blob: 357355bfa4d604683a8a6da7ec979a780934080f [file] [log] [blame]
/* Copyright (c) 2013 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* Power button state machine for x86 platforms */
#include "charge_state.h"
#include "chipset.h"
#include "common.h"
#include "console.h"
#include "gpio.h"
#include "hooks.h"
#include "host_command.h"
#include "keyboard_scan.h"
#include "lid_switch.h"
#include "power_button.h"
#include "switch.h"
#include "system.h"
#include "task.h"
#include "timer.h"
#include "util.h"
/* Console output macros */
#define CPUTS(outstr) cputs(CC_SWITCH, outstr)
#define CPRINTS(format, args...) cprints(CC_SWITCH, format, ## args)
/*
* x86 chipsets have a hardware timer on the power button input which causes
* them to reset when the button is pressed for more than 4 seconds. This is
* problematic for Chrome OS, which needs more time than that to transition
* through the lock and logout screens. So when the system is on, we need to
* stretch the power button signal so that the chipset will hard-reboot after 8
* seconds instead of 4.
*
* When the button is pressed, we initially send a short pulse (t0); this
* allows the chipset to process its initial power button interrupt and do
* things like wake from suspend. We then deassert the power button signal to
* the chipset for (t1 = 4 sec - t0), which keeps the chipset from starting its
* hard reset timer. If the power button is still pressed after this period,
* we again assert the power button signal for the remainder of the press
* duration. Since (t0+t1) causes a 4-second offset, the hard reset timeout in
* the chipset triggers after 8 seconds as desired.
*
* PWRBTN# --- ----
* to EC |______________________|
*
*
* PWRBTN# --- --------- ----
* to PCH |__| |___________|
* t0 t1 held down
*
* scan code | |
* to host v v
* @S0 make code break code
*/
#define PWRBTN_DELAY_T0 (32 * MSEC) /* 32ms (PCH requires >16ms) */
#define PWRBTN_DELAY_T1 (4 * SECOND - PWRBTN_DELAY_T0) /* 4 secs - t0 */
/*
* Length of time to stretch initial power button press to give chipset a
* chance to wake up (~100ms) and react to the press (~16ms). Also used as
* pulse length for simulated power button presses when the system is off.
*/
#define PWRBTN_INITIAL_US (200 * MSEC)
enum power_button_state {
/* Button up; state machine idle */
PWRBTN_STATE_IDLE = 0,
/* Button pressed; debouncing done */
PWRBTN_STATE_PRESSED,
/* Button down, chipset on; sending initial short pulse */
PWRBTN_STATE_T0,
/* Button down, chipset on; delaying until we should reassert signal */
PWRBTN_STATE_T1,
/* Button down, signal asserted to chipset */
PWRBTN_STATE_HELD,
/* Force pulse due to lid-open event */
PWRBTN_STATE_LID_OPEN,
/* Button released; debouncing done */
PWRBTN_STATE_RELEASED,
/* Ignore next button release */
PWRBTN_STATE_EAT_RELEASE,
/*
* Need to power on system after init, but waiting to find out if
* sufficient battery power.
*/
PWRBTN_STATE_INIT_ON,
/* Forced pulse at EC boot due to keyboard controlled reset */
PWRBTN_STATE_BOOT_KB_RESET,
/* Power button pressed when chipset was off; stretching pulse */
PWRBTN_STATE_WAS_OFF,
};
static enum power_button_state pwrbtn_state = PWRBTN_STATE_IDLE;
static const char * const state_names[] = {
"idle",
"pressed",
"t0",
"t1",
"held",
"lid-open",
"released",
"eat-release",
"init-on",
"recovery",
"was-off",
};
/*
* Time for next state transition of power button state machine, or 0 if the
* state doesn't have a timeout.
*/
static uint64_t tnext_state;
/*
* Record the time when power button task starts. It can be used by any code
* path that needs to compare the current time with power button task start time
* to identify any timeouts e.g. PB state machine checks current time to
* identify if it should wait more for charger and battery to be initialized. In
* case of recovery using buttons (where the user could be holding the buttons
* for >30seconds), it is not right to compare current time with the time when
* EC was reset since the tasks would not have started. Hence, this variable is
* being added to record the time at which power button task starts.
*/
static uint64_t tpb_task_start;
/*
* Determines whether to execute power button pulse (t0 stage)
*/
static int power_button_pulse_enabled = 1;
static void set_pwrbtn_to_pch(int high, int init)
{
/*
* If the battery is discharging and low enough we'd shut down the
* system, don't press the power button. Also, don't press the
* power button if the battery is charging but the battery level
* is too low.
*/
#ifdef CONFIG_CHARGER
if (chipset_in_state(CHIPSET_STATE_ANY_OFF) && !high &&
(charge_want_shutdown() || charge_prevent_power_on(!init))) {
CPRINTS("PB PCH pwrbtn ignored due to battery level");
high = 1;
}
#endif
CPRINTS("PB PCH pwrbtn=%s", high ? "HIGH" : "LOW");
gpio_set_level(GPIO_PCH_PWRBTN_L, high);
}
void power_button_pch_press(void)
{
CPRINTS("PB PCH force press");
/* Assert power button signal to PCH */
if (!power_button_is_pressed())
set_pwrbtn_to_pch(0, 0);
}
void power_button_pch_release(void)
{
CPRINTS("PB PCH force release");
/* Deassert power button signal to PCH */
set_pwrbtn_to_pch(1, 0);
/*
* If power button is actually pressed, eat the next release so we
* don't send an extra release.
*/
if (power_button_is_pressed())
pwrbtn_state = PWRBTN_STATE_EAT_RELEASE;
else
pwrbtn_state = PWRBTN_STATE_IDLE;
}
void power_button_pch_pulse(void)
{
CPRINTS("PB PCH pulse");
chipset_exit_hard_off();
set_pwrbtn_to_pch(0, 0);
pwrbtn_state = PWRBTN_STATE_LID_OPEN;
tnext_state = get_time().val + PWRBTN_INITIAL_US;
task_wake(TASK_ID_POWERBTN);
}
/**
* Handle debounced power button down.
*/
static void power_button_pressed(uint64_t tnow)
{
CPRINTS("PB pressed");
pwrbtn_state = PWRBTN_STATE_PRESSED;
tnext_state = tnow;
}
/**
* Handle debounced power button up.
*/
static void power_button_released(uint64_t tnow)
{
CPRINTS("PB released");
pwrbtn_state = PWRBTN_STATE_RELEASED;
tnext_state = tnow;
}
/**
* Set initial power button state.
*/
static void set_initial_pwrbtn_state(void)
{
uint32_t reset_flags = system_get_reset_flags();
if (system_jumped_to_this_image() &&
chipset_in_state(CHIPSET_STATE_ON)) {
/*
* Jumped to this image while the chipset was already on, so
* simply reflect the actual power button state unless power
* button pulse is disabled. If power button SMI pulse is
* enabled, then it should be honored, else setting power
* button to PCH could lead to x86 platform shutting down. If
* power button is still held by the time control reaches
* state_machine(), it would take the appropriate action there.
*/
if (power_button_is_pressed() && power_button_pulse_enabled) {
CPRINTS("PB init-jumped-held");
set_pwrbtn_to_pch(0, 0);
} else {
CPRINTS("PB init-jumped");
}
return;
} else if ((reset_flags & RESET_FLAG_AP_OFF) ||
(keyboard_scan_get_boot_keys() == BOOT_KEY_DOWN_ARROW)) {
/*
* Reset triggered by keyboard-controlled reset, and down-arrow
* was held down. Or reset flags request AP off.
*
* Leave the main processor off. This is a fail-safe
* combination for debugging failures booting the main
* processor.
*
* Don't let the PCH see that the power button was pressed.
* Otherwise, it might power on.
*/
CPRINTS("PB init-off");
power_button_pch_release();
return;
}
#ifdef CONFIG_BRINGUP
pwrbtn_state = PWRBTN_STATE_IDLE;
#else
pwrbtn_state = PWRBTN_STATE_INIT_ON;
#endif
CPRINTS("PB %s",
pwrbtn_state == PWRBTN_STATE_INIT_ON ? "init-on" : "idle");
}
/**
* Power button state machine.
*
* @param tnow Current time from usec counter
*/
static void state_machine(uint64_t tnow)
{
/* Not the time to move onto next state */
if (tnow < tnext_state)
return;
/* States last forever unless otherwise specified */
tnext_state = 0;
switch (pwrbtn_state) {
case PWRBTN_STATE_PRESSED:
if (chipset_in_state(CHIPSET_STATE_ANY_OFF)) {
/*
* Chipset is off, so wake the chipset and send it a
* long enough pulse to wake up. After that we'll
* reflect the true power button state. If we don't
* stretch the pulse here, the user may release the
* power button before the chipset finishes waking from
* hard off state.
*/
chipset_exit_hard_off();
tnext_state = tnow + PWRBTN_INITIAL_US;
pwrbtn_state = PWRBTN_STATE_WAS_OFF;
set_pwrbtn_to_pch(0, 0);
} else {
if (power_button_pulse_enabled) {
/* Chipset is on, so send the chipset a pulse */
tnext_state = tnow + PWRBTN_DELAY_T0;
pwrbtn_state = PWRBTN_STATE_T0;
set_pwrbtn_to_pch(0, 0);
} else {
tnext_state = tnow + PWRBTN_DELAY_T1;
pwrbtn_state = PWRBTN_STATE_T1;
}
}
break;
case PWRBTN_STATE_T0:
tnext_state = tnow + PWRBTN_DELAY_T1;
pwrbtn_state = PWRBTN_STATE_T1;
set_pwrbtn_to_pch(1, 0);
break;
case PWRBTN_STATE_T1:
/*
* If the chipset is already off, don't tell it the power
* button is down; it'll just cause the chipset to turn on
* again.
*/
if (chipset_in_state(CHIPSET_STATE_ANY_OFF))
CPRINTS("PB chipset already off");
else
set_pwrbtn_to_pch(0, 0);
pwrbtn_state = PWRBTN_STATE_HELD;
break;
case PWRBTN_STATE_RELEASED:
case PWRBTN_STATE_LID_OPEN:
set_pwrbtn_to_pch(1, 0);
pwrbtn_state = PWRBTN_STATE_IDLE;
break;
case PWRBTN_STATE_INIT_ON:
/*
* Before attempting to power the system on, we need to wait for
* charger and battery to be ready to supply sufficient power.
* Check every 100 milliseconds, and give up
* CONFIG_POWER_BUTTON_INIT_TIMEOUT seconds after the PB task
* was started. Here, it is important to check the current time
* against PB task start time to prevent unnecessary timeouts
* happening in recovery case where the tasks could start as
* late as 30 seconds after EC reset.
*/
if (tnow >
(tpb_task_start +
CONFIG_POWER_BUTTON_INIT_TIMEOUT * SECOND)) {
pwrbtn_state = PWRBTN_STATE_IDLE;
break;
}
#ifdef CONFIG_CHARGER
/*
* If not able to power on, try again later, to allow time for
* charger, battery and USB-C PD initialization.
*/
if (charge_prevent_power_on(0)) {
tnext_state = tnow + 100 * MSEC;
break;
}
#endif
/*
* Power the system on if possible. Gating due to insufficient
* battery is handled inside set_pwrbtn_to_pch().
*/
chipset_exit_hard_off();
#ifdef CONFIG_DELAY_DSW_PWROK_TO_PWRBTN
/* Check if power button is ready. If not, we'll come back. */
if (get_time().val - get_time_dsw_pwrok() <
CONFIG_DSW_PWROK_TO_PWRBTN_US) {
tnext_state = get_time_dsw_pwrok() +
CONFIG_DSW_PWROK_TO_PWRBTN_US;
break;
}
#endif
set_pwrbtn_to_pch(0, 1);
tnext_state = get_time().val + PWRBTN_INITIAL_US;
pwrbtn_state = PWRBTN_STATE_BOOT_KB_RESET;
break;
case PWRBTN_STATE_BOOT_KB_RESET:
/* Initial forced pulse is done. Ignore the actual power
* button until it's released, so that holding down the
* recovery combination doesn't cause the chipset to shut back
* down. */
set_pwrbtn_to_pch(1, 0);
if (power_button_is_pressed())
pwrbtn_state = PWRBTN_STATE_EAT_RELEASE;
else
pwrbtn_state = PWRBTN_STATE_IDLE;
break;
case PWRBTN_STATE_WAS_OFF:
/* Done stretching initial power button signal, so show the
* true power button state to the PCH. */
if (power_button_is_pressed()) {
/* User is still holding the power button */
pwrbtn_state = PWRBTN_STATE_HELD;
} else {
/* Stop stretching the power button press */
power_button_released(tnow);
}
break;
case PWRBTN_STATE_IDLE:
case PWRBTN_STATE_HELD:
case PWRBTN_STATE_EAT_RELEASE:
/* Do nothing */
break;
}
}
void power_button_task(void *u)
{
uint64_t t;
uint64_t tsleep;
/*
* Record the time when the task starts so that the state machine can
* use this to identify any timeouts.
*/
tpb_task_start = get_time().val;
while (1) {
t = get_time().val;
/* Update state machine */
CPRINTS("PB task %d = %s", pwrbtn_state,
state_names[pwrbtn_state]);
state_machine(t);
/* Sleep until our next timeout */
tsleep = -1;
if (tnext_state && tnext_state < tsleep)
tsleep = tnext_state;
t = get_time().val;
if (tsleep > t) {
unsigned d = tsleep == -1 ? -1 : (unsigned)(tsleep - t);
/*
* (Yes, the conversion from uint64_t to unsigned could
* theoretically overflow if we wanted to sleep for
* more than 2^32 us, but our timeouts are small enough
* that can't happen - and even if it did, we'd just go
* back to sleep after deciding that we woke up too
* early.)
*/
CPRINTS("PB task %d = %s, wait %d", pwrbtn_state,
state_names[pwrbtn_state], d);
task_wait_event(d);
}
}
}
/*****************************************************************************/
/* Hooks */
static void powerbtn_x86_init(void)
{
set_initial_pwrbtn_state();
}
DECLARE_HOOK(HOOK_INIT, powerbtn_x86_init, HOOK_PRIO_DEFAULT);
#ifdef CONFIG_LID_SWITCH
/**
* Handle switch changes based on lid event.
*/
static void powerbtn_x86_lid_change(void)
{
/* If chipset is off, pulse the power button on lid open to wake it. */
if (lid_is_open() && chipset_in_state(CHIPSET_STATE_ANY_OFF)
&& pwrbtn_state != PWRBTN_STATE_INIT_ON)
power_button_pch_pulse();
}
DECLARE_HOOK(HOOK_LID_CHANGE, powerbtn_x86_lid_change, HOOK_PRIO_DEFAULT);
#endif
/**
* Handle debounced power button changing state.
*/
static void powerbtn_x86_changed(void)
{
if (pwrbtn_state == PWRBTN_STATE_BOOT_KB_RESET ||
pwrbtn_state == PWRBTN_STATE_INIT_ON ||
pwrbtn_state == PWRBTN_STATE_LID_OPEN ||
pwrbtn_state == PWRBTN_STATE_WAS_OFF) {
/* Ignore all power button changes during an initial pulse */
CPRINTS("PB ignoring change");
return;
}
if (power_button_is_pressed()) {
/* Power button pressed */
power_button_pressed(get_time().val);
} else {
/* Power button released */
if (pwrbtn_state == PWRBTN_STATE_EAT_RELEASE) {
/*
* Ignore the first power button release if we already
* told the PCH the power button was released.
*/
CPRINTS("PB ignoring release");
pwrbtn_state = PWRBTN_STATE_IDLE;
return;
}
power_button_released(get_time().val);
}
/* Wake the power button task */
task_wake(TASK_ID_POWERBTN);
}
DECLARE_HOOK(HOOK_POWER_BUTTON_CHANGE, powerbtn_x86_changed, HOOK_PRIO_DEFAULT);
/**
* Handle configuring the power button behavior through a host command
*/
static int hc_config_powerbtn_x86(struct host_cmd_handler_args *args)
{
const struct ec_params_config_power_button *p = args->params;
power_button_pulse_enabled =
!!(p->flags & EC_POWER_BUTTON_ENABLE_PULSE);
return EC_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_CONFIG_POWER_BUTTON, hc_config_powerbtn_x86,
EC_VER_MASK(0));
/*
* Currently, the only reason why we disable power button pulse is to allow
* detachable menu on AP to use power button for selection purpose without
* triggering SMI. Thus, re-enable the pulse any time there is a chipset
* state transition event.
*/
static void power_button_pulse_setting_reset(void)
{
power_button_pulse_enabled = 1;
}
DECLARE_HOOK(HOOK_CHIPSET_STARTUP, power_button_pulse_setting_reset,
HOOK_PRIO_DEFAULT);
DECLARE_HOOK(HOOK_CHIPSET_SHUTDOWN, power_button_pulse_setting_reset,
HOOK_PRIO_DEFAULT);
DECLARE_HOOK(HOOK_CHIPSET_SUSPEND, power_button_pulse_setting_reset,
HOOK_PRIO_DEFAULT);
DECLARE_HOOK(HOOK_CHIPSET_RESUME, power_button_pulse_setting_reset,
HOOK_PRIO_DEFAULT);
#define POWER_BUTTON_SYSJUMP_TAG 0x5042 /* PB */
#define POWER_BUTTON_HOOK_VERSION 1
static void power_button_pulse_setting_restore_state(void)
{
const int *state;
int version, size;
state = (const int *)system_get_jump_tag(POWER_BUTTON_SYSJUMP_TAG,
&version, &size);
if (state && (version == POWER_BUTTON_HOOK_VERSION) &&
(size == sizeof(power_button_pulse_enabled)))
power_button_pulse_enabled = *state;
}
DECLARE_HOOK(HOOK_INIT, power_button_pulse_setting_restore_state,
HOOK_PRIO_INIT_POWER_BUTTON + 1);
static void power_button_pulse_setting_preserve_state(void)
{
system_add_jump_tag(POWER_BUTTON_SYSJUMP_TAG,
POWER_BUTTON_HOOK_VERSION,
sizeof(power_button_pulse_enabled),
&power_button_pulse_enabled);
}
DECLARE_HOOK(HOOK_SYSJUMP, power_button_pulse_setting_preserve_state,
HOOK_PRIO_DEFAULT);