blob: 2639e9c7bd195a5b0dfcb96ee666ab87d5a0330d [file] [log] [blame]
/* Copyright 2019 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*
* AMS TCS3400 light sensor driver
*/
#include "accelgyro.h"
#include "common.h"
#include "console.h"
#include "driver/als_tcs3400.h"
#include "hooks.h"
#include "hwtimer.h"
#include "i2c.h"
#include "math_util.h"
#include "motion_sense_fifo.h"
#include "task.h"
#include "util.h"
#define CPRINTS(fmt, args...) cprints(CC_ACCEL, "%s "fmt, __func__, ## args)
STATIC_IF(CONFIG_ACCEL_FIFO) volatile uint32_t last_interrupt_timestamp;
#ifdef CONFIG_TCS_USE_LUX_TABLE
/*
* Stores the number of atime increments/decrements needed to change light value
* by 1% of saturation for each gain setting for each predefined LUX range.
*
* Values in array are TCS_ATIME_GAIN_FACTOR (100x) times actual value to allow
* for fractions using integers.
*/
static const uint16_t
range_atime[TCS_MAX_AGAIN - TCS_MIN_AGAIN + 1][TCS_MAX_ATIME_RANGES] = {
{11200, 5600, 5600, 7200, 5500, 4500, 3800, 3800, 3300, 2900, 2575, 2275, 2075},
{11200, 5100, 2700, 1840, 1400, 1133, 981, 963, 833, 728, 650, 577, 525},
{250, 1225, 643, 441, 337, 276, 253, 235, 203, 176, 150, 0, 0},
{790, 261, 163, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} };
static void
decrement_atime(struct tcs_saturation_t *sat_p, uint16_t cur_lux, int percent)
{
int atime;
uint16_t steps;
int lux = MIN(cur_lux, TCS_GAIN_TABLE_MAX_LUX);
steps = percent * range_atime[sat_p->again][lux / 1000] /
TCS_ATIME_GAIN_FACTOR;
atime = MAX(sat_p->atime - steps, TCS_MIN_ATIME);
sat_p->atime = MIN(atime, TCS_MAX_ATIME);
}
#else
static void
decrement_atime(struct tcs_saturation_t *sat_p,
uint16_t __attribute__((unused)) cur_lux,
int __attribute__((unused)) percent)
{
sat_p->atime = MAX(sat_p->atime - TCS_ATIME_DEC_STEP, TCS_MIN_ATIME);
}
#endif /* CONFIG_TCS_USE_LUX_TABLE */
static void increment_atime(struct tcs_saturation_t *sat_p)
{
sat_p->atime = MIN(sat_p->atime + TCS_ATIME_INC_STEP, TCS_MAX_ATIME);
}
static inline int tcs3400_i2c_read8(const struct motion_sensor_t *s,
int reg, int *data)
{
return i2c_read8(s->port, s->i2c_spi_addr_flags, reg, data);
}
static inline int tcs3400_i2c_write8(const struct motion_sensor_t *s,
int reg, int data)
{
return i2c_write8(s->port, s->i2c_spi_addr_flags, reg, data);
}
static void tcs3400_read_deferred(void)
{
task_set_event(TASK_ID_MOTIONSENSE, CONFIG_ALS_TCS3400_INT_EVENT);
}
DECLARE_DEFERRED(tcs3400_read_deferred);
/* convert ATIME register to integration time, in microseconds */
static int tcs3400_get_integration_time(int atime)
{
return 2780 * (256 - atime);
}
static int tcs3400_read(const struct motion_sensor_t *s, intv3_t v)
{
int atime, again;
int ret;
/* Chip may have been off, make sure to setup important registers */
if (TCS3400_RGB_DRV_DATA(s+1)->calibration_mode) {
atime = TCS_CALIBRATION_ATIME;
again = TCS_CALIBRATION_AGAIN;
} else {
atime = TCS3400_RGB_DRV_DATA(s+1)->saturation.atime;
again = TCS3400_RGB_DRV_DATA(s+1)->saturation.again;
}
ret = tcs3400_i2c_write8(s, TCS_I2C_ATIME, atime);
if (ret)
return ret;
ret = tcs3400_i2c_write8(s, TCS_I2C_CONTROL, again);
if (ret)
return ret;
/* Enable power, ADC, and interrupt to start cycle */
ret = tcs3400_i2c_write8(s, TCS_I2C_ENABLE, TCS3400_MODE_COLLECTING);
if (ret)
return ret;
if (IS_ENABLED(CONFIG_ALS_TCS3400_EMULATED_IRQ_EVENT)) {
int atime;
ret = tcs3400_i2c_read8(s, TCS_I2C_ATIME, &atime);
if (ret)
return ret;
hook_call_deferred(&tcs3400_read_deferred_data,
tcs3400_get_integration_time(atime));
}
/*
* If write succeeded, we've started the read process, but can't
* complete it yet until data is ready, so pass back EC_RES_IN_PROGRESS
* to inform upper level that read data process is under way and data
* will be delivered when available.
*/
return EC_RES_IN_PROGRESS;
}
static int tcs3400_rgb_read(const struct motion_sensor_t *s, intv3_t v)
{
ccprintf("WARNING: tcs3400_rgb_read() should never be called\n");
return EC_SUCCESS;
}
/*
* tcs3400_adjust_sensor_for_saturation() tries to keep CRGB values as
* close to saturation as possible without saturating by implementing
* the following logic:
*
* If any of the R, G, B, or C channels have saturated, then decrease AGAIN.
* If AGAIN is already at its minimum, increase ATIME if not at its max already.
*
* Else if none of the R, G, B, or C channels have saturated, and
* all samples read are less than 90% of saturation, then increase
* AGAIN if it is not already at its maximum, or if it is, decrease
* ATIME if it is not at it's minimum already.
*/
static int
tcs3400_adjust_sensor_for_saturation(struct motion_sensor_t *s,
uint16_t cur_lux,
uint16_t *crgb_data)
{
struct tcs_saturation_t *sat_p =
&TCS3400_RGB_DRV_DATA(s+1)->saturation;
const uint8_t save_again = sat_p->again;
const uint8_t save_atime = sat_p->atime;
uint16_t max_val = 0;
int ret;
int status = 0;
int percent_left = 0;
/* Adjust for saturation if needed */
ret = tcs3400_i2c_read8(s, TCS_I2C_STATUS, &status);
if (ret)
return ret;
if (!(status & TCS_I2C_STATUS_RGBC_VALID))
return EC_SUCCESS;
for (int i = 0; i < CRGB_COUNT; i++)
max_val = MAX(max_val, crgb_data[i]);
/* Don't process if status isn't valid yet */
if ((status & TCS_I2C_STATUS_ALS_SATURATED) ||
(max_val >= TCS_SATURATION_LEVEL)) {
/* Saturation occurred, decrease AGAIN if we can */
if (sat_p->again > TCS_MIN_AGAIN)
sat_p->again--;
else if (sat_p->atime < TCS_MAX_ATIME)
/* reduce accumulation time by incrementing ATIME reg */
increment_atime(sat_p);
} else if (max_val < TSC_SATURATION_LOW_BAND_LEVEL) {
/* value < 90% saturation, try to increase sensitivity */
if (max_val <= TCS_GAIN_SAT_LEVEL) {
if (sat_p->again < TCS_MAX_AGAIN) {
sat_p->again++;
} else if (sat_p->atime > TCS_MIN_ATIME) {
/*
* increase accumulation time by decrementing
* ATIME register
*/
percent_left = TSC_SATURATION_LOW_BAND_PERCENT -
(max_val * 100 / TCS_SATURATION_LEVEL);
decrement_atime(sat_p, cur_lux, percent_left);
}
} else if (sat_p->atime > TCS_MIN_ATIME) {
/* calculate percentage between current and desired */
percent_left = TSC_SATURATION_LOW_BAND_PERCENT -
(max_val * 100 / TCS_SATURATION_LEVEL);
/* increase accumulation time by decrementing ATIME */
decrement_atime(sat_p, cur_lux, percent_left);
} else if (sat_p->again < TCS_MAX_AGAIN) {
/*
* Although we're not at maximum gain yet, we
* can't just increase gain because a 4x change
* in gain under these light conditions would
* saturate on the next sample. What we can do
* is to adjust atime to reduce sensitivity so
* that we may increase gain without saturation.
* This combination effectively acts as a half
* gain increase (2.5x estimate) instead of a full
* gain increase of > 4x that would result in
* saturation.
*/
if (max_val < TCS_GAIN_UPSHIFT_LEVEL) {
sat_p->atime = TCS_GAIN_UPSHIFT_ATIME;
sat_p->again++;
}
}
}
/* If atime or gain setting changed, update atime and gain registers */
if (save_again != sat_p->again) {
ret = tcs3400_i2c_write8(s, TCS_I2C_CONTROL,
(sat_p->again & TCS_I2C_CONTROL_MASK));
if (ret)
return ret;
}
if (save_atime != sat_p->atime) {
ret = tcs3400_i2c_write8(s, TCS_I2C_ATIME, sat_p->atime);
if (ret)
return ret;
}
return ret;
}
/**
* normalize_channel_data - normalize the light data to remove effect of
* different atime and again settings from the sample.
*/
static uint32_t normalize_channel_data(struct motion_sensor_t *s,
uint32_t sample)
{
struct tcs_saturation_t *sat_p =
&(TCS3400_RGB_DRV_DATA(s+1)->saturation);
const uint16_t cur_gain = (1 << (2 * sat_p->again));
const uint16_t cal_again = (1 << (2 * TCS_CALIBRATION_AGAIN));
return DIV_ROUND_NEAREST(sample * (TCS_ATIME_GRANULARITY -
TCS_CALIBRATION_ATIME) * cal_again,
(TCS_ATIME_GRANULARITY - sat_p->atime) *
cur_gain);
}
static void tcs3400_translate_to_xyz(struct motion_sensor_t *s,
int32_t *crgb_data, int32_t *xyz_data)
{
struct tcs3400_rgb_drv_data_t *rgb_drv_data = TCS3400_RGB_DRV_DATA(s+1);
int32_t crgb_prime[CRGB_COUNT];
int32_t ir;
int i;
/* IR removal */
ir = FP_TO_INT(fp_mul(INT_TO_FP(crgb_data[1] + crgb_data[2] +
crgb_data[3] - crgb_data[0]),
rgb_drv_data->calibration.irt) / 2);
for (i = 0; i < ARRAY_SIZE(crgb_prime); i++) {
if (crgb_data[i] < ir)
crgb_prime[i] = 0;
else
crgb_prime[i] = crgb_data[i] - ir;
}
/* if CC == 0, set BC = 0 */
if (crgb_prime[CLEAR_CRGB_IDX] == 0)
crgb_prime[BLUE_CRGB_IDX] = 0;
/* regression fit to XYZ space */
for (i = 0; i < 3; i++) {
const struct rgb_channel_calibration_t *p =
&rgb_drv_data->calibration.rgb_cal[i];
xyz_data[i] = p->offset + FP_TO_INT(
(fp_inter_t)p->coeff[RED_CRGB_IDX] *
crgb_prime[RED_CRGB_IDX] +
(fp_inter_t)p->coeff[GREEN_CRGB_IDX] *
crgb_prime[GREEN_CRGB_IDX] +
(fp_inter_t)p->coeff[BLUE_CRGB_IDX] *
crgb_prime[BLUE_CRGB_IDX] +
(fp_inter_t)p->coeff[CLEAR_CRGB_IDX] *
crgb_prime[CLEAR_CRGB_IDX]);
if (xyz_data[i] < 0)
xyz_data[i] = 0;
}
}
static void tcs3400_process_raw_data(struct motion_sensor_t *s,
uint8_t *raw_data_buf,
uint16_t *raw_light_data, int32_t *xyz_data)
{
struct als_drv_data_t *als_drv_data = TCS3400_DRV_DATA(s);
struct tcs3400_rgb_drv_data_t *rgb_drv_data = TCS3400_RGB_DRV_DATA(s+1);
const uint8_t calibration_mode = rgb_drv_data->calibration_mode;
uint16_t k_channel_scale =
als_drv_data->als_cal.channel_scale.k_channel_scale;
uint16_t cover_scale = als_drv_data->als_cal.channel_scale.cover_scale;
int32_t crgb_data[CRGB_COUNT];
int i;
/* adjust for calibration and scale data */
for (i = 0; i < CRGB_COUNT; i++) {
int index = i * 2;
/* assemble the light value for this channel */
crgb_data[i] = raw_light_data[i] =
((raw_data_buf[index+1] << 8) | raw_data_buf[index]);
/* in calibration mode, we only assemble the raw data */
if (calibration_mode)
continue;
/* rgb data at index 1, 2, and 3 owned by rgb driver, not ALS */
if (i > 0) {
struct als_channel_scale_t *csp =
&rgb_drv_data->calibration.rgb_cal[i-1].scale;
k_channel_scale = csp->k_channel_scale;
cover_scale = csp->cover_scale;
}
/* Step 1: divide by individual channel scale value */
crgb_data[i] = SENSOR_APPLY_DIV_SCALE(crgb_data[i],
k_channel_scale);
/* compensate for the light cover */
crgb_data[i] = SENSOR_APPLY_SCALE(crgb_data[i], cover_scale);
/* normalize the data for atime and again changes */
crgb_data[i] = normalize_channel_data(s, crgb_data[i]);
}
if (!calibration_mode) {
/* we're not in calibration mode & we want xyz translation */
tcs3400_translate_to_xyz(s, crgb_data, xyz_data);
} else {
/* calibration mode returns raw data */
for (i = 0; i < 3; i++)
xyz_data[i] = crgb_data[i+1];
}
}
static int32_t get_lux_from_xyz(struct motion_sensor_t *s, int32_t *xyz_data)
{
int32_t lux = xyz_data[Y];
const int32_t offset =
TCS3400_RGB_DRV_DATA(s+1)->calibration.rgb_cal[Y].offset;
/*
* Do not include the offset when determining LUX from XYZ.
*/
lux = MAX(0, lux - offset);
return lux;
}
static bool is_spoof(struct motion_sensor_t *s)
{
return IS_ENABLED(CONFIG_ACCEL_SPOOF_MODE) &&
(s->flags & MOTIONSENSE_FLAG_IN_SPOOF_MODE);
}
static int tcs3400_post_events(struct motion_sensor_t *s, uint32_t last_ts)
{
/*
* Rule says RGB sensor is right after ALS sensor.
* This routine will only get called from ALS sensor driver.
*/
struct motion_sensor_t *rgb_s = s + 1;
const uint8_t is_calibration =
TCS3400_RGB_DRV_DATA(rgb_s)->calibration_mode;
struct ec_response_motion_sensor_data vector = { .flags = 0, };
uint8_t buf[TCS_RGBC_DATA_SIZE]; /* holds raw data read from chip */
int32_t xyz_data[3] = { 0, 0, 0 };
uint16_t raw_data[CRGB_COUNT]; /* holds raw CRGB assembled from buf[] */
int *last_v;
int32_t lux, data = 0;
int i, ret;
i = 20; /* 400ms max */
while (i--) {
/* Make sure data is valid */
ret = tcs3400_i2c_read8(s, TCS_I2C_STATUS, &data);
if (ret)
return ret;
if (data & TCS_I2C_STATUS_RGBC_VALID)
break;
msleep(20);
}
if (i < 0) {
CPRINTS("RGBC invalid (0x%x)", data);
return EC_ERROR_UNCHANGED;
}
/* Read the light registers */
ret = i2c_read_block(s->port, s->i2c_spi_addr_flags,
TCS_DATA_START_LOCATION,
buf, sizeof(buf));
if (ret)
return ret;
/* Process the raw light data, adjusting for scale and calibration */
tcs3400_process_raw_data(s, buf, raw_data, xyz_data);
/* get lux value */
lux = is_calibration ? xyz_data[Y] : get_lux_from_xyz(s, xyz_data);
/* if clear channel data changed, send illuminance upstream */
last_v = s->raw_xyz;
if (is_calibration ||
((raw_data[CLEAR_CRGB_IDX] != TCS_SATURATION_LEVEL) &&
(last_v[X] != lux))) {
if (is_spoof(s))
last_v[X] = s->spoof_xyz[X];
else
last_v[X] = is_calibration ? raw_data[CLEAR_CRGB_IDX] : lux;
vector.udata[X] = ec_motion_sensor_clamp_u16(last_v[X]);
vector.udata[Y] = 0;
vector.udata[Z] = 0;
if (IS_ENABLED(CONFIG_ACCEL_FIFO)) {
vector.sensor_num = s - motion_sensors;
motion_sense_fifo_stage_data(&vector, s, 3, last_ts);
}
}
/*
* If rgb channel data changed since last sample and didn't saturate,
* send it upstream
*/
last_v = rgb_s->raw_xyz;
if (is_calibration ||
(((last_v[X] != xyz_data[X]) || (last_v[Y] != xyz_data[Y]) ||
(last_v[Z] != xyz_data[Z])) &&
((raw_data[RED_CRGB_IDX] != TCS_SATURATION_LEVEL) &&
(raw_data[BLUE_CRGB_IDX] != TCS_SATURATION_LEVEL) &&
(raw_data[GREEN_CRGB_IDX] != TCS_SATURATION_LEVEL)))) {
if (is_spoof(rgb_s)) {
memcpy(last_v, rgb_s->spoof_xyz, sizeof(rgb_s->spoof_xyz));
} else if (is_calibration) {
last_v[0] = raw_data[RED_CRGB_IDX];
last_v[1] = raw_data[GREEN_CRGB_IDX];
last_v[2] = raw_data[BLUE_CRGB_IDX];
} else {
memcpy(last_v, xyz_data, sizeof(xyz_data));
}
ec_motion_sensor_clamp_u16s(vector.udata, last_v);
if (IS_ENABLED(CONFIG_ACCEL_FIFO)) {
vector.sensor_num = rgb_s - motion_sensors;
motion_sense_fifo_stage_data(&vector, rgb_s, 3, last_ts);
}
}
if (IS_ENABLED(CONFIG_ACCEL_FIFO))
motion_sense_fifo_commit_data();
if (!is_calibration)
ret = tcs3400_adjust_sensor_for_saturation(s, xyz_data[Y],
raw_data);
return ret;
}
void tcs3400_interrupt(enum gpio_signal signal)
{
if (IS_ENABLED(CONFIG_ACCEL_FIFO))
last_interrupt_timestamp = __hw_clock_source_read();
task_set_event(TASK_ID_MOTIONSENSE, CONFIG_ALS_TCS3400_INT_EVENT);
}
/*
* tcs3400_irq_handler - bottom half of the interrupt stack.
* Ran from the motion_sense task, finds the events that raised the interrupt,
* and posts those events via motion_sense_fifo_stage_data()..
*
* This routine will get called for the TCS3400 ALS driver, but NOT for the
* RGB driver. We harvest data for both drivers in this routine. The RGB
* driver is guaranteed to directly follow the ALS driver in the sensor list
* (i.e rgb's motion_sensor_t structure can be found at (s+1) ).
*/
static int tcs3400_irq_handler(struct motion_sensor_t *s, uint32_t *event)
{
int status = 0;
int ret = EC_SUCCESS;
if (!(*event & CONFIG_ALS_TCS3400_INT_EVENT))
return EC_ERROR_NOT_HANDLED;
ret = tcs3400_i2c_read8(s, TCS_I2C_STATUS, &status);
if (ret)
return ret;
/* Disable future interrupts */
ret = tcs3400_i2c_write8(s, TCS_I2C_ENABLE, TCS3400_MODE_IDLE);
if (ret)
return ret;
if ((status & TCS_I2C_STATUS_RGBC_VALID) ||
((status & TCS_I2C_STATUS_ALS_IRQ) &&
(status & TCS_I2C_STATUS_ALS_SATURATED)) ||
IS_ENABLED(CONFIG_ALS_TCS3400_EMULATED_IRQ_EVENT)) {
ret = tcs3400_post_events(s, last_interrupt_timestamp);
if (ret)
return ret;
}
tcs3400_i2c_write8(s, TCS_I2C_AICLEAR, 0);
/* Disable ADC and turn off internal oscillator */
ret = tcs3400_i2c_write8(s, TCS_I2C_ENABLE, TCS3400_MODE_SUSPEND);
if (ret)
return ret;
return ret;
}
static int tcs3400_rgb_get_scale(const struct motion_sensor_t *s,
uint16_t *scale,
int16_t *temp)
{
struct rgb_channel_calibration_t *rgb_cal =
TCS3400_RGB_DRV_DATA(s)->calibration.rgb_cal;
scale[X] = rgb_cal[RED_RGB_IDX].scale.k_channel_scale;
scale[Y] = rgb_cal[GREEN_RGB_IDX].scale.k_channel_scale;
scale[Z] = rgb_cal[BLUE_RGB_IDX].scale.k_channel_scale;
*temp = EC_MOTION_SENSE_INVALID_CALIB_TEMP;
return EC_SUCCESS;
}
static int tcs3400_rgb_set_scale(const struct motion_sensor_t *s,
const uint16_t *scale,
int16_t temp)
{
struct rgb_channel_calibration_t *rgb_cal =
TCS3400_RGB_DRV_DATA(s)->calibration.rgb_cal;
if (scale[X] == 0 || scale[Y] == 0 || scale[Z] == 0)
return EC_ERROR_INVAL;
rgb_cal[RED_RGB_IDX].scale.k_channel_scale = scale[X];
rgb_cal[GREEN_RGB_IDX].scale.k_channel_scale = scale[Y];
rgb_cal[BLUE_RGB_IDX].scale.k_channel_scale = scale[Z];
return EC_SUCCESS;
}
static int tcs3400_rgb_get_offset(const struct motion_sensor_t *s,
int16_t *offset,
int16_t *temp)
{
offset[X] = TCS3400_RGB_DRV_DATA(s)->calibration.rgb_cal[X].offset;
offset[Y] = TCS3400_RGB_DRV_DATA(s)->calibration.rgb_cal[Y].offset;
offset[Z] = TCS3400_RGB_DRV_DATA(s)->calibration.rgb_cal[Z].offset;
*temp = EC_MOTION_SENSE_INVALID_CALIB_TEMP;
return EC_SUCCESS;
}
static int tcs3400_rgb_set_offset(const struct motion_sensor_t *s,
const int16_t *offset,
int16_t temp)
{
/* do not allow offset to be changed, it's predetermined */
return EC_SUCCESS;
}
static int tcs3400_rgb_set_data_rate(const struct motion_sensor_t *s,
int rate,
int rnd)
{
return EC_SUCCESS;
}
/* Enable/disable special factory calibration mode */
static int tcs3400_perform_calib(struct motion_sensor_t *s, int enable)
{
TCS3400_RGB_DRV_DATA(s+1)->calibration_mode = enable;
return EC_SUCCESS;
}
static int tcs3400_rgb_set_range(struct motion_sensor_t *s,
int range,
int rnd)
{
return EC_SUCCESS;
}
static int tcs3400_set_range(struct motion_sensor_t *s,
int range,
int rnd)
{
TCS3400_DRV_DATA(s)->als_cal.scale = range >> 16;
TCS3400_DRV_DATA(s)->als_cal.uscale = range & 0xffff;
s->current_range = range;
return EC_SUCCESS;
}
static int tcs3400_get_scale(const struct motion_sensor_t *s,
uint16_t *scale,
int16_t *temp)
{
scale[X] = TCS3400_DRV_DATA(s)->als_cal.channel_scale.k_channel_scale;
scale[Y] = 0;
scale[Z] = 0;
*temp = EC_MOTION_SENSE_INVALID_CALIB_TEMP;
return EC_SUCCESS;
}
static int tcs3400_set_scale(const struct motion_sensor_t *s,
const uint16_t *scale,
int16_t temp)
{
if (scale[X] == 0)
return EC_ERROR_INVAL;
TCS3400_DRV_DATA(s)->als_cal.channel_scale.k_channel_scale = scale[X];
return EC_SUCCESS;
}
static int tcs3400_get_offset(const struct motion_sensor_t *s,
int16_t *offset,
int16_t *temp)
{
offset[X] = TCS3400_DRV_DATA(s)->als_cal.offset;
offset[Y] = 0;
offset[Z] = 0;
*temp = EC_MOTION_SENSE_INVALID_CALIB_TEMP;
return EC_SUCCESS;
}
static int tcs3400_set_offset(const struct motion_sensor_t *s,
const int16_t *offset,
int16_t temp)
{
/* do not allow offset to be changed, it's predetermined */
return EC_SUCCESS;
}
static int tcs3400_get_data_rate(const struct motion_sensor_t *s)
{
return TCS3400_DRV_DATA(s)->rate;
}
static int tcs3400_rgb_get_data_rate(const struct motion_sensor_t *s)
{
return tcs3400_get_data_rate(s - 1);
}
static int tcs3400_set_data_rate(const struct motion_sensor_t *s,
int rate,
int rnd)
{
enum tcs3400_mode mode;
int data;
int ret;
if (rate == 0) {
/* Suspend driver */
mode = TCS3400_MODE_SUSPEND;
} else {
/*
* We set the sensor for continuous mode,
* integrating over 800ms.
* Do not allow range higher than 1Hz.
*/
if (rate > TCS3400_LIGHT_MAX_FREQ)
rate = TCS3400_LIGHT_MAX_FREQ;
mode = TCS3400_MODE_COLLECTING;
}
TCS3400_DRV_DATA(s)->rate = rate;
ret = tcs3400_i2c_read8(s, TCS_I2C_ENABLE, &data);
if (ret)
return ret;
data = (data & TCS_I2C_ENABLE_MASK) | mode;
ret = tcs3400_i2c_write8(s, TCS_I2C_ENABLE, data);
return ret;
}
/**
* Initialise TCS3400 light sensor.
*/
static int tcs3400_rgb_init(struct motion_sensor_t *s)
{
return EC_SUCCESS;
}
static int tcs3400_init(struct motion_sensor_t *s)
{
/*
* These are default power-on register values with two exceptions:
* Set ATIME = 0 (712 ms)
* Set AGAIN = 16 (0x10) (AGAIN is in CONTROL register)
*/
const struct reg_data {
uint8_t reg;
uint8_t data;
} defaults[] = {
{ TCS_I2C_ENABLE, 0 },
{ TCS_I2C_ATIME, TCS_DEFAULT_ATIME },
{ TCS_I2C_WTIME, 0xFF },
{ TCS_I2C_AILTL, 0 },
{ TCS_I2C_AILTH, 0 },
{ TCS_I2C_AIHTL, 0 },
{ TCS_I2C_AIHTH, 0 },
{ TCS_I2C_PERS, 0 },
{ TCS_I2C_CONFIG, 0x40 },
{ TCS_I2C_CONTROL, (TCS_DEFAULT_AGAIN & TCS_I2C_CONTROL_MASK) },
{ TCS_I2C_AUX, 0 },
{ TCS_I2C_IR, 0 },
{ TCS_I2C_CICLEAR, 0 },
{ TCS_I2C_AICLEAR, 0 }
};
int data = 0;
int ret;
ret = tcs3400_i2c_read8(s, TCS_I2C_ID, &data);
if (ret) {
CPRINTS("failed reading ID reg 0x%x, ret=%d", TCS_I2C_ID, ret);
return ret;
}
if ((data != TCS340015_DEVICE_ID) && (data != TCS340037_DEVICE_ID)) {
CPRINTS("no ID match, data = 0x%x", data);
return EC_ERROR_ACCESS_DENIED;
}
/* reset chip to default power-on settings, changes ATIME and CONTROL */
for (int x = 0; x < ARRAY_SIZE(defaults); x++) {
ret = tcs3400_i2c_write8(s, defaults[x].reg, defaults[x].data);
if (ret)
return ret;
}
return sensor_init_done(s);
}
const struct accelgyro_drv tcs3400_drv = {
.init = tcs3400_init,
.read = tcs3400_read,
.set_range = tcs3400_set_range,
.set_offset = tcs3400_set_offset,
.get_offset = tcs3400_get_offset,
.set_scale = tcs3400_set_scale,
.get_scale = tcs3400_get_scale,
.set_data_rate = tcs3400_set_data_rate,
.get_data_rate = tcs3400_get_data_rate,
.perform_calib = tcs3400_perform_calib,
#ifdef CONFIG_ACCEL_INTERRUPTS
.irq_handler = tcs3400_irq_handler,
#endif
};
const struct accelgyro_drv tcs3400_rgb_drv = {
.init = tcs3400_rgb_init,
.read = tcs3400_rgb_read,
.set_range = tcs3400_rgb_set_range,
.set_offset = tcs3400_rgb_set_offset,
.get_offset = tcs3400_rgb_get_offset,
.set_scale = tcs3400_rgb_set_scale,
.get_scale = tcs3400_rgb_get_scale,
.set_data_rate = tcs3400_rgb_set_data_rate,
.get_data_rate = tcs3400_rgb_get_data_rate,
};