blob: a103292e0ecbe0b925e622458c034b56bd4ce373 [file] [log] [blame]
/* Copyright (c) 2014 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* System module for Chrome EC : NPCX hardware specific implementation */
#include "clock.h"
#include "common.h"
#include "console.h"
#include "cpu.h"
#include "host_command.h"
#include "registers.h"
#include "system.h"
#include "hooks.h"
#include "task.h"
#include "timer.h"
#include "util.h"
#include "hwtimer_chip.h"
#include "system_chip.h"
#ifdef CONFIG_CODERAM_ARCH
/* base address for jumping */
uint32_t base_addr;
#endif
/* Flags for BBRM_DATA_INDEX_WAKE */
#define HIBERNATE_WAKE_MTC (1 << 0) /* MTC alarm */
#define HIBERNATE_WAKE_PIN (1 << 1) /* Wake pin */
/* Super-IO index and register definitions */
#define SIO_OFFSET 0x4E
#define INDEX_SID 0x20
#define INDEX_CHPREV 0x24
#define INDEX_SRID 0x27
/* equivalent to 250us according to 48MHz core clock */
#define MTC_TTC_LOAD_DELAY 1500
#define MTC_ALARM_MASK ((1 << 25) - 1)
#define MTC_WUI_GROUP MIWU_GROUP_4
#define MTC_WUI_MASK MASK_PIN7
/* ROM address of chip revision */
#define CHIP_REV_ADDR 0x00007FFC
/* Begin address for the .lpram section; defined in linker script */
uintptr_t __lpram_fw_start = CONFIG_LPRAM_BASE;
/*****************************************************************************/
/* Internal functions */
/* Super-IO read/write function */
void system_sib_write_reg(uint8_t io_offset, uint8_t index_value,
uint8_t io_data)
{
/* Disable interrupts */
interrupt_disable();
/* Lock host CFG module */
SET_BIT(NPCX_LKSIOHA, NPCX_LKSIOHA_LKCFG);
/* Enable Core-to-Host Modules Access */
SET_BIT(NPCX_SIBCTRL, NPCX_SIBCTRL_CSAE);
/* Enable Core access to CFG module */
SET_BIT(NPCX_CRSMAE, NPCX_CRSMAE_CFGAE);
/* Verify Core read/write to host modules is not in progress */
while (IS_BIT_SET(NPCX_SIBCTRL, NPCX_SIBCTRL_CSRD))
;
while (IS_BIT_SET(NPCX_SIBCTRL, NPCX_SIBCTRL_CSWR))
;
/* Specify the io_offset A0 = 0. the index register is accessed */
NPCX_IHIOA = io_offset;
/* Write the data. This starts the write access to the host module */
NPCX_IHD = index_value;
/* Wait while Core write operation is in progress */
while (IS_BIT_SET(NPCX_SIBCTRL, NPCX_SIBCTRL_CSWR))
;
/* Specify the io_offset A0 = 1. the data register is accessed */
NPCX_IHIOA = io_offset+1;
/* Write the data. This starts the write access to the host module */
NPCX_IHD = io_data;
/* Wait while Core write operation is in progress */
while (IS_BIT_SET(NPCX_SIBCTRL, NPCX_SIBCTRL_CSWR))
;
/* Disable Core access to CFG module */
CLEAR_BIT(NPCX_CRSMAE, NPCX_CRSMAE_CFGAE);
/* Disable Core-to-Host Modules Access */
CLEAR_BIT(NPCX_SIBCTRL, NPCX_SIBCTRL_CSAE);
/* unlock host CFG module */
CLEAR_BIT(NPCX_LKSIOHA, NPCX_LKSIOHA_LKCFG);
/* Enable interrupts */
interrupt_enable();
}
uint8_t system_sib_read_reg(uint8_t io_offset, uint8_t index_value)
{
uint8_t data_value;
/* Disable interrupts */
interrupt_disable();
/* Lock host CFG module */
SET_BIT(NPCX_LKSIOHA, NPCX_LKSIOHA_LKCFG);
/* Enable Core-to-Host Modules Access */
SET_BIT(NPCX_SIBCTRL, NPCX_SIBCTRL_CSAE);
/* Enable Core access to CFG module */
SET_BIT(NPCX_CRSMAE, NPCX_CRSMAE_CFGAE);
/* Verify Core read/write to host modules is not in progress */
while (IS_BIT_SET(NPCX_SIBCTRL, NPCX_SIBCTRL_CSRD))
;
while (IS_BIT_SET(NPCX_SIBCTRL, NPCX_SIBCTRL_CSWR))
;
/* Specify the io_offset A0 = 0. the index register is accessed */
NPCX_IHIOA = io_offset;
/* Write the data. This starts the write access to the host module */
NPCX_IHD = index_value;
/* Wait while Core write operation is in progress */
while (IS_BIT_SET(NPCX_SIBCTRL, NPCX_SIBCTRL_CSWR))
;
/* Specify the io_offset A0 = 1. the data register is accessed */
NPCX_IHIOA = io_offset+1;
/* Start a Core read from host module */
SET_BIT(NPCX_SIBCTRL, NPCX_SIBCTRL_CSRD);
/* Wait while Core read operation is in progress */
while (IS_BIT_SET(NPCX_SIBCTRL, NPCX_SIBCTRL_CSRD))
;
/* Read the data */
data_value = NPCX_IHD;
/* Disable Core access to CFG module */
CLEAR_BIT(NPCX_CRSMAE, NPCX_CRSMAE_CFGAE);
/* Disable Core-to-Host Modules Access */
CLEAR_BIT(NPCX_SIBCTRL, NPCX_SIBCTRL_CSAE);
/* unlock host CFG module */
CLEAR_BIT(NPCX_LKSIOHA, NPCX_LKSIOHA_LKCFG);
/* Enable interrupts */
interrupt_enable();
return data_value;
}
void system_watchdog_reset(void)
{
/* Unlock & stop watchdog registers */
NPCX_WDSDM = 0x87;
NPCX_WDSDM = 0x61;
NPCX_WDSDM = 0x63;
/* Reset TWCFG */
NPCX_TWCFG = 0;
/* Select T0IN clock as watchdog prescaler clock */
SET_BIT(NPCX_TWCFG, NPCX_TWCFG_WDCT0I);
/* Clear watchdog reset status initially*/
SET_BIT(NPCX_T0CSR, NPCX_T0CSR_WDRST_STS);
/* Keep prescaler ratio timer0 clock to 1:1 */
NPCX_TWCP = 0x00;
/* Set internal counter and prescaler */
NPCX_TWDT0 = 0x00;
NPCX_WDCNT = 0x01;
/* Disable interrupt */
interrupt_disable();
/* Reload and restart Timer 0*/
SET_BIT(NPCX_T0CSR, NPCX_T0CSR_RST);
/* Wait for timer is loaded and restart */
while (IS_BIT_SET(NPCX_T0CSR, NPCX_T0CSR_RST))
;
/* Enable interrupt */
interrupt_enable();
}
/**
* Read battery-backed ram (BBRAM) at specified index.
*
* @return The value of the register or 0 if invalid index.
*/
static uint32_t bbram_data_read(enum bbram_data_index index)
{
uint32_t value = 0;
/* Check index */
if (index < 0 || index >= NPCX_BBRAM_SIZE)
return 0;
/* BBRAM is valid */
if (IS_BIT_SET(NPCX_BKUP_STS, NPCX_BKUP_STS_IBBR))
return 0;
/* Read BBRAM */
value += NPCX_BBRAM(index + 3);
value = value << 8;
value += NPCX_BBRAM(index + 2);
value = value << 8;
value += NPCX_BBRAM(index + 1);
value = value << 8;
value += NPCX_BBRAM(index);
return value;
}
/**
* Write battery-backed ram (BBRAM) at specified index.
*
* @return nonzero if error.
*/
static int bbram_data_write(enum bbram_data_index index, uint32_t value)
{
/* Check index */
if (index < 0 || index >= NPCX_BBRAM_SIZE)
return EC_ERROR_INVAL;
/* BBRAM is valid */
if (IS_BIT_SET(NPCX_BKUP_STS, NPCX_BKUP_STS_IBBR))
return EC_ERROR_INVAL;
/* Write BBRAM */
NPCX_BBRAM(index) = value & 0xFF;
NPCX_BBRAM(index + 1) = (value >> 8) & 0xFF;
NPCX_BBRAM(index + 2) = (value >> 16) & 0xFF;
NPCX_BBRAM(index + 3) = (value >> 24) & 0xFF;
/* Wait for write-complete */
return EC_SUCCESS;
}
/* MTC functions */
uint32_t system_get_rtc_sec(void)
{
/* Get MTC counter unit:seconds */
uint32_t sec = NPCX_TTC;
return sec;
}
void system_set_rtc(uint32_t seconds)
{
volatile uint16_t __i;
/* Set MTC counter unit:seconds */
NPCX_TTC = seconds;
/* Wait till clock is readable */
for (__i = 0; __i < MTC_TTC_LOAD_DELAY; ++__i)
;
}
/* Check reset cause */
void system_check_reset_cause(void)
{
uint32_t hib_wake_flags = bbram_data_read(BBRM_DATA_INDEX_WAKE);
uint32_t flags = 0;
/* Use scratch bit to check power on reset or VCC1_RST reset */
if (!IS_BIT_SET(NPCX_RSTCTL, NPCX_RSTCTL_VCC1_RST_SCRATCH)) {
/* Check for VCC1 reset */
if (IS_BIT_SET(NPCX_RSTCTL, NPCX_RSTCTL_VCC1_RST_STS))
flags |= RESET_FLAG_RESET_PIN;
else
flags |= RESET_FLAG_POWER_ON;
}
/*
* Set scratch bit to distinguish VCC1RST# is asserted again
* or not. This bit will be clear automatically when VCC1RST#
* is asserted or power-on reset occurs
*/
SET_BIT(NPCX_RSTCTL, NPCX_RSTCTL_VCC1_RST_SCRATCH);
/* Software debugger reset */
if (IS_BIT_SET(NPCX_RSTCTL, NPCX_RSTCTL_DBGRST_STS)) {
flags |= RESET_FLAG_SOFT;
/* Clear debugger reset status initially*/
SET_BIT(NPCX_RSTCTL, NPCX_RSTCTL_DBGRST_STS);
}
/* Watchdog Reset */
#ifndef CHIP_NPCX5M5G
if (IS_BIT_SET(NPCX_T0CSR, NPCX_T0CSR_WDRST_STS)) {
flags |= RESET_FLAG_WATCHDOG;
/* Clear watchdog reset status initially*/
SET_BIT(NPCX_T0CSR, NPCX_T0CSR_WDRST_STS);
}
#else
/* Workaround method to check watchdog reset */
if (NPCX_BBRAM(BBRM_DATA_INDEX_RAMLOG) & 0x04)
flags |= RESET_FLAG_WATCHDOG;
#endif
if ((hib_wake_flags & HIBERNATE_WAKE_PIN))
flags |= RESET_FLAG_WAKE_PIN;
else if ((hib_wake_flags & HIBERNATE_WAKE_MTC))
flags |= RESET_FLAG_RTC_ALARM;
/* Restore then clear saved reset flags */
flags |= bbram_data_read(BBRM_DATA_INDEX_SAVED_RESET_FLAGS);
bbram_data_write(BBRM_DATA_INDEX_SAVED_RESET_FLAGS, 0);
/* Clear saved hibernate wake flag, too */
bbram_data_write(BBRM_DATA_INDEX_WAKE, 0);
system_set_reset_flags(flags);
}
/**
* Configure address 0x40001600 in the the MPU
* (Memory Protection Unit) as a "regular" memory
*/
void system_mpu_config(void)
{
/* Enable MPU */
CPU_MPU_CTRL = 0x7;
/* Create a new MPU Region for low-power ram */
CPU_MPU_RNR = 0; /* Select region number 0 */
CPU_MPU_RASR = CPU_MPU_RASR & 0xFFFFFFFE; /* Disable region */
CPU_MPU_RBAR = CONFIG_LPRAM_BASE; /* Set region base address */
/*
* Set region size & attribute and enable region
* [31:29] - Reserved.
* [28] - XN (Execute Never) = 0
* [27] - Reserved.
* [26:24] - AP = 011 (Full access)
* [23:22] - Reserved.
* [21:19,18,17,16] - TEX,S,C,B = 001000 (Normal memory)
* [15:8] - SRD = 0 (Subregions enabled)
* [7:6] - Reserved.
* [5:1] - SIZE = 01001 (1K)
* [0] - ENABLE = 1 (enabled)
*/
CPU_MPU_RASR = 0x03080013;
/* Create a new MPU Region for data ram */
CPU_MPU_RNR = 1; /* Select region number 1 */
CPU_MPU_RASR = CPU_MPU_RASR & 0xFFFFFFFE; /* Disable region */
CPU_MPU_RBAR = CONFIG_RAM_BASE; /* Set region base address */
/*
* Set region size & attribute and enable region
* [31:29] - Reserved.
* [28] - XN (Execute Never) = 1
* [27] - Reserved.
* [26:24] - AP = 011 (Full access)
* [23:22] - Reserved.
* [21:19,18,17,16] - TEX,S,C,B = 001000 (Normal memory)
* [15:8] - SRD = 0 (Subregions enabled)
* [7:6] - Reserved.
* [5:1] - SIZE = 01110 (32K)
* [0] - ENABLE = 1 (enabled)
*/
CPU_MPU_RASR = 0x1308001D;
}
void __attribute__ ((section(".lowpower_ram")))
__enter_hibernate_in_lpram(void)
{
/* Disable Code RAM first */
SET_BIT(NPCX_PWDWN_CTL(5), NPCX_PWDWN_CTL5_MRFSH_DIS);
SET_BIT(NPCX_DISIDL_CTL, NPCX_DISIDL_CTL_RAM_DID);
while (1) {
/* Set deep idle - instant wake-up mode*/
NPCX_PMCSR = 0x7;
/* Enter deep idle, wake-up by GPIOxx or RTC */
asm("wfi");
/* POWER_BUTTON_L wake-up */
if (NPCX_WKPND(NPCX_BBRAM(BBRM_DATA_INDEX_PBUTTON),
NPCX_BBRAM(BBRM_DATA_INDEX_PBUTTON + 1))
& NPCX_BBRAM(BBRM_DATA_INDEX_PBUTTON + 2)) {
/* Clear WUI pending bit of POWER_BUTTON_L */
NPCX_WKPCL(NPCX_BBRAM(BBRM_DATA_INDEX_PBUTTON),
NPCX_BBRAM(BBRM_DATA_INDEX_PBUTTON + 1))
= NPCX_BBRAM(BBRM_DATA_INDEX_PBUTTON + 2);
/*
* Mark wake-up reason for hibernate
* Do not call bbram_data_write directly cause of
* excuting in low-power ram
*/
NPCX_BBRAM(BBRM_DATA_INDEX_WAKE) = HIBERNATE_WAKE_PIN;
break;
}
/* RTC wake-up */
else if (IS_BIT_SET(NPCX_WTC, NPCX_WTC_PTO)) {
/* Clear WUI pending bit of MTC */
NPCX_WKPCL(MIWU_TABLE_0, MTC_WUI_GROUP) = MTC_WUI_MASK;
/* Clear interrupt & Disable alarm interrupt */
CLEAR_BIT(NPCX_WTC, NPCX_WTC_WIE);
SET_BIT(NPCX_WTC, NPCX_WTC_PTO);
/* Mark wake-up reason for hibernate */
NPCX_BBRAM(BBRM_DATA_INDEX_WAKE) = HIBERNATE_WAKE_MTC;
break;
}
}
/* Start a watchdog reset */
NPCX_WDCNT = 0x01;
/* Reload and restart Timer 0*/
SET_BIT(NPCX_T0CSR, NPCX_T0CSR_RST);
/* Wait for timer is loaded and restart */
while (IS_BIT_SET(NPCX_T0CSR, NPCX_T0CSR_RST))
;
/* Spin and wait for reboot; should never return */
while (1)
;
}
/**
* Internal hibernate function.
*
* @param seconds Number of seconds to sleep before LCT alarm
* @param microseconds Number of microseconds to sleep before LCT alarm
*/
void __enter_hibernate(uint32_t seconds, uint32_t microseconds)
{
int i;
void (*__hibernate_in_lpram)(void) =
(void(*)(void))(__lpram_fw_start | 0x01);
/* Set instant wake up mode */
SET_BIT(NPCX_ENIDL_CTL, NPCX_ENIDL_CTL_LP_WK_CTL);
interrupt_disable();
/* ITIM event module disable */
CLEAR_BIT(NPCX_ITCTS(ITIM_EVENT_NO), NPCX_ITIM16_ITEN);
/* ITIM time module disable */
CLEAR_BIT(NPCX_ITCTS(ITIM_TIME_NO), NPCX_ITIM16_ITEN);
/* ITIM watchdog warn module disable */
CLEAR_BIT(NPCX_ITCTS(ITIM_WDG_NO), NPCX_ITIM16_ITEN);
/*
* Set RTC interrupt in time to wake up before
* next event.
*/
if (seconds || microseconds)
system_set_rtc_alarm(seconds, microseconds);
/* Unlock & stop watchdog */
NPCX_WDSDM = 0x87;
NPCX_WDSDM = 0x61;
NPCX_WDSDM = 0x63;
/* Enable Low Power RAM */
NPCX_LPRAM_CTRL = 1;
/* Initialize watchdog */
NPCX_TWCFG = 0; /* Select T0IN clock as watchdog prescaler clock */
SET_BIT(NPCX_TWCFG, NPCX_TWCFG_WDCT0I);
NPCX_TWCP = 0x00; /* Keep prescaler ratio timer0 clock to 1:1 */
NPCX_TWDT0 = 0x00; /* Set internal counter and prescaler */
/* Copy the __enter_hibernate_in_lpram instructions to LPRAM */
for (i = 0; i < &__flash_lpfw_end - &__flash_lpfw_start; i++)
*((uint32_t *)__lpram_fw_start + i) =
*(&__flash_lpfw_start + i);
/* Disable interrupt */
interrupt_disable();
/* execute hibernate func in LPRAM */
__hibernate_in_lpram();
}
static char system_to_hex(uint8_t x)
{
if (x >= 0 && x <= 9)
return '0' + x;
return 'a' + x - 10;
}
/*****************************************************************************/
/* IC specific low-level driver */
/* Microsecond will be ignore for hardware limitation */
void system_set_rtc_alarm(uint32_t seconds, uint32_t microseconds)
{
uint32_t cur_secs, alarm_secs;
if (seconds == 0)
return;
/* Get current clock */
cur_secs = NPCX_TTC;
/* If alarm clock is not sequential or not in range */
alarm_secs = cur_secs + seconds;
alarm_secs = alarm_secs & MTC_ALARM_MASK;
/* Reset alarm first */
system_reset_rtc_alarm();
/* Set alarm, use first 25 bits of clock value */
NPCX_WTC = alarm_secs;
/* Enable interrupt mode alarm */
SET_BIT(NPCX_WTC, NPCX_WTC_WIE);
/* Enable MTC interrupt */
task_enable_irq(NPCX_IRQ_MTC_WKINTAD_0);
/* Enable wake-up input sources */
NPCX_WKEN(MIWU_TABLE_0, MTC_WUI_GROUP) |= MTC_WUI_MASK;
}
void system_reset_rtc_alarm(void)
{
/*
* Clear interrupt & Disable alarm interrupt
* Update alarm value to zero
*/
CLEAR_BIT(NPCX_WTC, NPCX_WTC_WIE);
SET_BIT(NPCX_WTC, NPCX_WTC_PTO);
/* Disable MTC interrupt */
task_disable_irq(NPCX_IRQ_MTC_WKINTAD_0);
}
/**
* Enable hibernate interrupt
*/
void system_enable_hib_interrupt(void)
{
task_enable_irq(NPCX_IRQ_MTC_WKINTAD_0);
}
void system_hibernate(uint32_t seconds, uint32_t microseconds)
{
/* Flush console before hibernating */
cflush();
#if SUPPORT_HIB
/* Add additional hibernate operations here */
__enter_hibernate(seconds, microseconds);
#endif
}
void system_pre_init(void)
{
/*
* Add additional initialization here
* EC should be initialized in Booter
*/
/* Power-down the modules we don't need */
NPCX_PWDWN_CTL(0) = 0xF9; /* Skip SDP_PD FIU_PD */
NPCX_PWDWN_CTL(1) = 0xFF;
NPCX_PWDWN_CTL(2) = 0x8F;
NPCX_PWDWN_CTL(3) = 0xF4; /* Skip ITIM2/1_PD */
NPCX_PWDWN_CTL(4) = 0xF8;
NPCX_PWDWN_CTL(5) = 0x85; /* Skip ITIM5_PD */
/*
* Configure LPRAM in the MPU as a regular memory
* and DATA RAM to prevent code execution
*/
system_mpu_config();
}
void system_reset(int flags)
{
uint32_t save_flags = 0;
/* Disable interrupts to avoid task swaps during reboot */
interrupt_disable();
/* Save current reset reasons if necessary */
if (flags & SYSTEM_RESET_PRESERVE_FLAGS)
save_flags = system_get_reset_flags() | RESET_FLAG_PRESERVED;
/* Add in AP off flag into saved flags. */
if (flags & SYSTEM_RESET_LEAVE_AP_OFF)
save_flags |= RESET_FLAG_AP_OFF;
/* Save reset flag */
if (flags & SYSTEM_RESET_HARD)
save_flags |= RESET_FLAG_HARD;
else {
save_flags |= RESET_FLAG_SOFT;
/* Use SYSRESETREQ to trigger a soft reboot */
CPU_NVIC_APINT = 0x05fa0004;
}
/* Store flags to battery backed RAM. */
bbram_data_write(BBRM_DATA_INDEX_SAVED_RESET_FLAGS, save_flags);
/* Ask the watchdog to trigger a hard reboot */
system_watchdog_reset();
/* Spin and wait for reboot; should never return */
while (1)
;
}
/**
* Return the chip vendor/name/revision string.
*/
const char *system_get_chip_vendor(void)
{
static char str[15] = "Unknown-";
char *p = str + 8;
/* Read Vendor ID in core register */
uint8_t fam_id = NPCX_SID_CR;
switch (fam_id) {
case 0x20:
return "Nuvoton";
default:
*p = system_to_hex((fam_id & 0xF0) >> 4);
*(p + 1) = system_to_hex(fam_id & 0x0F);
*(p + 2) = '\0';
return str;
}
}
const char *system_get_chip_name(void)
{
static char str[15] = "Unknown-";
char *p = str + 8;
/* Read Chip ID in core register */
uint8_t chip_id = NPCX_DEVICE_ID_CR;
switch (chip_id) {
case 0x12:
return "NPCX585G";
case 0x13:
return "NPCX575G";
default:
*p = system_to_hex((chip_id & 0xF0) >> 4);
*(p + 1) = system_to_hex(chip_id & 0x0F);
*(p + 2) = '\0';
return str;
}
}
const char *system_get_chip_revision(void)
{
static char rev[4];
#ifndef CHIP_NPCX5M5G
uint8_t rev_num = system_sib_read_reg(SIO_OFFSET, INDEX_CHPREV);
#else
/* Read ROM data for chip revision directly */
uint8_t rev_num = *((uint8_t *)CHIP_REV_ADDR);
#endif
*(rev) = 'A';
*(rev + 1) = '.';
*(rev + 2) = system_to_hex((rev_num & 0xF0) >> 4);
*(rev + 3) = system_to_hex(rev_num & 0x0F);
return rev;
}
/**
* Get/Set VbNvContext in non-volatile storage. The block should be 16 bytes
* long, which is the current size of VbNvContext block.
*
* @param block Pointer to a buffer holding VbNvContext.
* @return 0 on success, !0 on error.
*/
int system_get_vbnvcontext(uint8_t *block)
{
int i;
uint32_t *pblock = (uint32_t *) block;
for (i = 0; i < 4; i++)
pblock[i] = bbram_data_read(BBRM_DATA_INDEX_VBNVCNTXT + i*4);
return EC_SUCCESS;
}
int system_set_vbnvcontext(const uint8_t *block)
{
int i, result;
uint32_t *pblock = (uint32_t *) block;
for (i = 0; i < 4; i++) {
result = bbram_data_write(BBRM_DATA_INDEX_VBNVCNTXT + i*4,
pblock[i]);
if (result != EC_SUCCESS)
return result;
}
return EC_SUCCESS;
}
/**
* Set a scratchpad register to the specified value.
*
* The scratchpad register must maintain its contents across a
* software-requested warm reset.
*
* @param value Value to store.
* @return EC_SUCCESS, or non-zero if error.
*/
int system_set_scratchpad(uint32_t value)
{
return bbram_data_write(BBRM_DATA_INDEX_SCRATCHPAD, value);
}
uint32_t system_get_scratchpad(void)
{
return bbram_data_read(BBRM_DATA_INDEX_SCRATCHPAD);
}
/*****************************************************************************/
/* Console commands */
static int command_system_rtc(int argc, char **argv)
{
uint32_t sec;
if (argc == 3 && !strcasecmp(argv[1], "set")) {
char *e;
uint32_t t = strtoi(argv[2], &e, 0);
if (*e)
return EC_ERROR_PARAM2;
system_set_rtc(t);
} else if (argc > 1) {
return EC_ERROR_INVAL;
}
sec = system_get_rtc_sec();
ccprintf("RTC: 0x%08x (%d.00 s)\n", sec, sec);
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(rtc, command_system_rtc,
"[set <seconds>]",
"Get/set real-time clock",
NULL);
#ifdef CONFIG_CMD_RTC_ALARM
/**
* Test the RTC alarm by setting an interrupt on RTC match.
*/
static int command_rtc_alarm_test(int argc, char **argv)
{
int s = 1, us = 0;
char *e;
ccprintf("Setting RTC alarm\n");
system_enable_hib_interrupt();
if (argc > 1) {
s = strtoi(argv[1], &e, 10);
if (*e)
return EC_ERROR_PARAM1;
}
if (argc > 2) {
us = strtoi(argv[2], &e, 10);
if (*e)
return EC_ERROR_PARAM2;
}
system_set_rtc_alarm(s, us);
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(rtc_alarm, command_rtc_alarm_test,
"[seconds [microseconds]]",
"Test alarm",
NULL);
#endif /* CONFIG_CMD_RTC_ALARM */
/*****************************************************************************/
/* Host commands */
static int system_rtc_get_value(struct host_cmd_handler_args *args)
{
struct ec_response_rtc *r = args->response;
r->time = system_get_rtc_sec();
args->response_size = sizeof(*r);
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_RTC_GET_VALUE,
system_rtc_get_value,
EC_VER_MASK(0));
static int system_rtc_set_value(struct host_cmd_handler_args *args)
{
const struct ec_params_rtc *p = args->params;
system_set_rtc(p->time);
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_RTC_SET_VALUE,
system_rtc_set_value,
EC_VER_MASK(0));
/* For LPC host register initial via SIB module */
void system_lpc_host_register_init(void){
/* Setting PMC2 */
/* LDN register = 0x12(PMC2) */
system_sib_write_reg(SIO_OFFSET, 0x07, 0x12);
/* CMD port is 0x200 */
system_sib_write_reg(SIO_OFFSET, 0x60, 0x02);
system_sib_write_reg(SIO_OFFSET, 0x61, 0x00);
/* Data port is 0x204 */
system_sib_write_reg(SIO_OFFSET, 0x62, 0x02);
system_sib_write_reg(SIO_OFFSET, 0x63, 0x04);
/* enable PMC2 */
system_sib_write_reg(SIO_OFFSET, 0x30, 0x01);
/* Setting SHM */
/* LDN register = 0x0F(SHM) */
system_sib_write_reg(SIO_OFFSET, 0x07, 0x0F);
/* WIN1&2 mapping to IO */
system_sib_write_reg(SIO_OFFSET, 0xF1,
system_sib_read_reg(SIO_OFFSET, 0xF1) | 0x30);
/* Host Command on the IO:0x0800 */
system_sib_write_reg(SIO_OFFSET, 0xF7, 0x00);
system_sib_write_reg(SIO_OFFSET, 0xF6, 0x00);
system_sib_write_reg(SIO_OFFSET, 0xF5, 0x08);
system_sib_write_reg(SIO_OFFSET, 0xF4, 0x00);
/* WIN1 as Host Command on the IO:0x0800 */
system_sib_write_reg(SIO_OFFSET, 0xFB, 0x00);
system_sib_write_reg(SIO_OFFSET, 0xFA, 0x00);
/* WIN2 as MEMMAP on the IO:0x900 */
system_sib_write_reg(SIO_OFFSET, 0xF9, 0x09);
system_sib_write_reg(SIO_OFFSET, 0xF8, 0x00);
/* enable SHM */
system_sib_write_reg(SIO_OFFSET, 0x30, 0x01);
}
#ifdef CONFIG_CODERAM_ARCH
uint32_t system_get_lfw_address(uint32_t flash_addr)
{
/* Little FW located on top of flash - 4K */
uint32_t jump_addr = (CONFIG_FLASH_BASE + CONFIG_SPI_FLASH_SIZE
- CONFIG_LFW_OFFSET + 1);
/* restore base address for jumping*/
base_addr = flash_addr;
return jump_addr;
}
enum system_image_copy_t system_get_shrspi_image_copy(void)
{
/* RO region FW */
if (IS_BIT_SET(NPCX_FWCTRL, NPCX_FWCTRL_RO_REGION))
return SYSTEM_IMAGE_RO;
else/* RW region FW */
return SYSTEM_IMAGE_RW;
}
/**
* Set flag for jumping across a sysjump.
*/
static void system_sysjump(void)
{
/* Jump to RO region -- set flag */
if (base_addr == CONFIG_FLASH_BASE + CONFIG_RO_MEM_OFF)
SET_BIT(NPCX_FWCTRL, NPCX_FWCTRL_RO_REGION);
else /* Jump to RW region -- clear flag */
CLEAR_BIT(NPCX_FWCTRL, NPCX_FWCTRL_RO_REGION);
}
DECLARE_HOOK(HOOK_SYSJUMP, system_sysjump, HOOK_PRIO_DEFAULT);
#endif