blob: 301817f32de838ee674908f5d61ad7bf9c35b28f [file] [log] [blame]
/* Copyright (c) 2013 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*
* Test thermal engine.
*/
#include "common.h"
#include "console.h"
#include "driver/temp_sensor/thermistor.h"
#include "fan.h"
#include "hooks.h"
#include "host_command.h"
#include "printf.h"
#include "temp_sensor.h"
#include "test_util.h"
#include "thermal.h"
#include "timer.h"
#include "util.h"
/*****************************************************************************/
/* Exported data */
struct ec_thermal_config thermal_params[TEMP_SENSOR_COUNT];
/* The tests below make some assumptions. */
BUILD_ASSERT(TEMP_SENSOR_COUNT == 4);
BUILD_ASSERT(EC_TEMP_THRESH_COUNT == 3);
/*****************************************************************************/
/* Mock functions */
static int mock_temp[TEMP_SENSOR_COUNT];
static int host_throttled;
static int cpu_throttled;
static int cpu_shutdown;
static int fan_pct;
static int no_temps_read;
int dummy_temp_get_val(int idx, int *temp_ptr)
{
if (mock_temp[idx] >= 0) {
*temp_ptr = mock_temp[idx];
return EC_SUCCESS;
}
return EC_ERROR_NOT_POWERED;
}
void chipset_force_shutdown(void)
{
cpu_shutdown = 1;
}
void chipset_throttle_cpu(int throttled)
{
cpu_throttled = throttled;
}
void host_throttle_cpu(int throttled)
{
host_throttled = throttled;
}
void fan_set_percent_needed(int fan, int pct)
{
fan_pct = pct;
}
void smi_sensor_failure_warning(void)
{
no_temps_read = 1;
}
/*****************************************************************************/
/* Test utilities */
static void set_temps(int t0, int t1, int t2, int t3)
{
mock_temp[0] = t0;
mock_temp[1] = t1;
mock_temp[2] = t2;
mock_temp[3] = t3;
}
static void all_temps(int t)
{
set_temps(t, t, t, t);
}
static void reset_mocks(void)
{
/* Ignore all sensors */
memset(thermal_params, 0, sizeof(thermal_params));
/* All sensors report error anyway */
set_temps(-1, -1 , -1, -1);
/* Reset expectations */
host_throttled = 0;
cpu_throttled = 0;
cpu_shutdown = 0;
fan_pct = 0;
no_temps_read = 0;
}
/*****************************************************************************/
/* Tests */
static int test_init_val(void)
{
reset_mocks();
sleep(2);
TEST_ASSERT(host_throttled == 0);
TEST_ASSERT(cpu_throttled == 0);
TEST_ASSERT(cpu_shutdown == 0);
TEST_ASSERT(fan_pct == 0);
TEST_ASSERT(no_temps_read);
sleep(2);
TEST_ASSERT(host_throttled == 0);
TEST_ASSERT(cpu_throttled == 0);
TEST_ASSERT(cpu_shutdown == 0);
TEST_ASSERT(fan_pct == 0);
TEST_ASSERT(no_temps_read);
return EC_SUCCESS;
}
static int test_sensors_can_be_read(void)
{
reset_mocks();
mock_temp[2] = 100;
sleep(2);
TEST_ASSERT(host_throttled == 0);
TEST_ASSERT(cpu_throttled == 0);
TEST_ASSERT(cpu_shutdown == 0);
TEST_ASSERT(fan_pct == 0);
TEST_ASSERT(no_temps_read == 0);
return EC_SUCCESS;
}
static int test_one_fan(void)
{
reset_mocks();
thermal_params[2].temp_fan_off = 100;
thermal_params[2].temp_fan_max = 200;
all_temps(50);
sleep(2);
TEST_ASSERT(fan_pct == 0);
all_temps(100);
sleep(2);
TEST_ASSERT(fan_pct == 0);
all_temps(101);
sleep(2);
TEST_ASSERT(fan_pct == 1);
all_temps(130);
sleep(2);
TEST_ASSERT(fan_pct == 30);
all_temps(150);
sleep(2);
TEST_ASSERT(fan_pct == 50);
all_temps(170);
sleep(2);
TEST_ASSERT(fan_pct == 70);
all_temps(200);
sleep(2);
TEST_ASSERT(fan_pct == 100);
all_temps(300);
sleep(2);
TEST_ASSERT(fan_pct == 100);
return EC_SUCCESS;
}
static int test_two_fans(void)
{
reset_mocks();
thermal_params[1].temp_fan_off = 120;
thermal_params[1].temp_fan_max = 160;
thermal_params[2].temp_fan_off = 100;
thermal_params[2].temp_fan_max = 200;
all_temps(50);
sleep(2);
TEST_ASSERT(fan_pct == 0);
all_temps(100);
sleep(2);
TEST_ASSERT(fan_pct == 0);
all_temps(101);
sleep(2);
TEST_ASSERT(fan_pct == 1);
all_temps(130);
sleep(2);
/* fan 2 is still higher */
TEST_ASSERT(fan_pct == 30);
all_temps(150);
sleep(2);
/* now fan 1 is higher: 150 = 75% of [120-160] */
TEST_ASSERT(fan_pct == 75);
all_temps(170);
sleep(2);
/* fan 1 is maxed now */
TEST_ASSERT(fan_pct == 100);
all_temps(200);
sleep(2);
TEST_ASSERT(fan_pct == 100);
all_temps(300);
sleep(2);
TEST_ASSERT(fan_pct == 100);
return EC_SUCCESS;
}
static int test_all_fans(void)
{
reset_mocks();
thermal_params[0].temp_fan_off = 20;
thermal_params[0].temp_fan_max = 60;
thermal_params[1].temp_fan_off = 120;
thermal_params[1].temp_fan_max = 160;
thermal_params[2].temp_fan_off = 100;
thermal_params[2].temp_fan_max = 200;
thermal_params[3].temp_fan_off = 300;
thermal_params[3].temp_fan_max = 500;
set_temps(1, 1, 1, 1);
sleep(2);
TEST_ASSERT(fan_pct == 0);
/* Each sensor has its own range */
set_temps(40, 0, 0, 0);
sleep(2);
TEST_ASSERT(fan_pct == 50);
set_temps(0, 140, 0, 0);
sleep(2);
TEST_ASSERT(fan_pct == 50);
set_temps(0, 0, 150, 0);
sleep(2);
TEST_ASSERT(fan_pct == 50);
set_temps(0, 0, 0, 400);
sleep(2);
TEST_ASSERT(fan_pct == 50);
set_temps(60, 0, 0, 0);
sleep(2);
TEST_ASSERT(fan_pct == 100);
set_temps(0, 160, 0, 0);
sleep(2);
TEST_ASSERT(fan_pct == 100);
set_temps(0, 0, 200, 0);
sleep(2);
TEST_ASSERT(fan_pct == 100);
set_temps(0, 0, 0, 500);
sleep(2);
TEST_ASSERT(fan_pct == 100);
/* But sensor 0 needs the most cooling */
all_temps(20);
sleep(2);
TEST_ASSERT(fan_pct == 0);
all_temps(21);
sleep(2);
TEST_ASSERT(fan_pct == 2);
all_temps(30);
sleep(2);
TEST_ASSERT(fan_pct == 25);
all_temps(40);
sleep(2);
TEST_ASSERT(fan_pct == 50);
all_temps(50);
sleep(2);
TEST_ASSERT(fan_pct == 75);
all_temps(60);
sleep(2);
TEST_ASSERT(fan_pct == 100);
all_temps(65);
sleep(2);
TEST_ASSERT(fan_pct == 100);
return EC_SUCCESS;
}
static int test_one_limit(void)
{
reset_mocks();
thermal_params[2].temp_host[EC_TEMP_THRESH_WARN] = 100;
thermal_params[2].temp_host[EC_TEMP_THRESH_HIGH] = 200;
thermal_params[2].temp_host[EC_TEMP_THRESH_HALT] = 300;
all_temps(50);
sleep(2);
TEST_ASSERT(host_throttled == 0);
TEST_ASSERT(cpu_throttled == 0);
TEST_ASSERT(cpu_shutdown == 0);
all_temps(100);
sleep(2);
TEST_ASSERT(host_throttled == 0);
TEST_ASSERT(cpu_throttled == 0);
TEST_ASSERT(cpu_shutdown == 0);
all_temps(101);
sleep(2);
TEST_ASSERT(host_throttled == 1);
TEST_ASSERT(cpu_throttled == 0);
TEST_ASSERT(cpu_shutdown == 0);
all_temps(100);
sleep(2);
TEST_ASSERT(host_throttled == 1);
TEST_ASSERT(cpu_throttled == 0);
TEST_ASSERT(cpu_shutdown == 0);
all_temps(99);
sleep(2);
TEST_ASSERT(host_throttled == 0);
TEST_ASSERT(cpu_throttled == 0);
TEST_ASSERT(cpu_shutdown == 0);
all_temps(199);
sleep(2);
TEST_ASSERT(host_throttled == 1);
TEST_ASSERT(cpu_throttled == 0);
TEST_ASSERT(cpu_shutdown == 0);
all_temps(200);
sleep(2);
TEST_ASSERT(host_throttled == 1);
TEST_ASSERT(cpu_throttled == 0);
TEST_ASSERT(cpu_shutdown == 0);
all_temps(201);
sleep(2);
TEST_ASSERT(host_throttled == 1);
TEST_ASSERT(cpu_throttled == 1);
TEST_ASSERT(cpu_shutdown == 0);
all_temps(200);
sleep(2);
TEST_ASSERT(host_throttled == 1);
TEST_ASSERT(cpu_throttled == 1);
TEST_ASSERT(cpu_shutdown == 0);
all_temps(199);
sleep(2);
TEST_ASSERT(host_throttled == 1);
TEST_ASSERT(cpu_throttled == 0);
TEST_ASSERT(cpu_shutdown == 0);
all_temps(99);
sleep(2);
TEST_ASSERT(host_throttled == 0);
TEST_ASSERT(cpu_throttled == 0);
TEST_ASSERT(cpu_shutdown == 0);
all_temps(201);
sleep(2);
TEST_ASSERT(host_throttled == 1);
TEST_ASSERT(cpu_throttled == 1);
TEST_ASSERT(cpu_shutdown == 0);
all_temps(99);
sleep(2);
TEST_ASSERT(host_throttled == 0);
TEST_ASSERT(cpu_throttled == 0);
TEST_ASSERT(cpu_shutdown == 0);
all_temps(301);
sleep(2);
TEST_ASSERT(host_throttled == 1);
TEST_ASSERT(cpu_throttled == 1);
TEST_ASSERT(cpu_shutdown == 1);
/* We probably won't be able to read the CPU temp while shutdown,
* so nothing will change. */
all_temps(-1);
sleep(2);
TEST_ASSERT(host_throttled == 1);
TEST_ASSERT(cpu_throttled == 1);
/* cpu_shutdown is only set for testing purposes. The thermal task
* doesn't do anything that could clear it. */
all_temps(50);
sleep(2);
TEST_ASSERT(host_throttled == 0);
TEST_ASSERT(cpu_throttled == 0);
return EC_SUCCESS;
}
static int test_several_limits(void)
{
reset_mocks();
thermal_params[1].temp_host[EC_TEMP_THRESH_WARN] = 150;
thermal_params[1].temp_host[EC_TEMP_THRESH_HIGH] = 200;
thermal_params[1].temp_host[EC_TEMP_THRESH_HALT] = 250;
thermal_params[2].temp_host[EC_TEMP_THRESH_WARN] = 100;
thermal_params[2].temp_host[EC_TEMP_THRESH_HIGH] = 200;
thermal_params[2].temp_host[EC_TEMP_THRESH_HALT] = 300;
thermal_params[3].temp_host[EC_TEMP_THRESH_WARN] = 20;
thermal_params[3].temp_host[EC_TEMP_THRESH_HIGH] = 30;
thermal_params[3].temp_host[EC_TEMP_THRESH_HALT] = 40;
set_temps(500, 100, 150, 10);
sleep(2);
TEST_ASSERT(host_throttled == 1); /* 1=low, 2=warn, 3=low */
TEST_ASSERT(cpu_throttled == 0);
TEST_ASSERT(cpu_shutdown == 0);
set_temps(500, 50, -1, 10); /* 1=low, 2=X, 3=low */
sleep(2);
TEST_ASSERT(host_throttled == 0);
TEST_ASSERT(cpu_throttled == 0);
TEST_ASSERT(cpu_shutdown == 0);
set_temps(500, 170, 210, 10); /* 1=warn, 2=high, 3=low */
sleep(2);
TEST_ASSERT(host_throttled == 1);
TEST_ASSERT(cpu_throttled == 1);
TEST_ASSERT(cpu_shutdown == 0);
set_temps(500, 100, 50, 40); /* 1=low, 2=low, 3=high */
sleep(2);
TEST_ASSERT(host_throttled == 1);
TEST_ASSERT(cpu_throttled == 1);
TEST_ASSERT(cpu_shutdown == 0);
set_temps(500, 100, 50, 41); /* 1=low, 2=low, 3=shutdown */
sleep(2);
TEST_ASSERT(host_throttled == 1);
TEST_ASSERT(cpu_throttled == 1);
TEST_ASSERT(cpu_shutdown == 1);
all_temps(0); /* reset from shutdown */
sleep(2);
TEST_ASSERT(host_throttled == 0);
TEST_ASSERT(cpu_throttled == 0);
return EC_SUCCESS;
}
/* Tests for ncp15wb thermistor ADC-to-temp calculation */
#define LOW_ADC_TEST_VALUE 887 /* 0 C */
#define HIGH_ADC_TEST_VALUE 100 /* > 100C */
static int test_ncp15wb_adc_to_temp(void)
{
int i;
uint8_t temp;
uint8_t new_temp;
/* ADC value to temperature table, data from datasheet */
struct {
int adc;
int temp;
} adc_temp_datapoints[] = {
{ 615, 30 },
{ 561, 35 },
{ 508, 40 },
{ 407, 50 },
{ 315, 60 },
{ 243, 70 },
{ 186, 80 },
{ 140, 90 },
{ 107, 100 },
};
/*
* Verify that calculated temp is decreasing for entire ADC range,
* and that a tick down in ADC value results in no more than 1C
* decrease.
*/
i = LOW_ADC_TEST_VALUE;
temp = ncp15wb_calculate_temp(i);
while (--i > HIGH_ADC_TEST_VALUE) {
new_temp = ncp15wb_calculate_temp(i);
TEST_ASSERT(new_temp == temp ||
new_temp == temp + 1);
temp = new_temp;
}
/* Verify several datapoints are within 1C accuracy */
for (i = 0; i < ARRAY_SIZE(adc_temp_datapoints); ++i) {
temp = ncp15wb_calculate_temp(adc_temp_datapoints[i].adc);
ASSERT(temp >= adc_temp_datapoints[i].temp - 1 &&
temp <= adc_temp_datapoints[i].temp + 1);
}
return EC_SUCCESS;
}
#define THERMISTOR_SCALING_FACTOR 13
static int test_thermistor_linear_interpolate(void)
{
int i, t, t0;
uint16_t mv;
/* Simple test case - a straight line. */
struct thermistor_data_pair line_data[] = {
{ 100, 0 }, { 0, 100 }
};
struct thermistor_info line_info = {
.scaling_factor = 1,
.num_pairs = ARRAY_SIZE(line_data),
.data = line_data,
};
/*
* Modelled test case - Data derived from Seinhart-Hart equation in a
* resistor divider circuit with Vdd=3300mV, R = 51.1Kohm, and Murata
* NCP15WB-series thermistor (B = 4050, T0 = 298.15, nominal
* resistance (R0) = 47Kohm).
*/
struct thermistor_data_pair data[] = {
{ 2512 / THERMISTOR_SCALING_FACTOR, 0 },
{ 2158 / THERMISTOR_SCALING_FACTOR, 10 },
{ 1772 / THERMISTOR_SCALING_FACTOR, 20 },
{ 1398 / THERMISTOR_SCALING_FACTOR, 30 },
{ 1070 / THERMISTOR_SCALING_FACTOR, 40 },
{ 803 / THERMISTOR_SCALING_FACTOR, 50 },
{ 597 / THERMISTOR_SCALING_FACTOR, 60 },
{ 443 / THERMISTOR_SCALING_FACTOR, 70 },
{ 329 / THERMISTOR_SCALING_FACTOR, 80 },
{ 247 / THERMISTOR_SCALING_FACTOR, 90 },
{ 188 / THERMISTOR_SCALING_FACTOR, 100 },
};
struct thermistor_info info = {
.scaling_factor = THERMISTOR_SCALING_FACTOR,
.num_pairs = ARRAY_SIZE(data),
.data = data,
};
/*
* Reference data points to compare accuracy, taken from same set
* of derived values but at temp - 1, temp + 1, and in between.
*/
struct {
uint16_t mv; /* not scaled */
int temp;
} cmp[] = {
{ 3030, 1 }, { 2341, 5 }, { 2195, 9 },
{ 2120, 11 }, { 1966, 15 }, { 1811, 19 },
{ 1733, 21 }, { 1581, 25 }, { 1434, 29 },
{ 1363, 31 }, { 1227, 35 }, { 1100, 39 },
{ 1040, 41 }, { 929, 45 }, { 827, 49 },
{ 780, 51 }, { 693, 55 }, { 615, 59 },
{ 579, 61 }, { 514, 65 }, { 460, 69 },
{ 430, 71 }, { 382, 75 }, { 339, 79 },
{ 320, 81 }, { 285, 85 }, { 254, 89 },
{ 240, 91 }, { 214, 95 }, { 192, 99 },
};
/* Return lowest temperature in data set if voltage is too high. */
mv = (data[0].mv * info.scaling_factor) + 1;
t = thermistor_linear_interpolate(mv, &info);
TEST_ASSERT(t == data[0].temp);
/* Return highest temperature in data set if voltage is too low. */
mv = (data[info.num_pairs - 1].mv * info.scaling_factor) - 1;
t = thermistor_linear_interpolate(mv, &info);
TEST_ASSERT(t == data[info.num_pairs - 1].temp);
/* Simple line test */
for (mv = line_data[0].mv;
mv > line_data[line_info.num_pairs - 1].mv;
mv--) {
t = thermistor_linear_interpolate(mv, &line_info);
TEST_ASSERT(mv == line_data[line_info.num_pairs - 1].temp - t);
}
/*
* Verify that calculated temperature monotonically
* decreases with increase in voltage (0-5V, 10mV steps).
*/
for (mv = data[0].mv * info.scaling_factor, t0 = data[0].temp;
mv > data[info.num_pairs - 1].mv;
mv -= 10) {
int t1 = thermistor_linear_interpolate(mv, &info);
TEST_ASSERT(t1 >= t0);
t0 = t1;
}
/* Verify against modelled data, +/- 1C due to scaling. */
for (i = 0; i < info.num_pairs; i++) {
mv = data[i].mv * info.scaling_factor;
t = thermistor_linear_interpolate(mv, &info);
TEST_ASSERT(t >= data[i].temp - 1 && t <= data[i].temp + 1);
}
/*
* Verify data points that are interpolated by algorithm, allowing
* 1C of inaccuracy.
*/
for (i = 0; i < ARRAY_SIZE(cmp); i++) {
t = thermistor_linear_interpolate(cmp[i].mv, &info);
TEST_ASSERT(t >= cmp[i].temp - 1 && t <= cmp[i].temp + 1);
}
return EC_SUCCESS;
}
void run_test(void)
{
RUN_TEST(test_init_val);
RUN_TEST(test_sensors_can_be_read);
RUN_TEST(test_one_fan);
RUN_TEST(test_two_fans);
RUN_TEST(test_all_fans);
RUN_TEST(test_one_limit);
RUN_TEST(test_several_limits);
RUN_TEST(test_ncp15wb_adc_to_temp);
RUN_TEST(test_thermistor_linear_interpolate);
test_print_result();
}