blob: 90c22c5202f08d3ff905ec12116171fb97fd17f3 [file] [log] [blame]
/* Copyright 2018 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* PWM LED control to conform to Chrome OS LED behaviour specification. */
/*
* This assumes that a single logical LED is shared between both power and
* charging/battery status. If multiple logical LEDs are present, they all
* follow the same patterns.
*/
#include "battery.h"
#include "charge_manager.h"
#include "charge_state.h"
#include "chipset.h"
#include "common.h"
#include "console.h"
#include "ec_commands.h"
#include "hooks.h"
#include "led_common.h"
#include "led_pwm.h"
#include "pwm.h"
#include "timer.h"
#include "util.h"
/* Battery percentage thresholds to blink at different rates. */
#define CRITICAL_LOW_BATTERY_PERCENTAGE 3
#define LOW_BATTERY_PERCENTAGE 10
#define PULSE_TICK (250 * MSEC)
static uint8_t led_is_pulsing;
static int ignore_set_led_color(enum pwm_led_id id, int color)
{
#ifdef CONFIG_LED_PWM_ACTIVE_CHARGE_PORT_ONLY
int active_chg_port = charge_manager_get_active_charge_port();
/* We should always be able to turn off a LED.*/
if (color == -1)
return 0;
if (led_is_pulsing)
return 0;
if ((int)id != active_chg_port)
return 1;
#endif /* CONFIG_LED_PWM_ACTIVE_CHARGE_PORT_ONLY */
return 0;
}
void set_pwm_led_color(enum pwm_led_id id, int color)
{
struct pwm_led duty = { 0 };
if ((id >= CONFIG_LED_PWM_COUNT) || (id < 0) ||
(color >= EC_LED_COLOR_COUNT) || (color < -1))
return;
if (color != -1) {
duty.ch0 = led_color_map[color].ch0;
duty.ch1 = led_color_map[color].ch1;
duty.ch2 = led_color_map[color].ch2;
}
if (pwm_leds[id].ch0 != PWM_LED_NO_CHANNEL)
pwm_set_duty(pwm_leds[id].ch0, duty.ch0);
if (pwm_leds[id].ch1 != PWM_LED_NO_CHANNEL)
pwm_set_duty(pwm_leds[id].ch1, duty.ch1);
if (pwm_leds[id].ch2 != PWM_LED_NO_CHANNEL)
pwm_set_duty(pwm_leds[id].ch2, duty.ch2);
}
static void set_led_color(int color)
{
/*
* We must check if auto control is enabled since the LEDs may be
* controlled from the AP at anytime.
*/
if ((led_auto_control_is_enabled(EC_LED_ID_POWER_LED)) ||
(led_auto_control_is_enabled(EC_LED_ID_LEFT_LED)))
if (!ignore_set_led_color(PWM_LED0, color))
set_pwm_led_color(PWM_LED0, color);
#if CONFIG_LED_PWM_COUNT >= 2
if (led_auto_control_is_enabled(EC_LED_ID_RIGHT_LED))
if (!ignore_set_led_color(PWM_LED1, color))
set_pwm_led_color(PWM_LED1, color);
#endif /* CONFIG_LED_PWM_COUNT >= 2 */
}
static void init_leds_off(void)
{
/* Turn off LEDs such that they are in a known state. */
set_led_color(-1);
}
DECLARE_HOOK(HOOK_INIT, init_leds_off, HOOK_PRIO_INIT_PWM + 1);
static uint8_t pulse_period;
static uint8_t pulse_ontime;
static enum ec_led_colors pulse_color;
static void update_leds(void);
static void pulse_leds_deferred(void);
DECLARE_DEFERRED(pulse_leds_deferred);
static void pulse_leds_deferred(void)
{
static uint8_t tick_count;
if (!led_is_pulsing) {
tick_count = 0;
/*
* Since we're not pulsing anymore, turn the colors off in case
* we were in the "on" time.
*/
set_led_color(-1);
/* Then show the desired state. */
update_leds();
return;
}
if (tick_count < pulse_ontime)
set_led_color(pulse_color);
else
set_led_color(-1);
tick_count = (tick_count + 1) % pulse_period;
hook_call_deferred(&pulse_leds_deferred_data, PULSE_TICK);
}
static void pulse_leds(enum ec_led_colors color, int ontime, int period)
{
pulse_color = color;
pulse_ontime = ontime;
pulse_period = period;
led_is_pulsing = 1;
pulse_leds_deferred();
}
static int show_charge_state(void)
{
enum charge_state chg_st = charge_get_state();
/*
* The colors listed below are the default, but can be overridden.
*
* Solid Amber == Charging
* Solid Green == Charging (near full)
* Fast Flash Red == Charging error or battery not present
*/
if (chg_st == PWR_STATE_CHARGE) {
led_is_pulsing = 0;
set_led_color(CONFIG_LED_PWM_CHARGE_COLOR);
} else if (chg_st == PWR_STATE_CHARGE_NEAR_FULL) {
led_is_pulsing = 0;
set_led_color(CONFIG_LED_PWM_NEAR_FULL_COLOR);
} else if ((battery_is_present() != BP_YES) ||
(chg_st == PWR_STATE_ERROR)) {
/* 500 ms period, 50% duty cycle. */
pulse_leds(CONFIG_LED_PWM_CHARGE_ERROR_COLOR, 1, 2);
} else {
/* Discharging or not charging. */
return 0;
}
return 1;
}
#ifndef CONFIG_LED_PWM_ACTIVE_CHARGE_PORT_ONLY
static int show_battery_state(void)
{
int batt_percentage = charge_get_percent();
/*
* The colors listed below are the default, but can be overridden.
*
* Fast Flash Amber == Critical Battery
* Slow Flash Amber == Low Battery
*/
if (batt_percentage < CRITICAL_LOW_BATTERY_PERCENTAGE) {
/* Flash amber faster (1 second period, 50% duty cycle) */
pulse_leds(CONFIG_LED_PWM_LOW_BATT_COLOR, 2, 4);
} else if (batt_percentage < LOW_BATTERY_PERCENTAGE) {
/* Flash amber (4 second period, 50% duty cycle) */
pulse_leds(CONFIG_LED_PWM_LOW_BATT_COLOR, 8, 16);
} else {
/* Sufficient charge, no need to show anything for this. */
return 0;
}
return 1;
}
static int show_chipset_state(void)
{
/* Reflect the SoC state. */
led_is_pulsing = 0;
if (chipset_in_state(CHIPSET_STATE_ON)) {
/* The LED must be on in the Active state. */
set_led_color(CONFIG_LED_PWM_SOC_ON_COLOR);
} else if (chipset_in_state(CHIPSET_STATE_ANY_SUSPEND)) {
/* The power LED must pulse in the suspend state. */
pulse_leds(CONFIG_LED_PWM_SOC_SUSPEND_COLOR, 4, 16);
} else {
/* Chipset is off, no need to show anything for this. */
return 0;
}
return 1;
}
#endif /* CONFIG_LED_PWM_ACTIVE_CHARGE_PORT_ONLY */
static void update_leds(void)
{
/* Reflecting the charge state is the highest priority. */
if (show_charge_state())
return;
#ifndef CONFIG_LED_PWM_ACTIVE_CHARGE_PORT_ONLY
if (show_battery_state())
return;
if (show_chipset_state())
return;
#endif /* CONFIG_LED_PWM_ACTIVE_CHARGE_PORT_ONLY */
set_led_color(-1);
}
DECLARE_HOOK(HOOK_TICK, update_leds, HOOK_PRIO_DEFAULT);
#ifdef CONFIG_CMD_LEDTEST
int command_ledtest(int argc, char **argv)
{
int enable;
int pwm_led_id;
int led_id;
if (argc < 2)
return EC_ERROR_PARAM_COUNT;
pwm_led_id = atoi(argv[1]);
if ((pwm_led_id < 0) || (pwm_led_id >= CONFIG_LED_PWM_COUNT))
return EC_ERROR_PARAM1;
led_id = supported_led_ids[pwm_led_id];
if (argc == 2) {
ccprintf("PWM LED %d: led_id=%d, auto_control=%d\n",
pwm_led_id, led_id,
led_auto_control_is_enabled(led_id) != 0);
return EC_SUCCESS;
}
if (!parse_bool(argv[2], &enable))
return EC_ERROR_PARAM2;
/* Inverted because this drives auto control. */
led_auto_control(led_id, !enable);
if (argc == 4) {
/* Set the color. */
if (!strncmp(argv[3], "red", 3))
set_pwm_led_color(pwm_led_id, EC_LED_COLOR_RED);
else if (!strncmp(argv[3], "green", 5))
set_pwm_led_color(pwm_led_id, EC_LED_COLOR_GREEN);
else if (!strncmp(argv[3], "amber", 5))
set_pwm_led_color(pwm_led_id, EC_LED_COLOR_AMBER);
else if (!strncmp(argv[3], "blue", 4))
set_pwm_led_color(pwm_led_id, EC_LED_COLOR_BLUE);
else if (!strncmp(argv[3], "white", 5))
set_pwm_led_color(pwm_led_id, EC_LED_COLOR_WHITE);
else if (!strncmp(argv[3], "yellow", 6))
set_pwm_led_color(pwm_led_id, EC_LED_COLOR_YELLOW);
else if (!strncmp(argv[3], "off", 3))
set_pwm_led_color(pwm_led_id, -1);
else
return EC_ERROR_PARAM3;
}
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(ledtest, command_ledtest,
"<pwm led idx> <enable|disable> [color|off]", "");
#endif /* defined(CONFIG_CMD_LEDTEST) */