blob: 27213d2c7ae5b1ff2fb479fd14e7fae59b8918d1 [file] [log] [blame]
/* Copyright (c) 2014 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* Motion sense module to read from various motion sensors. */
#include "accelgyro.h"
#include "chipset.h"
#include "common.h"
#include "console.h"
#include "gesture.h"
#include "hooks.h"
#include "host_command.h"
#include "lid_angle.h"
#include "lid_switch.h"
#include "math_util.h"
#include "motion_lid.h"
#include "motion_sense.h"
#include "power.h"
#include "tablet_mode.h"
#include "timer.h"
#include "task.h"
#include "util.h"
/* Console output macros */
#define CPUTS(outstr) cputs(CC_MOTION_LID, outstr)
#define CPRINTS(format, args...) cprints(CC_MOTION_LID, format, ## args)
#define CPRINTF(format, args...) cprintf(CC_MOTION_LID, format, ## args)
#ifdef CONFIG_LID_ANGLE_INVALID_CHECK
/* Previous lid_angle. */
static fp_t last_lid_angle_fp = FLOAT_TO_FP(-1);
/*
* This defines the range from 0 to SMALL_LID_ANGLE_RANGE of possible lid angle
* measurements when the lid is physically closed. This will be used in
* reliability calculations.
*/
#define SMALL_LID_ANGLE_RANGE 15
#endif
/* Current acceleration vectors and current lid angle. */
static int lid_angle_deg;
static int lid_angle_is_reliable;
/*
* Angle threshold for how close the hinge aligns with gravity before
* considering the lid angle calculation unreliable. For computational
* efficiency, value is given unit-less, so if you want the threshold to be
* at 15 degrees, the value would be cos(15 deg) = 0.96593.
*
* Here we're using cos(27.5 deg) = 0.88701.
*/
#define HINGE_ALIGNED_WITH_GRAVITY_THRESHOLD FLOAT_TO_FP(0.88701)
/*
* Constant to debounce lid angle changes around 360 - 0:
* If we have a rotation through the angle 0, ignore.
*/
#define DEBOUNCE_ANGLE_DELTA FLOAT_TO_FP(45)
/*
* Since the accelerometers are on the same physical device, they should be
* under the same acceleration. This constant, which mirrors
* kNoisyMagnitudeDeviation used in Chromium, is an integer which defines the
* maximum deviation in magnitude between the base and lid vectors. The units
* are in m/s^2.
*/
#define NOISY_MAGNITUDE_DEVIATION 1
/*
* Define the accelerometer orientation matrices based on the standard
* reference frame in use (note: accel data is converted to standard ref
* frame before calculating lid angle).
*/
#ifdef CONFIG_ACCEL_STD_REF_FRAME_OLD
const struct accel_orientation acc_orient = {
/* Hinge aligns with y axis. */
.rot_hinge_90 = {
{ 0, 0, FLOAT_TO_FP(1)},
{ 0, FLOAT_TO_FP(1), 0},
{ FLOAT_TO_FP(-1), 0, 0}
},
.rot_hinge_180 = {
{ FLOAT_TO_FP(-1), 0, 0},
{ 0, FLOAT_TO_FP(1), 0},
{ 0, 0, FLOAT_TO_FP(-1)}
},
.hinge_axis = {0, 1, 0},
};
#else
const struct accel_orientation acc_orient = {
/* Hinge aligns with x axis. */
.rot_hinge_90 = {
{ FLOAT_TO_FP(1), 0, 0},
{ 0, 0, FLOAT_TO_FP(1)},
{ 0, FLOAT_TO_FP(-1), 0}
},
.rot_hinge_180 = {
{ FLOAT_TO_FP(1), 0, 0},
{ 0, FLOAT_TO_FP(-1), 0},
{ 0, 0, FLOAT_TO_FP(-1)}
},
.hinge_axis = {1, 0, 0},
};
#endif
/* Pointer to constant acceleration orientation data. */
const struct accel_orientation * const p_acc_orient = &acc_orient;
const struct motion_sensor_t * const accel_base =
&motion_sensors[CONFIG_LID_ANGLE_SENSOR_BASE];
const struct motion_sensor_t * const accel_lid =
&motion_sensors[CONFIG_LID_ANGLE_SENSOR_LID];
__attribute__((weak)) int board_is_lid_angle_tablet_mode(void)
{
#ifdef CONFIG_LID_ANGLE_TABLET_MODE
return 1;
#else
return 0;
#endif
}
#ifdef CONFIG_LID_ANGLE_TABLET_MODE
#ifndef CONFIG_LID_ANGLE_INVALID_CHECK
#error "Check for invalid transition needed"
#endif
/*
* We are in tablet mode when the lid angle has been calculated
* to be large.
*
* By default, at boot, we are in tablet mode.
* Once a lid angle is calculated, we will get out of this fake state and enter
* tablet mode only if a high angle has been calculated.
*
* There might be false positives:
* - when the EC enters RO or RW mode.
* - when lid is closed while the hinge is perpendicular to the floor, we will
* stay in tablet mode.
*
* Tablet mode is defined as the base being behind the lid. We use 2 threshold
* to calculate tablet mode:
* tablet_mode:
* 1 | +-----<----+----------
* | \/ /\
* | | |
* 0 |------------------------>----+
* +------------------+----------+----------+ lid angle
* 0 240 300 360
*/
#define TABLET_ZONE_LID_ANGLE FLOAT_TO_FP(300)
#define LAPTOP_ZONE_LID_ANGLE FLOAT_TO_FP(240)
/*
* We will change our tablet mode status when we are "convinced" that it has
* changed. This means we will have to consecutively calculate our new tablet
* mode while the angle is stable and come to the same conclusion. The number
* of consecutive calculations is the debounce count with an interval between
* readings set by the motion_sense task. This should avoid spurious forces
* that may trigger false transitions of the tablet mode switch.
*/
#define TABLET_MODE_DEBOUNCE_COUNT 3
static int motion_lid_set_tablet_mode(int reliable)
{
static int tablet_mode_debounce_cnt = TABLET_MODE_DEBOUNCE_COUNT;
const int current_mode = tablet_get_mode();
int new_mode = current_mode;
if (reliable) {
if (last_lid_angle_fp > TABLET_ZONE_LID_ANGLE)
new_mode = 1;
else if (last_lid_angle_fp < LAPTOP_ZONE_LID_ANGLE)
new_mode = 0;
/* Only change tablet mode if we're sure. */
if (current_mode != new_mode) {
if (tablet_mode_debounce_cnt == 0) {
/* Alright, we're convinced. */
tablet_mode_debounce_cnt =
TABLET_MODE_DEBOUNCE_COUNT;
tablet_set_mode(new_mode);
return reliable;
}
tablet_mode_debounce_cnt--;
return reliable;
}
}
/*
* If we got a reliable measurement that agrees with our current tablet
* mode, then reset the debounce counter. Also, make it harder to leave
* tablet mode by resetting the debounce count when we encounter an
* unreliable angle when we're already in tablet mode.
*/
if (((reliable == 0) && current_mode == 1) ||
((reliable == 1) && (current_mode == new_mode)))
tablet_mode_debounce_cnt = TABLET_MODE_DEBOUNCE_COUNT;
return reliable;
}
#endif
/**
* Calculate the lid angle using two acceleration vectors, one recorded in
* the base and one in the lid.
*
* @param base Base accel vector
* @param lid Lid accel vector
* @param lid_angle Pointer to location to store lid angle result
*
* @return flag representing if resulting lid angle calculation is reliable.
*/
static int calculate_lid_angle(const vector_3_t base, const vector_3_t lid,
int *lid_angle)
{
vector_3_t v;
fp_t lid_to_base_fp, cos_lid_90, cos_lid_270;
fp_t lid_to_base, base_to_hinge;
fp_t denominator;
int reliable = 1;
int base_magnitude2, lid_magnitude2;
int base_range, lid_range, i;
vector_3_t scaled_base, scaled_lid;
/*
* The angle between lid and base is:
* acos((cad(base, lid) - cad(base, hinge)^2) /(1 - cad(base, hinge)^2))
* where cad() is the cosine_of_angle_diff() function.
*
* Make sure to check for divide by 0.
*/
lid_to_base = cosine_of_angle_diff(base, lid);
base_to_hinge = cosine_of_angle_diff(base, p_acc_orient->hinge_axis);
/*
* If hinge aligns too closely with gravity, then result may be
* unreliable.
*/
if (fp_abs(base_to_hinge) > HINGE_ALIGNED_WITH_GRAVITY_THRESHOLD)
reliable = 0;
base_to_hinge = fp_sq(base_to_hinge);
/* Check divide by 0. */
denominator = FLOAT_TO_FP(1.0) - base_to_hinge;
if (fp_abs(denominator) < FLOAT_TO_FP(0.01)) {
*lid_angle = 0;
return 0;
}
lid_to_base_fp = arc_cos(fp_div(lid_to_base - base_to_hinge,
denominator));
/*
* The previous calculation actually has two solutions, a positive and
* a negative solution. To figure out the sign of the answer, calculate
* the cosine of the angle between the actual lid angle and the
* estimated vector if the lid were open to 90 deg, cos_lid_90. Also
* calculate the cosine of the angle between the actual lid angle and
* the estimated vector if the lid were open to 270 deg,
* cos_lid_270. The smaller of the two angles represents which one is
* closer. If the lid is closer to the estimated 270 degree vector then
* the result is negative, otherwise it is positive.
*/
rotate(base, p_acc_orient->rot_hinge_90, v);
cos_lid_90 = cosine_of_angle_diff(v, lid);
rotate(v, p_acc_orient->rot_hinge_180, v);
cos_lid_270 = cosine_of_angle_diff(v, lid);
/*
* Note that cos_lid_90 and cos_lid_270 are not in degrees, because
* the arc_cos() was never performed. But, since arc_cos() is
* monotonically decreasing, we can do this comparison without ever
* taking arc_cos(). But, since the function is monotonically
* decreasing, the logic of this comparison is reversed.
*/
if (cos_lid_270 > cos_lid_90)
lid_to_base_fp = -lid_to_base_fp;
/* Place lid angle between 0 and 360 degrees. */
if (lid_to_base_fp < 0)
lid_to_base_fp += FLOAT_TO_FP(360);
/*
* Perform some additional reliability checks.
*
* If the magnitude of the two vectors differ too greatly, then the
* readings are unreliable and we can't use them to calculate the lid
* angle.
*/
/* Scale the vectors by their range. */
base_range = accel_base->drv->get_range(accel_base);
lid_range = accel_lid->drv->get_range(accel_lid);
for (i = X; i <= Z; i++) {
/*
* To increase precision, we'll use 8x the sensor data in the
* intermediate calculation. We would normally divide by 2^15.
*
* This is safe because even at a range of 8g, calculating the
* magnitude squared should still be less than the max of a
* 32-bit signed integer.
*
* The max that base[i] could be is 32768, resulting in a max
* value for scaled_base[i] of 640 @ 8g range and force.
* Typically our range is set to 2g.
*/
scaled_base[i] = base[i] * base_range * 10 >> 12;
scaled_lid[i] = lid[i] * lid_range * 10 >> 12;
}
base_magnitude2 = (scaled_base[X] * scaled_base[X] +
scaled_base[Y] * scaled_base[Y] +
scaled_base[Z] * scaled_base[Z]) >> 6;
lid_magnitude2 = (scaled_lid[X] * scaled_lid[X] +
scaled_lid[Y] * scaled_lid[Y] +
scaled_lid[Z] * scaled_lid[Z]) >> 6;
/*
* Check to see if they differ than more than NOISY_MAGNITUDE_DEVIATION.
* If the vectors do, then the measured angle is unreliable.
*
* Note, that we don't actually have to take the square root to get the
* magnitude, but we can work with the magnitudes squared directly as
* shown below:
*
* If A and B are the base and lid magnitudes, and x is the noisy
* magnitude deviation:
*
* A - B < x
* A^2 - B^2 < x * (A + B)
* A^2 - B^2 < 2 * x * avg(A, B)
*
* If we assume that the average acceleration should be about 1g, then
* we have:
*
* (A^2 - B^2) < 2 * 1g * NOISY_MAGNITUDE_DEVIATION
*/
if (ABS(base_magnitude2 - lid_magnitude2) >
(2 * 10 * NOISY_MAGNITUDE_DEVIATION))
reliable = 0;
#ifdef CONFIG_LID_ANGLE_INVALID_CHECK
/* Ignore large angles when the lid is closed. */
if (!lid_is_open() &&
(lid_to_base_fp > FLOAT_TO_FP(SMALL_LID_ANGLE_RANGE)))
reliable = 0;
/*
* Ignore small angles when the lid is open.
*
* Note that we're not correcting the angle, but just marking it as
* unreliable. Attempting to correct the angle would cause bad angles
* when closing the lid. However, there is one edge case. If the
* device is suspended in laptop mode, but then is physically placed in
* tablet mode, but ALL the angles are read as unreliable, a keypress
* may wake us up. This is because we require at least 4 consecutive
* reliable readings over a threshold to disable key scanning.
*/
if (lid_is_open() &&
(lid_to_base_fp <= FLOAT_TO_FP(SMALL_LID_ANGLE_RANGE)))
reliable = 0;
if (reliable) {
/*
* Seed the lid angle now that we have a reliable
* measurement.
*/
if (last_lid_angle_fp == FLOAT_TO_FP(-1))
last_lid_angle_fp = lid_to_base_fp;
/*
* If the angle was last seen as really large and now it's quite
* small, we may be rotating around from 360->0 so correct it to
* be large. But in case that the lid switch is closed, we can
* prove the small angle we see is correct so we take the angle
* as is.
*/
if ((last_lid_angle_fp >=
FLOAT_TO_FP(360) - DEBOUNCE_ANGLE_DELTA) &&
(lid_to_base_fp <= DEBOUNCE_ANGLE_DELTA) &&
(lid_is_open()))
last_lid_angle_fp = FLOAT_TO_FP(360) - lid_to_base_fp;
else
last_lid_angle_fp = lid_to_base_fp;
}
/*
* Round to nearest int by adding 0.5. Note, only works because lid
* angle is known to be positive.
*/
*lid_angle = FP_TO_INT(last_lid_angle_fp + FLOAT_TO_FP(0.5));
if (board_is_lid_angle_tablet_mode())
reliable = motion_lid_set_tablet_mode(reliable);
#else /* CONFIG_LID_ANGLE_INVALID_CHECK */
*lid_angle = FP_TO_INT(lid_to_base_fp + FLOAT_TO_FP(0.5));
#endif
return reliable;
}
int motion_lid_get_angle(void)
{
if (lid_angle_is_reliable)
return lid_angle_deg;
else
return LID_ANGLE_UNRELIABLE;
}
/*
* Calculate lid angle and massage the results
*/
void motion_lid_calc(void)
{
#ifndef CONFIG_ACCEL_STD_REF_FRAME_OLD
/*
* rotate lid vector by 180 deg to be in the right coordinate frame
* because calculate_lid_angle assumes when the lid is closed, that
* the lid and base accelerometer data matches
*/
vector_3_t lid = { accel_lid->xyz[X],
accel_lid->xyz[Y] * -1,
accel_lid->xyz[Z] * -1};
/* Calculate angle of lid accel. */
lid_angle_is_reliable = calculate_lid_angle(
accel_base->xyz, lid,
&lid_angle_deg);
#else
/* Calculate angle of lid accel. */
lid_angle_is_reliable = calculate_lid_angle(
accel_base->xyz, accel_lid->xyz,
&lid_angle_deg);
#endif
#ifdef CONFIG_LID_ANGLE_UPDATE
lid_angle_update(motion_lid_get_angle());
#endif
}
/*****************************************************************************/
/* Host commands */
int host_cmd_motion_lid(struct host_cmd_handler_args *args)
{
const struct ec_params_motion_sense *in = args->params;
struct ec_response_motion_sense *out = args->response;
switch (in->cmd) {
case MOTIONSENSE_CMD_KB_WAKE_ANGLE:
#ifdef CONFIG_LID_ANGLE_UPDATE
/* Set new keyboard wake lid angle if data arg has value. */
if (in->kb_wake_angle.data != EC_MOTION_SENSE_NO_VALUE)
lid_angle_set_wake_angle(in->kb_wake_angle.data);
out->kb_wake_angle.ret = lid_angle_get_wake_angle();
#else
out->kb_wake_angle.ret = 0;
#endif
args->response_size = sizeof(out->kb_wake_angle);
break;
case MOTIONSENSE_CMD_LID_ANGLE:
#ifdef CONFIG_LID_ANGLE
out->lid_angle.value = motion_lid_get_angle();
args->response_size = sizeof(out->lid_angle);
#else
return EC_RES_INVALID_PARAM;
#endif
break;
default:
return EC_RES_INVALID_PARAM;
}
return EC_RES_SUCCESS;
}