_CHECK_DEATH(TestEnumSet().Put(TestEnum::kTestBelowMinNegative));
EXPECT_CHECK_DEATH(TestEnumSet().Put(TestEnum::kTest6OutOfBounds));
EXPECT_CHECK_DEATH(TestEnumSet().Put(TestEnum::kTest7OutOfBounds));
}
TEST_F(EnumSetDeathTest, PutRangeCrashesOnBadInputs) {
// Crashes when one input is out of range.
EXPECT_CHECK_DEATH(TestEnumSet().PutRange(TestEnum::kTestBelowMinNegative,
TestEnum::kTestBelowMin));
EXPECT_CHECK_DEATH(
TestEnumSet().PutRange(TestEnum::kTest3, TestEnum::kTest7OutOfBounds));
// Crashes when both inputs are out of range.
EXPECT_CHECK_DEATH(TestEnumSet().PutRange(TestEnum::kTest6OutOfBounds,
TestEnum::kTest7OutOfBounds));
// Crashes when inputs are out of order.
EXPECT_CHECK_DEATH(
TestEnumSet().PutRange(TestEnum::kTest2, TestEnum::kTest1));
}
TEST_F(EnumSetTest, ToStringEmpty) {
const TestEnumSet enums;
EXPECT_THAT(enums.ToString(), testing::Eq("00000"));
}
TEST_F(EnumSetTest, ToString) {
const TestEnumSet enums = {TestEnum::kTest4};
EXPECT_THAT(enums.ToString(), testing::Eq("01000"));
}
TEST_F(EnumSetTest, ToVectorEmpty) {
const TestEnumSet enums;
EXPECT_TRUE(ToVector(enums).empty());
}
TEST_F(EnumSetTest, ToVector) {
const TestEnumSet enums = {TestEnum::kTest2, TestEnum::kTest4};
EXPECT_THAT(ToVector(enums),
testing::ElementsAre(TestEnum::kTest2, TestEnum::kTest4));
}
} // namespace
} // namespace base