blob: 074dc1407f130dd3855aea29c7592898d284752c [file] [log] [blame]
/* Copyright 2019 The ChromiumOS Authors
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/*
* SC7X80 SoC power sequencing module for Chrome EC
*
* This implements the following features:
*
* - Cold reset powers on the AP
*
* When powered off:
* - Press power button turns on the AP
* - Hold power button turns on the AP, and then 8s later turns it off and
* leaves it off until pwron is released and pressed again
* - Lid open turns on the AP
*
* When powered on:
* - Holding power button for 8s powers off the AP
* - Pressing and releasing pwron within that 8s is ignored
* - If POWER_GOOD is dropped by the AP, then we power the AP off
*/
#include "builtin/assert.h"
#include "charge_state.h"
#include "chipset.h"
#include "common.h"
#include "gpio.h"
#include "hooks.h"
#include "lid_switch.h"
#include "power.h"
#include "power/qcom.h"
#include "power_button.h"
#include "system.h"
#include "task.h"
#include "util.h"
#define CPRINTS(format, args...) cprints(CC_CHIPSET, format, ##args)
/* Power signal list. Must match order of enum power_signal. */
const struct power_signal_info power_signal_list[] = {
[SC7X80_AP_RST_ASSERTED] = {
GPIO_AP_RST_L,
POWER_SIGNAL_ACTIVE_LOW | POWER_SIGNAL_DISABLE_AT_BOOT,
"AP_RST_ASSERTED",
},
[SC7X80_PS_HOLD] = {
GPIO_PS_HOLD,
POWER_SIGNAL_ACTIVE_HIGH,
"PS_HOLD",
},
[SC7X80_POWER_GOOD] = {
GPIO_POWER_GOOD,
POWER_SIGNAL_ACTIVE_HIGH,
"POWER_GOOD",
},
[SC7X80_AP_SUSPEND] = {
GPIO_AP_SUSPEND,
POWER_SIGNAL_ACTIVE_HIGH | POWER_SIGNAL_NO_LOG,
"AP_SUSPEND",
},
#ifdef CONFIG_CHIPSET_SC7180
[SC7X80_WARM_RESET] = {
GPIO_WARM_RESET_L,
POWER_SIGNAL_ACTIVE_HIGH,
"WARM_RESET_L",
},
[SC7X80_DEPRECATED_AP_RST_REQ] = {
GPIO_DEPRECATED_AP_RST_REQ,
POWER_SIGNAL_ACTIVE_HIGH,
"DEPRECATED_AP_RST_REQ",
},
#endif /* defined(CONFIG_CHIPSET_SC7180) */
};
BUILD_ASSERT(ARRAY_SIZE(power_signal_list) == POWER_SIGNAL_COUNT);
/* Masks for power signals */
#define IN_POWER_GOOD POWER_SIGNAL_MASK(SC7X80_POWER_GOOD)
#define IN_AP_RST_ASSERTED POWER_SIGNAL_MASK(SC7X80_AP_RST_ASSERTED)
#define IN_SUSPEND POWER_SIGNAL_MASK(SC7X80_AP_SUSPEND)
/* Long power key press to force shutdown */
#define DELAY_FORCE_SHUTDOWN (8 * SECOND)
/*
* If the power button is pressed to turn on, then held for this long, we
* power off.
*
* Normal case: User releases power button and chipset_task() goes
* into the inner loop, waiting for next event to occur (power button
* press or POWER_GOOD == 0).
*/
#define DELAY_SHUTDOWN_ON_POWER_HOLD (8 * SECOND)
/*
* After trigger PMIC power sequence, how long it triggers AP to turn on
* or off. Observed that the worst case is ~150ms. Pick a safe vale.
*/
#define PMIC_POWER_AP_RESPONSE_TIMEOUT (350 * MSEC)
/*
* After force off the switch cap, how long the PMIC/AP totally off.
* Observed that the worst case is 2s. Pick a safe vale.
*/
#define FORCE_OFF_RESPONSE_TIMEOUT (4 * SECOND)
/* Wait for polling the AP on signal */
#define PMIC_POWER_AP_WAIT (1 * MSEC)
/* The length of an issued low pulse to the PMIC_RESIN_L signal */
#define PMIC_RESIN_PULSE_LENGTH (20 * MSEC)
/* The timeout of the check if the system can boot AP */
#define CAN_BOOT_AP_CHECK_TIMEOUT (1500 * MSEC)
/* Wait for polling if the system can boot AP */
#define CAN_BOOT_AP_CHECK_WAIT (200 * MSEC)
/* The timeout of the check if the switchcap outputs good voltage */
#define SWITCHCAP_PG_CHECK_TIMEOUT (100 * MSEC)
/* Wait for polling if the switchcap outputs good voltage */
#define SWITCHCAP_PG_CHECK_WAIT (6 * MSEC)
/*
* Delay between power-on the system and power-on the PMIC.
* Some latest PMIC firmware needs this delay longer, for doing a cold
* reboot.
*
* Measured on Herobrine IOB + Trogdor MLB, the delay takes ~200ms. Set
* it with margin.
*/
#define SYSTEM_POWER_ON_DELAY (300 * MSEC)
/*
* Delay between the PMIC power drop and power-off the system.
* Qualcomm measured the entire POFF duration is around 70ms. Setting
* this delay to the same value as the above power-on sequence, which
* has much safer margin.
*/
#define PMIC_POWER_OFF_DELAY (150 * MSEC)
/* The AP_RST_L transition count of a normal AP warm reset */
#define EXPECTED_AP_RST_TRANSITIONS 3
/*
* The timeout of waiting the next AP_RST_L transition. We measured
* the interval between AP_RST_L transitions is 130ms ~ 150ms. Pick
* a safer value.
*/
#define AP_RST_TRANSITION_TIMEOUT (450 * MSEC)
/* TODO(crosbug.com/p/25047): move to HOOK_POWER_BUTTON_CHANGE */
/* 1 if the power button was pressed last time we checked */
static char power_button_was_pressed;
/* 1 if lid-open event has been detected */
static char lid_opened;
/* Time where we will power off, if power button still held down */
static timestamp_t power_off_deadline;
/* Force AP power on (used for recovery keypress) */
static int auto_power_on;
enum power_request_t {
POWER_REQ_NONE,
POWER_REQ_OFF,
POWER_REQ_ON,
POWER_REQ_COLD_RESET,
POWER_REQ_WARM_RESET,
POWER_REQ_COUNT,
};
static enum power_request_t power_request;
/**
* Return values for check_for_power_off_event().
*/
enum power_off_event_t {
POWER_OFF_CANCEL,
POWER_OFF_BY_POWER_BUTTON_PRESSED,
POWER_OFF_BY_LONG_PRESS,
POWER_OFF_BY_POWER_GOOD_LOST,
POWER_OFF_BY_POWER_REQ_OFF,
POWER_OFF_BY_POWER_REQ_RESET,
POWER_OFF_EVENT_COUNT,
};
/**
* Return values for check_for_power_on_event().
*/
enum power_on_event_t {
POWER_ON_CANCEL,
POWER_ON_BY_AUTO_POWER_ON,
POWER_ON_BY_LID_OPEN,
POWER_ON_BY_POWER_BUTTON_PRESSED,
POWER_ON_BY_POWER_REQ_ON,
POWER_ON_BY_POWER_REQ_RESET,
POWER_ON_EVENT_COUNT,
};
#ifdef CONFIG_CHIPSET_RESET_HOOK
static int ap_rst_transitions;
static void notify_chipset_reset(void)
{
if (ap_rst_transitions != EXPECTED_AP_RST_TRANSITIONS)
CPRINTS("AP_RST_L transitions not expected: %d",
ap_rst_transitions);
ap_rst_transitions = 0;
hook_notify(HOOK_CHIPSET_RESET);
}
DECLARE_DEFERRED(notify_chipset_reset);
#endif
void chipset_ap_rst_interrupt(enum gpio_signal signal)
{
#ifdef CONFIG_CHIPSET_RESET_HOOK
int delay;
/*
* Only care the raising edge and AP in S0/S3. The single raising edge
* of AP power-on during S5S3 is ignored.
*/
if (gpio_get_level(GPIO_AP_RST_L) &&
chipset_in_state(CHIPSET_STATE_ON | CHIPSET_STATE_SUSPEND)) {
ap_rst_transitions++;
if (ap_rst_transitions >= EXPECTED_AP_RST_TRANSITIONS) {
/*
* Reach the expected transition count. AP is booting
* up. Notify HOOK_CHIPSET_RESET immediately.
*/
delay = 0;
} else {
/*
* Should have more transitions of the AP_RST_L signal.
* In case the AP_RST_L signal is not toggled, still
* notify HOOK_CHIPSET_RESET.
*/
delay = AP_RST_TRANSITION_TIMEOUT;
}
hook_call_deferred(&notify_chipset_reset_data, delay);
}
#endif
power_signal_interrupt(signal);
}
#ifdef CONFIG_CHIPSET_SC7180
/* 1 if AP_RST_L and PS_HOLD is overdriven by EC */
static char ap_rst_overdriven;
/* Issue a request to initiate a reset sequence */
static void request_cold_reset(void)
{
power_request = POWER_REQ_COLD_RESET;
task_wake(TASK_ID_CHIPSET);
}
void chipset_warm_reset_interrupt(enum gpio_signal signal)
{
/*
* The warm_reset signal is pulled-up by a rail from PMIC. If the
* warm_reset drops, it means:
* * Servo or Cr50 holds the signal, or
* * its pull-up rail POWER_GOOD drops.
*/
if (!gpio_get_level(GPIO_WARM_RESET_L)) {
if (gpio_get_level(GPIO_POWER_GOOD)) {
/*
* Servo or Cr50 holds the WARM_RESET_L signal.
*
* Overdrive AP_RST_L to hold AP. Overdrive PS_HOLD to
* emulate AP being up to trick the PMIC into thinking
* there’s nothing weird going on.
*/
ap_rst_overdriven = 1;
gpio_set_flags(GPIO_PS_HOLD, GPIO_INT_BOTH |
GPIO_SEL_1P8V |
GPIO_OUT_HIGH);
gpio_set_flags(GPIO_AP_RST_L, GPIO_INT_BOTH |
GPIO_SEL_1P8V |
GPIO_OUT_LOW);
}
/* Ignore the else clause, the pull-up rail drops. */
} else {
if (ap_rst_overdriven) {
/*
* Servo or Cr50 releases the WARM_RESET_L signal.
*
* Cold reset the PMIC, doing S0->S5->S0 transition,
* by issuing a request to initiate a reset sequence,
* to recover the system. The transition to S5 makes
* POWER_GOOD drop that triggers an interrupt to
* high-Z both AP_RST_L and PS_HOLD.
*/
CPRINTS("Long warm reset ended, "
"cold resetting to restore confidence.");
request_cold_reset();
}
/* If not overdriven, just a normal power-up, do nothing. */
}
power_signal_interrupt(signal);
}
void chipset_power_good_interrupt(enum gpio_signal signal)
{
if (!gpio_get_level(GPIO_POWER_GOOD) && ap_rst_overdriven) {
/*
* POWER_GOOD is the pull-up rail of WARM_RESET_L.
* When POWER_GOOD drops, high-Z both AP_RST_L and PS_HOLD
* to restore their states.
*/
gpio_set_flags(GPIO_AP_RST_L, GPIO_INT_BOTH | GPIO_SEL_1P8V);
gpio_set_flags(GPIO_PS_HOLD, GPIO_INT_BOTH | GPIO_SEL_1P8V);
ap_rst_overdriven = 0;
}
power_signal_interrupt(signal);
}
#endif /* defined(CONFIG_CHIPSET_SC7180) */
static void sc7x80_lid_event(void)
{
/* Power task only cares about lid-open events */
if (!lid_is_open())
return;
lid_opened = 1;
task_wake(TASK_ID_CHIPSET);
}
DECLARE_HOOK(HOOK_LID_CHANGE, sc7x80_lid_event, HOOK_PRIO_DEFAULT);
static void sc7x80_powerbtn_changed(void)
{
task_wake(TASK_ID_CHIPSET);
}
DECLARE_HOOK(HOOK_POWER_BUTTON_CHANGE, sc7x80_powerbtn_changed,
HOOK_PRIO_DEFAULT);
/**
* Wait the switchcap GPIO0 PVC_PG signal asserted.
*
* When the output voltage is over the threshold PVC_PG_ADJ,
* the PVC_PG is asserted.
*
* PVG_PG_ADJ is configured to 3.0V.
* GPIO0 is configured as PVC_PG.
*
* @param enable 1 to wait the PMIC/AP on.
* 0 to wait the PMIC/AP off.
*
* @return EC_SUCCESS or error
*/
static int wait_switchcap_power_good(int enable)
{
timestamp_t poll_deadline;
poll_deadline = get_time();
poll_deadline.val += SWITCHCAP_PG_CHECK_TIMEOUT;
while (enable != board_is_switchcap_power_good() &&
get_time().val < poll_deadline.val) {
usleep(SWITCHCAP_PG_CHECK_WAIT);
}
/*
* Check the timeout case. Just show a message. More check later
* will switch the power state.
*/
if (enable != board_is_switchcap_power_good()) {
if (enable)
CPRINTS("SWITCHCAP NO POWER GOOD!");
else
CPRINTS("SWITCHCAP STILL POWER GOOD!");
return EC_ERROR_UNKNOWN;
}
return EC_SUCCESS;
}
/**
* Get the state of the system power signals.
*
* @return 1 if the system is powered, 0 if not
*/
static int is_system_powered(void)
{
return board_is_switchcap_enabled();
}
/**
* Get the PMIC/AP power signal.
*
* We treat the PMIC chips and the AP as a whole here. Don't deal with
* the individual chip.
*
* @return 1 if the PMIC/AP is powered, 0 if not
*/
static int is_pmic_pwron(void)
{
/* Use POWER_GOOD to indicate PMIC/AP is on/off */
return gpio_get_level(GPIO_POWER_GOOD);
}
/**
* Wait the PMIC/AP power-on state.
*
* @param enable 1 to wait the PMIC/AP on.
* 0 to wait the PMIC/AP off.
* @param timeout Number of microsecond of timeout.
*
* @return EC_SUCCESS or error
*/
static int wait_pmic_pwron(int enable, unsigned int timeout)
{
timestamp_t poll_deadline;
/* Check the AP power status */
if (enable == is_pmic_pwron())
return EC_SUCCESS;
poll_deadline = get_time();
poll_deadline.val += timeout;
while (enable != is_pmic_pwron() &&
get_time().val < poll_deadline.val) {
usleep(PMIC_POWER_AP_WAIT);
}
/* Check the timeout case */
if (enable != is_pmic_pwron()) {
if (enable)
CPRINTS("AP POWER NOT READY!");
else
CPRINTS("AP POWER STILL UP!");
return EC_ERROR_UNKNOWN;
}
return EC_SUCCESS;
}
/**
* Set the state of the system power signals but without any check.
*
* The system power signals are the enable pins of SwitchCap.
* They control the power of the set of PMIC chips and the AP.
*
* @param enable 1 to enable or 0 to disable
*/
static void set_system_power_no_check(int enable)
{
board_set_switchcap_power(enable);
}
/**
* Set the state of the system power signals.
*
* The system power signals are the enable pins of SwitchCap.
* They control the power of the set of PMIC chips and the AP.
*
* @param enable 1 to enable or 0 to disable
*
* @return EC_SUCCESS or error
*/
static int set_system_power(int enable)
{
int ret;
CPRINTS("%s(%d)", __func__, enable);
set_system_power_no_check(enable);
ret = wait_switchcap_power_good(enable);
if (!enable) {
/* Ensure POWER_GOOD drop to low if it is a forced shutdown */
ret |= wait_pmic_pwron(0, FORCE_OFF_RESPONSE_TIMEOUT);
}
usleep(SYSTEM_POWER_ON_DELAY);
return ret;
}
/**
* Set the PMIC/AP power-on state.
*
* It triggers the PMIC/AP power-on and power-off sequence.
*
* @param enable 1 to power the PMIC/AP on.
* 0 to power the PMIC/AP off.
*
* @return EC_SUCCESS or error
*/
static int set_pmic_pwron(int enable)
{
int ret;
CPRINTS("%s(%d)", __func__, enable);
/* Check the PMIC/AP power state */
if (enable == is_pmic_pwron())
return EC_SUCCESS;
if (!gpio_get_level(GPIO_PMIC_RESIN_L)) {
CPRINTS("PMIC_RESIN_L not pulled up by PMIC; cancel pwron");
return EC_ERROR_UNKNOWN;
}
/*
* Power-on sequence:
* 1. Hold down PMIC_KPD_PWR_ODL, which is a power-on trigger
* 2. PMIC supplies power to POWER_GOOD
* 3. Release PMIC_KPD_PWR_ODL
*
* Power-off sequence:
* 1. Hold down PMIC_KPD_PWR_ODL and PMIC_RESIN_L, which is a power-off
* trigger (requiring reprogramming PMIC registers to make
* PMIC_KPD_PWR_ODL + PMIC_RESIN_L as a shutdown trigger)
* 2. PMIC stops supplying power to POWER_GOOD (requiring
* reprogramming PMIC to set the stage-1 and stage-2 reset timers to
* 0 such that the pull down happens just after the deboucing time
* of the trigger, like 2ms)
* 3. Release PMIC_KPD_PWR_ODL and PMIC_RESIN_L
*
* If the above PMIC registers not programmed or programmed wrong, it
* falls back to the next functions, which cuts off the system power.
*/
gpio_set_level(GPIO_PMIC_KPD_PWR_ODL, 0);
if (!enable)
gpio_set_level(GPIO_PMIC_RESIN_L, 0);
ret = wait_pmic_pwron(enable, PMIC_POWER_AP_RESPONSE_TIMEOUT);
gpio_set_level(GPIO_PMIC_KPD_PWR_ODL, 1);
if (!enable)
gpio_set_level(GPIO_PMIC_RESIN_L, 1);
return ret;
}
enum power_state power_chipset_init(void)
{
int init_power_state;
uint32_t reset_flags = system_get_reset_flags();
/* Enable interrupts */
if (IS_ENABLED(CONFIG_CHIPSET_SC7180)) {
gpio_enable_interrupt(GPIO_WARM_RESET_L);
gpio_enable_interrupt(GPIO_POWER_GOOD);
}
/*
* Force the AP shutdown unless we are doing SYSJUMP. Otherwise,
* the AP could stay in strange state.
*/
if (!(reset_flags & EC_RESET_FLAG_SYSJUMP)) {
CPRINTS("not sysjump; forcing system shutdown");
set_system_power_no_check(0);
init_power_state = POWER_G3;
} else {
/* In the SYSJUMP case, we check if the AP is on */
if (power_get_signals() & IN_POWER_GOOD) {
CPRINTS("SOC ON");
init_power_state = POWER_S0;
/*
* Reenable the power signal AP_RST_L interrupt, which
* should be enabled during S5->S3 but sysjump makes
* it back to default, disabled.
*/
power_signal_enable_interrupt(GPIO_AP_RST_L);
/* Disable idle task deep sleep when in S0 */
disable_sleep(SLEEP_MASK_AP_RUN);
} else {
CPRINTS("SOC OFF");
init_power_state = POWER_G3;
}
}
auto_power_on = 1;
/*
* Leave power off only if requested by reset flags
*
* TODO(b/201099749): EC bootloader: Give RO chance to run EFS after
* shutdown from recovery screen
*/
if (reset_flags & EC_RESET_FLAG_AP_OFF)
auto_power_on = 0;
else if (!(reset_flags & EC_RESET_FLAG_EFS) &&
(reset_flags & EC_RESET_FLAG_SYSJUMP))
auto_power_on = 0;
if (battery_is_present() == BP_YES) {
/*
* (crosbug.com/p/28289): Wait battery stable.
* Some batteries use clock stretching feature, which requires
* more time to be stable.
*/
battery_wait_for_stable();
}
if (auto_power_on)
CPRINTS("auto_power_on set due to reset flags");
return init_power_state;
}
/*****************************************************************************/
/**
* Power off the AP
*
* @param shutdown_event reason of shutdown, which is a return value of
* check_for_power_off_event()
*/
static void power_off_seq(uint8_t shutdown_event)
{
/* Check PMIC POWER_GOOD */
if (is_pmic_pwron()) {
if (shutdown_event == POWER_OFF_BY_POWER_GOOD_LOST) {
/*
* The POWER_GOOD was lost previously, which sets the
* shutdown_event flag. But now it is up again. This
* is unexpected. Show the warning message. Then go
* straight to turn off the switchcap.
*/
CPRINTS("Warning: POWER_GOOD up again after lost");
} else {
/* Do a graceful way to shutdown PMIC/AP first */
set_pmic_pwron(0);
usleep(PMIC_POWER_OFF_DELAY);
}
}
/*
* Disable signal interrupts, as they are floating when
* switchcap off.
*/
power_signal_disable_interrupt(GPIO_AP_RST_L);
/* Check the switchcap status */
if (is_system_powered()) {
/* Force to switch off all rails */
set_system_power(0);
}
lid_opened = 0;
}
/**
* Check if the power is enough to boot the AP.
*/
static int power_is_enough(void)
{
timestamp_t poll_deadline;
/* If powered by adapter only, wait a while for PD negoiation. */
poll_deadline = get_time();
poll_deadline.val += CAN_BOOT_AP_CHECK_TIMEOUT;
/*
* Wait for PD negotiation. If a system with drained battery, don't
* waste the time and exit the loop.
*/
while (!system_can_boot_ap() && !charge_want_shutdown() &&
get_time().val < poll_deadline.val) {
usleep(CAN_BOOT_AP_CHECK_WAIT);
}
return system_can_boot_ap() && !charge_want_shutdown();
}
/**
* Power on the AP
*
* @return EC_SUCCESS or error
*/
static int power_on_seq(void)
{
int ret;
ret = set_system_power(1);
if (ret != EC_SUCCESS)
return ret;
/* Enable signal interrupts */
power_signal_enable_interrupt(GPIO_AP_RST_L);
ret = set_pmic_pwron(1);
if (ret != EC_SUCCESS) {
CPRINTS("POWER_GOOD not seen in time");
return ret;
}
CPRINTS("POWER_GOOD seen");
return EC_SUCCESS;
}
/**
* Check if there has been a power-on event
*
* This checks all power-on event signals and returns non-zero if any have been
* triggered (with debounce taken into account).
*
* @return non-zero if there has been a power-on event, 0 if not.
*/
static uint8_t check_for_power_on_event(void)
{
uint8_t ret;
if (power_request == POWER_REQ_ON) {
ret = POWER_ON_BY_POWER_REQ_ON;
} else if (power_request == POWER_REQ_COLD_RESET) {
ret = POWER_ON_BY_POWER_REQ_RESET;
} else if (auto_power_on) {
/* power on requested at EC startup for recovery */
ret = POWER_ON_BY_AUTO_POWER_ON;
} else if (lid_opened) {
/* check lid open */
ret = POWER_ON_BY_LID_OPEN;
} else if (power_button_is_pressed()) {
/* check for power button press */
ret = POWER_ON_BY_POWER_BUTTON_PRESSED;
} else {
ret = POWER_OFF_CANCEL;
}
/* The flags are handled above. Clear them all. */
power_request = POWER_REQ_NONE;
auto_power_on = 0;
lid_opened = 0;
return ret;
}
/**
* Check for some event triggering the shutdown.
*
* It can be either a long power button press or a shutdown triggered from the
* AP and detected by reading POWER_GOOD.
*
* @return non-zero if a shutdown should happen, 0 if not
*/
static uint8_t check_for_power_off_event(void)
{
timestamp_t now;
int pressed = 0;
if (power_request == POWER_REQ_OFF) {
power_request = POWER_REQ_NONE;
return POWER_OFF_BY_POWER_REQ_OFF;
} else if (power_request == POWER_REQ_COLD_RESET) {
/*
* The power_request flag will be cleared later
* in check_for_power_on_event() in S5.
*/
return POWER_OFF_BY_POWER_REQ_RESET;
}
/* Clear invalid request */
power_request = POWER_REQ_NONE;
/*
* Check for power button press.
*/
if (power_button_is_pressed())
pressed = POWER_OFF_BY_POWER_BUTTON_PRESSED;
now = get_time();
if (pressed) {
if (!power_button_was_pressed) {
power_off_deadline.val = now.val + DELAY_FORCE_SHUTDOWN;
CPRINTS("power waiting for long press %u",
power_off_deadline.le.lo);
/* Ensure we will wake up to check the power key */
timer_arm(power_off_deadline, TASK_ID_CHIPSET);
} else if (timestamp_expired(power_off_deadline, &now)) {
power_off_deadline.val = 0;
CPRINTS("power off after long press now=%u, %u",
now.le.lo, power_off_deadline.le.lo);
return POWER_OFF_BY_LONG_PRESS;
}
} else if (power_button_was_pressed) {
CPRINTS("power off cancel");
timer_cancel(TASK_ID_CHIPSET);
}
power_button_was_pressed = pressed;
/* POWER_GOOD released by AP : shutdown immediately */
if (!power_has_signals(IN_POWER_GOOD)) {
CPRINTS("POWER_GOOD is lost");
return POWER_OFF_BY_POWER_GOOD_LOST;
}
return POWER_OFF_CANCEL;
}
/**
* Cancel the power button timer.
*
* The timer was previously created in the check_for_power_off_event(),
* which waited for the power button long press. Should cancel the timer
* during the power state transition; otherwise, EC will crash.
*/
static inline void cancel_power_button_timer(void)
{
if (power_button_was_pressed)
timer_cancel(TASK_ID_CHIPSET);
}
/*****************************************************************************/
/* Chipset interface */
test_mockable void chipset_force_shutdown(enum chipset_shutdown_reason reason)
{
CPRINTS("%s(%d)", __func__, reason);
report_ap_reset(reason);
/* Issue a request to initiate a power-off sequence */
power_request = POWER_REQ_OFF;
task_wake(TASK_ID_CHIPSET);
}
test_mockable void chipset_power_on(void)
{
if (chipset_in_state(CHIPSET_STATE_ANY_OFF)) {
power_request = POWER_REQ_ON;
task_wake(TASK_ID_CHIPSET);
}
}
/**
* Warm reset the AP
*
* @return EC_SUCCESS or error
*/
static int warm_reset_seq(void)
{
int rv;
/*
* Warm reset sequence:
* 1. Issue a low pulse to PMIC_RESIN_L, which triggers PMIC
* to do a warm reset (requiring reprogramming PMIC registers
* to make PMIC_RESIN_L as a warm reset trigger).
* 2. PMIC then issues a low pulse to AP_RST_L to reset AP.
* EC monitors the signal to see any low pulse.
* 2.1. If a low pulse found, done.
* 2.2. If a low pulse not found (the above PMIC registers
* not programmed or programmed wrong), issue a request
* to initiate a cold reset power sequence.
*/
gpio_set_level(GPIO_PMIC_RESIN_L, 0);
usleep(PMIC_RESIN_PULSE_LENGTH);
gpio_set_level(GPIO_PMIC_RESIN_L, 1);
rv = power_wait_signals_timeout(IN_AP_RST_ASSERTED,
PMIC_POWER_AP_RESPONSE_TIMEOUT);
/* Exception case: PMIC not work as expected, request a cold reset */
if (rv != EC_SUCCESS)
return rv;
return EC_SUCCESS;
}
/**
* Check for some event triggering the warm reset.
*
* The only event is a request by the console command `apreset`.
*/
static void check_for_warm_reset_event(void)
{
int rv;
if (power_request == POWER_REQ_WARM_RESET) {
power_request = POWER_REQ_NONE;
rv = warm_reset_seq();
if (rv != EC_SUCCESS) {
CPRINTS("AP refuses to warm reset. Cold resetting.");
power_request = POWER_REQ_COLD_RESET;
}
}
}
test_mockable void chipset_reset(enum chipset_shutdown_reason reason)
{
CPRINTS("%s(%d)", __func__, reason);
report_ap_reset(reason);
power_request = POWER_REQ_WARM_RESET;
task_wake(TASK_ID_CHIPSET);
}
/* Get system sleep state through GPIOs */
static inline int chipset_get_sleep_signal(void)
{
return (power_get_signals() & IN_SUSPEND) == IN_SUSPEND;
}
__override void power_chipset_handle_sleep_hang(enum sleep_hang_type hang_type)
{
CPRINTS("Warning: Detected sleep hang! Waking host up!");
host_set_single_event(EC_HOST_EVENT_HANG_DETECT);
}
static void power_reset_host_sleep_state(void)
{
power_set_host_sleep_state(HOST_SLEEP_EVENT_DEFAULT_RESET);
sleep_reset_tracking();
power_chipset_handle_host_sleep_event(HOST_SLEEP_EVENT_DEFAULT_RESET,
NULL);
}
static void handle_chipset_reset(void)
{
if (chipset_in_state(CHIPSET_STATE_SUSPEND)) {
CPRINTS("Chipset reset: exit s3");
power_reset_host_sleep_state();
task_wake(TASK_ID_CHIPSET);
}
}
DECLARE_HOOK(HOOK_CHIPSET_RESET, handle_chipset_reset, HOOK_PRIO_FIRST);
__override void
power_chipset_handle_host_sleep_event(enum host_sleep_event state,
struct host_sleep_event_context *ctx)
{
CPRINTS("Handle sleep: %d", state);
if (state == HOST_SLEEP_EVENT_S3_SUSPEND) {
/*
* Indicate to power state machine that a new host event for
* S3 suspend has been received and so chipset suspend
* notification needs to be sent to listeners.
*/
sleep_set_notify(SLEEP_NOTIFY_SUSPEND);
sleep_start_suspend(ctx);
power_signal_enable_interrupt(GPIO_AP_SUSPEND);
} else if (state == HOST_SLEEP_EVENT_S3_RESUME) {
/*
* Wake up chipset task and indicate to power state machine that
* listeners need to be notified of chipset resume.
*/
sleep_set_notify(SLEEP_NOTIFY_RESUME);
task_wake(TASK_ID_CHIPSET);
power_signal_disable_interrupt(GPIO_AP_SUSPEND);
sleep_complete_resume(ctx);
} else if (state == HOST_SLEEP_EVENT_DEFAULT_RESET) {
power_signal_disable_interrupt(GPIO_AP_SUSPEND);
}
}
/**
* Power handler for steady states
*
* @param state Current power state
* @return Updated power state
*/
test_mockable enum power_state power_handle_state(enum power_state state)
{
static uint8_t boot_from_off, shutdown_from_on;
switch (state) {
case POWER_G3:
boot_from_off = check_for_power_on_event();
if (boot_from_off)
return POWER_G3S5;
break;
case POWER_G3S5:
return POWER_S5;
case POWER_S5:
if (!boot_from_off)
boot_from_off = check_for_power_on_event();
if (boot_from_off) {
CPRINTS("power on %d", boot_from_off);
return POWER_S5S3;
}
break;
case POWER_S5S3:
/*
* Wait for power button release before actually boot AP.
* It may be a long-hold power button with volume buttons
* to trigger the recovery button. We don't want AP up
* during the long-hold.
*/
power_button_wait_for_release(-1);
/* If no enough power, return back to S5. */
if (!power_is_enough()) {
boot_from_off = 0;
return POWER_S5;
}
/* Initialize components to ready state before AP is up. */
hook_notify(HOOK_CHIPSET_PRE_INIT);
if (power_on_seq() != EC_SUCCESS) {
power_off_seq(shutdown_from_on);
boot_from_off = 0;
return POWER_S5;
}
CPRINTS("AP running ...");
/* Call hooks now that AP is running */
hook_notify(HOOK_CHIPSET_STARTUP);
/*
* Clearing the sleep failure detection tracking on the path
* to S0 to handle any reset conditions.
*/
power_reset_host_sleep_state();
return POWER_S3;
case POWER_S3:
if (!shutdown_from_on)
shutdown_from_on = check_for_power_off_event();
if (shutdown_from_on) {
CPRINTS("power off %d", shutdown_from_on);
return POWER_S3S5;
}
/*
* AP has woken up and it deasserts the suspend signal;
* go to S0.
*
* In S0, it will wait for a host event and then trigger the
* RESUME hook.
*/
if (!chipset_get_sleep_signal())
return POWER_S3S0;
break;
case POWER_S3S0:
cancel_power_button_timer();
#ifdef CONFIG_CHIPSET_RESUME_INIT_HOOK
/*
* Notify the RESUME_INIT hooks, i.e. enabling SPI driver
* to receive host commands/events.
*
* If boot from an off state, notify the RESUME hooks too;
* otherwise (resume from S3), the normal RESUME hooks will
* be notified later, after receive a host resume event.
*/
hook_notify(HOOK_CHIPSET_RESUME_INIT);
if (boot_from_off)
hook_notify(HOOK_CHIPSET_RESUME);
#else
hook_notify(HOOK_CHIPSET_RESUME);
#endif
sleep_resume_transition();
boot_from_off = 0;
disable_sleep(SLEEP_MASK_AP_RUN);
return POWER_S0;
case POWER_S0:
check_for_warm_reset_event();
shutdown_from_on = check_for_power_off_event();
if (shutdown_from_on) {
return POWER_S0S3;
} else if (power_get_host_sleep_state() ==
HOST_SLEEP_EVENT_S3_SUSPEND &&
chipset_get_sleep_signal()) {
return POWER_S0S3;
}
/* When receive the host event, trigger the RESUME hook. */
sleep_notify_transition(SLEEP_NOTIFY_RESUME,
HOOK_CHIPSET_RESUME);
break;
case POWER_S0S3:
cancel_power_button_timer();
/*
* Call SUSPEND hooks only if we haven't notified listeners of
* S3 suspend.
*/
sleep_notify_transition(SLEEP_NOTIFY_SUSPEND,
HOOK_CHIPSET_SUSPEND);
#ifdef CONFIG_CHIPSET_RESUME_INIT_HOOK
/*
* Pair with the HOOK_CHIPSET_RESUME_INIT, i.e. disabling SPI
* driver, by notifying the SUSPEND_COMPLETE hooks.
*
* If shutdown from an on state, notify the SUSPEND hooks too;
* otherwise (suspend from S0), the normal SUSPEND hooks have
* been notified in the above sleep_notify_transition() call.
*/
if (shutdown_from_on)
hook_notify(HOOK_CHIPSET_SUSPEND);
hook_notify(HOOK_CHIPSET_SUSPEND_COMPLETE);
#else
hook_notify(HOOK_CHIPSET_SUSPEND);
#endif
sleep_suspend_transition();
enable_sleep(SLEEP_MASK_AP_RUN);
return POWER_S3;
case POWER_S3S5:
cancel_power_button_timer();
/* Call hooks before we drop power rails */
hook_notify(HOOK_CHIPSET_SHUTDOWN);
power_off_seq(shutdown_from_on);
CPRINTS("power shutdown complete");
/* Call hooks after we drop power rails */
hook_notify(HOOK_CHIPSET_SHUTDOWN_COMPLETE);
shutdown_from_on = 0;
/*
* Wait forever for the release of the power button; otherwise,
* this power button press will then trigger a power-on in S5.
*/
power_button_wait_for_release(-1);
power_button_was_pressed = 0;
return POWER_S5;
case POWER_S5G3:
return POWER_G3;
default:
CPRINTS("Unexpected power state %d", state);
ASSERT(0);
}
return state;
}
/*****************************************************************************/
/* Console debug command */
static const char *power_req_name[POWER_REQ_COUNT] = {
"none",
"off",
"on",
};
/* Power states that we can report */
enum power_state_t {
PSTATE_UNKNOWN,
PSTATE_OFF,
PSTATE_ON,
PSTATE_COUNT,
};
static const char *const state_name[] = {
"unknown",
"off",
"on",
};
test_mockable_static int command_power(int argc, const char **argv)
{
int v;
if (argc < 2) {
enum power_state_t state;
state = PSTATE_UNKNOWN;
if (chipset_in_state(CHIPSET_STATE_ANY_OFF))
state = PSTATE_OFF;
if (chipset_in_state(CHIPSET_STATE_ON))
state = PSTATE_ON;
ccprintf("%s\n", state_name[state]);
return EC_SUCCESS;
}
if (!parse_bool(argv[1], &v))
return EC_ERROR_PARAM1;
power_request = v ? POWER_REQ_ON : POWER_REQ_OFF;
ccprintf("Requesting power %s\n", power_req_name[power_request]);
task_wake(TASK_ID_CHIPSET);
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(power, command_power, "on/off", "Turn AP power on/off");