| /* Copyright 2015 The Chromium OS Authors. All rights reserved. |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "common.h" |
| #include "console.h" |
| #include "mag_cal.h" |
| #include "mat33.h" |
| #include "mat44.h" |
| |
| #include "math.h" |
| #include "math_util.h" |
| #include "util.h" |
| |
| /* Data from sensor is in 16th of uT, 0.0625 uT/LSB */ |
| #define MAG_CAL_RAW_UT 16 |
| |
| #define MAX_EIGEN_RATIO FLOAT_TO_FP(25.0f) |
| #define MAX_EIGEN_MAG FLOAT_TO_FP(80.0f * MAG_CAL_RAW_UT) |
| #define MIN_EIGEN_MAG FLOAT_TO_FP(10.0f * MAG_CAL_RAW_UT) |
| |
| #define MAX_FIT_MAG MAX_EIGEN_MAG |
| #define MIN_FIT_MAG MIN_EIGEN_MAG |
| |
| #define CPRINTF(format, args...) cprintf(CC_ACCEL, format, ## args) |
| #define PRINTF_FLOAT(x) ((int)((x) * 100.0f)) |
| |
| /** |
| * Compute the covariance element: (avg(ab) - avg(a)*avg(b)) |
| * |
| * @param sq The accumulated sum of a*b |
| * @param a The accumulated sum of a |
| * @param b The accumulated sum of b |
| * @return (sq - ((a * b) * inv)) * inv |
| */ |
| static inline fp_t covariance_element(fp_t sq, fp_t a, fp_t b, fp_t inv) |
| { |
| return fp_mul(sq - fp_mul(fp_mul(a, b), inv), inv); |
| } |
| /* |
| * eigen value magnitude and ratio test |
| * |
| * Using the magnetometer information, calculate the 3 eigen values/vectors |
| * for the transformation. Check the eigen values are reasonable. |
| */ |
| static int moc_eigen_test(struct mag_cal_t *moc) |
| { |
| mat33_fp_t S; |
| fpv3_t eigenvals; |
| mat33_fp_t eigenvecs; |
| fp_t evmax, evmin, evmag; |
| fp_t inv = fp_div_dbz(FLOAT_TO_FP(1.0f), |
| INT_TO_FP((int) moc->kasa_fit.nsamples)); |
| int eigen_pass; |
| |
| /* covariance matrix */ |
| S[0][0] = covariance_element(moc->kasa_fit.acc_xx, |
| moc->kasa_fit.acc_x, |
| moc->kasa_fit.acc_x, |
| inv); |
| S[0][1] = S[1][0] = covariance_element(moc->kasa_fit.acc_xy, |
| moc->kasa_fit.acc_x, |
| moc->kasa_fit.acc_y, |
| inv); |
| S[0][2] = S[2][0] = covariance_element(moc->kasa_fit.acc_xz, |
| moc->kasa_fit.acc_x, |
| moc->kasa_fit.acc_z, |
| inv); |
| S[1][1] = covariance_element(moc->kasa_fit.acc_yy, |
| moc->kasa_fit.acc_y, |
| moc->kasa_fit.acc_y, |
| inv); |
| S[1][2] = S[2][1] = covariance_element(moc->kasa_fit.acc_yz, |
| moc->kasa_fit.acc_y, |
| moc->kasa_fit.acc_z, |
| inv); |
| S[2][2] = covariance_element(moc->kasa_fit.acc_zz, |
| moc->kasa_fit.acc_z, |
| moc->kasa_fit.acc_z, |
| inv); |
| |
| mat33_fp_get_eigenbasis(S, eigenvals, eigenvecs); |
| |
| evmax = (eigenvals[X] > eigenvals[Y]) ? eigenvals[X] : eigenvals[Y]; |
| evmax = (eigenvals[Z] > evmax) ? eigenvals[Z] : evmax; |
| |
| evmin = (eigenvals[X] < eigenvals[Y]) ? eigenvals[X] : eigenvals[Y]; |
| evmin = (eigenvals[Z] < evmin) ? eigenvals[Z] : evmin; |
| |
| evmag = fp_sqrtf(eigenvals[X] + eigenvals[Y] + eigenvals[Z]); |
| |
| eigen_pass = (fp_mul(evmin, MAX_EIGEN_RATIO) > evmax) |
| && (evmag > MIN_EIGEN_MAG) |
| && (evmag < MAX_EIGEN_MAG); |
| |
| #if 0 |
| CPRINTF("mag eigenvalues: (%.02d %.02d %.02d), ", |
| PRINTF_FLOAT(eigenvals[X]), |
| PRINTF_FLOAT(eigenvals[Y]), |
| PRINTF_FLOAT(eigenvals[Z])); |
| |
| CPRINTF("ratio %.02d, mag %.02d: pass %d\r\n", |
| PRINTF_FLOAT(evmax / evmin), |
| PRINTF_FLOAT(evmag), |
| eigen_pass); |
| #endif |
| |
| return eigen_pass; |
| } |
| |
| void init_mag_cal(struct mag_cal_t *moc) |
| { |
| kasa_reset(&moc->kasa_fit); |
| } |
| |
| int mag_cal_update(struct mag_cal_t *moc, const intv3_t v) |
| { |
| int new_bias = 0; |
| |
| /* 1. run accumulators */ |
| kasa_accumulate(&moc->kasa_fit, INT_TO_FP(v[X]), INT_TO_FP(v[Y]), |
| INT_TO_FP(v[Z])); |
| |
| /* 2. batch has enough samples? */ |
| if (moc->batch_size > 0 && moc->kasa_fit.nsamples >= moc->batch_size) { |
| /* 3. eigen test */ |
| if (moc_eigen_test(moc)) { |
| fpv3_t bias; |
| fp_t radius; |
| |
| /* 4. Kasa sphere fitting */ |
| kasa_compute(&moc->kasa_fit, bias, &radius); |
| if (radius > MIN_FIT_MAG && radius < MAX_FIT_MAG) { |
| moc->bias[X] = -FP_TO_INT(bias[X]); |
| moc->bias[Y] = -FP_TO_INT(bias[Y]); |
| moc->bias[Z] = -FP_TO_INT(bias[Z]); |
| |
| moc->radius = radius; |
| |
| new_bias = 1; |
| } |
| } |
| /* 5. reset for next batch */ |
| init_mag_cal(moc); |
| } |
| |
| return new_bias; |
| } |