blob: be1ffa17609c9d9d6d25f86c75e8c2fcad50ee10 [file] [log] [blame]
/*
* Copyright 2013 Google Inc.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but without any warranty; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <assert.h>
#include <endian.h>
#include <libpayload.h>
#include <stdint.h>
#include "base/device_tree.h"
/*
* Functions for picking apart flattened trees.
*/
static uint32_t size32(uint32_t val)
{
return (val + sizeof(uint32_t) - 1) / sizeof(uint32_t);
}
int fdt_next_property(void *blob, uint32_t offset, FdtProperty *prop)
{
FdtHeader *header = (FdtHeader *)blob;
uint32_t *ptr = (uint32_t *)(((uint8_t *)blob) + offset);
int index = 0;
if (betohl(ptr[index++]) != TokenProperty)
return 0;
uint32_t size = betohl(ptr[index++]);
uint32_t name_offset = betohl(ptr[index++]);
name_offset += betohl(header->strings_offset);
if (prop) {
prop->name = (char *)((uint8_t *)blob + name_offset);
prop->data = &ptr[index];
prop->size = size;
}
index += size32(size);
return index * 4;
}
int fdt_node_name(void *blob, uint32_t offset, const char **name)
{
uint8_t *ptr = ((uint8_t *)blob) + offset;
if (betohl(*(uint32_t *)ptr) != TokenBeginNode)
return 0;
ptr += 4;
if (name)
*name = (char *)ptr;
return size32(strlen((char *)ptr) + 1) * sizeof(uint32_t) + 4;
}
/*
* Functions for printing flattened trees.
*/
static void print_indent(int depth)
{
printf("%*s", depth * 8, "");
}
static void print_property(FdtProperty *prop, int depth)
{
int is_string = prop->size > 0 &&
((char *)prop->data)[prop->size - 1] == '\0';
if (is_string)
for (char *c = prop->data; *c != '\0'; c++)
if (!isprint(*c))
is_string = 0;
print_indent(depth);
if (is_string) {
printf("%s = \"%s\";\n", prop->name, (char *)prop->data);
} else {
printf("%s = < ", prop->name);
for (int i = 0; i < MIN(128, prop->size); i += 4) {
uint32_t val = 0;
for (int j = 0; j < MIN(4, prop->size - i); j++)
val |= ((uint8_t *)prop->data)[i + j] <<
(24 - j * 8);
printf("%#.2x ", val);
}
if (prop->size > 128)
printf("...");
printf(">;\n");
}
}
static int print_flat_node(void *blob, uint32_t start_offset, int depth)
{
int offset = start_offset;
const char *name;
int size;
size = fdt_node_name(blob, offset, &name);
if (!size)
return 0;
offset += size;
print_indent(depth);
printf("%s {\n", name);
FdtProperty prop;
while ((size = fdt_next_property(blob, offset, &prop))) {
print_property(&prop, depth + 1);
offset += size;
}
printf("\n"); // empty line between props and nodes
while ((size = print_flat_node(blob, offset, depth + 1)))
offset += size;
print_indent(depth);
printf("}\n");
return offset - start_offset + sizeof(uint32_t);
}
void fdt_print_node(void *blob, uint32_t offset)
{
print_flat_node(blob, offset, 0);
}
/*
* A utility function to skip past nodes in flattened trees.
*/
int fdt_skip_node(void *blob, uint32_t start_offset)
{
int offset = start_offset;
int size;
const char *name;
size = fdt_node_name(blob, offset, &name);
if (!size)
return 0;
offset += size;
while ((size = fdt_next_property(blob, offset, NULL)))
offset += size;
while ((size = fdt_skip_node(blob, offset)))
offset += size;
return offset - start_offset + sizeof(uint32_t);
}
/*
* Functions to turn a flattened tree into an unflattened one.
*/
static DeviceTreeNode node_cache[1000];
static int node_counter = 0;
static DeviceTreeProperty prop_cache[5000];
static int prop_counter = 0;
/*
* Libpayload's malloc() has linear allocation complexity and goes completely
* mental after a few thousand small requests. This little hack will absorb
* the worst of it to avoid increasing boot time for no reason.
*/
static DeviceTreeNode *alloc_node(void)
{
if (node_counter >= ARRAY_SIZE(node_cache))
return xzalloc(sizeof(DeviceTreeNode));
return &node_cache[node_counter++];
}
static DeviceTreeProperty *alloc_prop(void)
{
if (prop_counter >= ARRAY_SIZE(prop_cache))
return xzalloc(sizeof(DeviceTreeProperty));
return &prop_cache[prop_counter++];
}
static int dt_prop_is_phandle(DeviceTreeProperty *prop)
{
return !(strcmp("phandle", prop->prop.name) &&
strcmp("linux,phandle", prop->prop.name));
}
static int fdt_unflatten_node(void *blob, uint32_t start_offset,
DeviceTree *tree, DeviceTreeNode **new_node)
{
ListNode *last;
int offset = start_offset;
const char *name;
int size;
size = fdt_node_name(blob, offset, &name);
if (!size)
return 0;
offset += size;
DeviceTreeNode *node = alloc_node();
*new_node = node;
node->name = name;
FdtProperty fprop;
last = &node->properties;
while ((size = fdt_next_property(blob, offset, &fprop))) {
DeviceTreeProperty *prop = alloc_prop();
prop->prop = fprop;
if (dt_prop_is_phandle(prop)) {
node->phandle = be32dec(prop->prop.data);
if (node->phandle > tree->max_phandle)
tree->max_phandle = node->phandle;
}
list_insert_after(&prop->list_node, last);
last = &prop->list_node;
offset += size;
}
DeviceTreeNode *child;
last = &node->children;
while ((size = fdt_unflatten_node(blob, offset, tree, &child))) {
list_insert_after(&child->list_node, last);
last = &child->list_node;
offset += size;
}
return offset - start_offset + sizeof(uint32_t);
}
static int fdt_unflatten_map_entry(void *blob, uint32_t offset,
DeviceTreeReserveMapEntry **new_entry)
{
uint64_t *ptr = (uint64_t *)(((uint8_t *)blob) + offset);
uint64_t start = betohll(ptr[0]);
uint64_t size = betohll(ptr[1]);
if (!size)
return 0;
DeviceTreeReserveMapEntry *entry = xzalloc(sizeof(*entry));
*new_entry = entry;
entry->start = start;
entry->size = size;
return sizeof(uint64_t) * 2;
}
DeviceTree *fdt_unflatten(void *blob)
{
DeviceTree *tree = xzalloc(sizeof(*tree));
FdtHeader *header = (FdtHeader *)blob;
tree->header = header;
uint32_t magic = betohl(header->magic);
uint32_t version = betohl(header->version);
uint32_t last_comp_version = betohl(header->last_comp_version);
if (magic != FdtMagic) {
printf("Invalid device tree magic %#.8x!\n", magic);
return NULL;
}
if (last_comp_version > FdtSupportedVersion) {
printf("Unsupported device tree version %u(>=%u)!\n",
version, last_comp_version);
return NULL;
}
if (version > FdtSupportedVersion)
printf("NOTE: FDT version %u too new, should add support!\n",
version);
uint32_t struct_offset = betohl(header->structure_offset);
uint32_t strings_offset = betohl(header->strings_offset);
uint32_t reserve_offset = betohl(header->reserve_map_offset);
uint32_t min_offset = 0;
min_offset = MIN(struct_offset, strings_offset);
min_offset = MIN(min_offset, reserve_offset);
// Assume everything up to the first non-header component is part of
// the header and needs to be preserved. This will protect us against
// new elements being added in the future.
tree->header_size = min_offset;
DeviceTreeReserveMapEntry *entry;
uint32_t offset = reserve_offset;
int size;
ListNode *last = &tree->reserve_map;
while ((size = fdt_unflatten_map_entry(blob, offset, &entry))) {
list_insert_after(&entry->list_node, last);
last = &entry->list_node;
offset += size;
}
fdt_unflatten_node(blob, struct_offset, tree, &tree->root);
return tree;
}
/*
* Functions to find the size of device tree would take if it was flattened.
*/
static void dt_flat_prop_size(DeviceTreeProperty *prop, uint32_t *struct_size,
uint32_t *strings_size)
{
// Starting token.
*struct_size += sizeof(uint32_t);
// Size.
*struct_size += sizeof(uint32_t);
// Name offset.
*struct_size += sizeof(uint32_t);
// Property value.
*struct_size += size32(prop->prop.size) * sizeof(uint32_t);
// Property name.
*strings_size += strlen(prop->prop.name) + 1;
}
static void dt_flat_node_size(DeviceTreeNode *node, uint32_t *struct_size,
uint32_t *strings_size)
{
// Starting token.
*struct_size += sizeof(uint32_t);
// Node name.
*struct_size += size32(strlen(node->name) + 1) * sizeof(uint32_t);
DeviceTreeProperty *prop;
list_for_each(prop, node->properties, list_node)
dt_flat_prop_size(prop, struct_size, strings_size);
DeviceTreeNode *child;
list_for_each(child, node->children, list_node)
dt_flat_node_size(child, struct_size, strings_size);
// End token.
*struct_size += sizeof(uint32_t);
}
uint32_t dt_flat_size(DeviceTree *tree)
{
uint32_t size = tree->header_size;
DeviceTreeReserveMapEntry *entry;
list_for_each(entry, tree->reserve_map, list_node)
size += sizeof(uint64_t) * 2;
size += sizeof(uint64_t) * 2;
uint32_t struct_size = 0;
uint32_t strings_size = 0;
dt_flat_node_size(tree->root, &struct_size, &strings_size);
size += struct_size;
// End token.
size += sizeof(uint32_t);
size += strings_size;
return size;
}
/*
* Functions to flatten a device tree.
*/
static void dt_flatten_map_entry(DeviceTreeReserveMapEntry *entry,
void **map_start)
{
((uint64_t *)*map_start)[0] = htobell(entry->start);
((uint64_t *)*map_start)[1] = htobell(entry->size);
*map_start = ((uint8_t *)*map_start) + sizeof(uint64_t) * 2;
}
static void dt_flatten_prop(DeviceTreeProperty *prop, void **struct_start,
void *strings_base, void **strings_start)
{
uint8_t *dstruct = (uint8_t *)*struct_start;
uint8_t *dstrings = (uint8_t *)*strings_start;
*((uint32_t *)dstruct) = htobel(TokenProperty);
dstruct += sizeof(uint32_t);
*((uint32_t *)dstruct) = htobel(prop->prop.size);
dstruct += sizeof(uint32_t);
uint32_t name_offset = (uintptr_t)dstrings - (uintptr_t)strings_base;
*((uint32_t *)dstruct) = htobel(name_offset);
dstruct += sizeof(uint32_t);
strcpy((char *)dstrings, prop->prop.name);
dstrings += strlen(prop->prop.name) + 1;
memcpy(dstruct, prop->prop.data, prop->prop.size);
dstruct += size32(prop->prop.size) * 4;
*struct_start = dstruct;
*strings_start = dstrings;
}
static void dt_flatten_node(DeviceTreeNode *node, void **struct_start,
void *strings_base, void **strings_start)
{
uint8_t *dstruct = (uint8_t *)*struct_start;
uint8_t *dstrings = (uint8_t *)*strings_start;
*((uint32_t *)dstruct) = htobel(TokenBeginNode);
dstruct += sizeof(uint32_t);
strcpy((char *)dstruct, node->name);
dstruct += size32(strlen(node->name) + 1) * 4;
DeviceTreeProperty *prop;
list_for_each(prop, node->properties, list_node)
dt_flatten_prop(prop, (void **)&dstruct, strings_base,
(void **)&dstrings);
DeviceTreeNode *child;
list_for_each(child, node->children, list_node)
dt_flatten_node(child, (void **)&dstruct, strings_base,
(void **)&dstrings);
*((uint32_t *)dstruct) = htobel(TokenEndNode);
dstruct += sizeof(uint32_t);
*struct_start = dstruct;
*strings_start = dstrings;
}
void dt_flatten(DeviceTree *tree, void *start_dest)
{
uint8_t *dest = (uint8_t *)start_dest;
memcpy(dest, tree->header, tree->header_size);
FdtHeader *header = (FdtHeader *)dest;
dest += tree->header_size;
DeviceTreeReserveMapEntry *entry;
list_for_each(entry, tree->reserve_map, list_node)
dt_flatten_map_entry(entry, (void **)&dest);
((uint64_t *)dest)[0] = ((uint64_t *)dest)[1] = 0;
dest += sizeof(uint64_t) * 2;
uint32_t struct_size = 0;
uint32_t strings_size = 0;
dt_flat_node_size(tree->root, &struct_size, &strings_size);
uint8_t *struct_start = dest;
header->structure_offset = htobel(dest - (uint8_t *)start_dest);
header->structure_size = htobel(struct_size);
dest += struct_size;
*((uint32_t *)dest) = htobel(TokenEnd);
dest += sizeof(uint32_t);
uint8_t *strings_start = dest;
header->strings_offset = htobel(dest - (uint8_t *)start_dest);
header->strings_size = htobel(strings_size);
dest += strings_size;
dt_flatten_node(tree->root, (void **)&struct_start, strings_start,
(void **)&strings_start);
header->totalsize = htobel(dest - (uint8_t *)start_dest);
}
/*
* Functions for printing a non-flattened device tree.
*/
static void print_node(DeviceTreeNode *node, int depth)
{
print_indent(depth);
if (depth == 0)
printf("/"); // root node has no name, print a starting slash
printf("%s {\n", node->name);
DeviceTreeProperty *prop;
list_for_each(prop, node->properties, list_node)
print_property(&prop->prop, depth + 1);
printf("\n"); // empty line between props and nodes
DeviceTreeNode *child;
list_for_each(child, node->children, list_node)
print_node(child, depth + 1);
print_indent(depth);
printf("};\n");
}
void dt_print_node(DeviceTreeNode *node)
{
print_node(node, 0);
}
/*
* Functions for reading and manipulating an unflattened device tree.
*/
/*
* Read #address-cells and #size-cells properties from a node.
*
* @param node The device tree node to read from.
* @param addrcp Pointer to store #address-cells in, skipped if NULL.
* @param sizecp Pointer to store #size-cells in, skipped if NULL.
*/
void dt_read_cell_props(DeviceTreeNode *node, u32 *addrcp, u32 *sizecp)
{
DeviceTreeProperty *prop;
list_for_each(prop, node->properties, list_node) {
if (addrcp && !strcmp("#address-cells", prop->prop.name))
*addrcp = betohl(*(u32 *)prop->prop.data);
if (sizecp && !strcmp("#size-cells", prop->prop.name))
*sizecp = betohl(*(u32 *)prop->prop.data);
}
}
/*
* Find a node from a device tree path, relative to a parent node.
*
* @param parent The node from which to start the relative path lookup.
* @param path An array of path component strings that will be looked
* up in order to find the node. Must be terminated with
* a NULL pointer. Example: {'firmware', 'coreboot', NULL}
* @param addrcp Pointer that will be updated with any #address-cells
* value found in the path. May be NULL to ignore.
* @param sizecp Pointer that will be updated with any #size-cells
* value found in the path. May be NULL to ignore.
* @param create 1: Create node(s) if not found. 0: Return NULL instead.
* @return The found/created node, or NULL.
*/
DeviceTreeNode *dt_find_node(DeviceTreeNode *parent, const char **path,
u32 *addrcp, u32 *sizecp, int create)
{
DeviceTreeNode *node, *found = NULL;
// Update #address-cells and #size-cells for this level.
dt_read_cell_props(parent, addrcp, sizecp);
if (!*path)
return parent;
// Find the next node in the path, if it exists.
list_for_each(node, parent->children, list_node) {
if (!strcmp(node->name, *path)) {
found = node;
break;
}
}
// Otherwise create it or return NULL.
if (!found) {
if (!create)
return NULL;
found = alloc_node();
found->name = strdup(*path);
if (!found->name)
return NULL;
list_insert_after(&found->list_node, &parent->children);
}
return dt_find_node(found, path + 1, addrcp, sizecp, create);
}
/*
* Find a node from a device tree path string.
*
* @param tree The device tree object
* @param path A string representing a path in the device tree, with
* nodes separated by '/'.
* Example: "/soc/firmware/coreboot"
* @param addrcp Pointer that will be updated with any #address-cells
* value found in the path. May be NULL to ignore.
* @param sizecp Pointer that will be updated with any #size-cells
* value found in the path. May be NULL to ignore.
* @param create 1: Create node(s) if not found. 0: Return NULL instead.
* @return The found/created node, or NULL.
*
* It is the caller responsibility to provide the correct path string, namely
* starting with '/' for a full path, not starting with '/' for a path
* with an alias, not ending with a '/', and not having "//" anywhere in it.
*/
DeviceTreeNode *dt_find_node_by_path(DeviceTree *tree, const char *path,
u32 *addrcp, u32 *sizecp, int create)
{
char *sub_path;
char *duped_str;
DeviceTreeNode *parent;
char *next_slash;
/* Hopefully enough depth for any node. */
const char *path_array[15];
int i;
DeviceTreeNode *node = NULL;
if (path[0] == '/') { // regular path
if (path[1] == '\0') { // special case: "/" is root node
dt_read_cell_props(tree->root, addrcp, sizecp);
return tree->root;
}
sub_path = duped_str = strdup(&path[1]);
if (!sub_path)
return NULL;
parent = tree->root;
} else { // alias
char *alias;
alias = duped_str = strdup(path);
if (!alias)
return NULL;
sub_path = strchr(alias, '/');
if (sub_path)
*sub_path = '\0';
parent = dt_find_node_by_alias(tree, alias);
if (!parent) {
printf("Could not find node '%s', alias '%s' does not exist\n",
path, alias);
free(duped_str);
return NULL;
}
if (!sub_path) {
// it's just the alias, no sub-path
free(duped_str);
return parent;
}
sub_path++;
}
next_slash = sub_path;
path_array[0] = sub_path;
for (i = 1; i < (ARRAY_SIZE(path_array) - 1); i++) {
next_slash = strchr(next_slash, '/');
if (!next_slash)
break;
*next_slash++ = '\0';
path_array[i] = next_slash;
}
if (!next_slash) {
path_array[i] = NULL;
node = dt_find_node(parent, path_array,
addrcp, sizecp, create);
}
free(duped_str);
return node;
}
DeviceTreeNode *dt_find_node_by_phandle(DeviceTreeNode *root, uint32_t phandle)
{
if (!root)
return NULL;
if (root->phandle == phandle)
return root;
DeviceTreeNode *node;
DeviceTreeNode *result;
list_for_each(node, root->children, list_node) {
result = dt_find_node_by_phandle(node, phandle);
if (result)
return result;
}
return NULL;
}
/*
* Find a node from an alias
*
* @param tree The device tree.
* @param alias The alias name.
* @return The found node, or NULL.
*/
DeviceTreeNode *dt_find_node_by_alias(DeviceTree *tree, const char *alias)
{
DeviceTreeNode *node;
const char *alias_path;
node = dt_find_node_by_path(tree, "/aliases", NULL, NULL, 0);
if (!node)
return NULL;
alias_path = dt_find_string_prop(node, alias);
if (!alias_path)
return NULL;
return dt_find_node_by_path(tree, alias_path, NULL, NULL, 0);
}
/*
* Check if given node is compatible.
*
* @param node The node which is to be checked for compatible property.
* @param compat The compatible string to match.
* @return 1 = compatible, 0 = not compatible.
*/
static int dt_check_compat_match(DeviceTreeNode *node, const char *compat)
{
DeviceTreeProperty *prop;
list_for_each(prop, node->properties, list_node) {
if (!strcmp("compatible", prop->prop.name)) {
size_t bytes = prop->prop.size;
const char *str = prop->prop.data;
while (bytes > 0) {
if (!strncmp(compat, str, bytes))
return 1;
size_t len = strnlen(str, bytes) + 1;
if (bytes <= len)
break;
str += len;
bytes -= len;
}
break;
}
}
return 0;
}
/*
* Find a node from a compatible string, in the subtree of a parent node.
*
* @param parent The parent node under which to look.
* @param compat The compatible string to find.
* @return The found node, or NULL.
*/
DeviceTreeNode *dt_find_compat(DeviceTreeNode *parent, const char *compat)
{
// Check if the parent node itself is compatible.
if (dt_check_compat_match(parent, compat))
return parent;
DeviceTreeNode *child;
list_for_each(child, parent->children, list_node) {
DeviceTreeNode *found = dt_find_compat(child, compat);
if (found)
return found;
}
return NULL;
}
/*
* Find the next compatible child of a given parent. All children upto the
* child passed in by caller are ignored. If child is NULL, it considers all the
* children to find the first child which is compatible.
*
* @param parent The parent node under which to look.
* @param child The child node to start search from (exclusive). If NULL
* consider all children.
* @param compat The compatible string to find.
* @return The found node, or NULL.
*/
DeviceTreeNode *dt_find_next_compat_child(DeviceTreeNode *parent,
DeviceTreeNode *child,
const char *compat)
{
DeviceTreeNode *next;
int ignore = 0;
if (child)
ignore = 1;
list_for_each(next, parent->children, list_node) {
if (ignore) {
if (child == next)
ignore = 0;
continue;
}
if (dt_check_compat_match(next, compat))
return next;
}
return NULL;
}
/*
* Find a node with matching property value, in the subtree of a parent node.
*
* @param parent The parent node under which to look.
* @param name The property name to look for.
* @param data The property value to look for.
* @param size The property size.
*/
DeviceTreeNode *dt_find_prop_value(DeviceTreeNode *parent, const char *name,
void *data, size_t size)
{
DeviceTreeProperty *prop;
/* Check if parent itself has the required property value. */
list_for_each(prop, parent->properties, list_node) {
if (!strcmp(name, prop->prop.name)) {
size_t bytes = prop->prop.size;
void *prop_data = prop->prop.data;
if (size != bytes)
break;
if (!memcmp(data, prop_data, size))
return parent;
break;
}
}
DeviceTreeNode *child;
list_for_each(child, parent->children, list_node) {
DeviceTreeNode *found = dt_find_prop_value(child, name, data,
size);
if (found)
return found;
}
return NULL;
}
/*
* Write an arbitrary sized big-endian integer into a pointer.
*
* @param dest Pointer to the DT property data buffer to write.
* @param src The integer to write (in CPU endianess).
* @param length the length of the destination integer in bytes.
*/
void dt_write_int(u8 *dest, u64 src, size_t length)
{
while (length--) {
dest[length] = (u8)src;
src >>= 8;
}
}
/*
* Add an arbitrary property to a node, or update it if it already exists.
*
* @param node The device tree node to add to.
* @param name The name of the new property.
* @param data The raw data blob to be stored in the property.
* @param size The size of data in bytes.
*/
void dt_add_bin_prop(DeviceTreeNode *node, const char *name, void *data,
size_t size)
{
DeviceTreeProperty *prop;
list_for_each(prop, node->properties, list_node) {
if (!strcmp(prop->prop.name, name)) {
prop->prop.data = data;
prop->prop.size = size;
return;
}
}
prop = alloc_prop();
list_insert_after(&prop->list_node, &node->properties);
prop->prop.name = name;
prop->prop.data = data;
prop->prop.size = size;
}
/*
* Find given string property in a node and return its content.
*
* @param node The device tree node to search.
* @param name The name of the property.
* @return The found string, or NULL.
*/
const char *dt_find_string_prop(DeviceTreeNode *node, const char *name)
{
void *content;
size_t size;
dt_find_bin_prop(node, name, &content, &size);
return content;
}
/*
* Find given property in a node.
*
* @param node The device tree node to search.
* @param name The name of the property.
* @param data Pointer to return raw data blob in the property.
* @param size Pointer to return the size of data in bytes.
*/
void dt_find_bin_prop(DeviceTreeNode *node, const char *name, void **data,
size_t *size)
{
DeviceTreeProperty *prop;
*data = NULL;
*size = 0;
list_for_each(prop, node->properties, list_node) {
if (!strcmp(prop->prop.name, name)) {
*data = prop->prop.data;
*size = prop->prop.size;
return;
}
}
}
/*
* Add a string property to a node, or update it if it already exists.
*
* @param node The device tree node to add to.
* @param name The name of the new property.
* @param str The zero-terminated string to be stored in the property.
*/
void dt_add_string_prop(DeviceTreeNode *node, const char *name, char *str)
{
dt_add_bin_prop(node, name, str, strlen(str) + 1);
}
/*
* Add a 32-bit integer property to a node, or update it if it already exists.
*
* @param node The device tree node to add to.
* @param name The name of the new property.
* @param val The integer to be stored in the property.
*/
void dt_add_u32_prop(DeviceTreeNode *node, const char *name, u32 val)
{
u32 *val_ptr = xmalloc(sizeof(val));
*val_ptr = htobel(val);
dt_add_bin_prop(node, name, val_ptr, sizeof(*val_ptr));
}
/*
* Add a 64-bit integer property to a node, or update it if it already exists.
*
* @param node The device tree node to add to.
* @param name The name of the new property.
* @param val The integer to be stored in the property.
*/
void dt_add_u64_prop(DeviceTreeNode *node, const char *name, u64 val)
{
u64 *val_ptr = xmalloc(sizeof(val));
*val_ptr = htobell(val);
dt_add_bin_prop(node, name, val_ptr, sizeof(*val_ptr));
}
/*
* Add a 'reg' address list property to a node, or update it if it exists.
*
* @param node The device tree node to add to.
* @param addrs Array of address values to be stored in the property.
* @param sizes Array of corresponding size values to 'addrs'.
* @param count Number of values in 'addrs' and 'sizes' (must be equal).
* @param addr_cells Value of #address-cells property valid for this node.
* @param size_cells Value of #size-cells property valid for this node.
*/
void dt_add_reg_prop(DeviceTreeNode *node, u64 *addrs, u64 *sizes,
int count, u32 addr_cells, u32 size_cells)
{
int i;
size_t length = (addr_cells + size_cells) * sizeof(u32) * count;
u8 *data = xmalloc(length);
u8 *cur = data;
for (i = 0; i < count; i++) {
dt_write_int(cur, addrs[i], addr_cells * sizeof(u32));
cur += addr_cells * sizeof(u32);
dt_write_int(cur, sizes[i], size_cells * sizeof(u32));
cur += size_cells * sizeof(u32);
}
dt_add_bin_prop(node, "reg", data, length);
}
/*
* Fixups to apply to a kernel's device tree before booting it.
*/
ListNode device_tree_fixups;
int dt_apply_fixups(DeviceTree *tree)
{
DeviceTreeFixup *fixup;
list_for_each(fixup, device_tree_fixups, list_node) {
assert(fixup->fixup);
if (fixup->fixup(fixup, tree))
return 1;
}
return 0;
}
int dt_set_bin_prop_by_path(DeviceTree *tree, const char *path,
void *data, size_t data_size, int create)
{
char *path_copy, *prop_name;
DeviceTreeNode *dt_node;
path_copy = strdup(path);
if (!path_copy) {
printf("Failed to allocate a copy of path %s\n", path);
return 1;
}
prop_name = strrchr(path_copy, '/');
if (!prop_name) {
printf("Path %s does not include '/'\n", path);
free(path_copy);
return 1;
}
*prop_name++ = '\0'; /* Separate path from the property name. */
dt_node = dt_find_node_by_path(tree, path_copy, NULL, NULL, create);
if (!dt_node) {
printf("Failed to %s %s in the device tree\n",
create ? "create" : "find", path_copy);
free(path_copy);
return 1;
}
dt_add_bin_prop(dt_node, prop_name, data, data_size);
return 0;
}
/*
* Prepare the /reserved-memory/ node.
*
* Technically, this can be called more than one time, to init and/or retrieve
* the node. But dt_add_u32_prop() may leak a bit of memory if you do.
*
* @tree: Device tree to add/retrieve from.
* @return: The /reserved-memory/ node (or NULL, if error).
*/
DeviceTreeNode *dt_init_reserved_memory_node(DeviceTree *tree)
{
DeviceTreeNode *reserved;
u32 addr = 0, size = 0;
reserved = dt_find_node_by_path(tree, "/reserved-memory", &addr,
&size, 1);
if (!reserved)
return NULL;
// Binding doc says this should have the same #{address,size}-cells as
// the root.
dt_add_u32_prop(reserved, "#address-cells", addr);
dt_add_u32_prop(reserved, "#size-cells", size);
// Binding doc says this should be empty (i.e., 1:1 mapping from root).
dt_add_bin_prop(reserved, "ranges", NULL, 0);
return reserved;
}
/*
* Increment a single phandle in prop at a given offset by a given adjustment.
*
* @param prop Property whose phandle should be adjusted.
* @param adjustment Value that should be added to the existing phandle.
* @param offset Byte offset of the phandle in the property data.
*
* @return New phandle value, or 0 on error.
*/
static uint32_t dt_adjust_phandle(DeviceTreeProperty *prop,
uint32_t adjustment, uint32_t offset)
{
if (offset + 4 > prop->prop.size)
return 0;
uint32_t phandle = be32dec(prop->prop.data + offset);
if (phandle == 0 ||
phandle == PhandleIllegal ||
phandle == 0xffffffff)
return 0;
phandle += adjustment;
if(phandle >= PhandleIllegal)
return 0;
be32enc(prop->prop.data + offset, phandle);
return phandle;
}
/*
* Adjust all phandles in subtree by adding a new base offset.
*
* @param node Root node of the subtree to work on.
* @param base New phandle base to be added to all phandles.
*
* @return New highest phandle in the subtree, or 0 on error.
*/
static uint32_t dt_adjust_all_phandles(DeviceTreeNode *node, uint32_t base)
{
uint32_t new_max = MAX(base, 1); // make sure we don't return 0
DeviceTreeProperty *prop;
DeviceTreeNode *child;
if (!node)
return new_max;
list_for_each(prop, node->properties, list_node)
if (dt_prop_is_phandle(prop)) {
node->phandle = dt_adjust_phandle(prop, base, 0);
if (!node->phandle)
return 0;
new_max = MAX(new_max, node->phandle);
} // no break -- can have more than one phandle prop
list_for_each(child, node->children, list_node)
new_max = MAX(new_max, dt_adjust_all_phandles(child, base));
return new_max;
}
/*
* Apply a /__local_fixup__ subtree to the corresponding overlay subtree.
*
* @param node Root node of the overlay subtree to fix up.
* @param node Root node of the /__local_fixup__ subtree.
* @param base Adjustment that was added to phandles in the overlay.
*
* @return 0 on success, -1 on error.
*/
int dt_fixup_locals(DeviceTreeNode *node, DeviceTreeNode *fixup, uint32_t base)
{
DeviceTreeProperty *prop;
DeviceTreeProperty *fixup_prop;
DeviceTreeNode *child;
DeviceTreeNode *fixup_child;
int i;
// For local fixups the /__local_fixup__ subtree contains the same node
// hierarchy as the main tree we're fixing up. Each property contains
// the fixup offsets for the respective property in the main tree. For
// each property in the fixup node, find the corresponding property in
// the base node and apply fixups to all offsets it specifies.
list_for_each(fixup_prop, fixup->properties, list_node) {
DeviceTreeProperty *base_prop = NULL;
list_for_each(prop, node->properties, list_node)
if (!strcmp(prop->prop.name, fixup_prop->prop.name)) {
base_prop = prop;
break;
}
// We should always find a corresponding base prop for a fixup,
// and fixup props contain a list of 32-bit fixup offsets.
if (!base_prop || fixup_prop->prop.size % sizeof(uint32_t))
return -1;
for (i = 0; i < fixup_prop->prop.size; i += sizeof(uint32_t))
if (!dt_adjust_phandle(base_prop, base,
be32dec(fixup_prop->prop.data + i)))
return -1;
}
// Now recursively descend both the base tree and the /__local_fixups__
// subtree in sync to apply all fixups.
list_for_each(fixup_child, fixup->children, list_node) {
DeviceTreeNode *base_child = NULL;
list_for_each(child, node->children, list_node)
if (!strcmp(child->name, fixup_child->name)) {
base_child = child;
break;
}
// All fixup nodes should have a corresponding base node.
if (!base_child)
return -1;
if (dt_fixup_locals(base_child, fixup_child, base) < 0)
return -1;
}
return 0;
}
/*
* Update all /__symbols__ properties in an overlay that start with
* "/fragment@X/__overlay__" with corresponding path prefix in the base tree.
*
* @param symbols /__symbols__ done to update.
* @param fragment /fragment@X node that references to should be updated.
* @param base_path Path of base tree node that the fragment overlaid.
*/
static void dt_fix_symbols(DeviceTreeNode *symbols, DeviceTreeNode *fragment,
const char *base_path)
{
DeviceTreeProperty *prop;
char buf[512]; // Should be enough for maximum DT path length?
char node_path[64]; // easily enough for /fragment@XXXX/__overlay__
if (!symbols) // If the overlay has no /__symbols__ node, we're done!
return;
int len = snprintf(node_path, sizeof(node_path), "/%s/__overlay__",
fragment->name);
list_for_each(prop, symbols->properties, list_node)
if (!strncmp(prop->prop.data, node_path, len)) {
prop->prop.size = snprintf(buf, sizeof(buf), "%s%s",
base_path, (char *)prop->prop.data + len) + 1;
free(prop->prop.data);
prop->prop.data = strdup(buf);
}
}
/*
* Fix up overlay according to a property in /__fixup__. If the fixed property
* is a /fragment@X:target, also update /__symbols__ references to fragment.
*
* @params overlay Overlay to fix up.
* @params fixup /__fixup__ property.
* @params phandle phandle value to insert where the fixup points to.
* @params base_path Path to the base DT node that the fixup points to.
* @params overlay_symbols /__symbols__ node of the overlay.
*
* @return 0 on success, -1 on error.
*/
static int dt_fixup_external(DeviceTree *overlay, DeviceTreeProperty *fixup,
uint32_t phandle, const char *base_path,
DeviceTreeNode *overlay_symbols)
{
DeviceTreeProperty *prop;
// External fixup properties are encoded as "<path>:<prop>:<offset>".
char *entry = fixup->prop.data;
while ((void *)entry < fixup->prop.data + fixup->prop.size) {
// okay to destroy fixup property value, won't be needed again
char *node_path = strsep(&entry, ":");
char *prop_name = strsep(&entry, ":");
char *offset_string = entry;
if (!node_path || !prop_name || !offset_string)
return -1;
DeviceTreeNode *ovl_node = dt_find_node_by_path(overlay,
node_path, NULL, NULL, 0);
if (!ovl_node)
return -1;
DeviceTreeProperty *ovl_prop = NULL;
list_for_each(prop, ovl_node->properties, list_node)
if (!strcmp(prop->prop.name, prop_name)) {
ovl_prop = prop;
break;
}
// Move entry to first char after number, must be a '\0'.
uint32_t offset = strtoul(offset_string, &entry, 0);
if (!ovl_prop || offset + 4 > ovl_prop->prop.size || entry[0])
return -1;
entry++; // jump over '\0' to potential next fixup
be32enc(ovl_prop->prop.data + offset, phandle);
// If this is a /fragment@X:target property, update
// references to this fragment in the overlay __symbols__ now.
if (offset == 0 && !strcmp(prop_name, "target") &&
!strchr(node_path + 1, '/')) // only toplevel nodes
dt_fix_symbols(overlay_symbols, ovl_node, base_path);
}
return 0;
}
/*
* Apply all /__fixup__ properties in the overlay. This will destroy the
* property data in /__fixup__ and it should not be accessed again.
*
* @params tree Base device tree that the overlay updates.
* @params symbols /__symbols__ node of the base device tree.
* @params overlay Overlay to fix up.
* @params fixups /__fixup__ node in the overlay.
* @params overlay_symbols /__symbols__ node of the overlay.
*
* @return 0 on success, -1 on error.
*/
static int dt_fixup_all_externals(DeviceTree *tree, DeviceTreeNode *symbols,
DeviceTree *overlay, DeviceTreeNode *fixups,
DeviceTreeNode *overlay_symbols)
{
DeviceTreeProperty *fix;
// If we have any external fixups, the base tree must have /__symbols__.
if (!symbols)
return -1;
// Unlike /__local_fixups__, /__fixups__ is not a whole subtree that
// mirrors the node hierarchy. It's just a directory of fixup properties
// that each directly contain all information necessary to apply them.
list_for_each(fix, fixups->properties, list_node) {
// The name of a fixup property is the label of the node we want
// a property to phandle-reference. Look it up in /__symbols__.
const char *path = dt_find_string_prop(symbols, fix->prop.name);
if (!path)
return -1;
// Find the node the label pointed to to figure out its phandle.
DeviceTreeNode *node = dt_find_node_by_path(tree, path,
NULL, NULL, 0);
if (!node)
return -1;
// Write it into the overlay property(s) pointing to that node.
if (dt_fixup_external(overlay, fix, node->phandle,
path, overlay_symbols) < 0)
return -1;
}
return 0;
}
/*
* Copy all nodes and properties from one DT subtree into another. This is a
* shallow copy so both trees will point to the same property data afterwards.
*
* @params dst Destination subtree to copy into.
* @params src Source subtree to copy from.
* @params upd 1 to overwrite same-name properties, 0 to discard them.
*/
static void dt_copy_subtree(DeviceTreeNode *dst, DeviceTreeNode *src, int upd)
{
DeviceTreeProperty *prop;
DeviceTreeProperty *src_prop;
list_for_each (src_prop, src->properties, list_node) {
if (dt_prop_is_phandle(src_prop) ||
!strcmp(src_prop->prop.name, "name")) {
printf("WARNING: ignoring illegal overlay prop '%s'\n",
src_prop->prop.name);
continue;
}
DeviceTreeProperty *dst_prop = NULL;
list_for_each(prop, dst->properties, list_node)
if (!strcmp(prop->prop.name, src_prop->prop.name)) {
dst_prop = prop;
break;
}
if (dst_prop) {
if (!upd) {
printf("WARNING: ignoring prop update '%s'\n",
src_prop->prop.name);
continue;
}
} else {
dst_prop = alloc_prop();
list_insert_after(&dst_prop->list_node,
&dst->properties);
}
dst_prop->prop = src_prop->prop;
}
DeviceTreeNode *node;
DeviceTreeNode *src_node;
list_for_each (src_node, src->children, list_node) {
DeviceTreeNode *dst_node = NULL;
list_for_each (node, dst->children, list_node)
if (!strcmp(node->name, src_node->name)) {
dst_node = node;
break;
}
if (!dst_node) {
dst_node = alloc_node();
*dst_node = *src_node;
list_insert_after(&dst_node->list_node, &dst->children);
} else {
dt_copy_subtree(dst_node, src_node, upd);
}
}
}
/*
* Apply an overlay /fragment@X node to a base device tree.
*
* @param tree Base device tree.
* @param fragment /fragment@X node.
* @params overlay_symbols /__symbols__ node of the overlay.
*
* @return 0 on success, -1 on error.
*/
static int dt_import_fragment(DeviceTree *tree, DeviceTreeNode *fragment,
DeviceTreeNode *overlay_symbols)
{
// The actually overlaid nodes/props are in an __overlay__ child node.
static const char *overlay_path[] = { "__overlay__", NULL };
DeviceTreeNode *overlay = dt_find_node(fragment, overlay_path,
NULL, NULL, 0);
// If it doesn't have an __overlay__ child, it's not a fragment.
if (!overlay)
return 0;
// The target node of the fragment can be given by path or by phandle.
DeviceTreeProperty *prop;
DeviceTreeProperty *phandle = NULL;
DeviceTreeProperty *path = NULL;
list_for_each(prop, fragment->properties, list_node) {
if (!strcmp(prop->prop.name, "target")) {
phandle = prop;
break; // phandle target has priority, stop looking here
}
if (!strcmp(prop->prop.name, "target-path"))
path = prop;
}
DeviceTreeNode *target = NULL;
if (phandle) {
if (phandle->prop.size != sizeof(uint32_t))
return -1;
target = dt_find_node_by_phandle(tree->root,
be32dec(phandle->prop.data));
// Symbols already updated as part of dt_fixup_external(target).
} else if (path) {
target = dt_find_node_by_path(tree, path->prop.data,
NULL, NULL, 0);
dt_fix_symbols(overlay_symbols, fragment, path->prop.data);
}
if (!target)
return -1;
dt_copy_subtree(target, overlay, 1);
return 0;
}
/*
* Apply a device tree overlay (flattened) to a base device tree (unflattened).
* This will destroy/incorporate the overlay blob, so it should not be reused.
* See dtc.git/Documentation/dt-object-internal.txt for overlay format details.
*
* @param tree Base device tree to add the overlay into.
* @param overlay_blob Overlay in raw, unparsed FDT blob form.
*
* @return 0 on success, -1 on error.
*/
int dt_apply_overlay(DeviceTree *tree, void *overlay_blob)
{
DeviceTree *overlay = fdt_unflatten(overlay_blob);
if (!overlay)
return -1;
// First, we need to make sure phandles inside the overlay don't clash
// with those in the base tree. We just define the highest phandle value
// in the base tree as the "phandle offset" for this overlay and
// increment all phandles in it by that value.
uint32_t phandle_base = tree->max_phandle;
uint32_t new_max = dt_adjust_all_phandles(overlay->root, phandle_base);
if (!new_max) {
printf("ERROR: invalid phandles in overlay\n");
return -1;
}
tree->max_phandle = new_max;
// Now that we changed phandles in the overlay, we need to update any
// nodes referring to them. Those are listed in /__local_fixups__.
DeviceTreeNode *local_fixups = dt_find_node_by_path(overlay,
"/__local_fixups__", NULL, NULL, 0);
if (local_fixups && dt_fixup_locals(overlay->root, local_fixups,
phandle_base) < 0) {
printf("ERROR: invalid local fixups in overlay\n");
return -1;
}
// Besides local phandle references (from nodes within the overlay to
// other nodes within the overlay), the overlay may also contain phandle
// references to the base tree. These are stored with invalid values and
// must be updated now. /__symbols__ contains a list of all labels in
// the base tree, and /__fixups__ describes all nodes in the overlay
// that contain external phandle references.
// We also take this opportunity to update all /fragment@X/__overlay__/
// prefixes in the overlay's /__symbols__ node to the correct path that
// the fragment will be placed in later, since this is the only step
// where we have all necessary information for that easily available.
DeviceTreeNode *symbols = dt_find_node_by_path(tree, "/__symbols__",
NULL, NULL, 0);
DeviceTreeNode *fixups = dt_find_node_by_path(overlay, "/__fixups__",
NULL, NULL, 0);
DeviceTreeNode *overlay_symbols = dt_find_node_by_path(overlay,
"/__symbols__", NULL, NULL, 0);
if (fixups && dt_fixup_all_externals(tree, symbols, overlay,
fixups, overlay_symbols) < 0) {
printf("ERROR: cannot match external fixups from overlay\n");
return -1;
}
// After all this fixing up, we can finally merge the overlay into the
// tree (one fragment at a time, because for some reason it's split up).
DeviceTreeNode *fragment;
list_for_each(fragment, overlay->root->children, list_node)
if (dt_import_fragment(tree, fragment, overlay_symbols) < 0) {
printf("ERROR: bad DT fragment '%s'\n", fragment->name);
return -1;
}
// We need to also update /__symbols__ to include labels from this
// overlay, in case we want to load further overlays with external
// phandle references to it. If the base tree already has a /__symbols__
// we merge them together, otherwise we just insert the overlay's
// /__symbols__ node into the base tree root.
if (overlay_symbols) {
if (symbols)
dt_copy_subtree(symbols, overlay_symbols, 0);
else
list_insert_after(&overlay_symbols->list_node,
&tree->root->children);
}
return 0;
}