blob: 83b68093700736c88d086de3d55e5c4d1c66613e [file] [log] [blame]
/*
* Copyright (C) 2005, 2006, 2007, 2008 Apple Inc. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#ifndef WTF_Vector_h
#define WTF_Vector_h
#include "wtf/Alignment.h"
#include "wtf/ConditionalDestructor.h"
#include "wtf/ContainerAnnotations.h"
#include "wtf/Noncopyable.h"
#include "wtf/NotFound.h"
#include "wtf/StdLibExtras.h"
#include "wtf/VectorTraits.h"
#include "wtf/allocator/PartitionAllocator.h"
#include <algorithm>
#include <initializer_list>
#include <iterator>
#include <string.h>
#include <utility>
// For ASAN builds, disable inline buffers completely as they cause various
// issues.
#ifdef ANNOTATE_CONTIGUOUS_CONTAINER
#define INLINE_CAPACITY 0
#else
#define INLINE_CAPACITY inlineCapacity
#endif
namespace WTF {
#if defined(MEMORY_SANITIZER_INITIAL_SIZE)
static const size_t kInitialVectorSize = 1;
#else
#ifndef WTF_VECTOR_INITIAL_SIZE
#define WTF_VECTOR_INITIAL_SIZE 4
#endif
static const size_t kInitialVectorSize = WTF_VECTOR_INITIAL_SIZE;
#endif
template <typename T, size_t inlineBuffer, typename Allocator>
class Deque;
//
// Vector Traits
//
// Bunch of traits for Vector are defined here, with which you can customize
// Vector's behavior. In most cases the default traits are appropriate, so you
// usually don't have to specialize those traits by yourself.
//
// The behavior of the implementation below can be controlled by VectorTraits.
// If you want to change the behavior of your type, take a look at VectorTraits
// (defined in VectorTraits.h), too.
template <bool needsDestruction, typename T>
struct VectorDestructor;
template <typename T>
struct VectorDestructor<false, T> {
STATIC_ONLY(VectorDestructor);
static void destruct(T*, T*) {}
};
template <typename T>
struct VectorDestructor<true, T> {
STATIC_ONLY(VectorDestructor);
static void destruct(T* begin, T* end) {
for (T* cur = begin; cur != end; ++cur)
cur->~T();
}
};
template <bool unusedSlotsMustBeZeroed, typename T>
struct VectorUnusedSlotClearer;
template <typename T>
struct VectorUnusedSlotClearer<false, T> {
STATIC_ONLY(VectorUnusedSlotClearer);
static void clear(T*, T*) {}
#if DCHECK_IS_ON()
static void checkCleared(const T*, const T*) {}
#endif
};
template <typename T>
struct VectorUnusedSlotClearer<true, T> {
STATIC_ONLY(VectorUnusedSlotClearer);
static void clear(T* begin, T* end) {
memset(reinterpret_cast<void*>(begin), 0, sizeof(T) * (end - begin));
}
#if DCHECK_IS_ON()
static void checkCleared(const T* begin, const T* end) {
const unsigned char* unusedArea =
reinterpret_cast<const unsigned char*>(begin);
const unsigned char* endAddress =
reinterpret_cast<const unsigned char*>(end);
DCHECK_GE(endAddress, unusedArea);
for (int i = 0; i < endAddress - unusedArea; ++i)
DCHECK(!unusedArea[i]);
}
#endif
};
template <bool canInitializeWithMemset, typename T>
struct VectorInitializer;
template <typename T>
struct VectorInitializer<false, T> {
STATIC_ONLY(VectorInitializer);
static void initialize(T* begin, T* end) {
for (T* cur = begin; cur != end; ++cur)
new (NotNull, cur) T;
}
};
template <typename T>
struct VectorInitializer<true, T> {
STATIC_ONLY(VectorInitializer);
static void initialize(T* begin, T* end) {
memset(begin, 0,
reinterpret_cast<char*>(end) - reinterpret_cast<char*>(begin));
}
};
template <bool canMoveWithMemcpy, typename T>
struct VectorMover;
template <typename T>
struct VectorMover<false, T> {
STATIC_ONLY(VectorMover);
static void move(T* src, T* srcEnd, T* dst) {
while (src != srcEnd) {
new (NotNull, dst) T(std::move(*src));
src->~T();
++dst;
++src;
}
}
static void moveOverlapping(T* src, T* srcEnd, T* dst) {
if (src > dst) {
move(src, srcEnd, dst);
} else {
T* dstEnd = dst + (srcEnd - src);
while (src != srcEnd) {
--srcEnd;
--dstEnd;
new (NotNull, dstEnd) T(std::move(*srcEnd));
srcEnd->~T();
}
}
}
static void swap(T* src, T* srcEnd, T* dst) {
std::swap_ranges(src, srcEnd, dst);
}
};
template <typename T>
struct VectorMover<true, T> {
STATIC_ONLY(VectorMover);
static void move(const T* src, const T* srcEnd, T* dst) {
if (LIKELY(dst && src))
memcpy(dst, src, reinterpret_cast<const char*>(srcEnd) -
reinterpret_cast<const char*>(src));
}
static void moveOverlapping(const T* src, const T* srcEnd, T* dst) {
if (LIKELY(dst && src))
memmove(dst, src, reinterpret_cast<const char*>(srcEnd) -
reinterpret_cast<const char*>(src));
}
static void swap(T* src, T* srcEnd, T* dst) {
std::swap_ranges(reinterpret_cast<char*>(src),
reinterpret_cast<char*>(srcEnd),
reinterpret_cast<char*>(dst));
}
};
template <bool canCopyWithMemcpy, typename T>
struct VectorCopier;
template <typename T>
struct VectorCopier<false, T> {
STATIC_ONLY(VectorCopier);
template <typename U>
static void uninitializedCopy(const U* src, const U* srcEnd, T* dst) {
while (src != srcEnd) {
new (NotNull, dst) T(*src);
++dst;
++src;
}
}
};
template <typename T>
struct VectorCopier<true, T> {
STATIC_ONLY(VectorCopier);
static void uninitializedCopy(const T* src, const T* srcEnd, T* dst) {
if (LIKELY(dst && src))
memcpy(dst, src, reinterpret_cast<const char*>(srcEnd) -
reinterpret_cast<const char*>(src));
}
template <typename U>
static void uninitializedCopy(const U* src, const U* srcEnd, T* dst) {
VectorCopier<false, T>::uninitializedCopy(src, srcEnd, dst);
}
};
template <bool canFillWithMemset, typename T>
struct VectorFiller;
template <typename T>
struct VectorFiller<false, T> {
STATIC_ONLY(VectorFiller);
static void uninitializedFill(T* dst, T* dstEnd, const T& val) {
while (dst != dstEnd) {
new (NotNull, dst) T(val);
++dst;
}
}
};
template <typename T>
struct VectorFiller<true, T> {
STATIC_ONLY(VectorFiller);
static void uninitializedFill(T* dst, T* dstEnd, const T& val) {
static_assert(sizeof(T) == sizeof(char), "size of type should be one");
#if COMPILER(GCC) && defined(_FORTIFY_SOURCE)
if (!__builtin_constant_p(dstEnd - dst) || (!(dstEnd - dst)))
memset(dst, val, dstEnd - dst);
#else
memset(dst, val, dstEnd - dst);
#endif
}
};
template <bool canCompareWithMemcmp, typename T>
struct VectorComparer;
template <typename T>
struct VectorComparer<false, T> {
STATIC_ONLY(VectorComparer);
static bool compare(const T* a, const T* b, size_t size) {
DCHECK(a);
DCHECK(b);
return std::equal(a, a + size, b);
}
};
template <typename T>
struct VectorComparer<true, T> {
STATIC_ONLY(VectorComparer);
static bool compare(const T* a, const T* b, size_t size) {
DCHECK(a);
DCHECK(b);
return memcmp(a, b, sizeof(T) * size) == 0;
}
};
template <typename T>
struct VectorElementComparer {
STATIC_ONLY(VectorElementComparer);
template <typename U>
static bool compareElement(const T& left, const U& right) {
return left == right;
}
};
template <typename T>
struct VectorElementComparer<std::unique_ptr<T>> {
STATIC_ONLY(VectorElementComparer);
template <typename U>
static bool compareElement(const std::unique_ptr<T>& left, const U& right) {
return left.get() == right;
}
};
// A collection of all the traits used by Vector. This is basically an
// implementation detail of Vector, and you probably don't want to change this.
// If you want to customize Vector's behavior, you should specialize
// VectorTraits instead (defined in VectorTraits.h).
template <typename T>
struct VectorTypeOperations {
STATIC_ONLY(VectorTypeOperations);
static void destruct(T* begin, T* end) {
VectorDestructor<VectorTraits<T>::needsDestruction, T>::destruct(begin,
end);
}
static void initialize(T* begin, T* end) {
VectorInitializer<VectorTraits<T>::canInitializeWithMemset, T>::initialize(
begin, end);
}
static void move(T* src, T* srcEnd, T* dst) {
VectorMover<VectorTraits<T>::canMoveWithMemcpy, T>::move(src, srcEnd, dst);
}
static void moveOverlapping(T* src, T* srcEnd, T* dst) {
VectorMover<VectorTraits<T>::canMoveWithMemcpy, T>::moveOverlapping(
src, srcEnd, dst);
}
static void swap(T* src, T* srcEnd, T* dst) {
VectorMover<VectorTraits<T>::canMoveWithMemcpy, T>::swap(src, srcEnd, dst);
}
static void uninitializedCopy(const T* src, const T* srcEnd, T* dst) {
VectorCopier<VectorTraits<T>::canCopyWithMemcpy, T>::uninitializedCopy(
src, srcEnd, dst);
}
static void uninitializedFill(T* dst, T* dstEnd, const T& val) {
VectorFiller<VectorTraits<T>::canFillWithMemset, T>::uninitializedFill(
dst, dstEnd, val);
}
static bool compare(const T* a, const T* b, size_t size) {
return VectorComparer<VectorTraits<T>::canCompareWithMemcmp, T>::compare(
a, b, size);
}
template <typename U>
static bool compareElement(const T& left, U&& right) {
return VectorElementComparer<T>::compareElement(left,
std::forward<U>(right));
}
};
//
// VectorBuffer
//
// VectorBuffer is an implementation detail of Vector and Deque. It manages
// Vector's underlying buffer, and does operations like allocation or
// expansion.
//
// Not meant for general consumption.
template <typename T, bool hasInlineCapacity, typename Allocator>
class VectorBufferBase {
WTF_MAKE_NONCOPYABLE(VectorBufferBase);
DISALLOW_NEW();
public:
void allocateBuffer(size_t newCapacity) {
DCHECK(newCapacity);
DCHECK_LE(newCapacity,
Allocator::template maxElementCountInBackingStore<T>());
size_t sizeToAllocate = allocationSize(newCapacity);
if (hasInlineCapacity)
m_buffer =
Allocator::template allocateInlineVectorBacking<T>(sizeToAllocate);
else
m_buffer = Allocator::template allocateVectorBacking<T>(sizeToAllocate);
m_capacity = sizeToAllocate / sizeof(T);
}
void allocateExpandedBuffer(size_t newCapacity) {
DCHECK(newCapacity);
size_t sizeToAllocate = allocationSize(newCapacity);
if (hasInlineCapacity)
m_buffer =
Allocator::template allocateInlineVectorBacking<T>(sizeToAllocate);
else
m_buffer =
Allocator::template allocateExpandedVectorBacking<T>(sizeToAllocate);
m_capacity = sizeToAllocate / sizeof(T);
}
size_t allocationSize(size_t capacity) const {
return Allocator::template quantizedSize<T>(capacity);
}
T* buffer() { return m_buffer; }
const T* buffer() const { return m_buffer; }
size_t capacity() const { return m_capacity; }
void clearUnusedSlots(T* from, T* to) {
// If the vector backing is garbage-collected and needs tracing or
// finalizing, we clear out the unused slots so that the visitor or the
// finalizer does not cause a problem when visiting the unused slots.
VectorUnusedSlotClearer<
Allocator::isGarbageCollected &&
(VectorTraits<T>::needsDestruction ||
IsTraceableInCollectionTrait<VectorTraits<T>>::value),
T>::clear(from, to);
}
void checkUnusedSlots(const T* from, const T* to) {
#if DCHECK_IS_ON() && !defined(ANNOTATE_CONTIGUOUS_CONTAINER)
VectorUnusedSlotClearer<
Allocator::isGarbageCollected &&
(VectorTraits<T>::needsDestruction ||
IsTraceableInCollectionTrait<VectorTraits<T>>::value),
T>::checkCleared(from, to);
#endif
}
// |end| is exclusive, a la STL.
struct OffsetRange final {
OffsetRange() : begin(0), end(0) {}
explicit OffsetRange(size_t begin, size_t end) : begin(begin), end(end) {
DCHECK_LE(begin, end);
}
bool empty() const { return begin == end; }
size_t begin;
size_t end;
};
protected:
VectorBufferBase() : m_buffer(nullptr), m_capacity(0) {}
VectorBufferBase(T* buffer, size_t capacity)
: m_buffer(buffer), m_capacity(capacity) {}
T* m_buffer;
unsigned m_capacity;
unsigned m_size;
};
template <typename T,
size_t inlineCapacity,
typename Allocator = PartitionAllocator>
class VectorBuffer;
template <typename T, typename Allocator>
class VectorBuffer<T, 0, Allocator>
: protected VectorBufferBase<T, false, Allocator> {
private:
using Base = VectorBufferBase<T, false, Allocator>;
public:
using OffsetRange = typename Base::OffsetRange;
VectorBuffer() {}
explicit VectorBuffer(size_t capacity) {
// Calling malloc(0) might take a lock and may actually do an allocation
// on some systems.
if (capacity)
allocateBuffer(capacity);
}
void destruct() {
deallocateBuffer(m_buffer);
m_buffer = nullptr;
}
void deallocateBuffer(T* bufferToDeallocate) {
Allocator::freeVectorBacking(bufferToDeallocate);
}
bool expandBuffer(size_t newCapacity) {
size_t sizeToAllocate = allocationSize(newCapacity);
if (Allocator::expandVectorBacking(m_buffer, sizeToAllocate)) {
m_capacity = sizeToAllocate / sizeof(T);
return true;
}
return false;
}
inline bool shrinkBuffer(size_t newCapacity) {
DCHECK_LT(newCapacity, capacity());
size_t sizeToAllocate = allocationSize(newCapacity);
if (Allocator::shrinkVectorBacking(m_buffer, allocationSize(capacity()),
sizeToAllocate)) {
m_capacity = sizeToAllocate / sizeof(T);
return true;
}
return false;
}
void resetBufferPointer() {
m_buffer = nullptr;
m_capacity = 0;
}
// See the other specialization for the meaning of |thisHole| and |otherHole|.
// They are irrelevant in this case.
void swapVectorBuffer(VectorBuffer<T, 0, Allocator>& other,
OffsetRange thisHole,
OffsetRange otherHole) {
static_assert(VectorTraits<T>::canSwapUsingCopyOrMove,
"Cannot swap HeapVectors of TraceWrapperMembers.");
std::swap(m_buffer, other.m_buffer);
std::swap(m_capacity, other.m_capacity);
std::swap(m_size, other.m_size);
}
using Base::allocateBuffer;
using Base::allocationSize;
using Base::buffer;
using Base::capacity;
using Base::clearUnusedSlots;
using Base::checkUnusedSlots;
bool hasOutOfLineBuffer() const {
// When inlineCapacity is 0 we have an out of line buffer if we have a
// buffer.
return buffer();
}
T** bufferSlot() { return &m_buffer; }
protected:
using Base::m_size;
private:
using Base::m_buffer;
using Base::m_capacity;
};
template <typename T, size_t inlineCapacity, typename Allocator>
class VectorBuffer : protected VectorBufferBase<T, true, Allocator> {
WTF_MAKE_NONCOPYABLE(VectorBuffer);
private:
using Base = VectorBufferBase<T, true, Allocator>;
public:
using OffsetRange = typename Base::OffsetRange;
VectorBuffer() : Base(inlineBuffer(), inlineCapacity) {}
explicit VectorBuffer(size_t capacity)
: Base(inlineBuffer(), inlineCapacity) {
if (capacity > inlineCapacity)
Base::allocateBuffer(capacity);
}
void destruct() {
deallocateBuffer(m_buffer);
m_buffer = nullptr;
}
NEVER_INLINE void reallyDeallocateBuffer(T* bufferToDeallocate) {
Allocator::freeInlineVectorBacking(bufferToDeallocate);
}
void deallocateBuffer(T* bufferToDeallocate) {
if (UNLIKELY(bufferToDeallocate != inlineBuffer()))
reallyDeallocateBuffer(bufferToDeallocate);
}
bool expandBuffer(size_t newCapacity) {
DCHECK_GT(newCapacity, inlineCapacity);
if (m_buffer == inlineBuffer())
return false;
size_t sizeToAllocate = allocationSize(newCapacity);
if (Allocator::expandInlineVectorBacking(m_buffer, sizeToAllocate)) {
m_capacity = sizeToAllocate / sizeof(T);
return true;
}
return false;
}
inline bool shrinkBuffer(size_t newCapacity) {
DCHECK_LT(newCapacity, capacity());
if (newCapacity <= inlineCapacity) {
// We need to switch to inlineBuffer. Vector::shrinkCapacity will
// handle it.
return false;
}
DCHECK_NE(m_buffer, inlineBuffer());
size_t newSize = allocationSize(newCapacity);
if (!Allocator::shrinkInlineVectorBacking(
m_buffer, allocationSize(capacity()), newSize))
return false;
m_capacity = newSize / sizeof(T);
return true;
}
void resetBufferPointer() {
m_buffer = inlineBuffer();
m_capacity = inlineCapacity;
}
void allocateBuffer(size_t newCapacity) {
// FIXME: This should DCHECK(!m_buffer) to catch misuse/leaks.
if (newCapacity > inlineCapacity)
Base::allocateBuffer(newCapacity);
else
resetBufferPointer();
}
void allocateExpandedBuffer(size_t newCapacity) {
if (newCapacity > inlineCapacity)
Base::allocateExpandedBuffer(newCapacity);
else
resetBufferPointer();
}
size_t allocationSize(size_t capacity) const {
if (capacity <= inlineCapacity)
return m_inlineBufferSize;
return Base::allocationSize(capacity);
}
// Swap two vector buffers, both of which have the same non-zero inline
// capacity.
//
// If the data is in an out-of-line buffer, we can just pass the pointers
// across the two buffers. If the data is in an inline buffer, we need to
// either swap or move each element, depending on whether each slot is
// occupied or not.
//
// Further complication comes from the fact that VectorBuffer is also used as
// the backing store of a Deque. Deque allocates the objects like a ring
// buffer, so there may be a "hole" (unallocated region) in the middle of the
// buffer. This function assumes elements in a range [m_buffer, m_buffer +
// m_size) are all allocated except for elements within |thisHole|. The same
// applies for |other.m_buffer| and |otherHole|.
void swapVectorBuffer(VectorBuffer<T, inlineCapacity, Allocator>& other,
OffsetRange thisHole,
OffsetRange otherHole) {
using TypeOperations = VectorTypeOperations<T>;
static_assert(VectorTraits<T>::canSwapUsingCopyOrMove,
"Cannot swap HeapVectors of TraceWrapperMembers.");
if (buffer() != inlineBuffer() && other.buffer() != other.inlineBuffer()) {
// The easiest case: both buffers are non-inline. We just need to swap the
// pointers.
std::swap(m_buffer, other.m_buffer);
std::swap(m_capacity, other.m_capacity);
std::swap(m_size, other.m_size);
return;
}
Allocator::enterGCForbiddenScope();
// Otherwise, we at least need to move some elements from one inline buffer
// to another.
//
// Terminology: "source" is a place from which elements are copied, and
// "destination" is a place to which elements are copied. thisSource or
// otherSource can be empty (represented by nullptr) when this range or
// other range is in an out-of-line buffer.
//
// We first record which range needs to get moved and where elements in such
// a range will go. Elements in an inline buffer will go to the other
// buffer's inline buffer. Elements in an out-of-line buffer won't move,
// because we can just swap pointers of out-of-line buffers.
T* thisSourceBegin = nullptr;
size_t thisSourceSize = 0;
T* thisDestinationBegin = nullptr;
if (buffer() == inlineBuffer()) {
thisSourceBegin = buffer();
thisSourceSize = m_size;
thisDestinationBegin = other.inlineBuffer();
if (!thisHole.empty()) { // Sanity check.
DCHECK_LT(thisHole.begin, thisHole.end);
DCHECK_LE(thisHole.end, thisSourceSize);
}
} else {
// We don't need the hole information for an out-of-line buffer.
thisHole.begin = thisHole.end = 0;
}
T* otherSourceBegin = nullptr;
size_t otherSourceSize = 0;
T* otherDestinationBegin = nullptr;
if (other.buffer() == other.inlineBuffer()) {
otherSourceBegin = other.buffer();
otherSourceSize = other.m_size;
otherDestinationBegin = inlineBuffer();
if (!otherHole.empty()) {
DCHECK_LT(otherHole.begin, otherHole.end);
DCHECK_LE(otherHole.end, otherSourceSize);
}
} else {
otherHole.begin = otherHole.end = 0;
}
// Next, we mutate members and do other bookkeeping. We do pointer swapping
// (for out-of-line buffers) here if we can. From now on, don't assume
// buffer() or capacity() maintains their original values.
std::swap(m_capacity, other.m_capacity);
if (thisSourceBegin &&
!otherSourceBegin) { // Our buffer is inline, theirs is not.
DCHECK_EQ(buffer(), inlineBuffer());
DCHECK_NE(other.buffer(), other.inlineBuffer());
ANNOTATE_DELETE_BUFFER(m_buffer, inlineCapacity, m_size);
m_buffer = other.buffer();
other.m_buffer = other.inlineBuffer();
std::swap(m_size, other.m_size);
ANNOTATE_NEW_BUFFER(other.m_buffer, inlineCapacity, other.m_size);
} else if (!thisSourceBegin &&
otherSourceBegin) { // Their buffer is inline, ours is not.
DCHECK_NE(buffer(), inlineBuffer());
DCHECK_EQ(other.buffer(), other.inlineBuffer());
ANNOTATE_DELETE_BUFFER(other.m_buffer, inlineCapacity, other.m_size);
other.m_buffer = buffer();
m_buffer = inlineBuffer();
std::swap(m_size, other.m_size);
ANNOTATE_NEW_BUFFER(m_buffer, inlineCapacity, m_size);
} else { // Both buffers are inline.
DCHECK(thisSourceBegin);
DCHECK(otherSourceBegin);
DCHECK_EQ(buffer(), inlineBuffer());
DCHECK_EQ(other.buffer(), other.inlineBuffer());
ANNOTATE_CHANGE_SIZE(m_buffer, inlineCapacity, m_size, other.m_size);
ANNOTATE_CHANGE_SIZE(other.m_buffer, inlineCapacity, other.m_size,
m_size);
std::swap(m_size, other.m_size);
}
// We are ready to move elements. We determine an action for each "section",
// which is a contiguous range such that all elements in the range are
// treated similarly.
size_t sectionBegin = 0;
while (sectionBegin < inlineCapacity) {
// To determine the end of this section, we list up all the boundaries
// where the "occupiedness" may change.
size_t sectionEnd = inlineCapacity;
if (thisSourceBegin && sectionBegin < thisSourceSize)
sectionEnd = std::min(sectionEnd, thisSourceSize);
if (!thisHole.empty() && sectionBegin < thisHole.begin)
sectionEnd = std::min(sectionEnd, thisHole.begin);
if (!thisHole.empty() && sectionBegin < thisHole.end)
sectionEnd = std::min(sectionEnd, thisHole.end);
if (otherSourceBegin && sectionBegin < otherSourceSize)
sectionEnd = std::min(sectionEnd, otherSourceSize);
if (!otherHole.empty() && sectionBegin < otherHole.begin)
sectionEnd = std::min(sectionEnd, otherHole.begin);
if (!otherHole.empty() && sectionBegin < otherHole.end)
sectionEnd = std::min(sectionEnd, otherHole.end);
DCHECK_LT(sectionBegin, sectionEnd);
// Is the |sectionBegin|-th element of |thisSource| occupied?
bool thisOccupied = false;
if (thisSourceBegin && sectionBegin < thisSourceSize) {
// Yes, it's occupied, unless the position is in a hole.
if (thisHole.empty() || sectionBegin < thisHole.begin ||
sectionBegin >= thisHole.end)
thisOccupied = true;
}
bool otherOccupied = false;
if (otherSourceBegin && sectionBegin < otherSourceSize) {
if (otherHole.empty() || sectionBegin < otherHole.begin ||
sectionBegin >= otherHole.end)
otherOccupied = true;
}
if (thisOccupied && otherOccupied) {
// Both occupied; swap them. In this case, one's destination must be the
// other's source (i.e. both ranges are in inline buffers).
DCHECK_EQ(thisDestinationBegin, otherSourceBegin);
DCHECK_EQ(otherDestinationBegin, thisSourceBegin);
TypeOperations::swap(thisSourceBegin + sectionBegin,
thisSourceBegin + sectionEnd,
otherSourceBegin + sectionBegin);
} else if (thisOccupied) {
// Move from ours to theirs.
TypeOperations::move(thisSourceBegin + sectionBegin,
thisSourceBegin + sectionEnd,
thisDestinationBegin + sectionBegin);
Base::clearUnusedSlots(thisSourceBegin + sectionBegin,
thisSourceBegin + sectionEnd);
} else if (otherOccupied) {
// Move from theirs to ours.
TypeOperations::move(otherSourceBegin + sectionBegin,
otherSourceBegin + sectionEnd,
otherDestinationBegin + sectionBegin);
Base::clearUnusedSlots(otherSourceBegin + sectionBegin,
otherSourceBegin + sectionEnd);
} else {
// Both empty; nothing to do.
}
sectionBegin = sectionEnd;
}
Allocator::leaveGCForbiddenScope();
}
using Base::buffer;
using Base::capacity;
bool hasOutOfLineBuffer() const {
return buffer() && buffer() != inlineBuffer();
}
T** bufferSlot() { return &m_buffer; }
protected:
using Base::m_size;
private:
using Base::m_buffer;
using Base::m_capacity;
static const size_t m_inlineBufferSize = inlineCapacity * sizeof(T);
T* inlineBuffer() { return reinterpret_cast_ptr<T*>(m_inlineBuffer.buffer); }
const T* inlineBuffer() const {
return reinterpret_cast_ptr<const T*>(m_inlineBuffer.buffer);
}
AlignedBuffer<m_inlineBufferSize, WTF_ALIGN_OF(T)> m_inlineBuffer;
template <typename U, size_t inlineBuffer, typename V>
friend class Deque;
};
//
// Vector
//
// Vector is a container that works just like std::vector. WTF's Vector has
// several extra functionalities: inline buffer, behavior customization via
// traits, and Oilpan support. Those are explained in the sections below.
//
// Vector is the most basic container, which stores its element in a contiguous
// buffer. The buffer is expanded automatically when necessary. The elements
// are automatically moved to the new buffer. This event is called a
// reallocation. A reallocation takes O(N)-time (N = number of elements), but
// its occurrences are rare, so its time cost should not be significant,
// compared to the time cost of other operations to the vector.
//
// Time complexity of key operations is as follows:
//
// * Indexed access -- O(1)
// * Insertion or removal of an element at the end -- amortized O(1)
// * Other insertion or removal -- O(N)
// * Swapping with another vector -- O(1)
//
// 1. Iterator invalidation semantics
//
// Vector provides STL-compatible iterators and reverse iterators. Iterators
// are _invalidated_ on certain occasions. Reading an invalidated iterator
// causes undefined behavior.
//
// Iterators are invalidated on the following situations:
//
// * When a reallocation happens on a vector, all the iterators for that
// vector will be invalidated.
// * Some member functions invalidate part of the existing iterators for
// the vector; see comments on the individual functions.
// * [Oilpan only] Heap compaction invalidates all the iterators for any
// HeapVectors. This means you can only store an iterator on stack, as
// a local variable.
//
// In this context, pointers or references to an element of a Vector are
// essentially equivalent to iterators, in that they also become invalid
// whenever corresponding iterators are invalidated.
//
// 2. Inline buffer
//
// Vectors may have an _inline buffer_. An inline buffer is a storage area
// that is contained in the vector itself, along with other metadata like
// m_size. It is used as a storage space when the vector's elements fit in
// that space. If the inline buffer becomes full and further space is
// necessary, an out-of-line buffer is allocated in the heap, and it will
// take over the role of the inline buffer.
//
// The existence of an inline buffer is indicated by non-zero |inlineCapacity|
// template argument. The value represents the number of elements that can be
// stored in the inline buffer. Zero |inlineCapacity| means the vector has no
// inline buffer.
//
// An inline buffer increases the size of the Vector instances, and, in trade
// for that, it gives you several performance benefits, as long as the number
// of elements do not exceed |inlineCapacity|:
//
// * No heap allocation will be made.
// * Memory locality will improve.
//
// Generally, having an inline buffer is useful for vectors that (1) are
// frequently accessed or modified, and (2) contain only a few elements at
// most.
//
// 3. Behavior customization
//
// You usually do not need to customize Vector's behavior, since the default
// behavior is appropriate for normal usage. The behavior is controlled by
// VectorTypeOperations traits template above. Read VectorTypeOperations
// and VectorTraits if you want to change the behavior for your types (i.e.
// if you really want faster vector operations).
//
// The default traits basically do the following:
//
// * Skip constructor call and fill zeros with memset for simple types;
// * Skip destructor call for simple types;
// * Copy or move by memcpy for simple types; and
// * Customize the comparisons for smart pointer types, so you can look
// up a std::unique_ptr<T> element with a raw pointer, for instance.
//
// 4. Oilpan
//
// If you want to store garbage collected objects in Vector, (1) use HeapVector
// (defined in HeapAllocator.h) instead of Vector, and (2) make sure your
// garbage-collected type is wrapped with Member, like:
//
// HeapVector<Member<Node>> nodes;
//
// Unlike normal garbage-collected objects, a HeapVector object itself is
// NOT a garbage-collected object, but its backing buffer is allocated in
// Oilpan heap, and it may still carry garbage-collected objects.
//
// Even though a HeapVector object is not garbage-collected, you still need
// to trace it, if you stored it in your class. Also, you can allocate it
// as a local variable. This is useful when you want to build a vector locally
// and put it in an on-heap vector with swap().
//
// Also, heap compaction, which may happen at any time when Blink code is not
// running (i.e. Blink code does not appear in the call stack), may invalidate
// existing iterators for any HeapVectors. So, essentially, you should always
// allocate an iterator on stack (as a local variable), and you should not
// store iterators in another heap object.
template <typename T,
size_t inlineCapacity = 0,
typename Allocator = PartitionAllocator>
class Vector
: private VectorBuffer<T, INLINE_CAPACITY, Allocator>,
// Heap-allocated vectors with no inlineCapacity never need a destructor.
public ConditionalDestructor<Vector<T, INLINE_CAPACITY, Allocator>,
(INLINE_CAPACITY == 0) &&
Allocator::isGarbageCollected> {
USE_ALLOCATOR(Vector, Allocator);
using Base = VectorBuffer<T, INLINE_CAPACITY, Allocator>;
using TypeOperations = VectorTypeOperations<T>;
using OffsetRange = typename Base::OffsetRange;
public:
using ValueType = T;
using value_type = T;
using iterator = T*;
using const_iterator = const T*;
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
// Create an empty vector.
inline Vector();
// Create a vector containing the specified number of default-initialized
// elements.
inline explicit Vector(size_t);
// Create a vector containing the specified number of elements, each of which
// is copy initialized from the specified value.
inline Vector(size_t, const T&);
// Copying.
Vector(const Vector&);
template <size_t otherCapacity>
explicit Vector(const Vector<T, otherCapacity, Allocator>&);
Vector& operator=(const Vector&);
template <size_t otherCapacity>
Vector& operator=(const Vector<T, otherCapacity, Allocator>&);
// Moving.
Vector(Vector&&);
Vector& operator=(Vector&&);
// Construct with an initializer list. You can do e.g.
// Vector<int> v({1, 2, 3});
// or
// v = {4, 5, 6};
Vector(std::initializer_list<T> elements);
Vector& operator=(std::initializer_list<T> elements);
// Basic inquiry about the vector's state.
//
// capacity() is the maximum number of elements that the Vector can hold
// without a reallocation. It can be zero.
size_t size() const { return m_size; }
size_t capacity() const { return Base::capacity(); }
bool isEmpty() const { return !size(); }
// at() and operator[]: Obtain the reference of the element that is located
// at the given index. The reference may be invalidated on a reallocation.
//
// at() can be used in cases like:
// pointerToVector->at(1);
// instead of:
// (*pointerToVector)[1];
T& at(size_t i) {
RELEASE_ASSERT(i < size());
return Base::buffer()[i];
}
const T& at(size_t i) const {
RELEASE_ASSERT(i < size());
return Base::buffer()[i];
}
T& operator[](size_t i) { return at(i); }
const T& operator[](size_t i) const { return at(i); }
// Return a pointer to the front of the backing buffer. Those pointers get
// invalidated on a reallocation.
T* data() { return Base::buffer(); }
const T* data() const { return Base::buffer(); }
// Iterators and reverse iterators. They are invalidated on a reallocation.
iterator begin() { return data(); }
iterator end() { return begin() + m_size; }
const_iterator begin() const { return data(); }
const_iterator end() const { return begin() + m_size; }
reverse_iterator rbegin() { return reverse_iterator(end()); }
reverse_iterator rend() { return reverse_iterator(begin()); }
const_reverse_iterator rbegin() const {
return const_reverse_iterator(end());
}
const_reverse_iterator rend() const {
return const_reverse_iterator(begin());
}
// Quick access to the first and the last element. It is invalid to call
// these functions when the vector is empty.
T& front() { return at(0); }
const T& front() const { return at(0); }
T& back() { return at(size() - 1); }
const T& back() const { return at(size() - 1); }
// Searching.
//
// Comparisons are done in terms of compareElement(), which is usually
// operator==(). find() and reverseFind() returns an index of the element
// that is found first. If no match is found, kNotFound will be returned.
template <typename U>
bool contains(const U&) const;
template <typename U>
size_t find(const U&) const;
template <typename U>
size_t reverseFind(const U&) const;
// Resize the vector to the specified size.
//
// These three functions are essentially similar. They differ in that
// (1) shrink() has a DCHECK to make sure the specified size is not more than
// size(), and (2) grow() has a DCHECK to make sure the specified size is
// not less than size().
//
// When a vector shrinks, the extra elements in the back will be destructed.
// All the iterators pointing to a to-be-destructed element will be
// invalidated.
//
// When a vector grows, new elements will be added in the back, and they
// will be default-initialized. A reallocation may happen in this case.
void shrink(size_t);
void grow(size_t);
void resize(size_t);
// Increase the capacity of the vector to at least |newCapacity|. The
// elements in the vector are not affected. This function does not shrink
// the size of the backing buffer, even if |newCapacity| is small. This
// function may cause a reallocation.
void reserveCapacity(size_t newCapacity);
// This is similar to reserveCapacity() but must be called immediately after
// the vector is default-constructed.
void reserveInitialCapacity(size_t initialCapacity);
// Shrink the backing buffer so it can contain exactly |size()| elements.
// This function may cause a reallocation.
void shrinkToFit() { shrinkCapacity(size()); }
// Shrink the backing buffer if at least 50% of the vector's capacity is
// unused. If it shrinks, the new buffer contains roughly 25% of unused
// space. This function may cause a reallocation.
void shrinkToReasonableCapacity() {
if (size() * 2 < capacity())
shrinkCapacity(size() + size() / 4 + 1);
}
// Remove all the elements. This function actually releases the backing
// buffer, thus any iterators will get invalidated (including begin()).
void clear() { shrinkCapacity(0); }
// Insertion to the back. All of these functions except uncheckedAppend() may
// cause a reallocation.
//
// push_back(value)
// Insert a single element to the back.
// emplace_back(args...)
// Insert a single element constructed as T(args...) to the back. The
// element is constructed directly on the backing buffer with placement
// new.
// append(buffer, size)
// appendVector(vector)
// appendRange(begin, end)
// Insert multiple elements represented by (1) |buffer| and |size|
// (for append), (2) |vector| (for appendVector), or (3) a pair of
// iterators (for appendRange) to the back. The elements will be copied.
// uncheckedAppend(value)
// Insert a single element like push_back(), but this function assumes
// the vector has enough capacity such that it can store the new element
// without a reallocation. Using this function could improve the
// performance when you append many elements repeatedly.
template <typename U>
void push_back(U&&);
template <typename... Args>
T& emplace_back(Args&&...);
ALWAYS_INLINE T& emplace_back() {
grow(m_size + 1);
return back();
}
template <typename U>
void append(const U*, size_t);
template <typename U, size_t otherCapacity, typename V>
void appendVector(const Vector<U, otherCapacity, V>&);
template <typename Iterator>
void appendRange(Iterator begin, Iterator end);
template <typename U>
void uncheckedAppend(U&&);
// Insertion to an arbitrary position. All of these functions will take
// O(size())-time. All of the elements after |position| will be moved to
// the new locations. |position| must be no more than size(). All of these
// functions may cause a reallocation. In any case, all the iterators
// pointing to an element after |position| will be invalidated.
//
// insert(position, value)
// Insert a single element at |position|.
// insert(position, buffer, size)
// insert(position, vector)
// Insert multiple elements represented by either |buffer| and |size|
// or |vector| at |position|. The elements will be copied.
//
// TODO(yutak): Why not insertVector()?
template <typename U>
void insert(size_t position, U&&);
template <typename U>
void insert(size_t position, const U*, size_t);
template <typename U, size_t otherCapacity, typename OtherAllocator>
void insert(size_t position, const Vector<U, otherCapacity, OtherAllocator>&);
// Insertion to the front. All of these functions will take O(size())-time.
// All of the elements in the vector will be moved to the new locations.
// All of these functions may cause a reallocation. In any case, all the
// iterators pointing to any element in the vector will be invalidated.
//
// prepend(value)
// Insert a single element to the front.
// prepend(buffer, size)
// prependVector(vector)
// Insert multiple elements represented by either |buffer| and |size| or
// |vector| to the front. The elements will be copied.
template <typename U>
void prepend(U&&);
template <typename U>
void prepend(const U*, size_t);
template <typename U, size_t otherCapacity, typename OtherAllocator>
void prependVector(const Vector<U, otherCapacity, OtherAllocator>&);
// Remove an element or elements at the specified position. These functions
// take O(size())-time. All of the elements after the removed ones will be
// moved to the new locations. All the iterators pointing to any element
// after |position| will be invalidated.
void remove(size_t position);
void remove(size_t position, size_t length);
// Remove the last element. Unlike remove(), (1) this function is fast, and
// (2) only iterators pointing to the last element will be invalidated. Other
// references will remain valid.
void pop_back() {
DCHECK(!isEmpty());
shrink(size() - 1);
}
// Filling the vector with the same value. If the vector has shrinked or
// growed as a result of this call, those events may invalidate some
// iterators. See comments for shrink() and grow().
//
// fill(value, size) will resize the Vector to |size|, and then copy-assign
// or copy-initialize all the elements.
//
// fill(value) is a synonym for fill(value, size()).
void fill(const T&, size_t);
void fill(const T& val) { fill(val, size()); }
// Swap two vectors quickly.
void swap(Vector& other) {
Base::swapVectorBuffer(other, OffsetRange(), OffsetRange());
}
// Reverse the contents.
void reverse();
// Maximum element count supported; allocating a vector
// buffer with a larger count will fail.
static size_t maxCapacity() {
return Allocator::template maxElementCountInBackingStore<T>();
}
// Off-GC-heap vectors: Destructor should be called.
// On-GC-heap vectors: Destructor should be called for inline buffers (if
// any) but destructor shouldn't be called for vector backing since it is
// managed by the traced GC heap.
void finalize() {
if (!INLINE_CAPACITY) {
if (LIKELY(!Base::buffer()))
return;
}
ANNOTATE_DELETE_BUFFER(begin(), capacity(), m_size);
if (LIKELY(m_size) &&
!(Allocator::isGarbageCollected && this->hasOutOfLineBuffer())) {
TypeOperations::destruct(begin(), end());
m_size = 0; // Partial protection against use-after-free.
}
Base::destruct();
}
void finalizeGarbageCollectedObject() { finalize(); }
template <typename VisitorDispatcher>
void trace(VisitorDispatcher);
class GCForbiddenScope {
STACK_ALLOCATED();
public:
GCForbiddenScope() { Allocator::enterGCForbiddenScope(); }
~GCForbiddenScope() { Allocator::leaveGCForbiddenScope(); }
};
protected:
using Base::checkUnusedSlots;
using Base::clearUnusedSlots;
private:
void expandCapacity(size_t newMinCapacity);
T* expandCapacity(size_t newMinCapacity, T*);
T* expandCapacity(size_t newMinCapacity, const T* data) {
return expandCapacity(newMinCapacity, const_cast<T*>(data));
}
template <typename U>
U* expandCapacity(size_t newMinCapacity, U*);
void shrinkCapacity(size_t newCapacity);
template <typename U>
void appendSlowCase(U&&);
using Base::m_size;
using Base::buffer;
using Base::swapVectorBuffer;
using Base::allocateBuffer;
using Base::allocationSize;
};
//
// Vector out-of-line implementation
//
template <typename T, size_t inlineCapacity, typename Allocator>
inline Vector<T, inlineCapacity, Allocator>::Vector() {
static_assert(!std::is_polymorphic<T>::value ||
!VectorTraits<T>::canInitializeWithMemset,
"Cannot initialize with memset if there is a vtable");
static_assert(Allocator::isGarbageCollected ||
!AllowsOnlyPlacementNew<T>::value || !IsTraceable<T>::value,
"Cannot put DISALLOW_NEW_EXCEPT_PLACEMENT_NEW objects that "
"have trace methods into an off-heap Vector");
static_assert(Allocator::isGarbageCollected ||
!IsPointerToGarbageCollectedType<T>::value,
"Cannot put raw pointers to garbage-collected classes into "
"an off-heap Vector. Use HeapVector<Member<T>> instead.");
ANNOTATE_NEW_BUFFER(begin(), capacity(), 0);
m_size = 0;
}
template <typename T, size_t inlineCapacity, typename Allocator>
inline Vector<T, inlineCapacity, Allocator>::Vector(size_t size) : Base(size) {
static_assert(!std::is_polymorphic<T>::value ||
!VectorTraits<T>::canInitializeWithMemset,
"Cannot initialize with memset if there is a vtable");
static_assert(Allocator::isGarbageCollected ||
!AllowsOnlyPlacementNew<T>::value || !IsTraceable<T>::value,
"Cannot put DISALLOW_NEW_EXCEPT_PLACEMENT_NEW objects that "
"have trace methods into an off-heap Vector");
static_assert(Allocator::isGarbageCollected ||
!IsPointerToGarbageCollectedType<T>::value,
"Cannot put raw pointers to garbage-collected classes into "
"an off-heap Vector. Use HeapVector<Member<T>> instead.");
ANNOTATE_NEW_BUFFER(begin(), capacity(), size);
m_size = size;
TypeOperations::initialize(begin(), end());
}
template <typename T, size_t inlineCapacity, typename Allocator>
inline Vector<T, inlineCapacity, Allocator>::Vector(size_t size, const T& val)
: Base(size) {
// TODO(yutak): Introduce these assertions. Some use sites call this function
// in the context where T is an incomplete type.
//
// static_assert(!std::is_polymorphic<T>::value ||
// !VectorTraits<T>::canInitializeWithMemset,
// "Cannot initialize with memset if there is a vtable");
// static_assert(Allocator::isGarbageCollected ||
// !AllowsOnlyPlacementNew<T>::value ||
// !IsTraceable<T>::value,
// "Cannot put DISALLOW_NEW_EXCEPT_PLACEMENT_NEW objects that "
// "have trace methods into an off-heap Vector");
// static_assert(Allocator::isGarbageCollected ||
// !IsPointerToGarbageCollectedType<T>::value,
// "Cannot put raw pointers to garbage-collected classes into "
// "an off-heap Vector. Use HeapVector<Member<T>> instead.");
ANNOTATE_NEW_BUFFER(begin(), capacity(), size);
m_size = size;
TypeOperations::uninitializedFill(begin(), end(), val);
}
template <typename T, size_t inlineCapacity, typename Allocator>
Vector<T, inlineCapacity, Allocator>::Vector(const Vector& other)
: Base(other.capacity()) {
ANNOTATE_NEW_BUFFER(begin(), capacity(), other.size());
m_size = other.size();
TypeOperations::uninitializedCopy(other.begin(), other.end(), begin());
}
template <typename T, size_t inlineCapacity, typename Allocator>
template <size_t otherCapacity>
Vector<T, inlineCapacity, Allocator>::Vector(
const Vector<T, otherCapacity, Allocator>& other)
: Base(other.capacity()) {
ANNOTATE_NEW_BUFFER(begin(), capacity(), other.size());
m_size = other.size();
TypeOperations::uninitializedCopy(other.begin(), other.end(), begin());
}
template <typename T, size_t inlineCapacity, typename Allocator>
Vector<T, inlineCapacity, Allocator>& Vector<T, inlineCapacity, Allocator>::
operator=(const Vector<T, inlineCapacity, Allocator>& other) {
if (UNLIKELY(&other == this))
return *this;
if (size() > other.size()) {
shrink(other.size());
} else if (other.size() > capacity()) {
clear();
reserveCapacity(other.size());
DCHECK(begin());
}
ANNOTATE_CHANGE_SIZE(begin(), capacity(), m_size, other.size());
std::copy(other.begin(), other.begin() + size(), begin());
TypeOperations::uninitializedCopy(other.begin() + size(), other.end(), end());
m_size = other.size();
return *this;
}
inline bool typelessPointersAreEqual(const void* a, const void* b) {
return a == b;
}
template <typename T, size_t inlineCapacity, typename Allocator>
template <size_t otherCapacity>
Vector<T, inlineCapacity, Allocator>& Vector<T, inlineCapacity, Allocator>::
operator=(const Vector<T, otherCapacity, Allocator>& other) {
// If the inline capacities match, we should call the more specific
// template. If the inline capacities don't match, the two objects
// shouldn't be allocated the same address.
DCHECK(!typelessPointersAreEqual(&other, this));
if (size() > other.size()) {
shrink(other.size());
} else if (other.size() > capacity()) {
clear();
reserveCapacity(other.size());
DCHECK(begin());
}
ANNOTATE_CHANGE_SIZE(begin(), capacity(), m_size, other.size());
std::copy(other.begin(), other.begin() + size(), begin());
TypeOperations::uninitializedCopy(other.begin() + size(), other.end(), end());
m_size = other.size();
return *this;
}
template <typename T, size_t inlineCapacity, typename Allocator>
Vector<T, inlineCapacity, Allocator>::Vector(
Vector<T, inlineCapacity, Allocator>&& other) {
m_size = 0;
// It's a little weird to implement a move constructor using swap but this
// way we don't have to add a move constructor to VectorBuffer.
swap(other);
}
template <typename T, size_t inlineCapacity, typename Allocator>
Vector<T, inlineCapacity, Allocator>& Vector<T, inlineCapacity, Allocator>::
operator=(Vector<T, inlineCapacity, Allocator>&& other) {
swap(other);
return *this;
}
template <typename T, size_t inlineCapacity, typename Allocator>
Vector<T, inlineCapacity, Allocator>::Vector(std::initializer_list<T> elements)
: Base(elements.size()) {
ANNOTATE_NEW_BUFFER(begin(), capacity(), elements.size());
m_size = elements.size();
TypeOperations::uninitializedCopy(elements.begin(), elements.end(), begin());
}
template <typename T, size_t inlineCapacity, typename Allocator>
Vector<T, inlineCapacity, Allocator>& Vector<T, inlineCapacity, Allocator>::
operator=(std::initializer_list<T> elements) {
if (size() > elements.size()) {
shrink(elements.size());
} else if (elements.size() > capacity()) {
clear();
reserveCapacity(elements.size());
DCHECK(begin());
}
ANNOTATE_CHANGE_SIZE(begin(), capacity(), m_size, elements.size());
std::copy(elements.begin(), elements.begin() + m_size, begin());
TypeOperations::uninitializedCopy(elements.begin() + m_size, elements.end(),
end());
m_size = elements.size();
return *this;
}
template <typename T, size_t inlineCapacity, typename Allocator>
template <typename U>
bool Vector<T, inlineCapacity, Allocator>::contains(const U& value) const {
return find(value) != kNotFound;
}
template <typename T, size_t inlineCapacity, typename Allocator>
template <typename U>
size_t Vector<T, inlineCapacity, Allocator>::find(const U& value) const {
const T* b = begin();
const T* e = end();
for (const T* iter = b; iter < e; ++iter) {
if (TypeOperations::compareElement(*iter, value))
return iter - b;
}
return kNotFound;
}
template <typename T, size_t inlineCapacity, typename Allocator>
template <typename U>
size_t Vector<T, inlineCapacity, Allocator>::reverseFind(const U& value) const {
const T* b = begin();
const T* iter = end();
while (iter > b) {
--iter;
if (TypeOperations::compareElement(*iter, value))
return iter - b;
}
return kNotFound;
}
template <typename T, size_t inlineCapacity, typename Allocator>
void Vector<T, inlineCapacity, Allocator>::fill(const T& val, size_t newSize) {
if (size() > newSize) {
shrink(newSize);
} else if (newSize > capacity()) {
clear();
reserveCapacity(newSize);
DCHECK(begin());
}
ANNOTATE_CHANGE_SIZE(begin(), capacity(), m_size, newSize);
std::fill(begin(), end(), val);
TypeOperations::uninitializedFill(end(), begin() + newSize, val);
m_size = newSize;
}
template <typename T, size_t inlineCapacity, typename Allocator>
void Vector<T, inlineCapacity, Allocator>::expandCapacity(
size_t newMinCapacity) {
size_t oldCapacity = capacity();
size_t expandedCapacity = oldCapacity;
// We use a more aggressive expansion strategy for Vectors with inline
// storage. This is because they are more likely to be on the stack, so the
// risk of heap bloat is minimized. Furthermore, exceeding the inline
// capacity limit is not supposed to happen in the common case and may
// indicate a pathological condition or microbenchmark.
if (INLINE_CAPACITY) {
expandedCapacity *= 2;
// Check for integer overflow, which could happen in the 32-bit build.
RELEASE_ASSERT(expandedCapacity > oldCapacity);
} else {
// This cannot integer overflow.
// On 64-bit, the "expanded" integer is 32-bit, and any encroachment
// above 2^32 will fail allocation in allocateBuffer(). On 32-bit,
// there's not enough address space to hold the old and new buffers. In
// addition, our underlying allocator is supposed to always fail on >
// (2^31 - 1) allocations.
expandedCapacity += (expandedCapacity / 4) + 1;
}
reserveCapacity(std::max(
newMinCapacity,
std::max(static_cast<size_t>(kInitialVectorSize), expandedCapacity)));
}
template <typename T, size_t inlineCapacity, typename Allocator>
T* Vector<T, inlineCapacity, Allocator>::expandCapacity(size_t newMinCapacity,
T* ptr) {
if (ptr < begin() || ptr >= end()) {
expandCapacity(newMinCapacity);
return ptr;
}
size_t index = ptr - begin();
expandCapacity(newMinCapacity);
return begin() + index;
}
template <typename T, size_t inlineCapacity, typename Allocator>
template <typename U>
inline U* Vector<T, inlineCapacity, Allocator>::expandCapacity(
size_t newMinCapacity,
U* ptr) {
expandCapacity(newMinCapacity);
return ptr;
}
template <typename T, size_t inlineCapacity, typename Allocator>
inline void Vector<T, inlineCapacity, Allocator>::resize(size_t size) {
if (size <= m_size) {
TypeOperations::destruct(begin() + size, end());
clearUnusedSlots(begin() + size, end());
ANNOTATE_CHANGE_SIZE(begin(), capacity(), m_size, size);
} else {
if (size > capacity())
expandCapacity(size);
ANNOTATE_CHANGE_SIZE(begin(), capacity(), m_size, size);
TypeOperations::initialize(end(), begin() + size);
}
m_size = size;
}
template <typename T, size_t inlineCapacity, typename Allocator>
void Vector<T, inlineCapacity, Allocator>::shrink(size_t size) {
DCHECK_LE(size, m_size);
TypeOperations::destruct(begin() + size, end());
clearUnusedSlots(begin() + size, end());
ANNOTATE_CHANGE_SIZE(begin(), capacity(), m_size, size);
m_size = size;
}
template <typename T, size_t inlineCapacity, typename Allocator>
void Vector<T, inlineCapacity, Allocator>::grow(size_t size) {
DCHECK_GE(size, m_size);
if (size > capacity())
expandCapacity(size);
ANNOTATE_CHANGE_SIZE(begin(), capacity(), m_size, size);
TypeOperations::initialize(end(), begin() + size);
m_size = size;
}
template <typename T, size_t inlineCapacity, typename Allocator>
void Vector<T, inlineCapacity, Allocator>::reserveCapacity(size_t newCapacity) {
if (UNLIKELY(newCapacity <= capacity()))
return;
T* oldBuffer = begin();
if (!oldBuffer) {
Base::allocateBuffer(newCapacity);
return;
}
#ifdef ANNOTATE_CONTIGUOUS_CONTAINER
size_t oldCapacity = capacity();
#endif
// The Allocator::isGarbageCollected check is not needed. The check is just
// a static hint for a compiler to indicate that Base::expandBuffer returns
// false if Allocator is a PartitionAllocator.
if (Allocator::isGarbageCollected && Base::expandBuffer(newCapacity)) {
ANNOTATE_CHANGE_CAPACITY(begin(), oldCapacity, m_size, capacity());
return;
}
T* oldEnd = end();
Base::allocateExpandedBuffer(newCapacity);
ANNOTATE_NEW_BUFFER(begin(), capacity(), m_size);
TypeOperations::move(oldBuffer, oldEnd, begin());
clearUnusedSlots(oldBuffer, oldEnd);
ANNOTATE_DELETE_BUFFER(oldBuffer, oldCapacity, m_size);
Base::deallocateBuffer(oldBuffer);
}
template <typename T, size_t inlineCapacity, typename Allocator>
inline void Vector<T, inlineCapacity, Allocator>::reserveInitialCapacity(
size_t initialCapacity) {
DCHECK(!m_size);
DCHECK(capacity() == INLINE_CAPACITY);
if (initialCapacity > INLINE_CAPACITY) {
ANNOTATE_DELETE_BUFFER(begin(), capacity(), m_size);
Base::allocateBuffer(initialCapacity);
ANNOTATE_NEW_BUFFER(begin(), capacity(), m_size);
}
}
template <typename T, size_t inlineCapacity, typename Allocator>
void Vector<T, inlineCapacity, Allocator>::shrinkCapacity(size_t newCapacity) {
if (newCapacity >= capacity())
return;
if (newCapacity < size())
shrink(newCapacity);
T* oldBuffer = begin();
#ifdef ANNOTATE_CONTIGUOUS_CONTAINER
size_t oldCapacity = capacity();
#endif
if (newCapacity > 0) {
if (Base::shrinkBuffer(newCapacity)) {
ANNOTATE_CHANGE_CAPACITY(begin(), oldCapacity, m_size, capacity());
return;
}
T* oldEnd = end();
Base::allocateBuffer(newCapacity);
if (begin() != oldBuffer) {
ANNOTATE_NEW_BUFFER(begin(), capacity(), m_size);
TypeOperations::move(oldBuffer, oldEnd, begin());
clearUnusedSlots(oldBuffer, oldEnd);
ANNOTATE_DELETE_BUFFER(oldBuffer, oldCapacity, m_size);
}
} else {
Base::resetBufferPointer();
#ifdef ANNOTATE_CONTIGUOUS_CONTAINER
if (oldBuffer != begin()) {
ANNOTATE_NEW_BUFFER(begin(), capacity(), m_size);
ANNOTATE_DELETE_BUFFER(oldBuffer, oldCapacity, m_size);
}
#endif
}
Base::deallocateBuffer(oldBuffer);
}
// Templatizing these is better than just letting the conversion happen
// implicitly, because for instance it allows a PassRefPtr to be appended to a
// RefPtr vector without refcount thrash.
template <typename T, size_t inlineCapacity, typename Allocator>
template <typename U>
ALWAYS_INLINE void Vector<T, inlineCapacity, Allocator>::push_back(U&& val) {
DCHECK(Allocator::isAllocationAllowed());
if (LIKELY(size() != capacity())) {
ANNOTATE_CHANGE_SIZE(begin(), capacity(), m_size, m_size + 1);
new (NotNull, end()) T(std::forward<U>(val));
++m_size;
return;
}
appendSlowCase(std::forward<U>(val));
}
template <typename T, size_t inlineCapacity, typename Allocator>
template <typename... Args>
ALWAYS_INLINE T& Vector<T, inlineCapacity, Allocator>::emplace_back(
Args&&... args) {
DCHECK(Allocator::isAllocationAllowed());
if (UNLIKELY(size() == capacity()))
expandCapacity(size() + 1);
ANNOTATE_CHANGE_SIZE(begin(), capacity(), m_size, m_size + 1);
T* t = new (NotNull, end()) T(std::forward<Args>(args)...);
++m_size;
return *t;
}
template <typename T, size_t inlineCapacity, typename Allocator>
template <typename U>
void Vector<T, inlineCapacity, Allocator>::append(const U* data,
size_t dataSize) {
DCHECK(Allocator::isAllocationAllowed());
size_t newSize = m_size + dataSize;
if (newSize > capacity()) {
data = expandCapacity(newSize, data);
DCHECK(begin());
}
RELEASE_ASSERT(newSize >= m_size);
T* dest = end();
ANNOTATE_CHANGE_SIZE(begin(), capacity(), m_size, newSize);
VectorCopier<VectorTraits<T>::canCopyWithMemcpy, T>::uninitializedCopy(
data, &data[dataSize], dest);
m_size = newSize;
}
template <typename T, size_t inlineCapacity, typename Allocator>
template <typename U>
NEVER_INLINE void Vector<T, inlineCapacity, Allocator>::appendSlowCase(
U&& val) {
DCHECK_EQ(size(), capacity());
typename std::remove_reference<U>::type* ptr = &val;
ptr = expandCapacity(size() + 1, ptr);
DCHECK(begin());
ANNOTATE_CHANGE_SIZE(begin(), capacity(), m_size, m_size + 1);
new (NotNull, end()) T(std::forward<U>(*ptr));
++m_size;
}
template <typename T, size_t inlineCapacity, typename Allocator>
template <typename U, size_t otherCapacity, typename OtherAllocator>
inline void Vector<T, inlineCapacity, Allocator>::appendVector(
const Vector<U, otherCapacity, OtherAllocator>& val) {
append(val.begin(), val.size());
}
template <typename T, size_t inlineCapacity, typename Allocator>
template <typename Iterator>
void Vector<T, inlineCapacity, Allocator>::appendRange(Iterator begin,
Iterator end) {
for (Iterator it = begin; it != end; ++it)
push_back(*it);
}
// This version of append saves a branch in the case where you know that the
// vector's capacity is large enough for the append to succeed.
template <typename T, size_t inlineCapacity, typename Allocator>
template <typename U>
ALWAYS_INLINE void Vector<T, inlineCapacity, Allocator>::uncheckedAppend(
U&& val) {
#ifdef ANNOTATE_CONTIGUOUS_CONTAINER
// Vectors in ASAN builds don't have inlineCapacity.
push_back(std::forward<U>(val));
#else
DCHECK_LT(size(), capacity());
ANNOTATE_CHANGE_SIZE(begin(), capacity(), m_size, m_size + 1);
new (NotNull, end()) T(std::forward<U>(val));
++m_size;
#endif
}
template <typename T, size_t inlineCapacity, typename Allocator>
template <typename U>
inline void Vector<T, inlineCapacity, Allocator>::insert(size_t position,
U&& val) {
DCHECK(Allocator::isAllocationAllowed());
RELEASE_ASSERT(position <= size());
typename std::remove_reference<U>::type* data = &val;
if (size() == capacity()) {
data = expandCapacity(size() + 1, data);
DCHECK(begin());
}
ANNOTATE_CHANGE_SIZE(begin(), capacity(), m_size, m_size + 1);
T* spot = begin() + position;
TypeOperations::moveOverlapping(spot, end(), spot + 1);
new (NotNull, spot) T(std::forward<U>(*data));
++m_size;
}
template <typename T, size_t inlineCapacity, typename Allocator>
template <typename U>
void Vector<T, inlineCapacity, Allocator>::insert(size_t position,
const U* data,
size_t dataSize) {
DCHECK(Allocator::isAllocationAllowed());
RELEASE_ASSERT(position <= size());
size_t newSize = m_size + dataSize;
if (newSize > capacity()) {
data = expandCapacity(newSize, data);
DCHECK(begin());
}
RELEASE_ASSERT(newSize >= m_size);
ANNOTATE_CHANGE_SIZE(begin(), capacity(), m_size, newSize);
T* spot = begin() + position;
TypeOperations::moveOverlapping(spot, end(), spot + dataSize);
VectorCopier<VectorTraits<T>::canCopyWithMemcpy, T>::uninitializedCopy(
data, &data[dataSize], spot);
m_size = newSize;
}
template <typename T, size_t inlineCapacity, typename Allocator>
template <typename U, size_t otherCapacity, typename OtherAllocator>
inline void Vector<T, inlineCapacity, Allocator>::insert(
size_t position,
const Vector<U, otherCapacity, OtherAllocator>& val) {
insert(position, val.begin(), val.size());
}
template <typename T, size_t inlineCapacity, typename Allocator>
template <typename U>
inline void Vector<T, inlineCapacity, Allocator>::prepend(U&& val) {
insert(0, std::forward<U>(val));
}
template <typename T, size_t inlineCapacity, typename Allocator>
template <typename U>
void Vector<T, inlineCapacity, Allocator>::prepend(const U* data,
size_t dataSize) {
insert(0, data, dataSize);
}
template <typename T, size_t inlineCapacity, typename Allocator>
template <typename U, size_t otherCapacity, typename OtherAllocator>
inline void Vector<T, inlineCapacity, Allocator>::prependVector(
const Vector<U, otherCapacity, OtherAllocator>& val) {
insert(0, val.begin(), val.size());
}
template <typename T, size_t inlineCapacity, typename Allocator>
inline void Vector<T, inlineCapacity, Allocator>::remove(size_t position) {
RELEASE_ASSERT(position < size());
T* spot = begin() + position;
spot->~T();
TypeOperations::moveOverlapping(spot + 1, end(), spot);
clearUnusedSlots(end() - 1, end());
ANNOTATE_CHANGE_SIZE(begin(), capacity(), m_size, m_size - 1);
--m_size;
}
template <typename T, size_t inlineCapacity, typename Allocator>
inline void Vector<T, inlineCapacity, Allocator>::remove(size_t position,
size_t length) {
SECURITY_DCHECK(position <= size());
if (!length)
return;
RELEASE_ASSERT(position + length <= size());
T* beginSpot = begin() + position;
T* endSpot = beginSpot + length;
TypeOperations::destruct(beginSpot, endSpot);
TypeOperations::moveOverlapping(endSpot, end(), beginSpot);
clearUnusedSlots(end() - length, end());
ANNOTATE_CHANGE_SIZE(begin(), capacity(), m_size, m_size - length);
m_size -= length;
}
template <typename T, size_t inlineCapacity, typename Allocator>
inline void Vector<T, inlineCapacity, Allocator>::reverse() {
for (size_t i = 0; i < m_size / 2; ++i)
std::swap(at(i), at(m_size - 1 - i));
}
template <typename T, size_t inlineCapacity, typename Allocator>
inline void swap(Vector<T, inlineCapacity, Allocator>& a,
Vector<T, inlineCapacity, Allocator>& b) {
a.swap(b);
}
template <typename T,
size_t inlineCapacityA,
size_t inlineCapacityB,
typename Allocator>
bool operator==(const Vector<T, inlineCapacityA, Allocator>& a,
const Vector<T, inlineCapacityB, Allocator>& b) {
if (a.size() != b.size())
return false;
if (a.isEmpty())
return true;
return VectorTypeOperations<T>::compare(a.data(), b.data(), a.size());
}
template <typename T,
size_t inlineCapacityA,
size_t inlineCapacityB,
typename Allocator>
inline bool operator!=(const Vector<T, inlineCapacityA, Allocator>& a,
const Vector<T, inlineCapacityB, Allocator>& b) {
return !(a == b);
}
// This is only called if the allocator is a HeapAllocator. It is used when
// visiting during a tracing GC.
template <typename T, size_t inlineCapacity, typename Allocator>
template <typename VisitorDispatcher>
void Vector<T, inlineCapacity, Allocator>::trace(VisitorDispatcher visitor) {
DCHECK(Allocator::isGarbageCollected) << "Garbage collector must be enabled.";
if (!buffer())
return;
if (this->hasOutOfLineBuffer()) {
// This is a performance optimization for a case where the buffer has
// been already traced by somewhere. This can happen if the conservative
// scanning traced an on-stack (false-positive or real) pointer to the
// HeapVector, and then visitor->trace() traces the HeapVector.
if (Allocator::isHeapObjectAlive(buffer()))
return;
Allocator::markNoTracing(visitor, buffer());
Allocator::registerBackingStoreReference(visitor, Base::bufferSlot());
}
const T* bufferBegin = buffer();
const T* bufferEnd = buffer() + size();
if (IsTraceableInCollectionTrait<VectorTraits<T>>::value) {
for (const T* bufferEntry = bufferBegin; bufferEntry != bufferEnd;
bufferEntry++)
Allocator::template trace<VisitorDispatcher, T, VectorTraits<T>>(
visitor, *const_cast<T*>(bufferEntry));
checkUnusedSlots(buffer() + size(), buffer() + capacity());
}
}
} // namespace WTF
using WTF::Vector;
#endif // WTF_Vector_h