blob: 61ef4882fc383630268740fae00493bfaf8f502e [file] [log] [blame]
/* Copyright 2012 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* System module for Chrome EC : common functions */
#include "battery.h"
#include "charge_manager.h"
#include "chipset.h"
#include "clock.h"
#include "common.h"
#include "console.h"
#include "cpu.h"
#include "cros_board_info.h"
#include "dma.h"
#include "flash.h"
#include "gpio.h"
#include "hooks.h"
#include "host_command.h"
#include "i2c.h"
#include "keyboard_scan.h"
#include "lpc.h"
#include "otp.h"
#include "rwsig.h"
#include "spi_flash.h"
#ifdef CONFIG_MPU
#include "mpu.h"
#endif
#include "panic.h"
#include "sysjump.h"
#include "system.h"
#include "task.h"
#include "timer.h"
#include "uart.h"
#include "usb_pd.h"
#include "usb_pd_tcpm.h"
#include "util.h"
#include "version.h"
#include "watchdog.h"
/* Console output macros */
#define CPUTS(outstr) cputs(CC_SYSTEM, outstr)
#define CPRINTF(format, args...) cprintf(CC_SYSTEM, format, ## args)
#define CPRINTS(format, args...) cprints(CC_SYSTEM, format, ## args)
/* Round up to a multiple of 4 */
#define ROUNDUP4(x) (((x) + 3) & ~3)
/* Data for an individual jump tag */
struct jump_tag {
uint16_t tag; /* Tag ID */
uint8_t data_size; /* Size of data which follows */
uint8_t data_version; /* Data version */
/* Followed by data_size bytes of data */
};
/* Jump data (at end of RAM, or preceding panic data) */
static struct jump_data *jdata;
static uint32_t reset_flags;
static int jumped_to_image;
static int disable_jump; /* Disable ALL jumps if system is locked */
static int force_locked; /* Force system locked even if WP isn't enabled */
static enum ec_reboot_cmd reboot_at_shutdown;
STATIC_IF(CONFIG_HIBERNATE) uint32_t hibernate_seconds;
STATIC_IF(CONFIG_HIBERNATE) uint32_t hibernate_microseconds;
/* On-going actions preventing going into deep-sleep mode */
uint32_t sleep_mask;
#ifdef CONFIG_LOW_POWER_IDLE_LIMITED
/* Set it to prevent going into idle mode */
uint32_t idle_disabled;
#endif
#ifdef CONFIG_HOSTCMD_AP_SET_SKUID
static uint32_t ap_sku_id;
uint32_t system_get_sku_id(void)
{
return ap_sku_id;
}
#define AP_SKUID_SYSJUMP_TAG 0x4153 /* AS */
#define AP_SKUID_HOOK_VERSION 1
/**
* Preserve AP SKUID across a sysjump.
*/
static void ap_sku_id_preserve_state(void)
{
system_add_jump_tag(AP_SKUID_SYSJUMP_TAG, AP_SKUID_HOOK_VERSION,
sizeof(ap_sku_id), &ap_sku_id);
}
DECLARE_HOOK(HOOK_SYSJUMP, ap_sku_id_preserve_state, HOOK_PRIO_DEFAULT);
/**
* Restore AP SKUID after a sysjump.
*/
static void ap_sku_id_restore_state(void)
{
const uint32_t *prev_ap_sku_id;
int size, version;
prev_ap_sku_id = (const uint32_t *)system_get_jump_tag(
AP_SKUID_SYSJUMP_TAG, &version, &size);
if (prev_ap_sku_id && version == AP_SKUID_HOOK_VERSION &&
size == sizeof(prev_ap_sku_id)) {
memcpy(&ap_sku_id, prev_ap_sku_id, sizeof(ap_sku_id));
}
}
DECLARE_HOOK(HOOK_INIT, ap_sku_id_restore_state, HOOK_PRIO_DEFAULT);
#endif
/**
* Return the program memory address where the image `copy` begins or should
* begin. In the case of external storage, the image may or may not currently
* reside at the location returned.
*/
uintptr_t get_program_memory_addr(enum system_image_copy_t copy)
{
switch (copy) {
case SYSTEM_IMAGE_RO:
return CONFIG_PROGRAM_MEMORY_BASE + CONFIG_RO_MEM_OFF;
case SYSTEM_IMAGE_RW:
return CONFIG_PROGRAM_MEMORY_BASE + CONFIG_RW_MEM_OFF;
#ifdef CHIP_HAS_RO_B
case SYSTEM_IMAGE_RO_B:
return CONFIG_PROGRAM_MEMORY_BASE + CHIP_RO_B_MEM_OFF;
#endif
#ifdef CONFIG_RW_B
case SYSTEM_IMAGE_RW_B:
return CONFIG_PROGRAM_MEMORY_BASE + CONFIG_RW_B_MEM_OFF;
#endif
default:
return INVALID_ADDR;
}
}
/**
* Return the size of the image copy, or 0 if error.
*/
static uint32_t __attribute__((unused)) get_size(enum system_image_copy_t copy)
{
/* Ensure we return aligned sizes. */
BUILD_ASSERT(CONFIG_RO_SIZE % SPI_FLASH_MAX_WRITE_SIZE == 0);
BUILD_ASSERT(CONFIG_RW_SIZE % SPI_FLASH_MAX_WRITE_SIZE == 0);
switch (copy) {
case SYSTEM_IMAGE_RO:
case SYSTEM_IMAGE_RO_B:
return CONFIG_RO_SIZE;
case SYSTEM_IMAGE_RW:
case SYSTEM_IMAGE_RW_B:
return CONFIG_RW_SIZE;
default:
return 0;
}
}
int system_is_locked(void)
{
if (force_locked)
return 1;
#ifdef CONFIG_SYSTEM_UNLOCKED
/* System is explicitly unlocked */
return 0;
#elif defined(CONFIG_FLASH)
/*
* Unlocked if write protect pin deasserted or read-only firmware
* is not protected.
*/
if ((EC_FLASH_PROTECT_GPIO_ASSERTED | EC_FLASH_PROTECT_RO_NOW) &
~flash_get_protect())
return 0;
/* If WP pin is asserted and lock is applied, we're locked */
return 1;
#else
/* Other configs are locked by default */
return 1;
#endif
}
test_mockable uintptr_t system_usable_ram_end(void)
{
/* Leave space at the end of RAM for jump data and tags.
*
* Note that jump_tag_total is 0 on a reboot, so we have the maximum
* amount of RAM available on a reboot; we only lose space for stored
* tags after a sysjump. When verified boot runs after a reboot, it'll
* have as much RAM as we can give it; after verified boot jumps to
* another image there'll be less RAM, but we'll care less too. */
return (uintptr_t)jdata - jdata->jump_tag_total;
}
void system_encode_save_flags(int reset_flags, uint32_t *save_flags)
{
*save_flags = 0;
/* Save current reset reasons if necessary */
if (reset_flags & SYSTEM_RESET_PRESERVE_FLAGS)
*save_flags = system_get_reset_flags() |
EC_RESET_FLAG_PRESERVED;
/* Add in AP off flag into saved flags. */
if (reset_flags & SYSTEM_RESET_LEAVE_AP_OFF)
*save_flags |= EC_RESET_FLAG_AP_OFF;
/* Save reset flag */
if (reset_flags & (SYSTEM_RESET_HARD | SYSTEM_RESET_WAIT_EXT))
*save_flags |= EC_RESET_FLAG_HARD;
else
*save_flags |= EC_RESET_FLAG_SOFT;
}
uint32_t system_get_reset_flags(void)
{
return reset_flags;
}
void system_set_reset_flags(uint32_t flags)
{
reset_flags |= flags;
}
void system_clear_reset_flags(uint32_t flags)
{
reset_flags &= ~flags;
}
void system_print_reset_flags(void)
{
int count = 0;
int i;
static const char * const reset_flag_descs[] = {
#include "reset_flag_desc.inc"
};
if (!reset_flags) {
CPUTS("unknown");
return;
}
for (i = 0; i < ARRAY_SIZE(reset_flag_descs); i++) {
if (reset_flags & BIT(i)) {
if (count++)
CPUTS(" ");
CPUTS(reset_flag_descs[i]);
}
}
if (reset_flags >= BIT(i)) {
if (count)
CPUTS(" ");
CPUTS("no-desc");
}
}
int system_jumped_to_this_image(void)
{
return jumped_to_image;
}
int system_add_jump_tag(uint16_t tag, int version, int size, const void *data)
{
struct jump_tag *t;
/* Only allowed during a sysjump */
if (!jdata || jdata->magic != JUMP_DATA_MAGIC)
return EC_ERROR_UNKNOWN;
/* Make room for the new tag */
if (size > 255)
return EC_ERROR_INVAL;
jdata->jump_tag_total += ROUNDUP4(size) + sizeof(struct jump_tag);
t = (struct jump_tag *)system_usable_ram_end();
t->tag = tag;
t->data_size = size;
t->data_version = version;
if (size)
memcpy(t + 1, data, size);
return EC_SUCCESS;
}
const uint8_t *system_get_jump_tag(uint16_t tag, int *version, int *size)
{
const struct jump_tag *t;
int used = 0;
if (!jdata)
return NULL;
/* Search through tag data for a match */
while (used < jdata->jump_tag_total) {
/* Check the next tag */
t = (const struct jump_tag *)(system_usable_ram_end() + used);
used += sizeof(struct jump_tag) + ROUNDUP4(t->data_size);
if (t->tag != tag)
continue;
/* Found a match */
if (size)
*size = t->data_size;
if (version)
*version = t->data_version;
return (const uint8_t *)(t + 1);
}
/* If we're still here, no match */
return NULL;
}
void system_disable_jump(void)
{
disable_jump = 1;
#ifdef CONFIG_MPU
if (system_is_locked()) {
int ret;
enum system_image_copy_t __attribute__((unused)) copy;
CPRINTS("MPU type: %08x", mpu_get_type());
/*
* Protect data RAM from code execution
*/
ret = mpu_protect_data_ram();
if (ret == EC_SUCCESS) {
CPRINTS("data RAM locked. Exclusion %pP-%pP",
&__iram_text_start,
&__iram_text_end);
} else {
CPRINTS("Failed to lock data RAM (%d)", ret);
return;
}
#if defined(CONFIG_EXTERNAL_STORAGE) || !defined(CONFIG_FLASH_PHYSICAL)
/*
* Protect code RAM from being overwritten
*/
ret = mpu_protect_code_ram();
if (ret == EC_SUCCESS) {
CPRINTS("code RAM locked.");
} else {
CPRINTS("Failed to lock code RAM (%d)", ret);
return;
}
#else
/*
* Protect inactive image (ie. RO if running RW, vice versa)
* from code execution.
*/
switch (system_get_image_copy()) {
case SYSTEM_IMAGE_RO:
ret = mpu_lock_rw_flash();
copy = SYSTEM_IMAGE_RW;
break;
case SYSTEM_IMAGE_RW:
ret = mpu_lock_ro_flash();
copy = SYSTEM_IMAGE_RO;
break;
default:
copy = SYSTEM_IMAGE_UNKNOWN;
ret = !EC_SUCCESS;
}
if (ret == EC_SUCCESS) {
CPRINTS("%s image locked",
system_image_copy_t_to_string(copy));
} else {
CPRINTS("Failed to lock %s image (%d)",
system_image_copy_t_to_string(copy), ret);
return;
}
#endif /* !CONFIG_EXTERNAL_STORAGE */
/* All regions were configured successfully, enable MPU */
mpu_enable();
} else {
CPRINTS("System is unlocked. Skip MPU configuration");
}
#endif /* CONFIG_MPU */
}
test_mockable enum system_image_copy_t system_get_image_copy(void)
{
#ifdef CONFIG_EXTERNAL_STORAGE
/* Return which region is used in program memory */
return system_get_shrspi_image_copy();
#else
uintptr_t my_addr = (uintptr_t)system_get_image_copy -
CONFIG_PROGRAM_MEMORY_BASE;
if (my_addr >= CONFIG_RO_MEM_OFF &&
my_addr < (CONFIG_RO_MEM_OFF + CONFIG_RO_SIZE))
return SYSTEM_IMAGE_RO;
if (my_addr >= CONFIG_RW_MEM_OFF &&
my_addr < (CONFIG_RW_MEM_OFF + CONFIG_RW_SIZE))
return SYSTEM_IMAGE_RW;
#ifdef CHIP_HAS_RO_B
if (my_addr >= CHIP_RO_B_MEM_OFF &&
my_addr < (CHIP_RO_B_MEM_OFF + CONFIG_RO_SIZE))
return SYSTEM_IMAGE_RO_B;
#endif
#ifdef CONFIG_RW_B
if (my_addr >= CONFIG_RW_B_MEM_OFF &&
my_addr < (CONFIG_RW_B_MEM_OFF + CONFIG_RW_SIZE))
return SYSTEM_IMAGE_RW_B;
#endif
return SYSTEM_IMAGE_UNKNOWN;
#endif
}
test_mockable int system_unsafe_to_overwrite(uint32_t offset, uint32_t size)
{
uint32_t r_offset;
uint32_t r_size;
enum system_image_copy_t copy = system_get_image_copy();
switch (copy) {
case SYSTEM_IMAGE_RO:
r_size = CONFIG_RO_SIZE;
break;
case SYSTEM_IMAGE_RW:
case SYSTEM_IMAGE_RW_B:
r_size = CONFIG_RW_SIZE;
#ifdef CONFIG_RWSIG
/* Allow RW sig to be overwritten */
r_size -= CONFIG_RW_SIG_SIZE;
#endif
break;
default:
return 0;
}
r_offset = flash_get_rw_offset(copy);
if ((offset >= r_offset && offset < (r_offset + r_size)) ||
(r_offset >= offset && r_offset < (offset + size)))
return 1;
else
return 0;
}
const char *system_get_image_copy_string(void)
{
return system_image_copy_t_to_string(system_get_image_copy());
}
const char *system_image_copy_t_to_string(enum system_image_copy_t copy)
{
static const char * const image_names[] = {
"unknown", "RO", "RW", "RO_B", "RW_B"
};
return image_names[copy < ARRAY_SIZE(image_names) ? copy : 0];
}
/**
* Jump to what we hope is the init address of an image.
*
* This function does not return.
*
* @param init_addr Init address of target image
*/
static void jump_to_image(uintptr_t init_addr)
{
void (*resetvec)(void);
/*
* Jumping to any image asserts the signal to the Silego chip that that
* EC is not in read-only firmware. (This is not technically true if
* jumping from RO -> RO, but that's not a meaningful use case...).
*
* Pulse the signal long enough to set the latch in the Silego, then
* drop it again so we don't leak power through the pulldown in the
* Silego.
*/
gpio_set_level(GPIO_ENTERING_RW, 1);
usleep(MSEC);
gpio_set_level(GPIO_ENTERING_RW, 0);
#ifdef CONFIG_USB_PD_ALT_MODE_DFP
/* Note: must be before i2c module is locked down */
pd_prepare_sysjump();
#endif
#ifdef CONFIG_I2C_MASTER
/* Prepare I2C module for sysjump */
i2c_prepare_sysjump();
#endif
/* Flush UART output */
cflush();
/* Fill in preserved data between jumps */
jdata->reserved0 = 0;
jdata->magic = JUMP_DATA_MAGIC;
jdata->version = JUMP_DATA_VERSION;
jdata->reset_flags = reset_flags;
jdata->jump_tag_total = 0; /* Reset tags */
jdata->struct_size = sizeof(struct jump_data);
/* Call other hooks; these may add tags */
hook_notify(HOOK_SYSJUMP);
/* Disable interrupts before jump */
interrupt_disable();
#ifdef CONFIG_DMA
/* Disable all DMA channels to avoid memory corruption */
dma_disable_all();
#endif /* CONFIG_DMA */
/* Jump to the reset vector */
resetvec = (void(*)(void))init_addr;
resetvec();
}
static int is_rw_image(enum system_image_copy_t copy)
{
return copy == SYSTEM_IMAGE_RW || copy == SYSTEM_IMAGE_RW_B;
}
int system_is_in_rw(void)
{
return is_rw_image(system_get_image_copy());
}
test_mockable int system_run_image_copy(enum system_image_copy_t copy)
{
uintptr_t base;
uintptr_t init_addr;
/* If system is already running the requested image, done */
if (system_get_image_copy() == copy)
return EC_SUCCESS;
if (system_is_locked()) {
/* System is locked, so disallow jumping between images unless
* this is the initial jump from RO to RW code. */
/* Must currently be running the RO image */
if (system_get_image_copy() != SYSTEM_IMAGE_RO)
return EC_ERROR_ACCESS_DENIED;
/* Target image must be RW image */
if (!is_rw_image(copy))
return EC_ERROR_ACCESS_DENIED;
/* Jumping must still be enabled */
if (disable_jump)
return EC_ERROR_ACCESS_DENIED;
}
/* Load the appropriate reset vector */
base = get_program_memory_addr(copy);
if (base == 0xffffffff)
return EC_ERROR_INVAL;
if (IS_ENABLED(CONFIG_EXTERNAL_STORAGE)) {
/* Jump to loader */
init_addr = system_get_lfw_address();
system_set_image_copy(copy);
} else if (IS_ENABLED(CONFIG_FW_RESET_VECTOR)) {
/* Get reset vector */
init_addr = system_get_fw_reset_vector(base);
} else {
uintptr_t init = base + 4;
/* Skip any head room in the RO image */
if (copy == SYSTEM_IMAGE_RO)
init += CONFIG_RO_HEAD_ROOM;
init_addr = *(uintptr_t *)(init);
/* Make sure the reset vector is inside the destination image */
if (!IS_ENABLED(EMU_BUILD) &&
(init_addr < base || init_addr >= base + get_size(copy)))
return EC_ERROR_UNKNOWN;
}
CPRINTS("Jumping to image %s", system_image_copy_t_to_string(copy));
jump_to_image(init_addr);
/* Should never get here */
return EC_ERROR_UNKNOWN;
}
enum system_image_copy_t system_get_active_copy(void)
{
uint8_t slot;
if (system_get_bbram(SYSTEM_BBRAM_IDX_TRY_SLOT, &slot))
slot = SYSTEM_IMAGE_RW_A;
/* This makes it return RW_A by default. For example, this happens when
* BBRAM isn't initialized. */
return slot == SYSTEM_IMAGE_RW_B ? slot : SYSTEM_IMAGE_RW_A;
}
enum system_image_copy_t system_get_update_copy(void)
{
#ifdef CONFIG_VBOOT_EFS
return system_get_active_copy() == SYSTEM_IMAGE_RW_A ?
SYSTEM_IMAGE_RW_B : SYSTEM_IMAGE_RW_A;
#else
return SYSTEM_IMAGE_RW_A;
#endif
}
int system_set_active_copy(enum system_image_copy_t copy)
{
return system_set_bbram(SYSTEM_BBRAM_IDX_TRY_SLOT, copy);
}
/*
* This is defined in system.c instead of flash.c because it's called even
* on the boards which don't include flash.o. (e.g. hadoken, stm32l476g-eval)
*/
uint32_t flash_get_rw_offset(enum system_image_copy_t copy)
{
#ifdef CONFIG_VBOOT_EFS
if (copy == SYSTEM_IMAGE_RW_B)
return CONFIG_EC_WRITABLE_STORAGE_OFF + CONFIG_RW_B_STORAGE_OFF;
#endif
if (is_rw_image(copy))
return CONFIG_EC_WRITABLE_STORAGE_OFF + CONFIG_RW_STORAGE_OFF;
return CONFIG_EC_PROTECTED_STORAGE_OFF + CONFIG_RO_STORAGE_OFF;
}
const struct image_data *system_get_image_data(enum system_image_copy_t copy)
{
static struct image_data data;
uintptr_t addr;
enum system_image_copy_t active_copy = system_get_image_copy();
/* Handle version of current image */
if (copy == active_copy || copy == SYSTEM_IMAGE_UNKNOWN)
return &current_image_data;
if (active_copy == SYSTEM_IMAGE_UNKNOWN)
return NULL;
/*
* The version string is always located after the reset vectors, so
* it's the same offset as in the current image. Find that offset.
*/
addr = ((uintptr_t)&current_image_data -
get_program_memory_addr(active_copy));
/*
* Read the version information from the proper location
* on storage.
*/
addr += flash_get_rw_offset(copy);
#ifdef CONFIG_MAPPED_STORAGE
addr += CONFIG_MAPPED_STORAGE_BASE;
flash_lock_mapped_storage(1);
memcpy(&data, (const void *)addr, sizeof(data));
flash_lock_mapped_storage(0);
#else
/* Read the version struct from flash into a buffer. */
if (flash_read(addr, sizeof(data), (char *)&data))
return NULL;
#endif
/* Make sure the version struct cookies match before returning the
* version string. */
if (data.cookie1 == current_image_data.cookie1 &&
data.cookie2 == current_image_data.cookie2)
return &data;
return NULL;
}
__attribute__((weak)) /* Weird chips may need their own implementations */
const char *system_get_version(enum system_image_copy_t copy)
{
const struct image_data *data = system_get_image_data(copy);
return data ? data->version : "";
}
#ifdef CONFIG_ROLLBACK
int32_t system_get_rollback_version(enum system_image_copy_t copy)
{
const struct image_data *data = system_get_image_data(copy);
return data ? data->rollback_version : -1;
}
#endif
int system_get_image_used(enum system_image_copy_t copy)
{
const struct image_data *data = system_get_image_data(copy);
return data ? MAX((int)data->size, 0) : 0;
}
/*
* Returns positive board version if successfully retrieved. Otherwise the
* value is a negative version of an EC return code. Without this optimization
* multiple boards run out of flash size.
*/
int system_get_board_version(void)
{
#if defined(CONFIG_BOARD_VERSION_CUSTOM)
return board_get_version();
#elif defined(CONFIG_BOARD_VERSION_GPIO)
return
(!!gpio_get_level(GPIO_BOARD_VERSION1) << 0) |
(!!gpio_get_level(GPIO_BOARD_VERSION2) << 1) |
(!!gpio_get_level(GPIO_BOARD_VERSION3) << 2);
#elif defined(CONFIG_BOARD_VERSION_CBI)
int error;
int32_t version;
error = cbi_get_board_version(&version);
if (error)
return -error;
else
return version;
#else
return 0;
#endif
}
__attribute__((weak)) /* Weird chips may need their own implementations */
const char *system_get_build_info(void)
{
return build_info;
}
void system_common_pre_init(void)
{
uintptr_t addr;
#ifdef CONFIG_SOFTWARE_PANIC
/*
* Log panic cause if watchdog caused reset and panic cause
* was not already logged. This must happen before calculating
* jump_data address because it might change panic pointer.
*/
if (system_get_reset_flags() & EC_RESET_FLAG_WATCHDOG) {
uint32_t reason;
uint32_t info;
uint8_t exception;
panic_get_reason(&reason, &info, &exception);
if (reason != PANIC_SW_WATCHDOG)
panic_set_reason(PANIC_SW_WATCHDOG, 0, 0);
}
#endif
/*
* Put the jump data before the panic data, or at the end of RAM if
* panic data is not present.
*/
addr = (uintptr_t)panic_get_data();
if (!addr)
addr = CONFIG_RAM_BASE + CONFIG_RAM_SIZE;
jdata = (struct jump_data *)(addr - sizeof(struct jump_data));
/*
* Check jump data if this is a jump between images. Jumps all show up
* as an unknown reset reason, because we jumped directly from one
* image to another without actually triggering a chip reset.
*/
if (jdata->magic == JUMP_DATA_MAGIC &&
jdata->version >= 1 &&
reset_flags == 0) {
/* Change in jump data struct size between the previous image
* and this one. */
int delta;
/* Yes, we jumped to this image */
jumped_to_image = 1;
/* Restore the reset flags */
reset_flags = jdata->reset_flags | EC_RESET_FLAG_SYSJUMP;
/*
* If the jump data structure isn't the same size as the
* current one, shift the jump tags to immediately before the
* current jump data structure, to make room for initalizing
* the new fields below.
*/
if (jdata->version == 1)
delta = 0; /* No tags in v1, so no need for move */
else if (jdata->version == 2)
delta = sizeof(struct jump_data) - JUMP_DATA_SIZE_V2;
else
delta = sizeof(struct jump_data) - jdata->struct_size;
if (delta && jdata->jump_tag_total) {
uint8_t *d = (uint8_t *)system_usable_ram_end();
memmove(d, d + delta, jdata->jump_tag_total);
}
/* Initialize fields added after version 1 */
if (jdata->version < 2)
jdata->jump_tag_total = 0;
/* Initialize fields added after version 2 */
if (jdata->version < 3)
jdata->reserved0 = 0;
/* Struct size is now the current struct size */
jdata->struct_size = sizeof(struct jump_data);
/*
* Clear the jump struct's magic number. This prevents
* accidentally detecting a jump when there wasn't one, and
* disallows use of system_add_jump_tag().
*/
jdata->magic = 0;
} else {
/* Clear the whole jump_data struct */
memset(jdata, 0, sizeof(struct jump_data));
}
}
/**
* Handle a pending reboot command.
*/
static int handle_pending_reboot(enum ec_reboot_cmd cmd)
{
switch (cmd) {
case EC_REBOOT_CANCEL:
return EC_SUCCESS;
case EC_REBOOT_JUMP_RO:
return system_run_image_copy(SYSTEM_IMAGE_RO);
case EC_REBOOT_JUMP_RW:
return system_run_image_copy(system_get_active_copy());
case EC_REBOOT_COLD:
#ifdef HAS_TASK_PDCMD
/*
* Reboot the PD chip(s) as well, but first suspend the ports
* if this board has PD tasks running so they don't query the
* TCPCs while they reset.
*/
#ifdef HAS_TASK_PD_C0
{
int port;
for (port = 0; port < board_get_usb_pd_port_count();
port++)
pd_set_suspend(port, 1);
}
#endif
board_reset_pd_mcu();
#endif
cflush();
system_reset(SYSTEM_RESET_HARD);
/* That shouldn't return... */
return EC_ERROR_UNKNOWN;
case EC_REBOOT_DISABLE_JUMP:
system_disable_jump();
return EC_SUCCESS;
case EC_REBOOT_HIBERNATE_CLEAR_AP_OFF:
if (!IS_ENABLED(CONFIG_HIBERNATE))
return EC_ERROR_INVAL;
if (IS_ENABLED(CONFIG_POWER_BUTTON_INIT_IDLE)) {
CPRINTS("Clearing AP_OFF");
chip_save_reset_flags(chip_read_reset_flags() &
~EC_RESET_FLAG_AP_OFF);
}
/* Intentional fall-through */
case EC_REBOOT_HIBERNATE:
if (!IS_ENABLED(CONFIG_HIBERNATE))
return EC_ERROR_INVAL;
CPRINTS("system hibernating");
system_hibernate(hibernate_seconds, hibernate_microseconds);
/* That shouldn't return... */
return EC_ERROR_UNKNOWN;
default:
return EC_ERROR_INVAL;
}
}
/*****************************************************************************/
/* Hooks */
static void system_common_shutdown(void)
{
if (reboot_at_shutdown)
CPRINTF("Reboot at shutdown: %d\n", reboot_at_shutdown);
handle_pending_reboot(reboot_at_shutdown);
}
DECLARE_HOOK(HOOK_CHIPSET_SHUTDOWN, system_common_shutdown, HOOK_PRIO_DEFAULT);
/*****************************************************************************/
/* Console commands */
#ifdef CONFIG_CMD_SYSINFO
static int command_sysinfo(int argc, char **argv)
{
ccprintf("Reset flags: 0x%08x (", system_get_reset_flags());
system_print_reset_flags();
ccprintf(")\n");
ccprintf("Copy: %s\n", system_get_image_copy_string());
ccprintf("Jumped: %s\n", system_jumped_to_this_image() ? "yes" : "no");
ccputs("Flags: ");
if (system_is_locked()) {
ccputs(" locked");
if (force_locked)
ccputs(" (forced)");
if (disable_jump)
ccputs(" jump-disabled");
} else
ccputs(" unlocked");
ccputs("\n");
if (reboot_at_shutdown)
ccprintf("Reboot at shutdown: %d\n", reboot_at_shutdown);
return EC_SUCCESS;
}
DECLARE_SAFE_CONSOLE_COMMAND(sysinfo, command_sysinfo,
NULL,
"Print system info");
#endif
#ifdef CONFIG_CMD_SCRATCHPAD
static int command_scratchpad(int argc, char **argv)
{
int rv = EC_SUCCESS;
if (argc == 2) {
char *e;
int s = strtoi(argv[1], &e, 0);
if (*e)
return EC_ERROR_PARAM1;
rv = system_set_scratchpad(s);
}
ccprintf("Scratchpad: 0x%08x\n", system_get_scratchpad());
return rv;
}
DECLARE_CONSOLE_COMMAND(scratchpad, command_scratchpad,
"[val]",
"Get or set scratchpad value");
#endif /* CONFIG_CMD_SCRATCHPAD */
__maybe_unused static int command_hibernate(int argc, char **argv)
{
int seconds = 0;
int microseconds = 0;
if (argc >= 2)
seconds = strtoi(argv[1], NULL, 0);
if (argc >= 3)
microseconds = strtoi(argv[2], NULL, 0);
if (seconds || microseconds)
ccprintf("Hibernating for %d.%06d s\n", seconds, microseconds);
else
ccprintf("Hibernating until wake pin asserted.\n");
/*
* If chipset is already off, then call system_hibernate directly. Else,
* let chipset_task bring down the power rails and transition to proper
* state before system_hibernate is called.
*/
if (chipset_in_state(CHIPSET_STATE_ANY_OFF))
system_hibernate(seconds, microseconds);
else {
reboot_at_shutdown = EC_REBOOT_HIBERNATE;
hibernate_seconds = seconds;
hibernate_microseconds = microseconds;
chipset_force_shutdown(CHIPSET_SHUTDOWN_CONSOLE_CMD);
}
return EC_SUCCESS;
}
#ifdef CONFIG_HIBERNATE
DECLARE_CONSOLE_COMMAND(hibernate, command_hibernate,
"[sec] [usec]",
"Hibernate the EC");
#endif /* CONFIG_HIBERNATE */
/*
* A typical build string has the following format
*
* <version> <build_date_time> <user@buildhost>
*
* some EC board, however, are composed of multiple components, their build
* strings can include several subcomponent versions between the main version
* and the build date, for instance
*
* cr50_v1.1.4979-0061603+ private-cr51:v0.0.66-bd9a0fe tpm2:v0.0.259-2b...
*
* Each subcomponent in this case includes the ":v" substring. For these
* combined version strings this function prints each version or subcomponent
* version on a different line.
*/
static void print_build_string(void)
{
const char *full_build_string;
const char *p;
char symbol;
int seen_colonv;
ccprintf("Build: ");
full_build_string = system_get_build_info();
/* 50 characters or less, will fit into the terminal line. */
if (strlen(full_build_string) < 50) {
ccprintf("%s\n", full_build_string);
return;
}
/*
* Build version string needs splitting, let's split it at the first
* space (this is where the main version ends), and then on each space
* after the ":v" substring, this is where subcomponent versions are
* separated.
*/
p = full_build_string;
seen_colonv = 1;
symbol = *p++;
while (symbol) {
if ((symbol == ' ') && seen_colonv) {
seen_colonv = 0;
/* Indent each line under 'Build: ' */
ccprintf("\n ");
} else {
if ((symbol == ':') && (*p == 'v'))
seen_colonv = 1;
ccprintf("%c", symbol);
}
symbol = *p++;
}
ccprintf("\n");
}
static int command_version(int argc, char **argv)
{
int board_version;
ccprintf("Chip: %s %s %s\n", system_get_chip_vendor(),
system_get_chip_name(), system_get_chip_revision());
board_version = system_get_board_version();
if (board_version < 0)
ccprintf("Board: Error %d\n", -board_version);
else
ccprintf("Board: %d\n", board_version);
#ifdef CHIP_HAS_RO_B
{
enum system_image_copy_t active;
active = system_get_ro_image_copy();
ccprintf("RO_A: %c %s\n",
(active == SYSTEM_IMAGE_RO ? '*' : ' '),
system_get_version(SYSTEM_IMAGE_RO));
ccprintf("RO_B: %c %s\n",
(active == SYSTEM_IMAGE_RO_B ? '*' : ' '),
system_get_version(SYSTEM_IMAGE_RO_B));
}
#else
ccprintf("RO: %s\n", system_get_version(SYSTEM_IMAGE_RO));
#endif
#ifdef CONFIG_RW_B
{
enum system_image_copy_t active;
active = system_get_image_copy();
ccprintf("RW_A: %c %s\n",
(active == SYSTEM_IMAGE_RW ? '*' : ' '),
system_get_version(SYSTEM_IMAGE_RW));
ccprintf("RW_B: %c %s\n",
(active == SYSTEM_IMAGE_RW_B ? '*' : ' '),
system_get_version(SYSTEM_IMAGE_RW_B));
}
#else
ccprintf("RW: %s\n", system_get_version(SYSTEM_IMAGE_RW));
#endif
system_print_extended_version_info();
print_build_string();
return EC_SUCCESS;
}
DECLARE_SAFE_CONSOLE_COMMAND(version, command_version,
NULL,
"Print versions");
#ifdef CONFIG_CMD_SYSJUMP
static int command_sysjump(int argc, char **argv)
{
uint32_t addr;
char *e;
if (argc < 2)
return EC_ERROR_PARAM_COUNT;
/* Handle named images */
if (!strcasecmp(argv[1], "RO"))
return system_run_image_copy(SYSTEM_IMAGE_RO);
else if (!strcasecmp(argv[1], "RW") || !strcasecmp(argv[1], "A"))
return system_run_image_copy(SYSTEM_IMAGE_RW);
else if (!strcasecmp(argv[1], "B")) {
#ifdef CONFIG_RW_B
return system_run_image_copy(SYSTEM_IMAGE_RW_B);
#else
return EC_ERROR_PARAM1;
#endif
} else if (!strcasecmp(argv[1], "disable")) {
system_disable_jump();
return EC_SUCCESS;
}
/* Arbitrary jumps are only allowed on an unlocked system */
if (system_is_locked())
return EC_ERROR_ACCESS_DENIED;
/* Check for arbitrary address */
addr = strtoi(argv[1], &e, 0);
if (*e)
return EC_ERROR_PARAM1;
ccprintf("Jumping to 0x%08x\n", addr);
cflush();
jump_to_image(addr);
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(sysjump, command_sysjump,
"[RO | RW | A | B | addr | disable]",
"Jump to a system image or address");
#endif
static int command_reboot(int argc, char **argv)
{
int flags = SYSTEM_RESET_MANUALLY_TRIGGERED;
int i;
for (i = 1; i < argc; i++) {
if (!strcasecmp(argv[i], "hard") ||
!strcasecmp(argv[i], "cold")) {
flags |= SYSTEM_RESET_HARD;
} else if (!strcasecmp(argv[i], "soft")) {
flags &= ~SYSTEM_RESET_HARD;
} else if (!strcasecmp(argv[i], "ap-off")) {
flags |= SYSTEM_RESET_LEAVE_AP_OFF;
} else if (!strcasecmp(argv[i], "cancel")) {
reboot_at_shutdown = EC_REBOOT_CANCEL;
return EC_SUCCESS;
} else if (!strcasecmp(argv[i], "preserve")) {
flags |= SYSTEM_RESET_PRESERVE_FLAGS;
} else if (!strcasecmp(argv[i], "wait-ext")) {
flags |= SYSTEM_RESET_WAIT_EXT;
} else
return EC_ERROR_PARAM1 + i - 1;
}
if (flags & SYSTEM_RESET_HARD)
ccputs("Hard-");
if (flags & SYSTEM_RESET_WAIT_EXT)
ccputs("Waiting for ext reset!\n\n\n");
else
ccputs("Rebooting!\n\n\n");
cflush();
system_reset(flags);
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(reboot, command_reboot,
"[hard|soft] [preserve] [ap-off] [wait-ext] [cancel]",
"Reboot the EC");
#ifdef CONFIG_CMD_SYSLOCK
static int command_system_lock(int argc, char **argv)
{
force_locked = 1;
return EC_SUCCESS;
}
DECLARE_SAFE_CONSOLE_COMMAND(syslock, command_system_lock,
NULL,
"Lock the system, even if WP is disabled");
#endif
#if defined(CONFIG_LOW_POWER_IDLE) && defined(CONFIG_CMD_SLEEPMASK)
/**
* Modify and print the sleep mask which controls access to deep sleep
* mode in the idle task.
*/
static int command_sleepmask(int argc, char **argv)
{
#ifdef CONFIG_CMD_SLEEPMASK_SET
int v;
if (argc >= 2) {
if (parse_bool(argv[1], &v)) {
if (v)
disable_sleep(SLEEP_MASK_FORCE_NO_DSLEEP);
else
enable_sleep(SLEEP_MASK_FORCE_NO_DSLEEP);
} else {
char *e;
v = strtoi(argv[1], &e, 10);
if (*e)
return EC_ERROR_PARAM1;
/* Set sleep mask directly. */
sleep_mask = v;
}
}
#endif
ccprintf("sleep mask: %08x\n", sleep_mask);
return EC_SUCCESS;
}
DECLARE_SAFE_CONSOLE_COMMAND(sleepmask, command_sleepmask,
"[ on | off | <sleep_mask>]",
"Display/force sleep mask");
#endif
#ifdef CONFIG_CMD_JUMPTAGS
static int command_jumptags(int argc, char **argv)
{
const struct jump_tag *t;
int used = 0;
/* Jump tags valid only after a sysjump */
if (!jdata)
return EC_SUCCESS;
while (used < jdata->jump_tag_total) {
/* Check the next tag */
t = (const struct jump_tag *)(system_usable_ram_end() + used);
used += sizeof(struct jump_tag) + ROUNDUP4(t->data_size);
ccprintf("%08x: 0x%04x %c%c.%d %3d\n",
(uintptr_t)t,
t->tag, t->tag >> 8, (uint8_t)t->tag,
t->data_version, t->data_size);
}
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(jumptags, command_jumptags,
NULL,
"List jump tags");
#endif /* CONFIG_CMD_JUMPTAGS */
#ifdef CONFIG_EMULATED_SYSRQ
static int command_sysrq(int argc, char **argv)
{
char key = 'x';
if (argc > 1 && argv[1])
key = argv[1][0];
host_send_sysrq(key);
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(sysrq, command_sysrq,
"[key]",
"Simulate sysrq press (default: x)");
#endif /* CONFIG_EMULATED_SYSRQ */
/*****************************************************************************/
/* Host commands */
static enum ec_status
host_command_get_version(struct host_cmd_handler_args *args)
{
struct ec_response_get_version *r = args->response;
enum system_image_copy_t active_slot = system_get_active_copy();
strzcpy(r->version_string_ro, system_get_version(SYSTEM_IMAGE_RO),
sizeof(r->version_string_ro));
strzcpy(r->version_string_rw,
system_get_version(active_slot),
sizeof(r->version_string_rw));
switch (system_get_image_copy()) {
case SYSTEM_IMAGE_RO:
r->current_image = EC_IMAGE_RO;
break;
case SYSTEM_IMAGE_RW:
case SYSTEM_IMAGE_RW_B:
r->current_image = EC_IMAGE_RW;
break;
default:
r->current_image = EC_IMAGE_UNKNOWN;
break;
}
args->response_size = sizeof(*r);
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_GET_VERSION,
host_command_get_version,
EC_VER_MASK(0));
#ifdef CONFIG_HOSTCMD_SKUID
static enum ec_status
host_command_get_sku_id(struct host_cmd_handler_args *args)
{
struct ec_sku_id_info *r = args->response;
r->sku_id = system_get_sku_id();
args->response_size = sizeof(*r);
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_GET_SKU_ID,
host_command_get_sku_id,
EC_VER_MASK(0));
#endif
#ifdef CONFIG_HOSTCMD_AP_SET_SKUID
static enum ec_status
host_command_set_sku_id(struct host_cmd_handler_args *args)
{
const struct ec_sku_id_info *p = args->params;
ap_sku_id = p->sku_id;
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_SET_SKU_ID,
host_command_set_sku_id,
EC_VER_MASK(0));
#endif
#ifdef CONFIG_KEYBOARD_LANGUAGE_ID
static enum ec_status
host_command_get_keyboard_id(struct host_cmd_handler_args *args)
{
struct ec_response_keyboard_id *r = args->response;
r->keyboard_id = keyboard_get_keyboard_id();
args->response_size = sizeof(*r);
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_GET_KEYBOARD_ID,
host_command_get_keyboard_id,
EC_VER_MASK(0));
#endif
static enum ec_status
host_command_build_info(struct host_cmd_handler_args *args)
{
strzcpy(args->response, system_get_build_info(), args->response_max);
args->response_size = strlen(args->response) + 1;
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_GET_BUILD_INFO,
host_command_build_info,
EC_VER_MASK(0));
static enum ec_status
host_command_get_chip_info(struct host_cmd_handler_args *args)
{
struct ec_response_get_chip_info *r = args->response;
strzcpy(r->vendor, system_get_chip_vendor(), sizeof(r->vendor));
strzcpy(r->name, system_get_chip_name(), sizeof(r->name));
strzcpy(r->revision, system_get_chip_revision(), sizeof(r->revision));
args->response_size = sizeof(*r);
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_GET_CHIP_INFO,
host_command_get_chip_info,
EC_VER_MASK(0));
#ifdef CONFIG_BOARD_VERSION
enum ec_status
host_command_get_board_version(struct host_cmd_handler_args *args)
{
struct ec_response_board_version *r = args->response;
int board_version;
board_version = system_get_board_version();
if (board_version < 0) {
CPRINTS("Failed (%d) getting board version", -board_version);
return EC_RES_ERROR;
}
r->board_version = board_version;
args->response_size = sizeof(*r);
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_GET_BOARD_VERSION,
host_command_get_board_version,
EC_VER_MASK(0));
#endif
#ifdef CONFIG_HOSTCMD_VBNV_CONTEXT
enum ec_status host_command_vbnvcontext(struct host_cmd_handler_args *args)
{
const struct ec_params_vbnvcontext *p = args->params;
struct ec_response_vbnvcontext *r;
int i;
switch (p->op) {
case EC_VBNV_CONTEXT_OP_READ:
r = args->response;
for (i = 0; i < EC_VBNV_BLOCK_SIZE; ++i)
if (system_get_bbram(SYSTEM_BBRAM_IDX_VBNVBLOCK0 + i,
r->block + i))
return EC_RES_ERROR;
args->response_size = sizeof(*r);
break;
case EC_VBNV_CONTEXT_OP_WRITE:
for (i = 0; i < EC_VBNV_BLOCK_SIZE; ++i)
if (system_set_bbram(SYSTEM_BBRAM_IDX_VBNVBLOCK0 + i,
p->block[i]))
return EC_RES_ERROR;
break;
default:
return EC_RES_ERROR;
}
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_VBNV_CONTEXT,
host_command_vbnvcontext,
EC_VER_MASK(EC_VER_VBNV_CONTEXT));
#endif /* CONFIG_HOSTCMD_VBNV_CONTEXT */
enum ec_status host_command_reboot(struct host_cmd_handler_args *args)
{
struct ec_params_reboot_ec p;
/*
* Ensure reboot parameters don't get clobbered when the response
* is sent in case data argument points to the host tx/rx buffer.
*/
memcpy(&p, args->params, sizeof(p));
if (p.cmd == EC_REBOOT_CANCEL) {
/* Cancel pending reboot */
reboot_at_shutdown = EC_REBOOT_CANCEL;
return EC_RES_SUCCESS;
}
if (p.flags & EC_REBOOT_FLAG_SWITCH_RW_SLOT) {
#ifdef CONFIG_VBOOT_EFS
if (system_set_active_copy(system_get_update_copy()))
CPRINTS("Failed to set active slot");
#else
return EC_RES_INVALID_PARAM;
#endif
}
if (p.flags & EC_REBOOT_FLAG_ON_AP_SHUTDOWN) {
/* Store request for processing at chipset shutdown */
reboot_at_shutdown = p.cmd;
return EC_RES_SUCCESS;
}
#ifdef HAS_TASK_HOSTCMD
if (p.cmd == EC_REBOOT_JUMP_RO ||
p.cmd == EC_REBOOT_JUMP_RW ||
p.cmd == EC_REBOOT_COLD ||
p.cmd == EC_REBOOT_HIBERNATE) {
/* Clean busy bits on host for commands that won't return */
args->result = EC_RES_SUCCESS;
host_send_response(args);
}
#endif
CPRINTS("Executing host reboot command %d", p.cmd);
switch (handle_pending_reboot(p.cmd)) {
case EC_SUCCESS:
return EC_RES_SUCCESS;
case EC_ERROR_INVAL:
return EC_RES_INVALID_PARAM;
case EC_ERROR_ACCESS_DENIED:
return EC_RES_ACCESS_DENIED;
default:
return EC_RES_ERROR;
}
}
DECLARE_HOST_COMMAND(EC_CMD_REBOOT_EC,
host_command_reboot,
EC_VER_MASK(0));
int system_can_boot_ap(void)
{
int soc = -1;
int pow = -1;
#if defined(CONFIG_BATTERY) && \
defined(CONFIG_CHARGER_MIN_BAT_PCT_FOR_POWER_ON)
/* Require a minimum battery level to power on. If battery isn't
* present, battery_state_of_charge_abs returns false. */
if (battery_state_of_charge_abs(&soc) == EC_SUCCESS &&
soc >= CONFIG_CHARGER_MIN_BAT_PCT_FOR_POWER_ON)
return 1;
#endif
#if defined(CONFIG_CHARGE_MANAGER) && \
defined(CONFIG_CHARGER_MIN_POWER_MW_FOR_POWER_ON)
pow = charge_manager_get_power_limit_uw() / 1000;
if (pow >= CONFIG_CHARGER_MIN_POWER_MW_FOR_POWER_ON)
return 1;
#else
/* For fixed AC system */
return 1;
#endif
CPRINTS("Not enough power to boot (%d %%, %d mW)", soc, pow);
return 0;
}
#ifdef CONFIG_SERIALNO_LEN
/* By default, read serial number from flash, can be overridden. */
__overridable const char *board_read_serial(void)
{
if (IS_ENABLED(CONFIG_FLASH_PSTATE) &&
IS_ENABLED(CONFIG_FLASH_PSTATE_BANK))
return flash_read_pstate_serial();
else if (IS_ENABLED(CONFIG_OTP))
return otp_read_serial();
else
return "";
}
__overridable int board_write_serial(const char *serialno)
{
if (IS_ENABLED(CONFIG_FLASH_PSTATE) &&
IS_ENABLED(CONFIG_FLASH_PSTATE_BANK))
return flash_write_pstate_serial(serialno);
else if (IS_ENABLED(CONFIG_OTP))
return otp_write_serial(serialno);
else
return EC_ERROR_UNIMPLEMENTED;
}
#endif /* CONFIG_SERIALNO_LEN */
__attribute__((weak))
void clock_enable_module(enum module_id module, int enable)
{
/*
* Default weak implementation - for chips that don't support this
* function.
*/
}
__test_only void system_common_reset_state(void)
{
jdata = 0;
reset_flags = 0;
jumped_to_image = 0;
}