blob: 7354639083e7e95faf6f21aff592a80ca947fb3a [file] [log] [blame]
/* Copyright 2014 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* Motion sense module to read from various motion sensors. */
#include "acpi.h"
#include "accelgyro.h"
#include "chipset.h"
#include "common.h"
#include "console.h"
#include "gesture.h"
#include "hooks.h"
#include "host_command.h"
#include "lid_angle.h"
#include "lid_switch.h"
#include "math_util.h"
#include "motion_lid.h"
#include "motion_sense.h"
#include "power.h"
#include "tablet_mode.h"
#include "timer.h"
#include "task.h"
#include "util.h"
/* Console output macros */
#define CPUTS(outstr) cputs(CC_MOTION_LID, outstr)
#define CPRINTS(format, args...) cprints(CC_MOTION_LID, format, ## args)
#define CPRINTF(format, args...) cprintf(CC_MOTION_LID, format, ## args)
#ifdef CONFIG_TABLET_MODE
/* Previous lid_angle. */
static fp_t last_lid_angle_fp = FLOAT_TO_FP(-1);
/*
* This defines the range from 0 to SMALL_LID_ANGLE_RANGE of possible lid angle
* measurements when the lid is physically closed. This will be used in
* reliability calculations.
*/
#define SMALL_LID_ANGLE_RANGE (FLOAT_TO_FP(15))
#endif
/* Current acceleration vectors and current lid angle. */
static int lid_angle_deg;
static int lid_angle_is_reliable;
/* Smoothed vectors to increase accurency. */
static intv3_t smoothed_base, smoothed_lid;
/* 8.7 m/s^2 is the the maximum acceleration parallel to the hinge */
#define SCALED_HINGE_VERTICAL_MAXIMUM \
((int)((8.7f * MOTION_SCALING_FACTOR) / MOTION_ONE_G))
#define SCALED_HINGE_VERTICAL_SMOOTHING_START \
((int)((7.0f * MOTION_SCALING_FACTOR) / MOTION_ONE_G))
/*
* Constant to debounce lid angle changes around 360 - 0:
* If we have a rotation through the angle 0, ignore.
*/
#define DEBOUNCE_ANGLE_DELTA FLOAT_TO_FP(45)
/*
* Since the accelerometers are on the same physical device, they should be
* under the same acceleration. This constant, which mirrors
* kNoisyMagnitudeDeviation used in Chromium, is an integer which defines the
* maximum deviation in magnitude between the base and lid vectors. The units
* are in g. Currently set at 1m/s^2.
*/
#define NOISY_MAGNITUDE_DEVIATION ((int)(MOTION_SCALING_FACTOR / MOTION_ONE_G))
/*
* Even with noise, any measurement greater than 1g on any axis is not suitable
* for lid calculation. It means the device is moving.
* To avoid using 64bits arithmetic, we need to be sure that square of magnitude
* is less than 1<<31, so magnitude is less sqrt(2)*(1<<15), less than ~40% over
* 1g. This is way above any usable noise. Assume noise is less than 10%.
*/
#define MOTION_SCALING_AXIS_MAX (MOTION_SCALING_FACTOR * 110)
#define MOTION_SCALING_FACTOR2 (MOTION_SCALING_FACTOR * MOTION_SCALING_FACTOR)
/*
* Define the accelerometer orientation matrices based on the standard
* reference frame in use (note: accel data is converted to standard ref
* frame before calculating lid angle).
*/
#ifdef CONFIG_ACCEL_STD_REF_FRAME_OLD
static const intv3_t hinge_axis = { 0, 1, 0};
#define HINGE_AXIS Y
#else
static const intv3_t hinge_axis = { 1, 0, 0};
#define HINGE_AXIS X
#endif
static const struct motion_sensor_t * const accel_base =
&motion_sensors[CONFIG_LID_ANGLE_SENSOR_BASE];
static const struct motion_sensor_t * const accel_lid =
&motion_sensors[CONFIG_LID_ANGLE_SENSOR_LID];
#ifdef CONFIG_TABLET_MODE
__attribute__((weak)) int board_is_lid_angle_tablet_mode(void)
{
return 1;
}
/*
* We are in tablet mode when the lid angle has been calculated
* to be large.
*
* By default, at boot, we are in tablet mode.
* Once a lid angle is calculated, we will get out of this fake state and enter
* tablet mode only if a high angle has been calculated.
*
* There might be false positives:
* - when the EC enters RO or RW mode.
* - when lid is closed while the hinge is perpendicular to the floor, we will
* stay in tablet mode.
*
* Tablet mode is defined as the lid angle being greater than 180 degree(by
* default). We use 2 threshold to calculate tablet mode:
* tablet_mode:
* 1 | +-----<----+----------
* | \/ /\
* | | |
* 0 |------------------>----+
* +------------+----------+----------+ lid angle
* 0 160 200 360
*
* Host can configure the threshold to be different than default of 180 +/- 20
* by using MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE.
*/
#define DEFAULT_TABLET_MODE_ANGLE (180)
#define DEFAULT_TABLET_MODE_HYS (20)
#define TABLET_ZONE_ANGLE(a, h) ((a) + (h))
#define LAPTOP_ZONE_ANGLE(a, h) ((a) - (h))
static fp_t tablet_zone_lid_angle =
FLOAT_TO_FP(TABLET_ZONE_ANGLE(DEFAULT_TABLET_MODE_ANGLE,
DEFAULT_TABLET_MODE_HYS));
static fp_t laptop_zone_lid_angle =
FLOAT_TO_FP(LAPTOP_ZONE_ANGLE(DEFAULT_TABLET_MODE_ANGLE,
DEFAULT_TABLET_MODE_HYS));
static int tablet_mode_lid_angle = DEFAULT_TABLET_MODE_ANGLE;
static int tablet_mode_hys_degree = DEFAULT_TABLET_MODE_HYS;
static void motion_lid_set_tablet_mode(int reliable)
{
static int tablet_mode_debounce_cnt = TABLET_MODE_DEBOUNCE_COUNT;
const int current_mode = tablet_get_mode();
int new_mode = current_mode;
if (reliable) {
if (last_lid_angle_fp > tablet_zone_lid_angle)
new_mode = 1;
else if (last_lid_angle_fp < laptop_zone_lid_angle)
new_mode = 0;
/* Only change tablet mode if we're sure. */
if (current_mode != new_mode) {
if (tablet_mode_debounce_cnt == 0) {
/* Alright, we're convinced. */
tablet_mode_debounce_cnt =
TABLET_MODE_DEBOUNCE_COUNT;
tablet_set_mode(new_mode);
return;
}
tablet_mode_debounce_cnt--;
return;
}
}
/*
* If we got a reliable measurement that agrees with our current tablet
* mode, then reset the debounce counter. Also, make it harder to leave
* tablet mode by resetting the debounce count when we encounter an
* unreliable angle when we're already in tablet mode.
*/
if (((reliable == 0) && current_mode == 1) ||
((reliable == 1) && (current_mode == new_mode)))
tablet_mode_debounce_cnt = TABLET_MODE_DEBOUNCE_COUNT;
}
static int lid_angle_set_tablet_mode_threshold(int angle, int hys)
{
if ((angle == EC_MOTION_SENSE_NO_VALUE) ||
(hys == EC_MOTION_SENSE_NO_VALUE))
return EC_RES_SUCCESS;
if ((angle < 0) || (hys < 0) || (angle < hys) || ((angle + hys) > 360))
return EC_RES_INVALID_PARAM;
tablet_mode_lid_angle = angle;
tablet_mode_hys_degree = hys;
tablet_zone_lid_angle = INT_TO_FP(TABLET_ZONE_ANGLE(angle, hys));
laptop_zone_lid_angle = INT_TO_FP(LAPTOP_ZONE_ANGLE(angle, hys));
return EC_RES_SUCCESS;
}
#endif /* CONFIG_TABLET_MODE */
#if defined(CONFIG_DPTF_MULTI_PROFILE) && \
defined(CONFIG_DPTF_MOTION_LID_NO_HALL_SENSOR)
/*
* If CONFIG_DPTF_MULTI_PROFILE is defined by a board, then lid motion driver
* sets different profile numbers depending upon the current lid
* angle. Following profiles are currently supported by this driver:
* 1. Clamshell mode - DPTF_PROFILE_CLAMSHELL
* 2. 360-degree flipped mode - DPTF_PROFILE_FLIPPED_360_MODE
*
* 360-degree flipped mode is defined as the mode with base being behind the
* lid. We use 2 threshold to calculate this:
*
* 360-degree mode
* 1 | +-----<----+----------
* | \/ /\
* | | |
* 0 |------------------------>----+
* +------------------+----------+----------+ lid angle
* 0 240 300 360
*/
#define FLIPPED_360_ZONE_LID_ANGLE FLOAT_TO_FP(300)
#define CLAMSHELL_ZONE_LID_ANGLE FLOAT_TO_FP(240)
/*
* Detection of DPTF profile is very similar to tablet mode detection using
* debounce counter. This is done to avoid any spurious changes in setting DPTF
* profile numbers.
*/
#define DPTF_MODE_DEBOUNCE_COUNT 3
static void motion_lid_set_dptf_profile(int reliable)
{
static int debounce_cnt = DPTF_MODE_DEBOUNCE_COUNT;
int current_prof = acpi_dptf_get_profile_num();
int new_prof = current_prof;
if (reliable) {
if (last_lid_angle_fp > FLIPPED_360_ZONE_LID_ANGLE)
new_prof = DPTF_PROFILE_FLIPPED_360_MODE;
else if (last_lid_angle_fp < CLAMSHELL_ZONE_LID_ANGLE)
new_prof = DPTF_PROFILE_CLAMSHELL;
if (current_prof != new_prof) {
if (debounce_cnt != 0) {
debounce_cnt--;
return;
}
debounce_cnt = DPTF_MODE_DEBOUNCE_COUNT;
acpi_dptf_set_profile_num(new_prof);
return;
}
}
debounce_cnt = DPTF_MODE_DEBOUNCE_COUNT;
}
#endif /* CONFIG_DPTF_MULTI_PROFILE && CONFIG_DPTF_MOTION_LID_NO_HALL_SENSOR */
/**
* Calculate the lid angle using two acceleration vectors, one recorded in
* the base and one in the lid.
*
* @param base Base accel vector
* @param lid Lid accel vector
* @param lid_angle Pointer to location to store lid angle result
*
* @return flag representing if resulting lid angle calculation is reliable.
*/
static int calculate_lid_angle(const intv3_t base, const intv3_t lid,
int *lid_angle)
{
intv3_t cross, proj_lid, proj_base, scaled_base, scaled_lid;
fp_t lid_to_base_fp, smoothed_ratio;
int base_magnitude2, lid_magnitude2, largest_hinge_accel;
int reliable = 1, i;
/*
* Scale the vectors by their range, to be able to compare them.
* If a single measurement is greated than 1g, we may overflow fixed
* point calculation. However, we can exclude such a measurement, it
* means the device is in movement and lid angle calculation is not
* possible.
*/
for (i = X; i <= Z; i++) {
scaled_base[i] = base[i] *
accel_base->drv->get_range(accel_base);
scaled_lid[i] = lid[i] *
accel_lid->drv->get_range(accel_lid);
if (ABS(scaled_base[i]) > MOTION_SCALING_AXIS_MAX ||
ABS(scaled_lid[i]) > MOTION_SCALING_AXIS_MAX) {
reliable = 0;
goto end_calculate_lid_angle;
}
}
/*
* Calculate square of vector magnitude in g.
* Each entry is guaranteed to be up to +/- 1<<15, so the square will be
* less than 1<<30.
*/
base_magnitude2 = scaled_base[X] * scaled_base[X] +
scaled_base[Y] * scaled_base[Y] +
scaled_base[Z] * scaled_base[Z];
lid_magnitude2 = scaled_lid[X] * scaled_lid[X] +
scaled_lid[Y] * scaled_lid[Y] +
scaled_lid[Z] * scaled_lid[Z];
/*
* Check to see if they differ than more than NOISY_MAGNITUDE_DEVIATION.
* If the vectors do, then the measured angle is unreliable.
*
* Note, that we don't actually have to take the square root to get the
* magnitude, but we can work with the magnitudes squared directly as
* shown below:
*
* If A is a magnitudes, and x is the noisy magnitude deviation:
*
* 0 < 1g - A < x
* 0 < 1g^2 - A^2 < x * (A + B)
* 0 < 1g^2 - A^2 < 2 * x * avg(A, B)
*
* If we assume that the average acceleration should be about 1g, then
* we have:
*
* 0 < 1g^2 - A^2 < 2 * 1g * NOISY_MAGNITUDE_DEVIATION
*/
if (MOTION_SCALING_FACTOR2 - base_magnitude2 >
2 * MOTION_SCALING_FACTOR * NOISY_MAGNITUDE_DEVIATION) {
reliable = 0;
goto end_calculate_lid_angle;
}
if (MOTION_SCALING_FACTOR2 - lid_magnitude2 >
2 * MOTION_SCALING_FACTOR * NOISY_MAGNITUDE_DEVIATION) {
reliable = 0;
goto end_calculate_lid_angle;
}
largest_hinge_accel = MAX(ABS(scaled_base[HINGE_AXIS]),
ABS(scaled_lid[HINGE_AXIS]));
smoothed_ratio = MAX(INT_TO_FP(0), MIN(INT_TO_FP(1),
fp_div(INT_TO_FP(largest_hinge_accel -
SCALED_HINGE_VERTICAL_SMOOTHING_START),
INT_TO_FP(SCALED_HINGE_VERTICAL_MAXIMUM -
SCALED_HINGE_VERTICAL_SMOOTHING_START))));
/* Check hinge is not too vertical */
if (largest_hinge_accel > SCALED_HINGE_VERTICAL_MAXIMUM) {
reliable = 0;
goto end_calculate_lid_angle;
}
/* Smooth input to reduce calculation error due to noise. */
vector_scale(smoothed_base, smoothed_ratio);
vector_scale(smoothed_lid, smoothed_ratio);
vector_scale(scaled_base, INT_TO_FP(1) - smoothed_ratio);
vector_scale(scaled_lid, INT_TO_FP(1) - smoothed_ratio);
for (i = X; i <= Z; i++) {
smoothed_base[i] += scaled_base[i];
smoothed_lid[i] += scaled_lid[i];
}
/* Project vectors on the hinge hyperplan, putting smooth ones aside. */
memcpy(proj_base, smoothed_base, sizeof(intv3_t));
memcpy(proj_lid, smoothed_lid, sizeof(intv3_t));
proj_base[HINGE_AXIS] = 0;
proj_lid[HINGE_AXIS] = 0;
/* Calculate the clockwise angle */
lid_to_base_fp = arc_cos(cosine_of_angle_diff(proj_base, proj_lid));
cross_product(proj_base, proj_lid, cross);
/*
* If the dot product of this cross product is normal, it means that
* the shortest angle between |base| and |lid| was counterclockwise
* with respect to the surface represented by |hinge_axis| and this
* angle must be reversed.
*/
if (dot_product(cross, hinge_axis) > 0)
lid_to_base_fp = FLOAT_TO_FP(360) - lid_to_base_fp;
#ifndef CONFIG_ACCEL_STD_REF_FRAME_OLD
/*
* Angle is between the keyboard and the front of screen: we need to
* anlge between keyboard and back of screen:
* 180 instead of 0 when lid and base are flat on surface.
* 0 instead of 180 when lid is closed on keyboard.
*/
lid_to_base_fp = FLOAT_TO_FP(180) - lid_to_base_fp;
#endif
/* Place lid angle between 0 and 360 degrees. */
if (lid_to_base_fp < 0)
lid_to_base_fp += FLOAT_TO_FP(360);
#ifdef CONFIG_TABLET_MODE
/* Ignore large angles when the lid is closed. */
if (!lid_is_open() &&
(lid_to_base_fp > SMALL_LID_ANGLE_RANGE)) {
reliable = 0;
goto end_calculate_lid_angle;
}
/*
* Ignore small angles when the lid is open.
*
* Note that we're not correcting the angle, but just marking it as
* unreliable. Attempting to correct the angle would cause bad angles
* when closing the lid. However, there is one edge case. If the
* device is suspended in laptop mode, but then is physically placed in
* tablet mode, but ALL the angles are read as unreliable, a keypress
* may wake us up. This is because we require at least 4 consecutive
* reliable readings over a threshold to disable key scanning.
*/
if (lid_is_open() &&
(lid_to_base_fp <= SMALL_LID_ANGLE_RANGE)) {
reliable = 0;
goto end_calculate_lid_angle;
}
/* Seed the lid angle now that we have a reliable measurement. */
if (last_lid_angle_fp == FLOAT_TO_FP(-1))
last_lid_angle_fp = lid_to_base_fp;
/*
* If the angle was last seen as really large and now it's quite
* small, we may be rotating around from 360->0 so correct it to
* be large. But in case that the lid switch is closed, we can
* prove the small angle we see is correct so we take the angle
* as is.
*/
if ((last_lid_angle_fp >=
FLOAT_TO_FP(360) - DEBOUNCE_ANGLE_DELTA) &&
(lid_to_base_fp <= DEBOUNCE_ANGLE_DELTA) &&
(lid_is_open()))
last_lid_angle_fp = FLOAT_TO_FP(360) - lid_to_base_fp;
else
last_lid_angle_fp = lid_to_base_fp;
end_calculate_lid_angle:
/*
* Round to nearest int by adding 0.5. Note, only works because lid
* angle is known to be positive.
*/
*lid_angle = FP_TO_INT(last_lid_angle_fp + FLOAT_TO_FP(0.5));
if (board_is_lid_angle_tablet_mode())
motion_lid_set_tablet_mode(reliable);
#if defined(CONFIG_DPTF_MULTI_PROFILE) && \
defined(CONFIG_DPTF_MOTION_LID_NO_HALL_SENSOR)
motion_lid_set_dptf_profile(reliable);
#endif /* CONFIG_DPTF_MULTI_PROFILE && CONFIG_DPTF_MOTION_LID_NO_HALL_SENSOR */
#else /* CONFIG_TABLET_MODE */
end_calculate_lid_angle:
if (reliable)
*lid_angle = FP_TO_INT(lid_to_base_fp + FLOAT_TO_FP(0.5));
#endif
return reliable;
}
int motion_lid_get_angle(void)
{
if (lid_angle_is_reliable)
return lid_angle_deg;
else
return LID_ANGLE_UNRELIABLE;
}
/*
* Calculate lid angle and massage the results
*/
void motion_lid_calc(void)
{
/* Calculate angle of lid accel. */
lid_angle_is_reliable = calculate_lid_angle(
accel_base->xyz, accel_lid->xyz,
&lid_angle_deg);
#ifdef CONFIG_LID_ANGLE_UPDATE
lid_angle_update(motion_lid_get_angle());
#endif
}
/*****************************************************************************/
/* Host commands */
int host_cmd_motion_lid(struct host_cmd_handler_args *args)
{
const struct ec_params_motion_sense *in = args->params;
struct ec_response_motion_sense *out = args->response;
switch (in->cmd) {
case MOTIONSENSE_CMD_KB_WAKE_ANGLE:
#ifdef CONFIG_LID_ANGLE_UPDATE
/* Set new keyboard wake lid angle if data arg has value. */
if (in->kb_wake_angle.data != EC_MOTION_SENSE_NO_VALUE)
lid_angle_set_wake_angle(in->kb_wake_angle.data);
out->kb_wake_angle.ret = lid_angle_get_wake_angle();
#else
out->kb_wake_angle.ret = 0;
#endif
args->response_size = sizeof(out->kb_wake_angle);
break;
case MOTIONSENSE_CMD_LID_ANGLE:
#ifdef CONFIG_LID_ANGLE
out->lid_angle.value = motion_lid_get_angle();
args->response_size = sizeof(out->lid_angle);
#else
return EC_RES_INVALID_PARAM;
#endif
break;
case MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE:
{
#ifdef CONFIG_TABLET_MODE
int ret;
ret = lid_angle_set_tablet_mode_threshold(
in->tablet_mode_threshold.lid_angle,
in->tablet_mode_threshold.hys_degree);
if (ret != EC_RES_SUCCESS)
return ret;
out->tablet_mode_threshold.lid_angle =
tablet_mode_lid_angle;
out->tablet_mode_threshold.hys_degree =
tablet_mode_hys_degree;
args->response_size =
sizeof(out->tablet_mode_threshold);
#else
return EC_RES_INVALID_PARAM;
#endif
}
break;
default:
return EC_RES_INVALID_PARAM;
}
return EC_RES_SUCCESS;
}