blob: c7fed67e7ebf5add7857d151e1e2e9a355f5597a [file] [log] [blame]
/*
* Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*
* LED controls.
*/
#ifdef LIGHTBAR_SIMULATION
#include "simulation.h"
#else
#include "battery.h"
#include "charge_state.h"
#include "common.h"
#include "console.h"
#include "ec_commands.h"
#include "hooks.h"
#include "host_command.h"
#include "lb_common.h"
#include "lightbar.h"
#include "lid_switch.h"
#include "motion_sense.h"
#include "pwm.h"
#include "system.h"
#include "task.h"
#include "timer.h"
#include "util.h"
#endif
/*
* The Link lightbar had no version command, so defaulted to zero. We have
* added a couple of new commands, so we've updated the version. Any
* optional features in the current version should be marked with flags.
*/
#define LIGHTBAR_IMPLEMENTATION_VERSION 1
#define LIGHTBAR_IMPLEMENTATION_FLAGS 0
/* Console output macros */
#define CPUTS(outstr) cputs(CC_LIGHTBAR, outstr)
#define CPRINTS(format, args...) cprints(CC_LIGHTBAR, format, ## args)
#define FP_SCALE 10000
/******************************************************************************/
/* Here's some state that we might want to maintain across sysjumps, just to
* prevent the lightbar from flashing during normal boot as the EC jumps from
* RO to RW. */
static struct p_state {
/* What patterns are we showing? */
enum lightbar_sequence cur_seq;
enum lightbar_sequence prev_seq;
/* Quantized battery charge level: 0=low 1=med 2=high 3=full. */
int battery_level;
int battery_percent;
/* It's either charging or discharging. */
int battery_is_charging;
/* Is power-on prevented due to battery level? */
int battery_is_power_on_prevented;
/* Pattern variables for state S0. */
uint16_t w0; /* primary phase */
uint8_t ramp; /* ramp-in for S3->S0 */
uint8_t _pad0; /* next item is __packed */
/* Tweakable parameters. */
union {
struct lightbar_params_v1 p;
struct {
struct lightbar_params_v2_timing timing;
struct lightbar_params_v2_tap tap;
struct lightbar_params_v2_oscillation osc;
struct lightbar_params_v2_brightness bright;
struct lightbar_params_v2_thresholds thlds;
struct lightbar_params_v2_colors colors;
} p_v2;
};
} st;
/* Each of the parameters must be less than 120 bytes
* (crbug.com/467716)
*/
#define MAX_PARAM_SIZE 120
BUILD_ASSERT(sizeof(struct lightbar_params_v2_timing) <= MAX_PARAM_SIZE);
BUILD_ASSERT(sizeof(struct lightbar_params_v2_tap) <= MAX_PARAM_SIZE);
BUILD_ASSERT(sizeof(struct lightbar_params_v2_oscillation) <= MAX_PARAM_SIZE);
BUILD_ASSERT(sizeof(struct lightbar_params_v2_brightness) <= MAX_PARAM_SIZE);
BUILD_ASSERT(sizeof(struct lightbar_params_v2_thresholds) <= MAX_PARAM_SIZE);
BUILD_ASSERT(sizeof(struct lightbar_params_v2_colors) <= MAX_PARAM_SIZE);
#undef MAX_PARAM_SIZE
#define PRIMARY_BLUE 4
#define PRIMARY_RED 5
#define PRIMARY_YELLOW 6
#define PRIMARY_GREEN 7
static const struct lightbar_params_v1 default_params = {
.google_ramp_up = 2500,
.google_ramp_down = 10000,
.s3s0_ramp_up = 2000,
.s0_tick_delay = { 45000, 30000 }, /* battery, AC */
.s0a_tick_delay = { 5000, 3000 }, /* battery, AC */
.s0s3_ramp_down = 2000,
.s3_sleep_for = 5 * SECOND, /* between checks */
.s3_ramp_up = 2500,
.s3_ramp_down = 10000,
.s5_ramp_up = 2500,
.s5_ramp_down = 10000,
.tap_tick_delay = 5000, /* oscillation step time */
.tap_gate_delay = 200 * MSEC, /* segment gating delay */
.tap_display_time = 3 * SECOND, /* total sequence time */
/* TODO (crosbug.com/p/36996): remove unused tap_pct_red */
.tap_pct_red = 14, /* below this is red */
.tap_pct_green = 94, /* above this is green */
.tap_seg_min_on = 35, /* min intensity (%) for "on" */
.tap_seg_max_on = 100, /* max intensity (%) for "on" */
.tap_seg_osc = 50, /* amplitude for charging osc */
.tap_idx = {PRIMARY_RED, PRIMARY_YELLOW, PRIMARY_GREEN}, /* color */
.osc_min = { 0x60, 0x60 }, /* battery, AC */
.osc_max = { 0xd0, 0xd0 }, /* battery, AC */
.w_ofs = {24, 24}, /* phase offset, 256 == 2*PI */
.bright_bl_off_fixed = {0xcc, 0xff}, /* backlight off: battery, AC */
.bright_bl_on_min = {0xcc, 0xff}, /* backlight on: battery, AC */
.bright_bl_on_max = {0xcc, 0xff}, /* backlight on: battery, AC */
.battery_threshold = { 14, 40, 99 }, /* percent, lowest to highest */
.s0_idx = {
/* battery: 0 = red, other = blue */
{ PRIMARY_RED, PRIMARY_BLUE, PRIMARY_BLUE, PRIMARY_BLUE },
/* AC: always blue */
{ PRIMARY_BLUE, PRIMARY_BLUE, PRIMARY_BLUE, PRIMARY_BLUE }
},
.s3_idx = {
/* battery: 0 = red, else off */
{ PRIMARY_RED, 0xff, 0xff, 0xff },
/* AC: do nothing */
{ 0xff, 0xff, 0xff, 0xff }
},
.s5_idx = PRIMARY_RED, /* flash red */
.color = {
/*
* These values have been optically calibrated for the
* Samus LEDs to best match the official colors, described at
* https://sites.google.com/a/google.com/brandsite/the-colours
* See crosbug.com/p/33017 before making any changes.
*/
{0x34, 0x70, 0xb4}, /* 0: Google blue */
{0xbc, 0x50, 0x2c}, /* 1: Google red */
{0xd0, 0xe0, 0x00}, /* 2: Google yellow */
{0x50, 0xa0, 0x40}, /* 3: Google green */
/* These are primary colors */
{0x00, 0x00, 0xff}, /* 4: full blue */
{0xff, 0x00, 0x00}, /* 5: full red */
{0xff, 0xff, 0x00}, /* 6: full yellow */
{0x00, 0xff, 0x00}, /* 7: full green */
},
};
#define LB_SYSJUMP_TAG 0x4c42 /* "LB" */
static void lightbar_preserve_state(void)
{
system_add_jump_tag(LB_SYSJUMP_TAG, 0, sizeof(st), &st);
}
DECLARE_HOOK(HOOK_SYSJUMP, lightbar_preserve_state, HOOK_PRIO_DEFAULT);
static void lightbar_restore_state(void)
{
const uint8_t *old_state = 0;
int size;
old_state = system_get_jump_tag(LB_SYSJUMP_TAG, 0, &size);
if (old_state && size == sizeof(st)) {
memcpy(&st, old_state, size);
CPRINTS("LB state restored: %d %d - %d %d/%d",
st.cur_seq, st.prev_seq,
st.battery_is_charging,
st.battery_percent,
st.battery_level);
} else {
st.cur_seq = st.prev_seq = LIGHTBAR_S5;
st.battery_percent = 100;
st.battery_level = LB_BATTERY_LEVELS - 1;
st.w0 = 0;
st.ramp = 0;
memcpy(&st.p, &default_params, sizeof(st.p));
CPRINTS("LB state initialized");
}
}
/******************************************************************************/
/* The patterns are generally dependent on the current battery level and AC
* state. These functions obtain that information, generally by querying the
* power manager task. In demo mode, the keyboard task forces changes to the
* state by calling the demo_* functions directly. */
/******************************************************************************/
#ifdef CONFIG_PWM_KBLIGHT
static int last_backlight_level;
#endif
#ifdef CONFIG_ALS_LIGHTBAR_DIMMING
test_export_static int google_color_id;
#endif
static int demo_mode = DEMO_MODE_DEFAULT;
static int quantize_battery_level(int pct)
{
int i, bl = 0;
for (i = 0; i < LB_BATTERY_LEVELS - 1; i++)
if (pct >= st.p.battery_threshold[i])
bl++;
return bl;
}
#ifdef CONFIG_ALS_LIGHTBAR_DIMMING
test_export_static int lux_level_to_google_color(const int lux)
{
int i;
if (!lid_is_open()) {
/* The lid shades the light sensor, use full brightness. */
if (google_color_id != 0) {
google_color_id = 0;
return 1;
} else {
return 0;
}
}
/* See if we need to decrease brightness */
for (i = google_color_id; i < lb_brightness_levels_count ; i++)
if (lux >= lb_brightness_levels[i].lux_down)
break;
if (i > google_color_id) {
google_color_id = i;
return 1;
}
/* See if we need to increase brightness */
for (i = google_color_id; i > 0; i--)
if (lux < lb_brightness_levels[i - 1].lux_up)
break;
if (i < google_color_id) {
google_color_id = i;
return 1;
}
return 0;
}
#endif
/*
* Update the known state.
* Return 1 if something changes.
*/
static int get_battery_level(void)
{
int pct = 0;
int bl, change = 0;
if (demo_mode)
return 0;
#ifdef HAS_TASK_CHARGER
st.battery_percent = pct = charge_get_percent();
st.battery_is_charging = (PWR_STATE_DISCHARGE != charge_get_state());
st.battery_is_power_on_prevented = charge_prevent_power_on(0);
#endif
/* Find the new battery level */
bl = quantize_battery_level(pct);
/* Use some hysteresis to avoid flickering */
if (bl < st.battery_level ||
(bl > st.battery_level
&& pct >= (st.p.battery_threshold[st.battery_level] + 1))) {
st.battery_level = bl;
change = 1;
}
#ifdef CONFIG_PWM_KBLIGHT
/*
* With nothing else to go on, use the keyboard backlight level to *
* set the brightness. In general, if the keyboard backlight
* is OFF (which it is when ambient is bright), use max brightness for
* lightbar. If keyboard backlight is ON, use keyboard backlight
* brightness. That fails if the keyboard backlight is off because
* someone's watching a movie in the dark, of course. Ideally we should
* just let the AP control it directly.
*/
if (pwm_get_enabled(PWM_CH_KBLIGHT)) {
pct = pwm_get_duty(PWM_CH_KBLIGHT);
pct = (255 * pct) / 100; /* 00 - FF */
if (pct > st.p.bright_bl_on_max[st.battery_is_charging])
pct = st.p.bright_bl_on_max[st.battery_is_charging];
else if (pct < st.p.bright_bl_on_min[st.battery_is_charging])
pct = st.p.bright_bl_on_min[st.battery_is_charging];
} else
pct = st.p.bright_bl_off_fixed[st.battery_is_charging];
if (pct != last_backlight_level) {
last_backlight_level = pct;
lb_set_brightness(pct);
change = 1;
}
#endif
#ifdef CONFIG_ALS_LIGHTBAR_DIMMING
/* Read last value (in lux) collected by the motion sensor. */
/* Convert lux into brightness percentage */
if (lux_level_to_google_color(MOTION_SENSE_LUX)) {
memcpy(st.p.color, lb_brightness_levels[google_color_id].color,
sizeof(lb_brightness_levels[google_color_id].color));
change = 1;
}
#endif
return change;
}
/* Forcing functions for demo mode, called by the keyboard task. */
/* Up/Down keys */
#define DEMO_CHARGE_STEP 1
void demo_battery_level(int inc)
{
if (!demo_mode)
return;
st.battery_percent += DEMO_CHARGE_STEP * inc;
if (st.battery_percent > 100)
st.battery_percent = 100;
else if (st.battery_percent < 0)
st.battery_percent = 0;
st.battery_level = quantize_battery_level(st.battery_percent);
CPRINTS("LB demo: battery_percent = %d%%, battery_level=%d",
st.battery_percent, st.battery_level);
}
/* Left/Right keys */
void demo_is_charging(int ischarge)
{
if (!demo_mode)
return;
st.battery_is_charging = ischarge;
CPRINTS("LB demo: battery_is_charging=%d",
st.battery_is_charging);
}
/* Bright/Dim keys */
void demo_brightness(int inc)
{
int b;
if (!demo_mode)
return;
b = lb_get_brightness() + (inc * 16);
if (b > 0xff)
b = 0xff;
else if (b < 0)
b = 0;
lb_set_brightness(b);
}
/* T key */
void demo_tap(void)
{
if (!demo_mode)
return;
lightbar_sequence(LIGHTBAR_TAP);
}
/******************************************************************************/
/* Helper functions and data. */
/******************************************************************************/
#define F(x) (x * FP_SCALE)
static const uint16_t _ramp_table[] = {
F(0.000000), F(0.002408), F(0.009607), F(0.021530), F(0.038060),
F(0.059039), F(0.084265), F(0.113495), F(0.146447), F(0.182803),
F(0.222215), F(0.264302), F(0.308658), F(0.354858), F(0.402455),
F(0.450991), F(0.500000), F(0.549009), F(0.597545), F(0.645142),
F(0.691342), F(0.735698), F(0.777785), F(0.817197), F(0.853553),
F(0.886505), F(0.915735), F(0.940961), F(0.961940), F(0.978470),
F(0.990393), F(0.997592), F(1.000000),
};
#undef F
/* This function provides a smooth ramp up from 0.0 to 1.0 and back to 0.0,
* for input from 0x00 to 0xff. */
static inline int cycle_010(uint8_t i)
{
uint8_t bucket, index;
if (i == 128)
return FP_SCALE;
else if (i > 128)
i = 256 - i;
bucket = i >> 2;
index = i & 0x3;
return _ramp_table[bucket] +
((_ramp_table[bucket + 1] - _ramp_table[bucket]) * index >> 2);
}
/******************************************************************************/
/* Here's where we keep messages waiting to be delivered to the lightbar task.
* If more than one is sent before the task responds, we only want to deliver
* the latest one. */
static uint32_t pending_msg;
/* And here's the task event that we use to trigger delivery. */
#define PENDING_MSG 1
/* Interruptible delay. */
#define WAIT_OR_RET(A) do { \
uint32_t msg = task_wait_event(A); \
uint32_t p_msg = pending_msg; \
if (TASK_EVENT_CUSTOM(msg) == PENDING_MSG && \
p_msg != st.cur_seq) \
return p_msg; } while (0)
/******************************************************************************/
/* Here are the preprogrammed sequences. */
/******************************************************************************/
/* Pulse google colors once, off to on to off. */
static uint32_t pulse_google_colors(void)
{
int w, i, r, g, b;
int f;
for (w = 0; w < 128; w += 2) {
f = cycle_010(w);
for (i = 0; i < NUM_LEDS; i++) {
r = st.p.color[i].r * f / FP_SCALE;
g = st.p.color[i].g * f / FP_SCALE;
b = st.p.color[i].b * f / FP_SCALE;
lb_set_rgb(i, r, g, b);
}
WAIT_OR_RET(st.p.google_ramp_up);
}
for (w = 128; w <= 256; w++) {
f = cycle_010(w);
for (i = 0; i < NUM_LEDS; i++) {
r = st.p.color[i].r * f / FP_SCALE;
g = st.p.color[i].g * f / FP_SCALE;
b = st.p.color[i].b * f / FP_SCALE;
lb_set_rgb(i, r, g, b);
}
WAIT_OR_RET(st.p.google_ramp_down);
}
return 0;
}
/* CPU is waking from sleep. */
static uint32_t sequence_S3S0(void)
{
int w, r, g, b;
int f, fmin;
int ci;
uint32_t res;
lb_init(1);
lb_on();
get_battery_level();
res = pulse_google_colors();
if (res)
return res;
#ifndef BLUE_PULSING
/* next sequence */
return LIGHTBAR_S0;
#endif
/* Ramp up to starting brightness, using S0 colors */
ci = st.p.s0_idx[st.battery_is_charging][st.battery_level];
if (ci >= ARRAY_SIZE(st.p.color))
ci = 0;
fmin = st.p.osc_min[st.battery_is_charging] * FP_SCALE / 255;
for (w = 0; w <= 128; w++) {
f = cycle_010(w) * fmin / FP_SCALE;
r = st.p.color[ci].r * f / FP_SCALE;
g = st.p.color[ci].g * f / FP_SCALE;
b = st.p.color[ci].b * f / FP_SCALE;
lb_set_rgb(NUM_LEDS, r, g, b);
WAIT_OR_RET(st.p.s3s0_ramp_up);
}
/* Initial conditions */
st.w0 = -256; /* start cycle_npn() quietly */
st.ramp = 0;
/* Ready for S0 */
return LIGHTBAR_S0;
}
#ifdef BLUE_PULSING
/* This function provides a pulsing oscillation between -0.5 and +0.5. */
static inline int cycle_npn(uint16_t i)
{
if ((i / 256) % 4)
return -FP_SCALE / 2;
return cycle_010(i) - FP_SCALE / 2;
}
/* CPU is fully on */
static uint32_t sequence_S0(void)
{
int tick, last_tick;
timestamp_t start, now;
uint8_t r, g, b;
int i, ci;
uint8_t w_ofs;
uint16_t w;
int f, fmin, fmax, base_s0, osc_s0, f_ramp;
start = get_time();
tick = last_tick = 0;
lb_set_rgb(NUM_LEDS, 0, 0, 0);
lb_on();
while (1) {
now = get_time();
/* Only check the battery state every few seconds. The battery
* charging task doesn't update as quickly as we do, and isn't
* always valid for a bit after jumping from RO->RW. */
tick = (now.le.lo - start.le.lo) / SECOND;
if (tick % 4 == 3 && tick != last_tick) {
get_battery_level();
last_tick = tick;
}
/* Calculate the colors */
ci = st.p.s0_idx[st.battery_is_charging][st.battery_level];
if (ci >= ARRAY_SIZE(st.p.color))
ci = 0;
w_ofs = st.p.w_ofs[st.battery_is_charging];
fmin = st.p.osc_min[st.battery_is_charging] * FP_SCALE / 255;
fmax = st.p.osc_max[st.battery_is_charging] * FP_SCALE / 255;
base_s0 = (fmax + fmin) / 2;
osc_s0 = fmax - fmin;
f_ramp = st.ramp * FP_SCALE / 255;
for (i = 0; i < NUM_LEDS; i++) {
w = st.w0 - i * w_ofs * f_ramp / FP_SCALE;
f = base_s0 + osc_s0 * cycle_npn(w) / FP_SCALE;
r = st.p.color[ci].r * f / FP_SCALE;
g = st.p.color[ci].g * f / FP_SCALE;
b = st.p.color[ci].b * f / FP_SCALE;
lb_set_rgb(i, r, g, b);
}
/* Increment the phase */
if (st.battery_is_charging)
st.w0--;
else
st.w0++;
/* Continue ramping in if needed */
if (st.ramp < 0xff)
st.ramp++;
i = st.p.s0a_tick_delay[st.battery_is_charging];
WAIT_OR_RET(i);
}
return 0;
}
#else /* just simple google colors */
static uint32_t sequence_S0(void)
{
int w, i, r, g, b;
int f, change;
lb_set_rgb(NUM_LEDS, 0, 0, 0);
lb_on();
/* Ramp up */
for (w = 0; w < 128; w += 2) {
f = cycle_010(w);
for (i = 0; i < NUM_LEDS; i++) {
r = st.p.color[i].r * f / FP_SCALE;
g = st.p.color[i].g * f / FP_SCALE;
b = st.p.color[i].b * f / FP_SCALE;
lb_set_rgb(i, r, g, b);
}
WAIT_OR_RET(st.p.google_ramp_up);
}
while (1) {
change = get_battery_level();
if (change) {
/* Not really low use google colors */
if (st.battery_level) {
for (i = 0; i < NUM_LEDS; i++) {
r = st.p.color[i].r;
g = st.p.color[i].g;
b = st.p.color[i].b;
lb_set_rgb(i, r, g, b);
}
} else {
r = st.p.color[PRIMARY_RED].r;
g = st.p.color[PRIMARY_RED].g;
b = st.p.color[PRIMARY_RED].b;
lb_set_rgb(4, r, g, b);
}
}
WAIT_OR_RET(1 * SECOND);
}
return 0;
}
#endif
/* CPU is going to sleep. */
static uint32_t sequence_S0S3(void)
{
int w, i, r, g, b;
int f;
uint8_t drop[NUM_LEDS][3];
uint32_t res;
/* Grab current colors */
for (i = 0; i < NUM_LEDS; i++)
lb_get_rgb(i, &drop[i][0], &drop[i][1], &drop[i][2]);
/* Fade down to black */
for (w = 128; w <= 256; w++) {
f = cycle_010(w);
for (i = 0; i < NUM_LEDS; i++) {
r = drop[i][0] * f / FP_SCALE;
g = drop[i][1] * f / FP_SCALE;
b = drop[i][2] * f / FP_SCALE;
lb_set_rgb(i, r, g, b);
}
WAIT_OR_RET(st.p.s0s3_ramp_down);
}
/* pulse once and done */
res = pulse_google_colors();
if (res)
return res;
/* next sequence */
return LIGHTBAR_S3;
}
/* CPU is sleeping */
static uint32_t sequence_S3(void)
{
int r, g, b;
int w;
int f;
int ci;
lb_off();
lb_init(1);
lb_set_rgb(NUM_LEDS, 0, 0, 0);
get_battery_level();
while (1) {
WAIT_OR_RET(st.p.s3_sleep_for);
/* only pulse if we've been given a valid color index */
ci = st.p.s3_idx[st.battery_is_charging][st.battery_level];
if (ci >= ARRAY_SIZE(st.p.color))
continue;
/* pulse once */
lb_on();
for (w = 0; w < 128; w += 2) {
f = cycle_010(w);
r = st.p.color[ci].r * f / FP_SCALE;
g = st.p.color[ci].g * f / FP_SCALE;
b = st.p.color[ci].b * f / FP_SCALE;
lb_set_rgb(NUM_LEDS, r, g, b);
WAIT_OR_RET(st.p.s3_ramp_up);
}
for (w = 128; w <= 256; w++) {
f = cycle_010(w);
r = st.p.color[ci].r * f / FP_SCALE;
g = st.p.color[ci].g * f / FP_SCALE;
b = st.p.color[ci].b * f / FP_SCALE;
lb_set_rgb(NUM_LEDS, r, g, b);
WAIT_OR_RET(st.p.s3_ramp_down);
}
lb_set_rgb(NUM_LEDS, 0, 0, 0);
lb_off();
}
return 0;
}
/* CPU is powering up. We generally boot fast enough that we don't have time
* to do anything interesting in the S3 state, but go straight on to S0. */
static uint32_t sequence_S5S3(void)
{
/* The controllers need 100us after power is applied before they'll
* respond. Don't return early, because we still want to initialize the
* lightbar even if another message comes along while we're waiting. */
usleep(100);
lb_init(1);
lb_set_rgb(NUM_LEDS, 0, 0, 0);
lb_on();
/* next sequence */
return LIGHTBAR_S3;
}
/* Sleep to off. The S3->S5 transition takes about 10msec, so just wait. */
static uint32_t sequence_S3S5(void)
{
lb_off();
/* next sequence */
return LIGHTBAR_S5;
}
/* Pulse S5 color to indicate that the battery is so critically low that it
* must charge first before the system can power on. */
static uint32_t pulse_s5_color(void)
{
int r, g, b;
int f;
int w;
struct rgb_s *color = &st.p.color[st.p.s5_idx];
for (w = 0; w < 128; w += 2) {
f = cycle_010(w);
r = color->r * f / FP_SCALE;
g = color->g * f / FP_SCALE;
b = color->b * f / FP_SCALE;
lb_set_rgb(NUM_LEDS, r, g, b);
WAIT_OR_RET(st.p.s5_ramp_up);
}
for (w = 128; w <= 256; w++) {
f = cycle_010(w);
r = color->r * f / FP_SCALE;
g = color->g * f / FP_SCALE;
b = color->b * f / FP_SCALE;
lb_set_rgb(NUM_LEDS, r, g, b);
WAIT_OR_RET(st.p.s5_ramp_down);
}
return 0;
}
/* CPU is off. Pulse the lightbar if a charger is attached and the battery is
* so low that the system cannot power on. Otherwise, the lightbar loses power
* when the CPU is in S5, so there's nothing to do. We'll just wait here until
* the state changes. */
static uint32_t sequence_S5(void)
{
int initialized = 0;
uint32_t res = 0;
get_battery_level();
while (1) {
if (!st.battery_is_power_on_prevented ||
!st.battery_is_charging)
break;
if (!initialized) {
#ifdef CONFIG_LIGHTBAR_POWER_RAILS
/* Request that lightbar power rails be turned on. */
if (lb_power(1)) {
lb_set_rgb(NUM_LEDS, 0, 0, 0);
}
#endif
lb_on();
initialized = 1;
}
res = pulse_s5_color();
if (res)
break;
}
#ifdef CONFIG_LIGHTBAR_POWER_RAILS
if (initialized)
/* Suggest that the lightbar power rails can be shut down. */
lb_power(0);
#endif
lb_off();
if (!res)
WAIT_OR_RET(-1);
return res;
}
/* The AP is going to poke at the lightbar directly, so we don't want the EC
* messing with it. We'll just sit here and ignore all other messages until
* we're told to continue (or until we think the AP is shutting down).
*/
static uint32_t sequence_STOP(void)
{
uint32_t msg;
do {
msg = TASK_EVENT_CUSTOM(task_wait_event(-1));
CPRINTS("LB %s() got pending_msg %d", __func__, pending_msg);
} while (msg != PENDING_MSG || (
pending_msg != LIGHTBAR_RUN &&
pending_msg != LIGHTBAR_S0S3 &&
pending_msg != LIGHTBAR_S3 &&
pending_msg != LIGHTBAR_S3S5 &&
pending_msg != LIGHTBAR_S5));
return 0;
}
/* Telling us to run when we're already running should do nothing. */
static uint32_t sequence_RUN(void)
{
return 0;
}
/* We shouldn't come here, but if we do it shouldn't hurt anything. This
* sequence is to indicate an internal error in the lightbar logic, not an
* error with the Chromebook itself.
*/
static uint32_t sequence_ERROR(void)
{
lb_init(1);
lb_on();
lb_set_rgb(0, 255, 255, 255);
lb_set_rgb(1, 255, 0, 255);
lb_set_rgb(2, 0, 255, 255);
lb_set_rgb(3, 255, 255, 255);
WAIT_OR_RET(10 * SECOND);
return 0;
}
static const struct {
uint8_t led;
uint8_t r, g, b;
unsigned int delay;
} konami[] = {
{1, 0xff, 0xff, 0x00, 0},
{2, 0xff, 0xff, 0x00, 100000},
{1, 0x00, 0x00, 0x00, 0},
{2, 0x00, 0x00, 0x00, 100000},
{1, 0xff, 0xff, 0x00, 0},
{2, 0xff, 0xff, 0x00, 100000},
{1, 0x00, 0x00, 0x00, 0},
{2, 0x00, 0x00, 0x00, 100000},
{0, 0x00, 0x00, 0xff, 0},
{3, 0x00, 0x00, 0xff, 100000},
{0, 0x00, 0x00, 0x00, 0},
{3, 0x00, 0x00, 0x00, 100000},
{0, 0x00, 0x00, 0xff, 0},
{3, 0x00, 0x00, 0xff, 100000},
{0, 0x00, 0x00, 0x00, 0},
{3, 0x00, 0x00, 0x00, 100000},
{0, 0xff, 0x00, 0x00, 0},
{1, 0xff, 0x00, 0x00, 100000},
{0, 0x00, 0x00, 0x00, 0},
{1, 0x00, 0x00, 0x00, 100000},
{2, 0x00, 0xff, 0x00, 0},
{3, 0x00, 0xff, 0x00, 100000},
{2, 0x00, 0x00, 0x00, 0},
{3, 0x00, 0x00, 0x00, 100000},
{0, 0xff, 0x00, 0x00, 0},
{1, 0xff, 0x00, 0x00, 100000},
{0, 0x00, 0x00, 0x00, 0},
{1, 0x00, 0x00, 0x00, 100000},
{2, 0x00, 0xff, 0x00, 0},
{3, 0x00, 0xff, 0x00, 100000},
{2, 0x00, 0x00, 0x00, 0},
{3, 0x00, 0x00, 0x00, 100000},
{0, 0x00, 0xff, 0xff, 0},
{2, 0x00, 0xff, 0xff, 100000},
{0, 0x00, 0x00, 0x00, 0},
{2, 0x00, 0x00, 0x00, 150000},
{1, 0xff, 0x00, 0xff, 0},
{3, 0xff, 0x00, 0xff, 100000},
{1, 0x00, 0x00, 0x00, 0},
{3, 0x00, 0x00, 0x00, 250000},
{4, 0xff, 0xff, 0xff, 100000},
{4, 0x00, 0x00, 0x00, 100000},
{4, 0xff, 0xff, 0xff, 100000},
{4, 0x00, 0x00, 0x00, 100000},
{4, 0xff, 0xff, 0xff, 100000},
{4, 0x00, 0x00, 0x00, 100000},
{4, 0xff, 0xff, 0xff, 100000},
{4, 0x00, 0x00, 0x00, 100000},
{4, 0xff, 0xff, 0xff, 100000},
{4, 0x00, 0x00, 0x00, 100000},
{4, 0xff, 0xff, 0xff, 100000},
{4, 0x00, 0x00, 0x00, 100000},
};
static uint32_t sequence_KONAMI_inner(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(konami); i++) {
lb_set_rgb(konami[i].led,
konami[i].r, konami[i].g, konami[i].b);
if (konami[i].delay)
WAIT_OR_RET(konami[i].delay);
}
return 0;
}
static uint32_t sequence_KONAMI(void)
{
int tmp;
uint32_t r;
/* First clear all segments */
lb_set_rgb(NUM_LEDS, 0, 0, 0);
/* Force brightness to max, then restore it */
tmp = lb_get_brightness();
lb_set_brightness(255);
r = sequence_KONAMI_inner();
lb_set_brightness(tmp);
return r;
}
#ifdef CONFIG_LIGHTBAR_TAP_DIM_LAST_SEGMENT
/* Returns 0.0 to 1.0 for val in [min, min + ofs] */
static int range(int val, int min, int ofs)
{
if (val <= min)
return 0;
if (val >= min+ofs)
return FP_SCALE;
return (val - min) * FP_SCALE / ofs;
}
#endif
/* Handy constant */
#define CUT (100 / NUM_LEDS)
static uint32_t sequence_TAP_inner(int dir)
{
enum { RED, YELLOW, GREEN } base_color;
timestamp_t start, now;
uint32_t elapsed_time = 0;
int i, l, ci, max_led;
int f_osc, f_mult;
int gi, gr, gate[NUM_LEDS] = {0, 0, 0, 0};
uint8_t w = 0;
#ifdef CONFIG_LIGHTBAR_TAP_DIM_LAST_SEGMENT
int f_min, f_delta, f_power;
f_min = st.p.tap_seg_min_on * FP_SCALE / 100;
f_delta = (st.p.tap_seg_max_on - st.p.tap_seg_min_on) * FP_SCALE / 100;
#endif
f_osc = st.p.tap_seg_osc * FP_SCALE / 100;
get_battery_level();
if (st.battery_level == 0)
base_color = RED;
else if (st.battery_percent > st.p.tap_pct_green)
base_color = GREEN;
else
base_color = YELLOW;
ci = st.p.tap_idx[base_color];
max_led = st.battery_percent / CUT;
start = get_time();
while (1) {
/* Enable the segments gradually */
gi = elapsed_time / st.p.tap_gate_delay;
gr = elapsed_time % st.p.tap_gate_delay;
if (gi < NUM_LEDS)
gate[gi] = FP_SCALE * gr / st.p.tap_gate_delay;
if (gi && gi <= NUM_LEDS)
gate[gi - 1] = FP_SCALE;
for (i = 0; i < NUM_LEDS; i++) {
#ifdef CONFIG_LIGHTBAR_TAP_DIM_LAST_SEGMENT
if (max_led > i) {
f_mult = FP_SCALE;
} else if (max_led < i) {
f_mult = 0;
} else {
switch (base_color) {
case RED:
f_power = range(st.battery_percent, 0,
st.p.battery_threshold[0] - 1);
break;
case YELLOW:
f_power = range(st.battery_percent,
i * CUT, CUT - 1);
break;
case GREEN:
/* green is always full on */
f_power = FP_SCALE;
}
f_mult = f_min + f_power * f_delta / FP_SCALE;
}
#else
if (max_led >= i)
f_mult = FP_SCALE;
else if (max_led < i)
f_mult = 0;
#endif
f_mult = f_mult * gate[i] / FP_SCALE;
/* Pulse when charging and not yet full */
if (st.battery_is_charging &&
st.battery_percent <= st.p.tap_pct_green) {
int scale = (FP_SCALE -
f_osc * cycle_010(w++) / FP_SCALE);
f_mult = f_mult * scale / FP_SCALE;
}
l = dir ? i : NUM_LEDS - 1 - i;
lb_set_rgb(l, f_mult * st.p.color[ci].r / FP_SCALE,
f_mult * st.p.color[ci].g / FP_SCALE,
f_mult * st.p.color[ci].b / FP_SCALE);
}
WAIT_OR_RET(st.p.tap_tick_delay);
/* Return after some time has elapsed */
now = get_time();
elapsed_time = now.le.lo - start.le.lo;
if (elapsed_time > st.p.tap_display_time)
break;
}
return 0;
}
/* Override the tap direction for testing. -1 means ask the PD MCU. */
static int force_dir = -1;
/* Return 0 (left or none) or 1 (right) */
static int get_tap_direction(void)
{
static int last_dir;
int dir = 0;
if (force_dir >= 0)
dir = force_dir;
#ifdef HAS_TASK_PDCMD
else
dir = pd_get_active_charge_port();
#endif
if (dir < 0)
dir = last_dir;
else if (dir != 1)
dir = 0;
CPRINTS("LB tap direction %d", dir);
last_dir = dir;
return dir;
}
static uint32_t sequence_TAP(void)
{
int i;
uint32_t r;
uint8_t br, save[NUM_LEDS][3];
int dir;
/*
* There's a lot of unavoidable glitchiness on the AC_PRESENT interrupt
* each time the EC boots, resulting in fights between the TAP sequence
* and the S5S3->S3->S3S0->S0 sequences. This delay prevents the lights
* from flickering without reducing the responsiveness to manual taps.
*/
WAIT_OR_RET(100 * MSEC);
/* Which direction should the power meter go? */
dir = get_tap_direction();
#ifdef CONFIG_LIGHTBAR_POWER_RAILS
/* Request that the lightbar power rails be turned on. */
if (lb_power(1)) {
lb_set_rgb(NUM_LEDS, 0, 0, 0);
}
#endif
/* First clear all segments */
lb_set_rgb(NUM_LEDS, 0, 0, 0);
lb_on();
for (i = 0; i < NUM_LEDS; i++)
lb_get_rgb(i, &save[i][0], &save[i][1], &save[i][2]);
br = lb_get_brightness();
lb_set_brightness(255);
r = sequence_TAP_inner(dir);
lb_set_brightness(br);
for (i = 0; i < NUM_LEDS; i++)
lb_set_rgb(i, save[i][0], save[i][1], save[i][2]);
#ifdef CONFIG_LIGHTBAR_POWER_RAILS
/* Suggest that the lightbar power rails can be shut down again. */
lb_power(0);
#endif
return r;
}
/****************************************************************************/
/* Lightbar bytecode interpreter: Lightbyte. */
/****************************************************************************/
/* When a program halts, return this. */
#define PROGRAM_FINISHED 2
static struct lightbar_program cur_prog;
static struct lightbar_program next_prog;
static uint8_t pc;
static uint8_t led_desc[NUM_LEDS][LB_CONT_MAX][3];
static uint32_t lb_wait_delay;
static uint32_t lb_ramp_delay;
/* Get one byte of data pointed to by the pc and advance
* the pc forward.
*/
static inline uint32_t decode_8(uint8_t *dest)
{
if (pc >= cur_prog.size) {
CPRINTS("pc 0x%02x out of bounds", pc);
return EC_RES_INVALID_PARAM;
}
*dest = cur_prog.data[pc++];
return EC_SUCCESS;
}
/* Get four bytes of data pointed to by the pc and advance
* the pc forward that amount.
*/
static inline uint32_t decode_32(uint32_t *dest)
{
if (pc >= cur_prog.size - 3) {
CPRINTS("pc 0x%02x near or out of bounds", pc);
return EC_RES_INVALID_PARAM;
}
*dest = cur_prog.data[pc++] << 24;
*dest |= cur_prog.data[pc++] << 16;
*dest |= cur_prog.data[pc++] << 8;
*dest |= cur_prog.data[pc++];
return EC_SUCCESS;
}
/* ON - turn on lightbar */
static uint32_t lightbyte_ON(void)
{
lb_on();
return EC_SUCCESS;
}
/* OFF - turn off lightbar */
static uint32_t lightbyte_OFF(void)
{
lb_off();
return EC_SUCCESS;
}
/* JUMP xx - jump to immediate location
* Changes the pc to the one-byte immediate argument.
*/
static uint32_t lightbyte_JUMP(void)
{
return decode_8(&pc);
}
/* JUMP_BATTERY aa bb - switch on battery level
* If the battery is low, changes pc to aa.
* If the battery is high, changes pc to bb.
* Otherwise, continues execution as normal.
*/
static uint32_t lightbyte_JUMP_BATTERY(void)
{
uint8_t low_pc, high_pc;
if (decode_8(&low_pc) != EC_SUCCESS)
return EC_RES_INVALID_PARAM;
if (decode_8(&high_pc) != EC_SUCCESS)
return EC_RES_INVALID_PARAM;
get_battery_level();
if (st.battery_level == 0)
pc = low_pc;
else if (st.battery_level == 3)
pc = high_pc;
return EC_SUCCESS;
}
/* JUMP_IF_CHARGING xx - conditional jump to location
* Changes the pc to xx if the device is charging.
*/
static uint32_t lightbyte_JUMP_IF_CHARGING(void)
{
uint8_t charge_pc;
if (decode_8(&charge_pc) != EC_SUCCESS)
return EC_RES_INVALID_PARAM;
if (st.battery_is_charging)
pc = charge_pc;
return EC_SUCCESS;
}
/* SET_WAIT_DELAY xx xx xx xx - set up to yield processor
* Sets the wait delay to the given four-byte immediate, in
* microseconds. Future WAIT instructions will wait for this
* much time.
*/
static uint32_t lightbyte_SET_WAIT_DELAY(void)
{
return decode_32(&lb_wait_delay);
}
/* SET_RAMP_DELAY xx xx xx xx - change ramp speed
* This sets the length of time between ramp/cycle steps to
* the four-byte immediate argument, which represents a duration
* in milliseconds.
*/
static uint32_t lightbyte_SET_RAMP_DELAY(void)
{
return decode_32(&lb_ramp_delay);
}
/* WAIT - yield processor for some time
* Yields the processor for some amount of time set by the most
* recent SET_WAIT_DELAY instruction.
*/
static uint32_t lightbyte_WAIT(void)
{
if (lb_wait_delay != 0)
WAIT_OR_RET(lb_wait_delay);
return EC_SUCCESS;
}
/* SET_BRIGHTNESS xx
* Sets the current brightness to the given one-byte
* immediate argument.
*/
static uint32_t lightbyte_SET_BRIGHTNESS(void)
{
uint8_t val;
if (decode_8(&val) != EC_SUCCESS)
return EC_RES_INVALID_PARAM;
lb_set_brightness(val);
return EC_SUCCESS;
}
/* SET_COLOR_SINGLE cc xx
* SET_COLOR_RGB cc rr gg bb
* Stores a color value in the led_desc structure.
* cc is a bit-packed location to perform the action on.
*
* The high four bits are a bitset for which LEDs to operate on.
* LED 0 is the lowest of the four bits.
*
* The next two bits are the control bits. This should be a value
* in lb_control that is not LB_CONT_MAX, and the corresponding
* color will be the one the action is performed on.
*
* The last two bits are the color bits if this instruction is
* SET_COLOR_SINGLE. They correspond to a LB_COL value for the
* channel to set the color for using the next immediate byte.
* In SET_COLOR_RGB, these bits are don't-cares, as there should
* always be three bytes that follow, which correspond to a
* complete RGB specification.
*/
static uint32_t lightbyte_SET_COLOR_SINGLE(void)
{
uint8_t packed_loc, led, control, color, value;
int i;
if (decode_8(&packed_loc) != EC_SUCCESS)
return EC_RES_INVALID_PARAM;
if (decode_8(&value) != EC_SUCCESS)
return EC_RES_INVALID_PARAM;
led = packed_loc >> 4;
control = (packed_loc >> 2) & 0x3;
color = packed_loc & 0x3;
if (control >= LB_CONT_MAX)
return EC_RES_INVALID_PARAM;
for (i = 0; i < NUM_LEDS; i++)
if (led & (1 << i))
led_desc[i][control][color] = value;
return EC_SUCCESS;
}
static uint32_t lightbyte_SET_COLOR_RGB(void)
{
uint8_t packed_loc, r, g, b, led, control;
int i;
/* gross */
if (decode_8(&packed_loc) != EC_SUCCESS)
return EC_RES_INVALID_PARAM;
if (decode_8(&r) != EC_SUCCESS)
return EC_RES_INVALID_PARAM;
if (decode_8(&g) != EC_SUCCESS)
return EC_RES_INVALID_PARAM;
if (decode_8(&b) != EC_SUCCESS)
return EC_RES_INVALID_PARAM;
led = packed_loc >> 4;
control = (packed_loc >> 2) & 0x3;
if (control >= LB_CONT_MAX)
return EC_RES_INVALID_PARAM;
for (i = 0; i < NUM_LEDS; i++)
if (led & (1 << i)) {
led_desc[i][control][LB_COL_RED] = r;
led_desc[i][control][LB_COL_GREEN] = g;
led_desc[i][control][LB_COL_BLUE] = b;
}
return EC_SUCCESS;
}
/* GET_COLORS - take current colors and push them to the state
* Gets the current state of the LEDs and puts them in COLOR0.
* Good for the beginning of a program if you need to fade in.
*/
static uint32_t lightbyte_GET_COLORS(void)
{
int i;
for (i = 0; i < NUM_LEDS; i++)
lb_get_rgb(i, &led_desc[i][LB_CONT_COLOR0][LB_COL_RED],
&led_desc[i][LB_CONT_COLOR0][LB_COL_GREEN],
&led_desc[i][LB_CONT_COLOR0][LB_COL_BLUE]);
return EC_SUCCESS;
}
/* SWAP_COLORS - swaps beginning and end colors in state
* Exchanges COLOR0 and COLOR1 on all LEDs.
*/
static uint32_t lightbyte_SWAP_COLORS(void)
{
int i, j, tmp;
for (i = 0; i < NUM_LEDS; i++)
for (j = 0; j < 3; j++) {
tmp = led_desc[i][LB_CONT_COLOR0][j];
led_desc[i][LB_CONT_COLOR0][j] =
led_desc[i][LB_CONT_COLOR1][j];
led_desc[i][LB_CONT_COLOR1][j] = tmp;
}
return EC_SUCCESS;
}
static inline int get_interp_value(int led, int color, int interp)
{
int base = led_desc[led][LB_CONT_COLOR0][color];
int delta = led_desc[led][LB_CONT_COLOR1][color] - base;
return base + (delta * interp / FP_SCALE);
}
static void set_all_leds(int color)
{
int i, r, g, b;
for (i = 0; i < NUM_LEDS; i++) {
r = led_desc[i][color][LB_COL_RED];
g = led_desc[i][color][LB_COL_GREEN];
b = led_desc[i][color][LB_COL_BLUE];
lb_set_rgb(i, r, g, b);
}
}
static uint32_t ramp_all_leds(int stop_at)
{
int w, i, r, g, b, f;
for (w = 0; w < stop_at; w++) {
f = cycle_010(w);
for (i = 0; i < NUM_LEDS; i++) {
r = get_interp_value(i, LB_COL_RED, f);
g = get_interp_value(i, LB_COL_GREEN, f);
b = get_interp_value(i, LB_COL_BLUE, f);
lb_set_rgb(i, r, g, b);
}
WAIT_OR_RET(lb_ramp_delay);
}
return EC_SUCCESS;
}
/* RAMP_ONCE - simple gradient or color set
* If the ramp delay is set to zero, then this sets the color of
* all LEDs to their respective COLOR1.
* If the ramp delay is nonzero, then this sets their color to
* their respective COLOR0, and takes them via interpolation to
* COLOR1, with the delay time passing in between each step.
*/
static uint32_t lightbyte_RAMP_ONCE(void)
{
/* special case for instantaneous set */
if (lb_ramp_delay == 0) {
set_all_leds(LB_CONT_COLOR1);
return EC_SUCCESS;
}
return ramp_all_leds(128);
}
/* CYCLE_ONCE - simple cycle or color set
* If the ramp delay is zero, then this sets the color of all LEDs
* to their respective COLOR0.
* If the ramp delay is nonzero, this sets the color of all LEDs
* to COLOR0, then performs a ramp (as in RAMP_ONCE) to COLOR1,
* and finally back to COLOR0.
*/
static uint32_t lightbyte_CYCLE_ONCE(void)
{
/* special case for instantaneous set */
if (lb_ramp_delay == 0) {
set_all_leds(LB_CONT_COLOR0);
return EC_SUCCESS;
}
return ramp_all_leds(256);
}
/* CYCLE - repeating cycle
* Indefinitely ramps from COLOR0 to COLOR1, taking into
* account the PHASE of each component of each color when
* interpolating. (Different LEDs and different color channels
* on a single LED can start at different places in the cycle,
* though they will advance at the same rate.)
*
* If the ramp delay is zero, this instruction will error out.
*/
static uint32_t lightbyte_CYCLE(void)
{
int w, i, r, g, b;
/* what does it mean to cycle indefinitely with 0 delay? */
if (lb_ramp_delay == 0)
return EC_RES_INVALID_PARAM;
for (w = 0;; w++) {
for (i = 0; i < NUM_LEDS; i++) {
r = get_interp_value(i, LB_COL_RED,
cycle_010((w & 0xff) +
led_desc[i][LB_CONT_PHASE][LB_COL_RED]));
g = get_interp_value(i, LB_COL_GREEN,
cycle_010((w & 0xff) +
led_desc[i][LB_CONT_PHASE][LB_COL_GREEN]));
b = get_interp_value(i, LB_COL_BLUE,
cycle_010((w & 0xff) +
led_desc[i][LB_CONT_PHASE][LB_COL_BLUE]));
lb_set_rgb(i, r, g, b);
}
WAIT_OR_RET(lb_ramp_delay);
}
return EC_SUCCESS;
}
/* HALT - return with success
* Show's over. Go back to what you were doing before.
*/
static uint32_t lightbyte_HALT(void)
{
return PROGRAM_FINISHED;
}
#undef GET_INTERP_VALUE
#define OP(NAME, BYTES, MNEMONIC) NAME,
#include "lightbar_opcode_list.h"
enum lightbyte_opcode {
LIGHTBAR_OPCODE_TABLE
MAX_OPCODE
};
#undef OP
#define OP(NAME, BYTES, MNEMONIC) lightbyte_ ## NAME,
#include "lightbar_opcode_list.h"
static uint32_t (*lightbyte_dispatch[])(void) = {
LIGHTBAR_OPCODE_TABLE
};
#undef OP
#define OP(NAME, BYTES, MNEMONIC) MNEMONIC,
#include "lightbar_opcode_list.h"
static const char * const lightbyte_names[] = {
LIGHTBAR_OPCODE_TABLE
};
#undef OP
static uint32_t sequence_PROGRAM(void)
{
uint8_t saved_brightness;
uint8_t next_inst;
uint32_t rc;
uint8_t old_pc;
/* load next program */
memcpy(&cur_prog, &next_prog, sizeof(struct lightbar_program));
/* reset program state */
saved_brightness = lb_get_brightness();
pc = 0;
memset(led_desc, 0, sizeof(led_desc));
lb_wait_delay = 0;
lb_ramp_delay = 0;
lb_on();
lb_set_brightness(255);
/* decode-execute loop */
for (;;) {
old_pc = pc;
if (decode_8(&next_inst) != EC_SUCCESS)
return EC_RES_INVALID_PARAM;
if (next_inst >= MAX_OPCODE) {
CPRINTS("LB PROGRAM pc: 0x%02x, "
"found invalid opcode 0x%02x",
old_pc, next_inst);
lb_set_brightness(saved_brightness);
return EC_RES_INVALID_PARAM;
} else {
CPRINTS("LB PROGRAM pc: 0x%02x, opcode 0x%02x -> %s",
old_pc, next_inst, lightbyte_names[next_inst]);
rc = lightbyte_dispatch[next_inst]();
if (rc) {
lb_set_brightness(saved_brightness);
return rc;
}
}
/* yield processor in case we are stuck in a tight loop */
WAIT_OR_RET(100);
}
}
/****************************************************************************/
/* The main lightbar task. It just cycles between various pretty patterns. */
/****************************************************************************/
/* Distinguish "normal" sequences from one-shot sequences */
static inline int is_normal_sequence(enum lightbar_sequence seq)
{
return (seq >= LIGHTBAR_S5 && seq <= LIGHTBAR_S3S5);
}
/* Link each sequence with a command to invoke it. */
struct lightbar_cmd_t {
const char * const string;
uint32_t (*sequence)(void);
};
#define LBMSG(state) { #state, sequence_##state }
#include "lightbar_msg_list.h"
static struct lightbar_cmd_t lightbar_cmds[] = {
LIGHTBAR_MSG_LIST
};
#undef LBMSG
void lightbar_task(void)
{
uint32_t next_seq;
CPRINTS("LB task starting");
lightbar_restore_state();
while (1) {
CPRINTS("LB running cur_seq %d %s. prev_seq %d %s",
st.cur_seq, lightbar_cmds[st.cur_seq].string,
st.prev_seq, lightbar_cmds[st.prev_seq].string);
next_seq = lightbar_cmds[st.cur_seq].sequence();
if (next_seq) {
CPRINTS("LB cur_seq %d %s returned pending msg %d %s",
st.cur_seq, lightbar_cmds[st.cur_seq].string,
next_seq, lightbar_cmds[next_seq].string);
if (st.cur_seq != next_seq) {
if (is_normal_sequence(st.cur_seq))
st.prev_seq = st.cur_seq;
st.cur_seq = next_seq;
}
} else {
CPRINTS("LB cur_seq %d %s returned value 0",
st.cur_seq, lightbar_cmds[st.cur_seq].string);
switch (st.cur_seq) {
case LIGHTBAR_S5S3:
st.cur_seq = LIGHTBAR_S3;
break;
case LIGHTBAR_S3S0:
st.cur_seq = LIGHTBAR_S0;
break;
case LIGHTBAR_S0S3:
st.cur_seq = LIGHTBAR_S3;
break;
case LIGHTBAR_S3S5:
st.cur_seq = LIGHTBAR_S5;
break;
case LIGHTBAR_STOP:
case LIGHTBAR_RUN:
case LIGHTBAR_ERROR:
case LIGHTBAR_KONAMI:
case LIGHTBAR_TAP:
case LIGHTBAR_PROGRAM:
st.cur_seq = st.prev_seq;
default:
break;
}
}
}
}
/* Function to request a preset sequence from the lightbar task. */
void lightbar_sequence_f(enum lightbar_sequence num, const char *f)
{
if (num > 0 && num < LIGHTBAR_NUM_SEQUENCES) {
CPRINTS("LB %s() requests %d %s", f, num,
lightbar_cmds[num].string);
pending_msg = num;
task_set_event(TASK_ID_LIGHTBAR,
TASK_EVENT_CUSTOM(PENDING_MSG),
0);
} else
CPRINTS("LB %s() requests %d - ignored", f, num);
}
/****************************************************************************/
/* Get notifications from other parts of the system */
static uint8_t manual_suspend_control;
static void lightbar_startup(void)
{
manual_suspend_control = 0;
lightbar_sequence(LIGHTBAR_S5S3);
}
DECLARE_HOOK(HOOK_CHIPSET_STARTUP, lightbar_startup, HOOK_PRIO_DEFAULT);
static void lightbar_resume(void)
{
if (!manual_suspend_control)
lightbar_sequence(LIGHTBAR_S3S0);
}
DECLARE_HOOK(HOOK_CHIPSET_RESUME, lightbar_resume, HOOK_PRIO_DEFAULT);
static void lightbar_suspend(void)
{
if (!manual_suspend_control)
lightbar_sequence(LIGHTBAR_S0S3);
}
DECLARE_HOOK(HOOK_CHIPSET_SUSPEND, lightbar_suspend, HOOK_PRIO_DEFAULT);
static void lightbar_shutdown(void)
{
lightbar_sequence(LIGHTBAR_S3S5);
}
DECLARE_HOOK(HOOK_CHIPSET_SHUTDOWN, lightbar_shutdown, HOOK_PRIO_DEFAULT);
/****************************************************************************/
/* Host commands via LPC bus */
/****************************************************************************/
static int lpc_cmd_lightbar(struct host_cmd_handler_args *args)
{
const struct ec_params_lightbar *in = args->params;
struct ec_response_lightbar *out = args->response;
int rv;
switch (in->cmd) {
case LIGHTBAR_CMD_DUMP:
lb_hc_cmd_dump(out);
args->response_size = sizeof(out->dump);
break;
case LIGHTBAR_CMD_OFF:
lb_off();
break;
case LIGHTBAR_CMD_ON:
lb_on();
break;
case LIGHTBAR_CMD_INIT:
lb_init(1);
break;
case LIGHTBAR_CMD_SET_BRIGHTNESS:
lb_set_brightness(in->set_brightness.num);
break;
case LIGHTBAR_CMD_GET_BRIGHTNESS:
out->get_brightness.num = lb_get_brightness();
args->response_size = sizeof(out->get_brightness);
break;
case LIGHTBAR_CMD_SEQ:
lightbar_sequence(in->seq.num);
break;
case LIGHTBAR_CMD_REG:
lb_hc_cmd_reg(in);
break;
case LIGHTBAR_CMD_SET_RGB:
lb_set_rgb(in->set_rgb.led,
in->set_rgb.red,
in->set_rgb.green,
in->set_rgb.blue);
break;
case LIGHTBAR_CMD_GET_RGB:
rv = lb_get_rgb(in->get_rgb.led,
&out->get_rgb.red,
&out->get_rgb.green,
&out->get_rgb.blue);
if (rv == EC_RES_SUCCESS)
args->response_size = sizeof(out->get_rgb);
return rv;
case LIGHTBAR_CMD_GET_SEQ:
out->get_seq.num = st.cur_seq;
args->response_size = sizeof(out->get_seq);
break;
case LIGHTBAR_CMD_DEMO:
demo_mode = in->demo.num ? 1 : 0;
CPRINTS("LB_demo %d", demo_mode);
break;
case LIGHTBAR_CMD_GET_DEMO:
out->get_demo.num = demo_mode;
args->response_size = sizeof(out->get_demo);
break;
case LIGHTBAR_CMD_GET_PARAMS_V0:
CPRINTS("LB_get_params_v0 not supported");
return EC_RES_INVALID_VERSION;
break;
case LIGHTBAR_CMD_SET_PARAMS_V0:
CPRINTS("LB_set_params_v0 not supported");
return EC_RES_INVALID_VERSION;
break;
case LIGHTBAR_CMD_GET_PARAMS_V1:
CPRINTS("LB_get_params_v1");
memcpy(&out->get_params_v1, &st.p, sizeof(st.p));
args->response_size = sizeof(out->get_params_v1);
break;
case LIGHTBAR_CMD_SET_PARAMS_V1:
CPRINTS("LB_set_params_v1");
memcpy(&st.p, &in->set_params_v1, sizeof(st.p));
break;
case LIGHTBAR_CMD_SET_PROGRAM:
CPRINTS("LB_set_program");
memcpy(&next_prog,
&in->set_program,
sizeof(struct lightbar_program));
break;
case LIGHTBAR_CMD_VERSION:
CPRINTS("LB_version");
out->version.num = LIGHTBAR_IMPLEMENTATION_VERSION;
out->version.flags = LIGHTBAR_IMPLEMENTATION_FLAGS;
args->response_size = sizeof(out->version);
break;
case LIGHTBAR_CMD_MANUAL_SUSPEND_CTRL:
CPRINTS("LB_manual_suspend_ctrl");
manual_suspend_control = in->manual_suspend_ctrl.enable;
break;
case LIGHTBAR_CMD_SUSPEND:
CPRINTS("LB_suspend");
lightbar_sequence(LIGHTBAR_S0S3);
break;
case LIGHTBAR_CMD_RESUME:
CPRINTS("LB_resume");
lightbar_sequence(LIGHTBAR_S3S0);
break;
case LIGHTBAR_CMD_GET_PARAMS_V2_TIMING:
CPRINTS("LB_get_params_v2_timing");
memcpy(&out->get_params_v2_timing,
&st.p_v2.timing,
sizeof(st.p_v2.timing));
args->response_size = sizeof(out->get_params_v2_timing);
break;
case LIGHTBAR_CMD_SET_PARAMS_V2_TIMING:
CPRINTS("LB_set_params_v2_timing");
memcpy(&st.p_v2.timing,
&in->set_v2par_timing,
sizeof(struct lightbar_params_v2_timing));
break;
case LIGHTBAR_CMD_GET_PARAMS_V2_TAP:
CPRINTS("LB_get_params_v2_tap");
memcpy(&out->get_params_v2_tap,
&st.p_v2.tap,
sizeof(struct lightbar_params_v2_tap));
args->response_size = sizeof(out->get_params_v2_tap);
break;
case LIGHTBAR_CMD_SET_PARAMS_V2_TAP:
CPRINTS("LB_set_params_v2_tap");
memcpy(&st.p_v2.tap,
&in->set_v2par_tap,
sizeof(struct lightbar_params_v2_tap));
break;
case LIGHTBAR_CMD_GET_PARAMS_V2_OSCILLATION:
CPRINTS("LB_get_params_v2_oscillation");
memcpy(&out->get_params_v2_osc, &st.p_v2.osc,
sizeof(struct lightbar_params_v2_oscillation));
args->response_size = sizeof(out->get_params_v2_osc);
break;
case LIGHTBAR_CMD_SET_PARAMS_V2_OSCILLATION:
CPRINTS("LB_set_params_v2_oscillation");
memcpy(&st.p_v2.osc,
&in->set_v2par_osc,
sizeof(struct lightbar_params_v2_oscillation));
break;
case LIGHTBAR_CMD_GET_PARAMS_V2_BRIGHTNESS:
CPRINTS("LB_get_params_v2_brightness");
memcpy(&out->get_params_v2_bright,
&st.p_v2.bright,
sizeof(struct lightbar_params_v2_brightness));
args->response_size = sizeof(out->get_params_v2_bright);
break;
case LIGHTBAR_CMD_SET_PARAMS_V2_BRIGHTNESS:
CPRINTS("LB_set_params_v2_brightness");
memcpy(&st.p_v2.bright,
&in->set_v2par_bright,
sizeof(struct lightbar_params_v2_brightness));
break;
case LIGHTBAR_CMD_GET_PARAMS_V2_THRESHOLDS:
CPRINTS("LB_get_params_v2_thlds");
memcpy(&out->get_params_v2_thlds,
&st.p_v2.thlds,
sizeof(struct lightbar_params_v2_thresholds));
args->response_size = sizeof(out->get_params_v2_thlds);
break;
case LIGHTBAR_CMD_SET_PARAMS_V2_THRESHOLDS:
CPRINTS("LB_set_params_v2_thlds");
memcpy(&st.p_v2.thlds,
&in->set_v2par_thlds,
sizeof(struct lightbar_params_v2_thresholds));
break;
case LIGHTBAR_CMD_GET_PARAMS_V2_COLORS:
CPRINTS("LB_get_params_v2_colors");
memcpy(&out->get_params_v2_colors,
&st.p_v2.colors,
sizeof(struct lightbar_params_v2_colors));
args->response_size = sizeof(out->get_params_v2_colors);
break;
case LIGHTBAR_CMD_SET_PARAMS_V2_COLORS:
CPRINTS("LB_set_params_v2_colors");
memcpy(&st.p_v2.colors,
&in->set_v2par_colors,
sizeof(struct lightbar_params_v2_colors));
break;
default:
CPRINTS("LB bad cmd 0x%x", in->cmd);
return EC_RES_INVALID_PARAM;
}
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_LIGHTBAR_CMD,
lpc_cmd_lightbar,
EC_VER_MASK(0));
/****************************************************************************/
/* EC console commands */
/****************************************************************************/
#ifdef CONFIG_CONSOLE_CMDHELP
static int help(const char *cmd)
{
ccprintf("Usage:\n");
ccprintf(" %s - dump all regs\n", cmd);
ccprintf(" %s off - enter standby\n", cmd);
ccprintf(" %s on - leave standby\n", cmd);
ccprintf(" %s init - load default vals\n", cmd);
ccprintf(" %s brightness [NUM] - set intensity (0-ff)\n", cmd);
ccprintf(" %s seq [NUM|SEQUENCE] - run given pattern"
" (no arg for list)\n", cmd);
ccprintf(" %s CTRL REG VAL - set LED controller regs\n", cmd);
ccprintf(" %s LED RED GREEN BLUE - set color manually"
" (LED=%d for all)\n", cmd, NUM_LEDS);
ccprintf(" %s LED - get current LED color\n", cmd);
ccprintf(" %s demo [0|1] - turn demo mode on & off\n", cmd);
#ifdef LIGHTBAR_SIMULATION
ccprintf(" %s program filename - load lightbyte program\n", cmd);
#endif
ccprintf(" %s version - show current version\n", cmd);
return EC_SUCCESS;
}
#endif
static uint8_t find_msg_by_name(const char *str)
{
uint8_t i;
for (i = 0; i < LIGHTBAR_NUM_SEQUENCES; i++)
if (!strcasecmp(str, lightbar_cmds[i].string))
return i;
return LIGHTBAR_NUM_SEQUENCES;
}
static void show_msg_names(void)
{
int i;
ccprintf("Sequences:");
for (i = 0; i < LIGHTBAR_NUM_SEQUENCES; i++)
ccprintf(" %s", lightbar_cmds[i].string);
ccprintf("\nCurrent = 0x%x %s\n", st.cur_seq,
lightbar_cmds[st.cur_seq].string);
}
static int command_lightbar(int argc, char **argv)
{
int i;
uint8_t num, led, r = 0, g = 0, b = 0;
struct ec_response_lightbar out;
char *e;
if (argc == 1) { /* no args = dump 'em all */
lb_hc_cmd_dump(&out);
for (i = 0; i < ARRAY_SIZE(out.dump.vals); i++)
ccprintf(" %02x %02x %02x\n",
out.dump.vals[i].reg,
out.dump.vals[i].ic0,
out.dump.vals[i].ic1);
return EC_SUCCESS;
}
if (!strcasecmp(argv[1], "init")) {
lb_init(1);
return EC_SUCCESS;
}
if (!strcasecmp(argv[1], "off")) {
lb_off();
return EC_SUCCESS;
}
if (!strcasecmp(argv[1], "on")) {
lb_on();
return EC_SUCCESS;
}
if (!strcasecmp(argv[1], "version")) {
ccprintf("version %d flags 0x%x\n",
LIGHTBAR_IMPLEMENTATION_VERSION,
LIGHTBAR_IMPLEMENTATION_FLAGS);
return EC_SUCCESS;
}
if (!strcasecmp(argv[1], "brightness")) {
if (argc > 2) {
num = 0xff & strtoi(argv[2], &e, 16);
lb_set_brightness(num);
}
ccprintf("brightness is %02x\n", lb_get_brightness());
return EC_SUCCESS;
}
if (!strcasecmp(argv[1], "demo")) {
if (argc > 2) {
if (!strcasecmp(argv[2], "on") ||
argv[2][0] == '1')
demo_mode = 1;
else if (!strcasecmp(argv[2], "off") ||
argv[2][0] == '0')
demo_mode = 0;
else
return EC_ERROR_PARAM1;
}
ccprintf("demo mode is %s\n", demo_mode ? "on" : "off");
return EC_SUCCESS;
}
if (!strcasecmp(argv[1], "seq")) {
if (argc == 2) {
show_msg_names();
return 0;
}
num = 0xff & strtoi(argv[2], &e, 16);
if (*e)
num = find_msg_by_name(argv[2]);
if (num >= LIGHTBAR_NUM_SEQUENCES)
return EC_ERROR_PARAM2;
if (argc > 3) /* for testing TAP direction */
force_dir = strtoi(argv[3], 0, 0);
lightbar_sequence(num);
return EC_SUCCESS;
}
#ifdef LIGHTBAR_SIMULATION
/* Load a program. */
if (argc >= 3 && !strcasecmp(argv[1], "program")) {
return lb_load_program(argv[2], &next_prog);
}
#endif
if (argc == 4) {
struct ec_params_lightbar in;
in.reg.ctrl = strtoi(argv[1], &e, 16);
in.reg.reg = strtoi(argv[2], &e, 16);
in.reg.value = strtoi(argv[3], &e, 16);
lb_hc_cmd_reg(&in);
return EC_SUCCESS;
}
if (argc == 5) {
led = strtoi(argv[1], &e, 16);
r = strtoi(argv[2], &e, 16);
g = strtoi(argv[3], &e, 16);
b = strtoi(argv[4], &e, 16);
lb_set_rgb(led, r, g, b);
return EC_SUCCESS;
}
/* Only thing left is to try to read an LED value */
num = strtoi(argv[1], &e, 16);
if (!(e && *e)) {
if (num >= NUM_LEDS) {
for (i = 0; i < NUM_LEDS; i++) {
lb_get_rgb(i, &r, &g, &b);
ccprintf("%x: %02x %02x %02x\n", i, r, g, b);
}
} else {
lb_get_rgb(num, &r, &g, &b);
ccprintf("%02x %02x %02x\n", r, g, b);
}
return EC_SUCCESS;
}
#ifdef CONFIG_CONSOLE_CMDHELP
help(argv[0]);
#endif
return EC_ERROR_INVAL;
}
DECLARE_CONSOLE_COMMAND(lightbar, command_lightbar,
"[help | COMMAND [ARGS]]",
"Get/set lightbar state");