blob: 36f681781572cb5f7e234444848df235e3080740 [file] [log] [blame]
/* Copyright (c) 2013 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "chipset.h"
#include "clock.h"
#include "common.h"
#include "console.h"
#include "dma.h"
#include "gpio.h"
#include "hooks.h"
#include "host_command.h"
#include "i2c.h"
#include "i2c_arbitration.h"
#include "registers.h"
#include "task.h"
#include "timer.h"
#include "util.h"
/* #define CONFIG_DEBUG_I2C */
extern const struct i2c_port_t i2c_ports[I2C_PORTS_USED];
/* Console output macros */
#define CPUTS(outstr) cputs(CC_I2C, outstr)
#define CPRINTF(format, args...) cprintf(CC_I2C, format, ## args)
#define I2C1 STM32_I2C1_PORT
#define I2C2 STM32_I2C2_PORT
/* Maximum transfer of a SMBUS block transfer */
#define SMBUS_MAX_BLOCK 32
/*
* Transmit timeout in microseconds
*
* In theory we shouldn't have a timeout here (at least when we're in slave
* mode). The slave is supposed to wait forever for the master to read bytes.
* ...but we're going to keep the timeout to make sure we're robust. It may in
* fact be needed if the host resets itself mid-read.
*/
#define I2C_TX_TIMEOUT_MASTER (10 * MSEC)
#ifdef CONFIG_DEBUG_I2C
static void dump_i2c_reg(int port, const char *what)
{
CPRINTF("[%T i2c CR1=%04x CR2=%04x SR1=%04x SR2=%04x %s]\n",
STM32_I2C_CR1(port),
STM32_I2C_CR2(port),
STM32_I2C_SR1(port),
STM32_I2C_SR2(port),
what);
}
#else
static inline void dump_i2c_reg(int port, const char *what)
{
}
#endif
/**
* Wait for SR1 register to contain the specified mask.
*
* Returns EC_SUCCESS, EC_ERROR_TIMEOUT if timed out waiting, or
* EC_ERROR_UNKNOWN if an error bit appeared in the status register.
*/
static int wait_sr1(int port, int mask)
{
uint64_t timeout = get_time().val + I2C_TX_TIMEOUT_MASTER;
while (get_time().val < timeout) {
int sr1 = STM32_I2C_SR1(port);
/* Check for desired mask */
if ((sr1 & mask) == mask)
return EC_SUCCESS;
/* Check for errors */
if (sr1 & (STM32_I2C_SR1_ARLO | STM32_I2C_SR1_BERR |
STM32_I2C_SR1_AF)) {
dump_i2c_reg(port, "wait_sr1 failed");
return EC_ERROR_UNKNOWN;
}
/* I2C is slow, so let other things run while we wait */
usleep(100);
}
/* TODO: on error or timeout, reset port */
return EC_ERROR_TIMEOUT;
}
/**
* Send a start condition and slave address on the specified port.
*
* @param port I2C port
* @param slave_addr Slave address, with LSB set for receive-mode
*
* @return Non-zero if error.
*/
static int send_start(int port, int slave_addr)
{
int rv;
/* Send start bit */
STM32_I2C_CR1(port) |= STM32_I2C_CR1_START;
dump_i2c_reg(port, "sent start");
rv = wait_sr1(port, STM32_I2C_SR1_SB);
if (rv)
return rv;
/* Write slave address */
STM32_I2C_DR(port) = slave_addr & 0xff;
dump_i2c_reg(port, "wrote addr");
rv = wait_sr1(port, STM32_I2C_SR1_ADDR);
if (rv)
return rv;
/* Read SR2 to clear ADDR bit */
rv = STM32_I2C_SR2(port);
return EC_SUCCESS;
}
/*****************************************************************************/
/* Interface */
int i2c_xfer(int port, int slave_addr, const uint8_t *out, int out_bytes,
uint8_t *in, int in_bytes, int flags)
{
int started = (flags & I2C_XFER_START) ? 0 : 1;
int rv = EC_SUCCESS;
int i;
ASSERT(out || !out_bytes);
ASSERT(in || !in_bytes);
dump_i2c_reg(port, "xfer start");
/* Clear status */
/*
* TODO: should check for any leftover error status, and reset the
* port if present.
*
* Also, may need to wait a bit if a previous STOP hasn't finished
* sending yet.
*/
STM32_I2C_SR1(port) = 0;
/* Clear start, stop, POS, ACK bits to get us in a known state */
STM32_I2C_CR1(port) &= ~(STM32_I2C_CR1_START |
STM32_I2C_CR1_STOP |
STM32_I2C_CR1_POS |
STM32_I2C_CR1_ACK);
/* No out bytes and no in bytes means just check for active */
if (out_bytes || !in_bytes) {
if (!started) {
rv = send_start(port, slave_addr);
if (rv)
goto xfer_exit;
}
/* Write data, if any */
for (i = 0; i < out_bytes; i++) {
/* Write next data byte */
STM32_I2C_DR(port) = out[i];
dump_i2c_reg(port, "wrote data");
rv = wait_sr1(port, STM32_I2C_SR1_BTF);
if (rv)
goto xfer_exit;
}
/* Need repeated start condition before reading */
started = 0;
/* If no input bytes, queue stop condition */
if (!in_bytes && (flags & I2C_XFER_STOP))
STM32_I2C_CR1(port) |= STM32_I2C_CR1_STOP;
}
if (in_bytes) {
/* Setup ACK/POS before sending start as per user manual */
if (in_bytes == 2)
STM32_I2C_CR1(port) |= STM32_I2C_CR1_POS;
else if (in_bytes != 1)
STM32_I2C_CR1(port) |= STM32_I2C_CR1_ACK;
if (!started) {
rv = send_start(port, slave_addr | 0x01);
if (rv)
goto xfer_exit;
}
if (in_bytes == 1) {
/* Set stop immediately after ADDR cleared */
if (flags & I2C_XFER_STOP)
STM32_I2C_CR1(port) |= STM32_I2C_CR1_STOP;
rv = wait_sr1(port, STM32_I2C_SR1_RXNE);
if (rv)
goto xfer_exit;
in[0] = STM32_I2C_DR(port);
} else if (in_bytes == 2) {
/* Wait till the shift register is full */
rv = wait_sr1(port, STM32_I2C_SR1_BTF);
if (rv)
goto xfer_exit;
if (flags & I2C_XFER_STOP)
STM32_I2C_CR1(port) |= STM32_I2C_CR1_STOP;
in[0] = STM32_I2C_DR(port);
in[1] = STM32_I2C_DR(port);
} else {
/* Read all but last three */
for (i = 0; i < in_bytes - 3; i++) {
/* Wait for receive buffer not empty */
rv = wait_sr1(port, STM32_I2C_SR1_RXNE);
if (rv)
goto xfer_exit;
dump_i2c_reg(port, "read data");
in[i] = STM32_I2C_DR(port);
dump_i2c_reg(port, "post read data");
}
/* Wait for BTF (data N-2 in DR, N-1 in shift) */
rv = wait_sr1(port, STM32_I2C_SR1_BTF);
if (rv)
goto xfer_exit;
/* No more acking */
STM32_I2C_CR1(port) &= ~STM32_I2C_CR1_ACK;
in[i++] = STM32_I2C_DR(port);
/* Wait for BTF (data N-1 in DR, N in shift) */
rv = wait_sr1(port, STM32_I2C_SR1_BTF);
if (rv)
goto xfer_exit;
/* If this is the last byte, queue stop condition */
if (flags & I2C_XFER_STOP)
STM32_I2C_CR1(port) |= STM32_I2C_CR1_STOP;
/* Read the last two bytes */
in[i++] = STM32_I2C_DR(port);
in[i++] = STM32_I2C_DR(port);
}
}
xfer_exit:
/* On error, queue a stop condition */
if (rv) {
STM32_I2C_CR1(port) |= STM32_I2C_CR1_STOP;
dump_i2c_reg(port, "stop after error");
}
return rv;
}
int i2c_get_line_levels(int port)
{
enum gpio_signal sda, scl;
ASSERT(port == I2C1 || port == I2C2);
if (port == I2C1) {
sda = GPIO_I2C1_SDA;
scl = GPIO_I2C1_SCL;
} else {
sda = GPIO_I2C2_SDA;
scl = GPIO_I2C2_SCL;
}
return (gpio_get_level(sda) ? I2C_LINE_SDA_HIGH : 0) |
(gpio_get_level(scl) ? I2C_LINE_SCL_HIGH : 0);
}
int i2c_read_string(int port, int slave_addr, int offset, uint8_t *data,
int len)
{
int rv;
uint8_t reg, block_length;
/*
* TODO: when i2c_xfer() supports start/stop bits, won't need a temp
* buffer, and this code can merge with the LM4 implementation and
* move to i2c_common.c.
*/
uint8_t buffer[SMBUS_MAX_BLOCK + 1];
if ((len <= 0) || (len > SMBUS_MAX_BLOCK))
return EC_ERROR_INVAL;
i2c_lock(port, 1);
reg = offset;
rv = i2c_xfer(port, slave_addr, &reg, 1, buffer, SMBUS_MAX_BLOCK + 1,
I2C_XFER_SINGLE);
if (rv == EC_SUCCESS) {
/* Block length is the first byte of the returned buffer */
block_length = MIN(buffer[0], len - 1);
buffer[block_length + 1] = 0;
memcpy(data, buffer+1, block_length + 1);
}
i2c_lock(port, 0);
return rv;
}
/*****************************************************************************/
/* Hooks */
/* Handle CPU clock changing frequency */
static void i2c_freq_change(void)
{
const struct i2c_port_t *p = i2c_ports;
int freq = clock_get_freq();
int i;
for (i = 0; i < I2C_PORTS_USED; i++, p++) {
int port = p->port;
/* Force peripheral reset and disable port */
STM32_I2C_CR1(port) = STM32_I2C_CR1_SWRST;
STM32_I2C_CR1(port) = 0;
/* Set clock frequency */
STM32_I2C_CCR(port) = freq / (2 * MSEC * p->kbps);
STM32_I2C_CR2(port) = freq / SECOND;
STM32_I2C_TRISE(port) = freq / SECOND + 1;
/* Enable port */
STM32_I2C_CR1(port) |= STM32_I2C_CR1_PE;
}
}
DECLARE_HOOK(HOOK_FREQ_CHANGE, i2c_freq_change, HOOK_PRIO_DEFAULT);
static void i2c_init(void)
{
const struct i2c_port_t *p = i2c_ports;
int i;
for (i = 0; i < I2C_PORTS_USED; i++, p++) {
int port = p->port;
/* Enable clocks to I2C modules if necessary */
if (!(STM32_RCC_APB1ENR & (1 << (21 + port)))) {
/* TODO: unwedge bus if necessary */
STM32_RCC_APB1ENR |= 1 << (21 + port);
}
}
/* Set up initial bus frequencies */
i2c_freq_change();
/* TODO: enable interrupts using I2C_CR2 bits 8,9 */
}
DECLARE_HOOK(HOOK_INIT, i2c_init, HOOK_PRIO_DEFAULT);
/*****************************************************************************/
/* Console commands */
static int command_i2c(int argc, char **argv)
{
int rw = 0;
int slave_addr, offset;
int value = 0;
char *e;
int rv = 0;
if (argc < 4) {
ccputs("Usage: i2c r/r16/w/w16 slave_addr offset [value]\n");
return EC_ERROR_UNKNOWN;
}
if (strcasecmp(argv[1], "r") == 0) {
rw = 0;
} else if (strcasecmp(argv[1], "r16") == 0) {
rw = 1;
} else if (strcasecmp(argv[1], "w") == 0) {
rw = 2;
} else if (strcasecmp(argv[1], "w16") == 0) {
rw = 3;
} else {
ccputs("Invalid rw mode : r / w / r16 / w16\n");
return EC_ERROR_INVAL;
}
slave_addr = strtoi(argv[2], &e, 0);
if (*e) {
ccputs("Invalid slave_addr\n");
return EC_ERROR_INVAL;
}
offset = strtoi(argv[3], &e, 0);
if (*e) {
ccputs("Invalid addr\n");
return EC_ERROR_INVAL;
}
if (rw > 1) {
if (argc < 5) {
ccputs("No write value\n");
return EC_ERROR_INVAL;
}
value = strtoi(argv[4], &e, 0);
if (*e) {
ccputs("Invalid write value\n");
return EC_ERROR_INVAL;
}
}
switch (rw) {
case 0:
rv = i2c_read8(I2C_PORT_HOST, slave_addr, offset, &value);
break;
case 1:
rv = i2c_read16(I2C_PORT_HOST, slave_addr, offset, &value);
break;
case 2:
rv = i2c_write8(I2C_PORT_HOST, slave_addr, offset, value);
break;
case 3:
rv = i2c_write16(I2C_PORT_HOST, slave_addr, offset, value);
break;
}
if (rv) {
ccprintf("i2c command failed\n", rv);
return rv;
}
if (rw == 0)
ccprintf("0x%02x [%d]\n", value);
else if (rw == 1)
ccprintf("0x%04x [%d]\n", value);
ccputs("ok\n");
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(i2cxfer, command_i2c,
"r/r16/w/w16 slave_addr offset [value]",
"Read write I2C",
NULL);
static int command_i2cdump(int argc, char **argv)
{
dump_i2c_reg(I2C_PORT_HOST, "dump");
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(i2cdump, command_i2cdump,
NULL,
"Dump I2C regs",
NULL);