blob: c3813e73dd08a4d55ee792aa92cc5aa3b9dff2e4 [file] [log] [blame]
// Copyright 2016 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/metrics/persistent_sample_map.h"
#include "base/atomicops.h"
#include "base/check_op.h"
#include "base/containers/contains.h"
#include "base/debug/crash_logging.h"
#include "base/metrics/histogram_macros.h"
#include "base/metrics/persistent_histogram_allocator.h"
#include "base/notreached.h"
#include "base/numerics/safe_conversions.h"
namespace base {
typedef HistogramBase::Count Count;
typedef HistogramBase::Sample Sample;
namespace {
// An iterator for going through a PersistentSampleMap. The logic here is
// identical to that of the iterator for SampleMap but with different data
// structures. Changes here likely need to be duplicated there.
template <typename T, typename I>
class IteratorTemplate : public SampleCountIterator {
public:
explicit IteratorTemplate(T& sample_counts)
: iter_(sample_counts.begin()), end_(sample_counts.end()) {
SkipEmptyBuckets();
}
~IteratorTemplate() override;
// SampleCountIterator:
bool Done() const override { return iter_ == end_; }
void Next() override {
DCHECK(!Done());
++iter_;
SkipEmptyBuckets();
}
void Get(HistogramBase::Sample* min,
int64_t* max,
HistogramBase::Count* count) override;
private:
void SkipEmptyBuckets() {
while (!Done() && subtle::NoBarrier_Load(iter_->second) == 0) {
++iter_;
}
}
I iter_;
const I end_;
};
typedef std::map<HistogramBase::Sample, HistogramBase::Count*> SampleToCountMap;
typedef IteratorTemplate<const SampleToCountMap,
SampleToCountMap::const_iterator>
PersistentSampleMapIterator;
template <>
PersistentSampleMapIterator::~IteratorTemplate() = default;
// Get() for an iterator of a PersistentSampleMap.
template <>
void PersistentSampleMapIterator::Get(Sample* min, int64_t* max, Count* count) {
DCHECK(!Done());
*min = iter_->first;
*max = strict_cast<int64_t>(iter_->first) + 1;
// We have to do the following atomically, because even if the caller is using
// a lock, a separate process (that is not aware of this lock) may
// concurrently modify the value (note that iter_->second is a pointer to a
// sample count, which may live in shared memory).
*count = subtle::NoBarrier_Load(iter_->second);
}
typedef IteratorTemplate<SampleToCountMap, SampleToCountMap::iterator>
ExtractingPersistentSampleMapIterator;
template <>
ExtractingPersistentSampleMapIterator::~IteratorTemplate() {
// Ensure that the user has consumed all the samples in order to ensure no
// samples are lost.
DCHECK(Done());
}
// Get() for an extracting iterator of a PersistentSampleMap.
template <>
void ExtractingPersistentSampleMapIterator::Get(Sample* min,
int64_t* max,
Count* count) {
DCHECK(!Done());
*min = iter_->first;
*max = strict_cast<int64_t>(iter_->first) + 1;
// We have to do the following atomically, because even if the caller is using
// a lock, a separate process (that is not aware of this lock) may
// concurrently modify the value (note that iter_->second is a pointer to a
// sample count, which may live in shared memory).
*count = subtle::NoBarrier_AtomicExchange(iter_->second, 0);
}
// This structure holds an entry for a PersistentSampleMap within a persistent
// memory allocator. The "id" must be unique across all maps held by an
// allocator or they will get attached to the wrong sample map.
struct SampleRecord {
// SHA1(SampleRecord): Increment this if structure changes!
static constexpr uint32_t kPersistentTypeId = 0x8FE6A69F + 1;
// Expected size for 32/64-bit check.
static constexpr size_t kExpectedInstanceSize = 16;
uint64_t id; // Unique identifier of owner.
Sample value; // The value for which this record holds a count.
Count count; // The count associated with the above value.
};
} // namespace
PersistentSampleMap::PersistentSampleMap(
uint64_t id,
PersistentHistogramAllocator* allocator,
Metadata* meta)
: HistogramSamples(id, meta), allocator_(allocator) {}
PersistentSampleMap::~PersistentSampleMap() = default;
void PersistentSampleMap::Accumulate(Sample value, Count count) {
// We have to do the following atomically, because even if the caller is using
// a lock, a separate process (that is not aware of this lock) may
// concurrently modify the value.
subtle::NoBarrier_AtomicIncrement(GetOrCreateSampleCountStorage(value),
count);
IncreaseSumAndCount(strict_cast<int64_t>(count) * value, count);
}
Count PersistentSampleMap::GetCount(Sample value) const {
// Have to override "const" to make sure all samples have been loaded before
// being able to know what value to return.
Count* count_pointer =
const_cast<PersistentSampleMap*>(this)->GetSampleCountStorage(value);
return count_pointer ? subtle::NoBarrier_Load(count_pointer) : 0;
}
Count PersistentSampleMap::TotalCount() const {
// Have to override "const" in order to make sure all samples have been
// loaded before trying to iterate over the map.
const_cast<PersistentSampleMap*>(this)->ImportSamples(
/*until_value=*/std::nullopt);
Count count = 0;
for (const auto& entry : sample_counts_) {
count += subtle::NoBarrier_Load(entry.second);
}
return count;
}
std::unique_ptr<SampleCountIterator> PersistentSampleMap::Iterator() const {
// Have to override "const" in order to make sure all samples have been
// loaded before trying to iterate over the map.
const_cast<PersistentSampleMap*>(this)->ImportSamples(
/*until_value=*/std::nullopt);
return std::make_unique<PersistentSampleMapIterator>(sample_counts_);
}
std::unique_ptr<SampleCountIterator> PersistentSampleMap::ExtractingIterator() {
// Make sure all samples have been loaded before trying to iterate over the
// map.
ImportSamples(/*until_value=*/std::nullopt);
return std::make_unique<ExtractingPersistentSampleMapIterator>(
sample_counts_);
}
bool PersistentSampleMap::IsDefinitelyEmpty() const {
// Not implemented.
NOTREACHED_IN_MIGRATION();
// Always return false. If we are wrong, this will just make the caller
// perform some extra work thinking that |this| is non-empty.
return false;
}
// static
PersistentMemoryAllocator::Reference
PersistentSampleMap::GetNextPersistentRecord(
PersistentMemoryAllocator::Iterator& iterator,
uint64_t* sample_map_id,
Sample* value) {
const SampleRecord* record = iterator.GetNextOfObject<SampleRecord>();
if (!record) {
return 0;
}
*sample_map_id = record->id;
*value = record->value;
return iterator.GetAsReference(record);
}
// static
PersistentMemoryAllocator::Reference
PersistentSampleMap::CreatePersistentRecord(
PersistentMemoryAllocator* allocator,
uint64_t sample_map_id,
Sample value) {
SampleRecord* record = allocator->New<SampleRecord>();
if (!record) {
if (!allocator->IsFull()) {
#if !BUILDFLAG(IS_NACL)
// TODO(crbug.com/40064026): Remove these. They are used to investigate
// unexpected failures.
SCOPED_CRASH_KEY_BOOL("PersistentSampleMap", "corrupted",
allocator->IsCorrupt());
#endif // !BUILDFLAG(IS_NACL)
DUMP_WILL_BE_NOTREACHED() << "corrupt=" << allocator->IsCorrupt();
}
return 0;
}
record->id = sample_map_id;
record->value = value;
record->count = 0;
PersistentMemoryAllocator::Reference ref = allocator->GetAsReference(record);
allocator->MakeIterable(ref);
return ref;
}
bool PersistentSampleMap::AddSubtractImpl(SampleCountIterator* iter,
Operator op) {
Sample min;
int64_t max;
Count count;
for (; !iter->Done(); iter->Next()) {
iter->Get(&min, &max, &count);
if (count == 0)
continue;
if (strict_cast<int64_t>(min) + 1 != max)
return false; // SparseHistogram only supports bucket with size 1.
// We have to do the following atomically, because even if the caller is
// using a lock, a separate process (that is not aware of this lock) may
// concurrently modify the value.
subtle::Barrier_AtomicIncrement(
GetOrCreateSampleCountStorage(min),
(op == HistogramSamples::ADD) ? count : -count);
}
return true;
}
Count* PersistentSampleMap::GetSampleCountStorage(Sample value) {
// If |value| is already in the map, just return that.
auto it = sample_counts_.find(value);
if (it != sample_counts_.end())
return it->second;
// Import any new samples from persistent memory looking for the value.
return ImportSamples(/*until_value=*/value);
}
Count* PersistentSampleMap::GetOrCreateSampleCountStorage(Sample value) {
// Get any existing count storage.
Count* count_pointer = GetSampleCountStorage(value);
if (count_pointer)
return count_pointer;
// Create a new record in persistent memory for the value. |records_| will
// have been initialized by the GetSampleCountStorage() call above.
CHECK(records_);
PersistentMemoryAllocator::Reference ref = records_->CreateNew(value);
if (!ref) {
// If a new record could not be created then the underlying allocator is
// full or corrupt. Instead, allocate the counter from the heap. This
// sample will not be persistent, will not be shared, and will leak...
// but it's better than crashing.
count_pointer = new Count(0);
sample_counts_[value] = count_pointer;
return count_pointer;
}
// A race condition between two independent processes (i.e. two independent
// histogram objects sharing the same sample data) could cause two of the
// above records to be created. The allocator, however, forces a strict
// ordering on iterable objects so use the import method to actually add the
// just-created record. This ensures that all PersistentSampleMap objects
// will always use the same record, whichever was first made iterable.
// Thread-safety within a process where multiple threads use the same
// histogram object is delegated to the controlling histogram object which,
// for sparse histograms, is a lock object.
count_pointer = ImportSamples(/*until_value=*/value);
DCHECK(count_pointer);
return count_pointer;
}
PersistentSampleMapRecords* PersistentSampleMap::GetRecords() {
// The |records_| pointer is lazily fetched from the |allocator_| only on
// first use. Sometimes duplicate histograms are created by race conditions
// and if both were to grab the records object, there would be a conflict.
// Use of a histogram, and thus a call to this method, won't occur until
// after the histogram has been de-dup'd.
if (!records_) {
records_ = allocator_->CreateSampleMapRecords(id());
}
return records_.get();
}
Count* PersistentSampleMap::ImportSamples(std::optional<Sample> until_value) {
std::vector<PersistentMemoryAllocator::Reference> refs;
PersistentSampleMapRecords* records = GetRecords();
while (!(refs = records->GetNextRecords(until_value)).empty()) {
// GetNextRecords() returns a list of new unseen records belonging to this
// map. Iterate through them all and store them internally. Note that if
// |until_value| was found, it will be the last element in |refs|.
for (auto ref : refs) {
SampleRecord* record = records->GetAsObject<SampleRecord>(ref);
if (!record) {
continue;
}
DCHECK_EQ(id(), record->id);
// Check if the record's value is already known.
if (!Contains(sample_counts_, record->value)) {
// No: Add it to map of known values.
sample_counts_[record->value] = &record->count;
} else {
// Yes: Ignore it; it's a duplicate caused by a race condition -- see
// code & comment in GetOrCreateSampleCountStorage() for details.
// Check that nothing ever operated on the duplicate record.
DCHECK_EQ(0, record->count);
}
// Check if it's the value being searched for and, if so, stop here.
// Because race conditions can cause multiple records for a single value,
// be sure to return the first one found.
if (until_value.has_value() && record->value == until_value.value()) {
// Ensure that this was the last value in |refs|.
CHECK_EQ(refs.back(), ref);
return &record->count;
}
}
}
return nullptr;
}
} // namespace base